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Abstract. We study the consequences of measurement error in the dependent vari-
able of random-coefficients models, focusing on the particular case of quantile regres-
sion. The popular quantile regression estimator of Koenker and Bassett (1978) is
biased if there is an additive error term. Approaching this problem as an errors-in-
variables problem where the dependent variable suffers from classical measurement
error, we present a sieve maximum-likelihood approach that is robust to left-hand
side measurement error. After providing sufficient conditions for identification, we
demonstrate that when the number of knots in the quantile grid is chosen to grow
at an adequate speed, the sieve maximum-likelihood estimator is consistent and
asymptotically normal, permitting inference via bootstrapping. Monte Carlo evi-
dence verifies our method outperforms quantile regression in mean bias and MSE.
Finally, we illustrate our estimator with an application to the returns to education
highlighting changes over time in the returns to education that have previously been
masked by measurement-error bias.
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1. Introduction

Economists are aware of problems arising from errors in variables (EIV) in regressors but
generally ignore measurement error in the dependent variable. The EIV problem has received
its most significant attention in the linear model, including the well-known results that clas-
sical measurement error causes attenuation bias if present in the regressors and has no effect
on unbiasedness if present in the dependent variable (see Hausman, 2001 for an overview). In
general, however, the linear model results do not hold in nonlinear models.1 In this paper, we
study left-hand-side EIV in random-coefficients models, where even an additive disturbance
uncorrelated with the regressors can bias estimates of an outcome’s conditional distribution.
We focus on the consequences of measurement error in the dependent variable of linear con-
ditional quantile models, a setting where we can achieve nonparametric identification even
with some discrete covariates (in contrast to the generic random-coefficients model).2 We
propose a maximum-likelihood approach to consistently estimate the distributional effects of
covariates under the standard assumptions of the linear conditional quantile model. While
EIV in regressors usually require instrumental variables, we provide sufficient conditions for
our estimator to identify the conditional distribution of the outcome without instrumenting.3

We show that under certain assumptions on the degree of ill-posedness, our estimator has
fractional polynomial of n convergence speed and asymptotic normality, permitting inference
by bootstrapping.

Quantile regression (Koenker and Bassett, 1978) is the most widely used special case of
heterogenous-effects random-coefficients models and has become a popular tool for applied
microeconomists to consider the impact of covariates on the distribution of the dependent
variable. As noted, a key benefit of the restrictions imposed by quantile regression on
the general linear random-coefficients model is to accommodate non-continuous covariates,
which cause the general random-coefficients model to become unidentified. However, in part
because left-hand side variables in microeconometrics often come from self-reported survey
data, the sensitivity of traditional quantile regression to dependent variable measurement
error poses a serious problem to its validity.4 Put another way, while omitted variables are
problematic in the linear model insofar as they are correlated with the regressors, in quantile

1Schennach (2008) establishes identification and a consistent nonparametric estimator when EIV exists
in an explanatory variable. Wei and Carroll (2009) proposed an iterative estimator for the quantile regression
when one of the regressors has EIV. Studies focusing on nonlinear models in which the left-hand side variable
is measured imperfectly include Hausman, Abrevaya, and Scott-Morton (1998) and Cosslett (2004), who
study probit and tobit models, respectively.

2Hausman (2001) observes that EIV in the dependent variable in quantile regression models generally
leads to significant bias in contrast to the linear model intuition.

3See Chetverikov et al. (2016) for a quantile-regression framework that can accommodate measurement
error in group-level covariates without instruments.

4For overviews of the econometric issues associated with measurement error in survey data, see Bound
et al. (2001) and Meyer et al. (2015).
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regression additive unobserved heterogeneity causes bias even when independent of included
covariates. In this sense, our results are applicable to linear quantile regression models
with many covariates and additive unobserved heterogeneity, such as the nonparametric
estimation of a panel-data models with unobserved heterogeneity studied by Evdokimov
(2010).

Intuitively, the estimated quantile regression line xTi β̂(τ) for quantile τ may be far from
the observed yi because of LHS measurement error or because the unobserved conditional
quantile ui of observation i is far from τ . Our ML framework estimates the likelihood that
a given quantile-specific residual (εij := yi − xTi β(τj)) is large because of measurement error
rather than observation i’s unobserved conditional quantile ui being far away from τj. Jointly
estimating the conditional quantiles and the distribution of the measurement error allows
us to weight the log-likelihood contribution of observation i more in the estimation of β(τj)

where it is more likely that ui ≈ τj. We show in simulations that a mixture of normals can
accommodate a wide set of EIV distributions.5 In the case of Gaussian errors in variables,
this estimator reduces to weighted least squares, with weights equal to the probability of
observing the quantile-specific residual for a given observation as a fraction of the total
probability of that observation’s residuals across all quantiles.

An empirical example (extending Angrist et al., 2006) studies heterogeneity in the returns
to education across conditional quantiles of the wage distribution. Correcting for likely mea-
surement error in the self-reported wage data, we estimate considerably more heterogeneity
across the wage distribution in the education-wage gradient than implied by traditional
methods. In particular, the returns to education for latently high-wage individuals have
been increasing over time and are much higher than previously estimated. By 2000, the
return to education for individuals at the top of the conditional wage distribution was over
three times larger than returns for any other segment of the distribution, whereas tradi-
tional methods find only a two-fold increase. We also document that increases in the returns
to education between 2000–2010, while still skewed towards top earners, were shared more
broadly across the wage distribution.

The rest of the paper proceeds as follows. In Section 2, we introduce our model specifica-
tion and identification conditions. In Section 3, we introduce our estimator and characterize
its properties. We present Monte Carlo simulation results in Section 4, and Section 5 contains
our empirical application. Section 6 concludes.

We adopt the following notation. Define x to have dimension dx and support X . Let
xk denote the kth dimension of x, and let x−k denote the subvector of x corresponding to
all but the kth dimension of x. Define the space of y as Y . Let p−→ stand for convergence
in probability. Let f(·) be the p.d.f. of the EIV ε. We denote the true coefficient and

5See Burda et al. (2008, 2012) for other applications demonstrating the flexibility of a finite mixture of
normals.
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measurement error distributional parameters as β0(·) and σ0, respectively. Finally, we use
the notation x - y for x = O(y) and x -p y for x = Op(y).

2. Model and Identification

Consider the general linear random-coefficients model as a framework to characterize un-
observed heterogeneity in marginal effects

yi = xTi βi + ξi, (2.1)

where the covariates vector xi is independent of the random coefficient vector βi. This model
is nonparametrically identified even in the presence of additive unobserved heterogeneity ξi
such that additional measurement error in y is isomorphic to any other form of independent
unobserved heterogeneity and poses no immediate problem for bias. However, identification
requires xi to be continuously distributed and practical computation requires the dimension
of xi to be low to avoid the curse of dimensionality.

In practice, improving upon the generic random coefficient model in (2.1) requires rela-
tively strong assumptions. When at least some covariates are discrete (the most common
situation when estimating treatment effects), a special case of (2.1) that permits nonparamet-
ric identification of heterogenous treatment effects is linear conditional quantile regression,
which takes the form

y∗i = xTi β0(ui),

where all unobserved heterogeneity in enters through the treatment effects as the scalar
ui ∼ U [0, 1] representing the unobserved quantile of yi in the conditional distribution of
yi|xi.6 In this model, the τ th conditional quantile of the dependent variable y∗ is a linear
function of x

Qy∗|x(τ) = xTβ0(τ),

implying that xTβ0(·) is monotonic. However, we are interested in the situation where y∗ is
not directly observed, and we instead observe y where

y = y∗ + ε

and ε is a mean-zero, i.i.d error term independent from y∗ and x. Our ability to separately
identify the conditional quantile coefficient function β0(·) and the measurement error distri-
bution in this parsimonious model relies on the structure afforded by the two assumptions
embedded in the quantile-regression model: univariate unobserved heterogeneity ui and the

6Here we study the linear conditional quantile model, as is ubiquitous in practice. While the conditional
quantile model is identified for linear and many nonlinear specifications, it is not nonparametrically identified
(Horowitz and Lee, 2005). Note that our results will allow for polynomials in xi, somewhat relaxing the
linearity assumption.
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monotonicity of xTβ0(·). Moreover, the estimator we propose below cannot ultimately dif-
ferentiate between whether independent and additively separable unobserved heterogeneity
ε in observed outcomes y consists of pure noise or omitted independent covariates whose
treatment effects do not vary with ui. In either case, however, independent and additively
separable unobserved heterogeneity in observed outcomes will bias estimated treatment ef-
fects.

