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Abstract  

The introduction of elastic strains has become an appealing strategy for providing unique and 

exciting electronic properties in nanostructured materials. Recent successes in diamond and 

silicon deformation experiments further extended the applicable strain levels in these materials, 

harbingering a new stage of elastic strain engineering of semiconductor fundamental electronic 

properties and device performance. However, it is not generally easy to know from experiments 

how much an electronic property change is for materials undergoing bending or even uniaxial 

tension, let alone designing the optimal combination of functional properties for the material in 

a vast and more complex six-dimensional (6D) strain space. The complexity of controllably 

engineering materials properties in such a 6D strain space necessitates high-fidelity high-

efficiency computer screening for a desirable figure-of-merit and then designing a proper 

straining pathway to guide future experiments. 

To address this challenge, we developed in this thesis a general framework that combines 

machine learning and a limited amount of ab initio calculations to guide strain engineering 

whereby basic electronic properties are designed. Our method invokes deep neural networks, 

convolutional neural networks, data fusion, and active learning algorithms, allowing for 

accurate and efficient prediction of strain-dependent fundamental electronic properties such as 

band structure, bandgap, band extrema location, and effective mass, as well as other properties 

with minor modifications. It is also used for discovering indirect-to-direct bandgap transition 

that would benefit photon emission and absorption in a semiconductor such as silicon by scanning 

the entire strain space.  

Integrating this method with finite-element simulations, we predicted energy-efficient strain 

pathways that would reversibly transform an ultrawide-bandgap material such as diamond to a 

metalized state in an experimentally feasible geometry. The fast and reliable inference of the 

proposed framework opens a path beyond analyzing and scrutinizing electronic band structures. 

In particular, an application of this framework in the studies of phonon band structure and 

phonon stability of diamond yielded a visualization and theoretical understanding of the deep 

elastic strain engineering boundary in the vast 6D strain space. We also applied the machine 

learning models to investigate the strain-induced variations of defect ionization energy and 

predicted deep-to-shallow defect level transition in diamond, offering a theoretical possibility 

to make strain-controlled switchable devices with doped diamond.  

We illustrate the applications of the method with results for silicon and diamond, although the 

general technique presented here is potentially useful for optimizing figures-of-merit for a 

variety of semiconductors, providing guidance for experimentally tailoring materials properties 

via deep elastic strain engineering for