Unlike the linear-regression case where EIV in the left-hand side variable does not inhibit
consistency or asymptotic normality, EIV in the dependent variable can lead to severe bias
in quantile regression. More specifically, with ρτ (z) denoting the check function

ρτ (z) = z(τ − 1(z < 0)),

the minimization problem in the usual quantile regression

β(τ) ∈ arg min
b
E[ρτ (y − xT b)],

is generally no longer minimized at the true β0(τ) when EIV exists in the dependent variable.
When there exists no EIV in the left-hand side variable, y∗ is observed and the FOC is

E[x(τ − 1(y∗ < xTβ(τ)))] = 0, (2.2)

where the true β(τ) is the solution to the above system of first-order conditions as shown
by Koenker and Bassett (1978). However, with left-hand side EIV, the first-order condition
determining β̂(τ) becomes

E[x(τ − 1(y∗ + ε < xTβ(τ)))] = 0. (2.3)

In Appendix A, we demonstrate the bias of bivariate quantile regression, showing that coef-
ficient estimates are biased inwards from their minimum and maximum levels over τ , which
we refer to as compression bias. For intuition, note that for τ 6= 0.5, the presence of mea-
surement error ε will result in the FOC being satisfied at a different estimate of β than in
equation (2.2) even in the case where ε is symmetrically distributed because of the asym-
metry of the check function. Observations for which y∗ ≥ xTβ(τ) (and should therefore be
weighted by τ in the minimization problem) may end up on the left-hand side of the check
function and receive a weight of (1−τ). Such asymmetry implies that equal-sized differences
on either side of zero do not cancel each other out as they do for estimators with symmetric
loss functions. Note that for median regression, ρ.5(·) is symmetric around zero. Accordingly,
if ε is symmetrically distributed and β(τ) symmetrically distributed around τ = .5 (as would
be the case, for example, if β(τ) were linear in τ), the expectation in equation (2.3) holds
for the true β0(0.5).
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2.1. Identification and Regularity Conditions. To establish the nonparametric identi-
fication of our model, we require the following two assumptions.

Assumption 1 (Properties of β(·)). We assume the following properties on the coefficient
vectors β(τ).

(1) β(τ) is in the space M [B1 × B2 × B3 × ... × Bdx ] where the functional space M is
defined as the collection of all functions b = (b1, ..., bdx) : [0, 1]→ [B1× ...×Bdx ] with
Bk ⊂ R being a closed bounded interval ∀ k ∈ {1, ..., dx} such that xT b(τ) : [0, 1]→ R
is monotonically increasing in τ for all x ∈ X .

(2) The true parameter β0 is a vector of C2 functions with first-order derivatives bounded
from above by a positive constant.

Monotonicity of xTβ(·) is a key assumption in quantile regression and important for iden-
tification because in the log-likelihood function, f(y|x) =

∫ 1

0
f(y − xTβ(u))du is invariant

to a rearrangement of the function β(u).7 The function β(·) is therefore unidentified if we
do not impose further restrictions. However, given the distribution of the random variable
{β(u) |u ∈ [0, 1]}, the vector of functions β : [0, 1] → B1 × B2 × ... × Bdx is unique under
rearrangement if xTβ(·) is monotonic in τ .

Assumption 2 (Properties of x). We assume the following properties of the vector of ob-
servables x.

(1) E[xxT ] is non-singular.
(2) There is at least one dimension x1 of x such that for each value of x−1 with strictly

positive probability density or mass, there exists an open neighborhood of x1 within
which x1|x−1 is continuously distributed with strictly positive probability density.

(3) The element of β0(·) corresponding to x1, denoted as β0,1(·), is strictly monotonic.

Assumption 2.2 ensures that there is at least one dimension x1 of x such that for every
reachable value of x−1, x−1 cannot fully explain x1. Finally, we assume that the measurement
error is mean zero and has finite moments.

Assumption 3 (Properties of EIV). We assume the following properties of any PDF f(·)
of the measurement error ε.

(1) f(·) is continuously differentiable.
(2)

∫∞
−∞ εf(ε)dε = 0.

(3) There exists a constant C > 0 such that for all k > 0,
∫∞
−∞

∣∣εk∣∣ f(ε)dε < k! ·Ck where
k! denotes k factorial.

7Note that the monotonicity assumption in Assumption 1 also requires that if x ∈ X then −x /∈ X . In
practice, many quantile models assume that x ≥ 0.
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The above conditions on the parameters, covariates, and measurement error distribution
allow us to state our main nonparametric identification result.

Theorem 1 (Nonparametric Global Identification). Assume that Assumptions 1 and 2 hold
and that the PDFs of ε, f(·) and f0(·), both satisfy the conditions of Assumption 3. Then,
for any β(·) and f(·) which generate the same density of y|x almost everywhere as the true
function β0(·) and f0(·), it must be that β(τ) = β0(τ) almost everywhere for all τ ∈ [0, 1]

and f(ε) = f0(ε) almost everywhere for all ε ∈ R.

Proof. See Appendix B. �

Although the above identification result allows x−1 to enter into xTβ(·) in an unrestricted
fashion, Theorem 1 holds under the presence of a continuously distributed x1 that enters x
linearly. To illustrate that more flexible functions of x1 are admissible, the following lemma
establishes nonparametric identification when finite polynomials of x1 are also included in
x. Before stating the lemma, we restate Assumption 2 to allow for polynomials of x1.

Assumption 4 (Properties of x allowing for polynomials of x1). We assume the following
properties of the vectors x that comprise the design matrix X.

(1) E[xxT ] is non-singular.
(2) We can partition x = (W (x1)T , xT−w)T where x1 is one dimensional,W (x1) = (x1, x

2
1, ..., x

p
1)T

for some p, and for each value of x−w with strictly positive marginal probability density
or mass, there exists an open neighborhood of x1 within which x1|x−w is continuously
distributed with strictly positive probability density.

(3) The element of β0(·) corresponding to xp1 , denoted as β0,xp1
(·), is strictly monotonic

and has continuous and bounded derivatives with respect to τ for all τ ∈ (0, 1).

Lemma 1 (Nonparametric Identification with Higher-order Polynomials). Assume that As-
sumptions 1 and 4 hold and that the PDFs of ε, f(·) and f0(·), both satisfy the conditions
of Assumption 3. Then, for any β(·) and f(·) which generate the same density of y|x al-
most everywhere as the true functions β0(·) and f0(·), it must be that β(τ) = β0(τ) almost
everywhere for all τ ∈ [0, 1] and f(ε) = f0(ε) almost everywhere for all ε ∈ R.

Proof. See Appendix B. �

3. Estimation

In this section, we first demonstrate the consistency of the ML estimator, which we then
operationalize with a sieve-ML estimator, establishing its consistency and asymptotic nor-
mality. In addition, we provide sufficient conditions for inference by pairs bootstrapping in
our sieve-ML setting, paralleling the residual bootstrapping procedure in Chen and Pouzo’s
(2013) sieve-GMM setting. While Theorem 1 and Lemma 1 establish identification even when
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the distribution of ε is nonparametric, for estimation, we require the following assumptions
on the properties of the measurement error ε.8

Assumption 5 (Parametric Properties of EIV). The probability density function of the EIV
is parametrized as f(ε|σ), and the true density is abbreviated f0(ε) := f(ε|σ0).

(1) The domain of the parameter σ with dimension dσ is a compact space Σ, and the true
value σ0 is in the interior of Σ.

(2) f(ε|σ) is twice differentiable in ε and σ with bounded derivatives up to the second
order.

(3) For all σ ∈ Σ, there exists a uniform constant C̄ > 0 such that E[| log f(ε|σ)|] < C̄.
Moreover, f(·|σ) is non-zero all over the entire space R and bounded from above
uniformly.

(4) E[ε] =
∫∞
−∞ εf(ε|σ) = 0.

(5) There exists a constant C > 0 such that for all k > 0,
∫∞
−∞

∣∣εk∣∣ f(ε|σ)dε ≤ k! · Ck.
(6) For any σ ∈ Σ, l > 0, and some constant Cl > 0,

∫ l
−l |φε(s)−φε0(s)|

2ds ≥ Cl||σ−σ0||22,
where φε(s) :=

∫∞
−∞ exp(isε)f(ε|σ)dε is the characteristic function of ε given PDF

f(ε|σ).

(7) There exists a constant C > 0 such that both E
[∥∥∥x f ′(y−xT β0(τ)|σ0)∫ 1

0 f(y−xT β0(τ)|σ0)dτ

∥∥∥4
]
< C and

E

[∥∥∥∫ 1
0 fσ(y−xT β0(τ)|σ0)dτ∫ 1
0 f(y−xT β0(τ)|σ0)dτ

∥∥∥4
]
< C.

Note that Assumption 5 holds for all mean-zero distributions in the exponential family.
Assumption 5.7 is a mild condition required by the Triangular Central Limit Theorem and
guarantees that the information matrix exists and its empirical analog is well behaved.

Given this parameterization of f(·|σ), we define our log likelihood function as follows.

Denote θ := (β(·), σ) ∈ Θ. Define ||(β,σ)|| :=
√∫ 1

0
||β(τ)||22dτ + ||σ||22 as the L2 norm of

(β0,σ0), where ||·||2 is the usual Euclidean norm. For any θ, define the expected log-likelihood
function L(θ) as

L(θ) = E[log g(y|x, θ)],

with the empirical log likelihood being denoted

Ln(θ) = En[log g(y|x, θ)],

where En is the empirical average operator Enh(x) := 1
n

∑n
i=1 h(xi).

8While Assumption 5 requires knowing the distribution of the EIV up to a finite set of parameters,
we show in simulations below that when the distribution of the EIV is unknown, a mixture of normals is
sufficiently flexible to approximate a wide range of potential distributions.
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Using the fact that the unobserved conditional quantile is the CDF of y|x and CDFs are
distributed uniformly, the conditional density function g(y|x, θ) is given by

g(y|x, θ) =

∫ 1

0

f(y − xTβ(u)|σ)du. (3.1)

Then the ML estimator is defined as

θ̂ = (β̂(·), σ̂) ∈ arg max
(β(·),σ)∈Θ

En[log g(y|x, β(·), σ)], (3.2)

where g(·|·, ·, ·) is the conditional density of y given x and parameters, as defined in equation
(3.1). The following theorem states the consistency property of the ML estimator.

Lemma 2 (MLE Consistency). Under Assumptions 1, 4, and 5, the maximum-likelihood
estimator defined by (3.2) exists and converges in probability to the true parameter (β0(·), σ0)

under the L2 norm in the functional space M and Euclidean norm in Σ.

Proof. See Online Appendix D.1. �

The consistency theorem is a special version of a general MLE consistency theorem (Van
der Vaart, 2000). Two conditions play critical roles here: the monotonicity of xTβ(·) for all
x ∈ X and the local continuity of at least one right-hand side variable. If monotonicity fails,
we lose compactness of the parameter space Θ and the consistency argument will fail.

3.1. Sieve Maximum Likelihood Estimation. While we have demonstrated that the
maximum likelihood estimator restricted to parameter space Θ converges to the true param-
eter with probability approaching 1, the estimator still lives in a large space with β(·) being
dx-dimensional functions such that xTβ(·) is monotonic and σ being a finite dimensional
parameter. Although theoretically such an estimator does exist, in practice it is computa-
tionally infeasible to search for the likelihood maximizer within this large space. Here, we
consider a spline estimator of β(·) for their computational advantages in calculating the sieve
estimator. The estimator below is easily adapted to the reader’s preferred estimator. We
use a piecewise-spline sieve space, which we define as follows.

Definition 1 (Sieve Space). Define Θr
J := Ωr

J ×Σ to denote the sieve-ML parameter space,
where Ωr

J stands for the space of rth-order spline functions with J knots on [0, 1] such that

(1) xTβ(τ) is monotonically increasing in τ ∈ [0, 1] for all x ∈ X for all β(·) ∈ Ωr
J and

(2) elements in Ωr
J are bounded above as in Assumption 1.

For example, for any β(·) ∈ Ω1
J , βk(·) is a piecewise linear function on a set of intervals

covering [0, 1] and k = 1, . . . , dx. Such a definition allows Ωr
J to cover a dense set in M [B1×

B2 ×B3 × ...×Bdx ] as J grows to infinity with sample size.
The space Ωr

J can therefore be written as the collection of functions β(τ) such that β(τ) :=∑r
l=1 blτ

l +
∑J

j=1 bj+r (max {τ − tj, 0})r =
∑r+J

l=1 blSl(τ) where tj is the jth knot, Sl(τ) and
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bl with l = 1, 2, ..., r + J are the spline functions and their coefficients.. In general, the L2

distance of the space Θr
J to the true parameter θ0 satisfies d2(θ0,Θ

r
J) ≤ CJ−r−1

n for some
generic constant C (Chen, 2007). It is easy to see that Θr

J ⊂ Θ.
The sieve estimator is defined as follows.

Definition 2 (Sieve Estimator).

θ̂J = (β̂J(·), σ̂) = arg max
θ∈ΘrJn

En[log g(y|x, β, σ)] (3.3)

where Jn →∞ as n→∞.

The following lemma establishes the consistency of the sieve estimator.

Lemma 3 (Sieve Estimator Consistency). If Assumptions 1, 4, and 5 hold, Jn → ∞, and
Jn/n→ 0, then the sieve estimator defined in (3.3) is consistent.

Proof. See Online Appendix D.1. �

Our objective is to show that β̂J will converge to β0 with certain speed. Doing so requires a
definition of the parametric score evaluated at a functional β(·). Let the Hadamard derivative
of g with respect to β in the directions of S1(τ), ..., SJ+r(τ) and evaluated at β̃ and σ̃ be
defined as

∂g

∂β

∣∣∣∣∣
β̃,σ̃

:=

(∫ 1

0

f ′(y − xTβ(τ)|σ)S1(τ)dτ, ...,

∫ 1

0

f ′(y − xTβ(τ)|σ)SJ+r(τ)dτ

)
.

Note that for a (βJ , σ) ∈ Θr
J ,

∂g
∂β

∣∣
βJ ,σ

=
[
∂g
∂b1
, . . . , ∂g

∂bJ+r

]
, where b1 . . . , bJ+r are the coefficients

for S1(τ), ..., SJ+r(τ) in βJ(τ). We also define the information matrix evaluated at (β̃, σ̃) as

Iβ̃,σ̃ := E

[(
∂ log(g)

∂β
,
∂ log(g)

∂σ

)(
∂ log(g)

∂β
,
∂ log(g)

∂σ

)′] ∣∣∣∣∣
β̃,σ̃

= E

[(
∂g
∂β
, ∂g
∂σ

g

)(
∂g
∂β
, ∂g
∂σ

g

)′] ∣∣∣∣∣
β̃,σ̃

When J goes to infinity, the smallest eigenvalue of Iβ0,σ0 goes to 0, leading to an ill-posedness
problem. Intuitively, as we are trying to estimate β(·) and σ via sieve MLE from the mixture
distribution of y = xTβ(τ) + ε, where τ ∼ U [0, 1] and ε ∼ f(·|σ0), the estimation of β(·)
is ill-posed. However, the curse of dimensionality in β is not at play because xTβ(·) is a
monotone function of a single random variable τ . We will adopt the following measure of
ill-posedness.

Assumption 6 (Ill-posed Measure). Define mineigen(A) as the minimum eigenvalue for a
given matrix A. Let one of the following two assumptions on the degree of ill-posedness hold
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(1) Mild ill-posedness: mineigen(Iβ,σ) ≥ C/Jλ for some λ > 0 and constant C > 0, for
all (β0, σ0) ∈ Θ.

(2) Severe ill-posedness: mineigen(Iβ,σ) ≥ C exp(−λJζ) for some λ > 0, ζ > 0, constant
C > 0, and all (β0, σ0) ∈ Θ.

These ill-posed measures are closely related to the smoothness of the PDF of the EIV (Fan,
1991). The normal distribution is severely ill-posed with λ = 2 and ζ = 1, and the Laplace
distribution is mildly ill-posed with λ = 1. Unlike the usual sieve estimation problem, our
problem is ill-posed with minimum eigenvalue decaying at speed Jλ under mild ill-posedness
of degree λ. When the PDF of the EIV is super smooth, the problem becomes severely
ill-posed. While convergence to normality will be too slow for our bootstrap results to hold,
consistency still holds under super smoothness. However, we note that mild ill-posedness
will be satisfied under even minor perturbations from super smoothness. In such a case, we
could use a sieve mixture of non-smooth PDFs to approximate a smooth PDF and reduce the
ill-posedness of the problem, a point we leave to future research. We establish consistency
and the convergence rate under severe ill-posedness in Theorem 3 below.

A sufficient condition for mild ill-posedness is the following discontinuity assumption on
f—see also An and Hu (2012).9

Assumption 7 (Discontinuity of f). There exists a positive integer λ such that f ∈ Cλ−1(R),
and the λth order derivative of f equals

f (λ)(x) = h(x) + cδδ(x− a),

with h(x) being a bounded function and L1 Lipschitz except at a, cδ a non-zero constant, and
δ(x− a) a Dirac δ-function at a.

The following final assumption on the characteristic function significantly simplifies our
proof of the convergence rate of the distributional parameters. It holds whenever there exists
enough variation in x such that the characteristic function is non-constant around x.

Assumption 8 (Variation on Characteristic Function). Let φxβ(s|x) denote the characteris-
tic function of xTβ conditional on x. Suppose there exists a local neighborhood N ⊂ X such
that there exists a constant c > 0 and for any (β, σ) ∈ Θ and any s ∈ [−l, l],

Varx∈N
(∣∣∣∣ φxβ(s|x)

φxβ0(s|x)

∣∣∣∣) ≥ cEx∈N

[∣∣∣∣φxβ(s|x)− φxβ0(s|x)

φxβ0(s|x)

∣∣∣∣2
]

where Varx∈N and Ex∈N denote the variance and expectation operators evaluated over all x
in a neighborhood N .

9See Lemma 8 in Online Appendix D.1 for a formal statement and proof of this result for sieves of splines.
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In the lemma below, we use the stochastic equicontinuity of the log likelihood function to
establish key facts about the convergence rate of σ̂, including that it converges to σ0 at rate
n−

1
4 .

Lemma 4 (Convergence Rate of σ̂). If Assumptions 1, 4, 5, and 8 hold and J2r+2
n /n→∞,

the sieve estimator (β̂J(·), σ̂) satisfies

σ̂ − σ0 = op(n
− 1

4 ).

Moreover, defining δ := ||β̂J − β∗J ||, then

||σ̂ − σ0||2 = Op

(
max

(
log n

n
,
δ
√
− log δ√
n

))
Proof. See Online Appendix D.1. �

For EIV distributions that are mildly ill-posed, we require that the sieve grid Jn grow
quickly enough to overcome the bias but slowly enough to overcome the ill-posed problem,
as we formalize in the following theorem.

Theorem 2 (Sieve Estimator Asymptotic Normality). Let Assumptions 1, 4, 5, 6.1 (the
mildly ill-posed case), and 8 hold. Further, let the number of knots Jn satisfy J4λ2+6λ

n log(n)/n→
0 and J2r+2

n /n→∞ as n→∞ and let r + 1 > λ. Then∣∣∣∣∣∣∣∣β̂J − β0, σ̂ − σ0

∣∣∣∣∣∣∣∣ = Op

(
1

Jr+1
n

)
= JλnOp

(
1

Jr+1
n

,
1√
n

)
.

Moreover, there exists a sequence κJ ≥ C
Jλn

for some generic constant C > 0 such that for
any fixed τ

√
nκJΩ

−1/2
J,τ

(
β̂J(τ)− β0(τ)

) d−→ N (0, Idx),

where ΩJ,τ is a sequence of positive definite matrices with the largest eigenvalue bounded by
a constant and Idx is an identity matrix of dimension dx × dx, and

√
nκJΩ

−1/2
J,σ

(
σ̂J − σ0

) d−→ N (0, Idσ),

where ΩJ,σ is a sequence of positive definite matrices with the largest eigenvalue bounded by
a constant.

Proof. See Online Appendix D.1. �

The smoothness of the mapping from the data to the estimator β(·) helps with robustness
to mild forms of misspecification. Following same proof as for Theorem 2 above, misspecifi-
cation would produce a second residual term in addition to the stochastic term. Using this
smoothness along with the capacity of our estimator to accommodate additional polynomial
terms, the approximation provided by the sieve estimator would still approach the truth
asymptotically.
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As discussed above, while asymptotic normality need not hold under the severe ill-posed
case, the following theorem establishes the convergence rate of the sieve estimator under
severe ill-posedness.

Theorem 3 (Severe Ill-posedness Sieve Estimator Convergence Rate). Let Jn be a sequence
of positive numbers such that exp(λJζn)√

n
= 1

Jn
. Then under Assumptions 1, 4, 5, 6.2 (the severe

ill-posed case), and 8, the sieve estimator βJn satisfies

||β̂Jn − β0|| -p
1

log1/ζ(n)
.

Proof. See Online Appendix D.1. �

3.2. Inference via Bootstrap. In the last section we proved asymptotic normality for
the sieve-ML estimator θ = (β(τ), σ). However, computing the convergence speed µkjJ for
βk,J(τj) by explicit formula can be difficult in general. To conduct inference, we recommend
using nonparametric pairs bootstrap. Define (xbi , y

b
i ) as a resampling of data (xi, yi) with

replacement for bootstrap iteration b = 1, . . . B, and define the estimator

θb = arg max
θ∈ΘJ

Eb
n[log gb(ybi |xbi , θ)],

where Eb
n denotes the operator of empirical average over resampled data for bootstrap iter-

ation b. Then our preferred form of the nonparametric bootstrap is to construct confidence
intervals pointwise for each covariate k and quantile τ from the variance of each coefficients{
βbk(τj)

}B
b=1

as β̂k(τj) ± z1−α/2 · σ̂jk where the critical value z1−α/2 = 1.96 and σ̂jk is the
standard deviation of the bootstrapped estimates of βk(τj).

The following lemma establishes the asymptotic normality of the bootstrap estimates and
allows us, for example, to use the empirical variance of the bootstrapped parameter estimates
to construct bootstrapped confidence intervals.

Lemma 5 (Validity of the Bootstrap). As in Theorem 2, let Assumptions 1, 4, 5, 6.1 (the
mildly ill-posed case), and 8 hold, and let the number of knots Jn satisfy J4λ2+6λ

n log(n)/n→ 0

and J2r+2
n /n → ∞ as n → ∞ and let r + 1 > λ. Then there exists a sequence κJ ≥ C

Jλn
for

some generic constant C > 0 such that for any fixed τ ,
√
nκJΩ

−1/2
J,τ

(
β̂bJ(τ)− β̂J(τ)

) d−→ N (0, Idx)

and
√
nκJΩ

−1/2
J,σ

(
σ̂b − σ̂

) d−→ N (0, Idσ),

where ΩJ,τ and ΩJ,σ are the same as in Theorem 2.

Proof. See Online Appendix D.1. �
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4. Monte-Carlo Simulations

We examine the properties of our estimator empirically in Monte-Carlo simulations. Let
the data-generating process be

yi = β1(ui) + x2iβ2(ui) + x3iβ3(ui) + εi

where n = 100, 000, the conditional quantile ui of each individual is u ∼ U [0, 1], and the co-
variates are distributed as independent lognormal random variables, i.e. x2i, x3i ∼ LN(0, 1).
The coefficient vector is a function of the conditional quantile ui of individual i β1(u)

β2(u)

β3(u)

 =

 1 + 3u− u2

exp(u)
√
u

 .

In our baseline scenario, we draw mean-zero measurement error ε from a mixed normal
distribution

εi ∼


N (−3, 1) with probability 0.5

N (2, 1) with probability 0.25

N (4, 1) with probability 0.25.

(4.1)

To simulate robustness to real-world settings in which the econometrician does not know the
true distribution of the residuals, we also present results simulating measurement error from
alternative distributions and test how well quasi-MLE via our sieve-ML estimator modeling
the error distribution as a Gaussian mixture accommodates misspecification in Fε.10 We use
a genetic-algorithm optimizer to find the maximizer of the log-likelihood function defined in
Section 3 with start values provided by a gradient-based constrained optimizer (see Online
Appendix A for details on the implementation of our estimator). For the start values of the
distributional parameters, we place equal 1/3 weights on each mixture component, with unit
variance and means -1, 0, and 1.

In Figure 1, we plot the true coefficient function defined above, average coefficients from
quantile regression, and our sieve-ML estimator using a sieve for β(·) consisting of 15 knots.
While Online Appendix B provides MSE results, to give a visual sense of the variability in
the ML estimates across simulations, for each knot τj, we also plot pointwise error bands
equal to β̂(τj) ± 1.96σ̂j, where σ̂j is the standard deviation across simulations of parame-
ter estimates β̂(τj).11 To test whether our recommended bootstrapped confidence intervals

10We note that our asymptotic normality results (Theorem 2) require the EIV distribution to be mildly
ill-posed, while the mixture of normals we consider here technically may be severely ill-posed. However,
empirically, a mixture of normals can produce relatively thick density tails similar to a mildly ill-posed
distribution, and we show below that our estimator based on a mixture of normals is well behaved.

11If we assume asymptotic normality, we estimate the critical value for simultaneous confidence intervals
to be 2.92, roughly 50% wider than the 1.96 used in these pointwise error bands.
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Figure 1. Monte Carlo Simulation Results
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Notes: Figure plots the true coefficient vectors (lines) against quantile-regression estimates (circles),
sieve MLE (×s), and ±1.96σ error bands for the ML estimates (dashed lines) from 500 Monte Carlo
simulations using the data-generating process described in the text with the measurement error
generated as a mixture of three normals.

have desirable coverage when using a mixture of normals, we further calculate bootstrap
confidence intervals for each simulation using the procedure described in section 3.2. We
then calculate the fraction of simulations for which the true parameter lies within the boot-
strapped confidence interval. Averaging the coverage across all β(·) and σ parameters, our
bootstrapped confidence intervals have a coverage of 98%, suggesting them to be slightly
conservative on average—see Online Appendix Table B5.

Focusing on Panels II and III of Figure 1 that plot estimates of the slope coefficients
β2(·) and β3(·), quantile regression estimates are badly biased, with lower quantiles biased
upwards and upper quantiles biased downwards. In contrast, the sieve-ML estimates fall
almost directly on top of the true parameter function, and the bias of the sieve-ML estimator
is nearly indistinguishable from zero at all quantiles. The average absolute bias for the
sieve-ML estimates is 0.6% and 1.5% of the true coefficients for β2(·) and β3(·) respectively,
and always less than 4% of the true magnitude. By contrast, the mean bias of the quantile
regression coefficients is 12% and 22% for the two slope coefficients and exceeds 100% for some
quantiles. Online Appendix Table B1 confirms that the quantile-regression average absolute
bias is 26 and 16 times larger than the sieve MLE bias for β2(·) and β3(·), respectively.
Online Appendix Table B1 further reports MSE results, showing that the average MSE is an
order of magnitude smaller for the sieve-ML estimates than the quantile-regression estimates.
Figure 1 also shows that quantile-regression estimates of the intercept term β1(·) are badly
biased. Given that quantile-regression estimated intercepts ensure that the τ th conditional
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Figure 2. Monte Carlo Simulation Results: Distribution of Measurement Error
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Notes: Figure reports the true measurement error density (solid line) and the average sieve-ML
estimated density from 500 Monte Carlo simulations (×s). The true measurement error distribution
is a mean-zero mixture of three normals (N (−3, 1), N (2, 1), and N (4, 1) with weights 0.5, 0.25,
and 0.25, respectively. For each grid point, the dashed lines plot ±1.96σ error bands for the ML
estimates of the EIV density function, where σ is the standard deviation of the estimated density
at that grid point across all Monte Carlo simulations.

quantile of the residuals Qε̂(τ) = 0, when the slope coefficients are biased, this exacerbates
the bias in the constant function. Whereas the mean absolute bias of the sieve-ML estimates
of β1(·) is 2% of the true magnitude, quantile regression has a mean absolute bias of 116%
of the true β1(·) functional.

Figure 2 shows the true mixed-normal distribution of the measurement error ε as defined
above (solid line) plotted with the estimated distribution of the measurement error from the
average estimated distributional parameters across all Monte Carlo simulations (line with
×s). Monte-Carlo confidence intervals for the estimated density (dashed lines) are estimated
pointwise as ±1.96σ where σ is the standard deviation of the density estimates for each
grid point across all simulations. Despite the bimodal nature of the true measurement error
distribution, our algorithm captures the overall features of true distribution well, with the
true density always within the confidence interval for the estimated density.
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In practice, the econometrician seldom has information on the distribution family to which
the measurement error belongs. To probe robustness on this dimension, we demonstrate the
flexibility of the Gaussian mixture-of-three specification by showing that it accommodates
alternative errors-in-variables data-generating processes well. Table 1 shows that when the
errors are distributed as a t distribution with three degrees of freedom (normalized to have
the same variance as in (4.1)) in panel I or as a Laplace (with λ = 2.29 to again have the
same variance across ε DGPs) in panel II, the sieve-ML estimates that model the EIV distri-
bution as a mixture of three normals still significantly outperform quantile regression.12 As
expected, quantile regression is again biased towards the median under both distributions
and for both slope coefficients (visible as positive mean bias for quantiles below the me-
dian and negative bias for quantiles above the median). By comparison, sieve-ML estimates
are generally much less biased than quantile regression for both data-generating processes.
Our sieve-ML framework easily accommodates mixtures of more than three normal compo-
nents for additional distributional flexibility in a quasi-MLE approach. Online Appendix B
provides additional simulation results—including both mean bias and MSE—for alternative
measurement error distributions and when β(·) is estimated using a finer sieve space (99
knots).

5. Empirical Application

To illustrate the use of our estimator in practice, we examine distributional heterogeneity
in the wage returns to education. First, we estimate the quantile-regression analog of a
Mincer regression, replicating and extending results from Angrist et al. (2006)

Qy|x(τ) = β1(τ) + β2(τ)educationi + β3(τ)experiencei + β(τ)experience2
i (5.1)

where Qy|x(τ) is the τ th quantile of the conditional (on the covariates x) log-wage distribu-
tion, and the education and experience variables are measured in years. In contrast to the
linear Mincer equation, the Skorohod representation of quantile regression assumes that all
unobserved heterogeneity enters through the unobserved rank of person i in the conditional
wage distribution. The presence of an additive error term, which could include both measure-
ment error and wage factors unobserved by the econometrician, would bias the estimation
of the coefficient function β(·).

Figure 3 plots quantile-regression estimates of equation (5.1) using census microdata sam-
ples from four decennial census years: 1980, 1990, 2000, and 2010.13 Consistent with Angrist

12Notably, the Laplace distribution is mildly ill-posed and our estimator using a mixture of normals
accommodates such a DGP quite well.

13For further details on the data including summary statistics, see Online Appendix C. For comparability
with Angrist et al. (2006) and to have a sufficient observations to run our estimator, we focus on prime age
white males (aged 40-49). In Hausman et al. (2019), we provide evidence that other demographic groups have
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Table 1. MC Simulation Mean Bias: Robustness to Alternative Data-
Generating Processes

I. ε ∼ t II. ε ∼ Laplace
β2 β3 β2 β3

Quantile QR SMLE QR SMLE QR SMLE QR SMLE
0.1 0.14 0.02 0.10 0.00 0.18 0.02 0.13 0.00
0.2 0.11 -0.01 0.05 -0.01 0.13 0.00 0.05 0.00
0.3 0.09 -0.02 0.02 -0.01 0.09 0.01 0.02 0.01
0.4 0.06 0.02 0.00 0.00 0.06 0.02 0.00 0.00
0.5 0.03 0.02 -0.02 0.01 0.03 -0.01 -0.02 -0.01
0.6 0.00 0.00 -0.03 0.00 0.00 -0.01 -0.03 -0.01
0.7 -0.05 0.00 -0.04 -0.01 -0.05 -0.02 -0.05 0.00
0.8 -0.11 -0.02 -0.06 -0.01 -0.13 -0.01 -0.07 -0.01
0.9 -0.20 -0.02 -0.08 -0.01 -0.24 -0.01 -0.10 -0.01
|Bias| 0.09 0.01 0.05 0.01 0.10 0.01 0.05 0.01

Notes: Table reports mean bias of slope coefficients for estimates from classical quantile regression
and sieve MLE modeling the error term as a mixture of three normals across 500 Monte Carlo
simulations of n = 100, 000 observations each. The data are simulated from the data-generating
process described in the text and the measurement error generated by either a Student’s t distri-
bution (panel I) with three degrees of freedom (normalized by

√
3.5 or a Laplace distribution with

λ = 2.29 such that both data-generating processes result in measurement errors with the same
variance (10.5) as in the original data-generating process in (4.1). The last row reports the mean
absolute bias over the nine quantiles listed above.

et al. (2006), we find quantile-regression evidence that heterogeneity in the returns to edu-
cation across the conditional wage distribution has increased over time. Adding data from
2010 shows a large jump in the returns to education for the entire distribution, with top
conditional incomes increasing much less from 2000 to 2010 than bottom conditional in-
comes. Still, the post-1980 convexity of the education-wage gradient is readily visible in the
2010 results, with wages in the top quartile of the conditional distribution being much more
sensitive to years of schooling than the rest of the distribution.14 In 2010, the education
coefficient for the 95th percentile percentile was six log points higher than the education
coefficient for the 5th percentile. Note, too, that traditional quantile regression estimates
become quite unstable at the highest wage quantiles, characterized as the extremal quantiles
problem by Chernozhukov (2005).

We observe a different pattern when we correct for measurement-error bias in the self-
reported wages in the census data. Figure 3 also plots the education coefficient β̂2(τ) from

markedly different patterns of heterogeneity in the education-wage gradient across the conditional income
distribution, motivating further study on treatment effect heterogeneity.

14That the wage-education gradient varies significantly with the quantile of the wage distribution suggests
that average or local average treatment effects estimated from linear estimators fail to represent the returns
to education for a sizable portion of the population.
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Figure 3. Returns to Education Correcting for LHS Measurement Error
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Notes: Figure reports quantile regression (solid lines) and sieve-ML estimates (lines with circles) of
(self-reported) log weekly wages on education and a quadratic in experience. Dashed lines plot 95%
pointwise confidence intervals from 500 bootstrap iterations. The data comes from the indicated
decennial census year and consist of 40-49 year old white men with positive wages born in America.
The number of observations in each sample is 60,051, 80,115, 90,201, and 98,292 in 1980, 1990,
2000, and 2010, respectively.

estimating equation (5.1) by sieve MLE. We approximate β(·) with a piecewise linear func-
tion consisting of 15 knots using our sieve-ML estimator developed in Section 3 (see Online
Appendix A for implementation details). We construct 95% bootstrapped confidence inter-
vals pointwise as β̂2(τj)±1.96σ̂j where σ̂j is the empirical standard deviation of bootstrapped
estimates of β̂2(τj).

In each year, quantile regression estimates understate the returns to education at the top
of the conditional wage distribution relative to sieve-ML estimates. A formal test of the
joint equality across the grid of 15 knots of QR and sieve-ML coefficients rejects equality
of the education coefficient function for each year except 1990. For 1980, the quantile-
regression estimates show relatively constant returns to education across the conditional
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wage distribution, with a sharp decline at the very top characteristic of quantile-regression
estimates at extremal quantiles. The sieve-ML estimates feature more convexity, with the
pattern of increasing returns to education for higher quantiles seen in quantile-regression
estimates in later years visible in the sieve-ML estimates for 1980. In 1990, the quantile-
regression estimates are less affected by measurement error in the sense that the classical
quantile-regression estimates and sieve-ML estimates are nearly indistinguishable given the
typically wide confidence intervals for extremal quantiles, and we fail to reject equality of
QR and sieve-ML estimates.

In the 2000 sample, the quantile-regression and sieve-ML estimates of the returns to edu-
cation again diverge for top incomes, with the point estimate suggesting that after correcting
for measurement error in self-reported wages, the true returns to an additional year of edu-
cation for 98th percentile of the conditional wage distribution is 15 log points (17 percentage
points) higher than estimated by classical quantile regression. This bias correction affects
the amount of inequality estimated in the education-wage gradient, with the sieve-ML esti-
mates implying that top wage earners gained 27 log points (31 percentage points) more from
a year of education than workers in the bottom three quartiles of wage earners. For 2010,
both sieve-ML and classical quantile-regression estimates agree that the returns to education
increased across all quantiles, but again disagree about the marginal returns to schooling for
top wage earners. The quantile regression estimates at the very top of the conditional wage
distribution are again outside the 95% confidence intervals for the sieve-ML estimates.

For each year besides 1990, the quantile regression lines understate the returns to edu-
cation in the top decile of the wage distribution. Correcting for measurement error in self-
reported wages generally increases the estimated returns to education for the top quintile of
the conditional wage distribution, a distinction that is missed because of the compression
bias in the quantile regression coefficients. The returns to education have varied signifi-
cantly over time. Each decade—with the exception of 1990-2000—we see an increase in the
returns to education broadly enjoyed across the wage distribution. However, the increase in
the education-wage gradient is relatively constant across the bottom nine deciles and very
different for the top decile.

These two trends—constant, moderate increases for the bottom three quartiles and acute
increases in the schooling coefficient for top earners—are consistent with the observations of
Angrist et al. (2006) and other work on inequality (e.g., Autor et al., 2008) that finds sig-
nificant increases in income inequality post-1980. Nevertheless, the distributional story that
emerges from correcting for measurement error suggests that the concentration of education-
linked wage gains for top earners is even more substantial than is apparent in previous work.
This finding is particularly relevant for recent discussions of the role of education in income
inequality (Goldin and Katz, 2009), the rise in top-income inequality (see, for example,
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Figure 4. Estimated Distribution of Wage Measurement Error
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Note: Graph plots the estimated probability density function of the measurement error each year
when specified as a mixture of three normal distributions.

Piketty and Saez, 2006), and the increasing returns to cognitive performance (Lin et al.,
2016).15

Our methodology also permits a characterization of the distribution of dependent-variable
measurement error. Figure 4 plots the estimated distribution of the measurement error by
census year. Despite the flexibility afforded by the mixture specification, the estimated den-
sity is unimodal but somewhat skewed with negative excess kurtosis (thinner tails) than the
density of a single normal. Notably, Figure 4 implies larger average errors in self-reported
income than found by Bollinger’s (1998) analysis of the Current Population Survey using
validation data. This suggests a less literal interpretation of measurement error that includes
other forms of additively separable independent unobserved heterogeneity in wages not cap-
tured by our covariates. As mentioned above, our approach cannot distinguish between
additively separable measurement error and additively separable independent unobserved
heterogeneity, although the presence of either significantly changes estimates of the coeffi-
cients of interest in a quantile-regression model. Over time, the variance in the measurement

15Our results here are not causal given that we are using observational variation in education as in Angrist
et al. (2006). IV QR techniques (e.g., Chernozhukov and Hansen, 2005) could be adapted to our setting.
We note that the IV literature on the returns to education has found larger effects after addressing the
endogeneity of education (e.g., Griliches, 1977; Angrist and Krueger, 1991; Card, 2001).
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error is increasing, consistent with recent concerns about declining response rates and a po-
tential deterioration in the reliability of large-scale survey data (see, e.g., Bound et al., 2001;
Brick and Williams, 2013; Meyer et al., 2015).

6. Conclusion

In this paper, we develop a methodology for estimating the functional parameter β(·)
in quantile regression models when there is measurement error in the dependent variable.
Assuming that the measurement error follows a distribution that is known up to a finite-

dimensional parameter, we establish general convergence-speed results for the sieve-ML-based
approach. Under an assumption about the degree of ill-posedness of the problem (Assump-
tion 6), we establish the convergence speed of the sieve-ML estimator. We prove the validity
of bootstrapping based on asymptotic normality of our estimator and suggest using a boot-
strap procedure for inference. Monte Carlo results demonstrate substantial improvements
in mean bias and MSE relative to classical quantile regression when there are modest errors
in the dependent variable, highlighted by the ability of our estimator to estimate the simu-
lated underlying measurement error distribution (a bimodal mixture of three normals) with
a high-degree of accuracy.

Finally, we revisited the Angrist et al. (2006) question of whether the returns to education
across the wage distribution have been changing over time. We find a somewhat different
pattern than prior work, highlighting the importance of correcting for errors in the dependent
variable of conditional quantile models. When we correct for likely measurement error in
self-reported wage data, we find that top wages have grown more sensitive to education
than wages in the rest of the conditional wage distribution, an important potential source of
secular trends in income inequality.
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Appendix A. Bias Characterization

In this appendix, we prove compression bias for the quantile regression slope coefficient. We
make the following assumptions:

(1) Besides the constant, there is one covariate x, which is nonnegative and strictly
positive with a positive probability.

(2) Let β1(τ) and β2(τ) denote the true constant and slope coefficient functions. We
assume that β2(τ) is not a constant, i.e. minτ β2(τ) < maxτ β2(τ). We also assume
that with a positive probability, β2(τ) is strictly greater than minτ β2(τ) and strictly
smaller than maxτ β2(τ).

(3) We assume that the true data generating process is y = β1(τ) + β2(τ)x + ε, where
the EIV ε has a positive probability density everywhere between −∞ and ∞.

Let β̂1(τ0) and β̂2(τ0) denote the estimated constant and slope coefficients at τ0. In the
following, we will show that with left-hand side measurement error ε, minτ β2(τ) < β̂2(τ0) <

maxτ β2(τ) holds for every τ0. In other words, the quantile-regression estimated slope coeffi-
cient is always strictly bounded by the lower and upper bounds of the true slope coefficient
function. We first write out the first-order conditions for β̂1(τ0) and β̂2(τ0) respectively

Ex,τ,ε

[
1(y − β̂1(τ0)− β̂2(τ0)x < 0)

]
= τ0

Ex,τ,ε

[
x1(y − β̂1(τ0)− β̂2(τ0)x < 0)

]
= τ0E[x]

where Ex,τ,ε[·] denotes an expectation taken over the domains of x, τ , and ε. Using iterated
expectations, the first-order conditions can be written as

Ex [ατ0(x)] = τ0 (A.1)

Ex [xατ0(x)] = τ0E[x], (A.2)

where

ατ0(x) = Eτ,ε

[
1
(
y − β̂1(τ0)− β̂2(τ0)x < 0

)]
= Eτ,ε

[
1
(
ε < β̂1(τ0)− β1(τ) + (β̂2(τ0)− β2(τ))x

)]
= Eτ,ε

[
1
(
ε < β̂1(τ0)− β1(τ) + (β̂2(τ0)−min

τ
β2(τ))x+ ((min

τ
β2(τ))− β2(τ))x

)]
(A.3)

We prove that β̂2(τ0) > minτ β2(τ) by contradiction. Suppose that β̂(τ0) ≤ minτ β2(τ).
Then the slope for x inside (A.3) is nonpositive for every τ and negative for some τ by
the assumption that β2(τ) is not everywhere equal to its minimum. This together with the
assumption that ε has a positive probability density everywhere implies that ατ0(x) is a
strictly decreasing function of x. However, the monotonicity of ατ0(x) causes a contradiction
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to (A.1) and (A.2). (A.1) claims that the mean of ατ0(x) over the range of x is τ0. The
left-hand side of (A.2) is a weighted average of ατ0(x) over the range of x, where the average
weight is E[x], and the weight increases as x increases. Since ατ0(x) is strictly decreasing, the
weighted average in (A.2) must be smaller than the average weight times the mean of ατ0(x).
In other words, the left-hand side of (A.2) must be smaller than τ0E[x] and cannot be equal
to τ0E[x]. This causes a contradiction to (A.2). By a similar argument, β̂2(τ0) < maxτ β2(τ).
Therefore,

min
τ
β2(τ) < β̂2(τ0) < max

τ
β2(τ),

which we refer to as compression bias because the estimated parameters strictly lie in the
interior of their true maximum and minimum values over τ ∈ [0, 1].

Appendix B. Proofs of Theorem 1 and Lemma 1

Proof of Theorem 1. If there exist β(·) and f(·) which generate the same density g(y|x, β(·), f(·))
as the true parameters β0(·) and f0(·) then by applying a Fourier transformation and condi-
tional on x,

φε(s)

∫ 1

0

exp(isxTβ(τ))dτ = φε0(s)

∫ 1

0

exp(isxTβ0(τ))dτ.

Denote m(s) = φε0(s)
φε(s)

. By Assumption 2, we can assume that x1 is the continuous variable
and the support of x1|x−1 contains an open neighborhood of 0. A Taylor expansion on both
sides around x1 = 0 gives us∫ 1

0

exp(isxT−1β−1(τ))
∞∑
k=0

(is)kxk1β1(τ)k

k!
dτ = m(s)

∫ 1

0

exp(isxT−1β0,−1(τ))
∞∑
k=0

(is)kxk1β0,1(τ)k

k!
dτ.

Since x1 is continuous, then it must be that any corresponding polynomials of x1 are the
same on both sides. Namely, for any k ≥ 1 and any s,

(is)k

k!

∫ 1

0

exp(isxT−1β−1(τ))β1(τ)kdτ = m(s)
(is)k

k!

∫ 1

0

exp(isxT−1β0,−1(τ))β0,1(τ)kdτ. (B.1)

Dividing both sides of the above equation by (is)k/k! when s 6= 0 and letting s approach 0,∫ 1

0

β1(τ)kdτ =

∫ 1

0

β0,1(τ)kdτ. (B.2)

Note that the denominator of m(s) is well behaved as s → 0. Since φε(0) = 1, f(·|σ) is
continuous in σ, and Σ is compact, φε(·) is uniformly continuous. Then there is an open
neighborhood of s = 0 such that C1 < |φε(s)| < C2 and C1 < |φε0(s)| < C2 for some positive
constants C1 and C2, implying that m(s) exists and is bounded from above and below in an
open neighborhood of s = 0.



ERRORS IN THE DEPENDENT VARIABLE OF QUANTILE REGRESSION MODELS 27

We now show that (B.2) implies that β1 and β0,1 share the same distribution. The char-
acteristic function of β1(τ) can be written as

φβ1(τ)(s) =
∞∑
k=0

(is)k

k!

∫ 1

0

β1(τ)kdτ (B.3)

Since β1(τ) is bounded,
∫ 1

0
β1(τ)kdτ ≤Mk for some constantM > 0. Therefore,

∣∣φβ1(τ)(s)
∣∣ ≤∑∞

k=0
|s|k
k!
Mk = exp(M |s|) < ∞ for any s, and the right-hand side of (B.3) is well defined.

Combining (B.2) and (B.3), we have φβ1(τ)(s) = φβ0,1(τ)(s), and thus β1 and β0,1 share the
same distribution almost everywhere. Thus there exists a measurable one-to-one reordering
mapping π : [0, 1] 7→ [0, 1]. Then β1(π(τ)) = β0,1(τ) almost everywhere, and

∫
h(τ)dτ =∫

h(π(τ))dτ for all integrable functions h(·) defined on [0,1].
Now consider (B.1) again. Dividing both sides by (is)k/k!, we have, for all k ≥ 0∫ 1

0

exp(isxT−1β−1(π(τ)))β1(π(τ))kdτ =

∫ 1

0

exp(isxT−1β−1(τ))β1(τ)kdτ

= m(s)

∫ 1

0

exp(isxT−1β0,−1(τ))β0,1(τ)kdτ. (B.4)

Consider the first-order terms of s in (B.4). Since both f and f0 satisfy
∫∞
−∞ εf(ε) = 0,

we have m′(0) = 0, and hence the coefficients for the first-order terms of s in (B.4) can be
written as ∫ 1

0

xT−1β−1(π(τ))β1(π(τ))kdτ =

∫ 1

0

xT−1β0,−1(τ)β0,1(τ)kdτ.

By Assumption 2.3, β0,1(τ)k, k ≥ 0 is a functional basis of L2[0, 1], therefore xT−1β−1(π(τ)) =

xT−1β0,−1(τ) almost everywhere and everywhere for τ ∈ [0, 1] by invoking the continuity of
β−1(·) and β0,−1(·). Hence E[x−1x

T
−1]β−1(π(τ)) = E[x−1x

T
−1]β0,−1(τ) almost everywhere for

τ ∈ [0, 1]. By Assumption 2.1, E[xxT ] is non-singular. Ergo E[x−1x
T
−1] is also non-singular.

Multiplying both sides of E[x−1x
T
−1]β−1(π(τ)) = E[x−1x

T
−1]β0,−1(τ) by E[x−1x

T
−1]−1,we have

β−1(π(τ)) = β0,−1(τ) for almost all τ ∈ [0, 1].

For any x, xTβ(π(τ)) = xTβ0(τ). Since conditional on x, xTβ(τ) has the same distribution
as xTβ(π(τ)), xTβ(τ) has the same distribution as xTβ0(τ). By the monotonicity of xTβ(τ)

and xTβ0(τ), they must equal each other at almost all τ . Since E[xxT ] is non-singular,
β(τ) = β0(τ) almost everywhere. Consequently, φε(s) = φε0(s), and f(ε) = f0(ε) almost
everywhere. �

Proof of Lemma 1. We first prove the case when W (x1) = [x1, x
2
1]T and then describe how

the proof can be generalized to the case whereW (x1) is a pth-order polynomial. If there exist
β(·) and f(·) which generate the same density as the true parameters β0(·) and f0(·) then
by applying a Fourier transformation and conditional on x, φ

xβ
(s|x)φε(s) = φxβ0(s|x)φε0(s).

Then φxβ(s|x) = m(s)φxβ0(s|x), where m(s) =
φε0 (s)

φε(s)
is a function depending only on s. Let
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βw(τ) = [βx1 , βx21 ]
T and β0,w = [β0,x1 , β0,x21

]T denote the subvectors of β and β0 associated
with W (x1) = [x1, x

2
1]T . Expanding φxβ(s|x) around s = 0,

∞∑
k=0

∫ 1

0

(is)k

k!
[(x1, x

2
1)βw(τ) + xT−wβ−w(τ)]kdτ

=

(
∞∑
k=0

aks
k

)(
∞∑
k=0

∫ 1

0

(is)k

k!
[(x1, x

2
1)β0,w(τ) + xT−wβ0,−w(τ)]kdτ

)
,

=
∞∑
k=0

sk

[
k∑
l=0

ak−l

∫ 1

0

il

l!

[
(x1, x

2
1)β0,w(τ) + xT−wβ0,−w(τ)

]l
dτ

]
(B.5)

where
∑∞

k=0 aks
k is a Taylor expansion of m(s) around s = 0. Since both ε and ε0 have zero

mean, we have a0 = 1, and a1 = 0. Comparing the coefficients on both sides of (B.5) for sk,
we have∫ 1

0

ik

k!
[(x1, x

2
1)βw(τ) + xT−wβ−w(τ)]kdτ =

k∑
l=0

ak−l

∫ 1

0

il

l!
[(x1, x

2
1)β0,w(τ) + xT−wβ0,−w(τ)]ldτ

(B.6)
holding for any k, x1 and x−w. Comparing both sides of (B.6) for any k and the coefficients
for x2k

1 , we have ∫ 1

0

ik

k!

(
βx21(τ)

)k
dτ =

∫ 1

0

ik

k!

(
β0,x21

(τ)
)k
dτ.

Using the same argument as in the proof for Theorem 1 through the characteristic functions,
βx21(τ) and β0,x21

(τ) share the same distribution, and there exists a measurable reordering
mapping π : [0, 1] 7→ [0, 1] such that βx21(π(τ)) = β0,x21

(τ) almost everywhere. Comparing
both sides of (B.6) for any k and the coefficients for x2k−1

1 , we have∫ 1

0

ik

k!

(
βx21(τ)

)k−1
βx1(τ)dτ =

∫ 1

0

ik

k!

(
β0,x21

(τ)
)k−1

β0,x1(τ)dτ =

∫ 1

0

ik

k!

(
βx21(π(τ))

)k−1
β0,x1(τ)dτ,

where we used the fact that βx21(π(τ)) = β0,x21
(τ). As argued above in the proof of the

previous lemma, by Assumption 4, we know that
(
βx21(τ)

)k−1 for k ≥ 1 forms a functional
basis of L2[0, 1], implying that βx1(π(τ)) = β0,x1(τ) almost everywhere. Comparing both
sides of (B.6) for any k and the coefficients for x2k−2

1 , we have

ik

k!

∫ 1

0

(
βx21(τ)

)k−2(
βx1(τ)

)2
+
(
βx21(τ)

)k−1
xT−wβ−w(τ)dτ

=
ik

k!

∫ 1

0

(
β0,x21

(τ)
)k−2(

β0,x1(τ)
)2

+
(
β0,x21

(τ)
)k−1

xT−wβ0,−w(τ)dτ (B.7)

where we used the fact that a1 = 0 and thus for a fixed k, the only l on the right-hand side of
(B.6) that can generate a nonzero coefficient for x2k−2

1 is l = 0. Since we already proved that



ERRORS IN THE DEPENDENT VARIABLE OF QUANTILE REGRESSION MODELS 29

βx1(π(τ)) = β0,x1(τ) and βx21(π(τ)) = β0,x21
(τ) almost everywhere, (B.7) can be rewritten as∫ 1

0

(
βx21(τ)

)k−1
xT−wβ−w(τ)dτ =

∫ 1

0

(
β0,x21

(τ)
)k−1

xT−wβ0,−w(τ)dτ

=

∫ 1

0

(
βx21(π(τ))

)k−1
xT−wβ0,−w(τ)dτ.

Again, using the fact that
(
βx21(τ)

)k−1
, k ≥ 1 forms a functional basis of L2[0, 1], we have

for any x−w that xT−wβ−w(π(τ)) = xT−wβ0,−w(τ) almost everywhere in τ ∈ [0, 1]. Following
the same argument as in Theorem 1, we know that there is sufficient variation in x−w

such that xT−wβ−w(π(τ)) = xT−wβ0,−w(τ) implies β−w(π(τ)) = β0,−w(τ) almost everywhere.
By monotonicity of xTβ(τ) and xTβ0(τ), we have π(τ) = τ almost everywhere, and thus
β(τ) = β0(τ) and f(ε) = f0(ε) almost everywhere.

The argument for the case of W (x1) being a pth order polynomial is very similar to the
argument above. We start from a Taylor expansion similar to (B.5). Then we compare the
coefficients for each term sk and get∫ 1

0

ik

k!
[(x1, · · · , xp1)βw(τ)+xT−wβ−w(τ)]kdτ =

k∑
l=0

ak−l

∫ 1

0

il

l!
[(x1, · · · , xp1)β0,w(τ)+xT−wβ0,−w(τ)]ldτ.

(B.8)
Using the fact that for each k ≥ 1, the coefficients for xkp1 on both sides of (B.8) must equal
each other, we can show that there exists a reordering mapping π(τ) such that βxp1(π(τ)) =

β0,xp1
(τ). Using the fact that for each k, the coefficients for xkp−l1 , 1 ≤ l ≤ k−1 on both sides of

(B.8) must equal each other, we can show that βxp−l1
(π(τ)) = β0,xp−l1

(τ) almost everywhere.

Because the coefficients for xk(p−1)
1 must equal each other on both sides of (B.8), we can

also show that xT−wβ−w(π(τ)) = xT−wβ0,−w(τ) almost everywhere. The rest follows the same
argument as in the proof for Theorem 1, and we have β(τ) = β0(τ) almost everywhere for
all τ ∈ [0, 1] and f(ε) = f0(ε) almost everywhere for all ε ∈ R. �
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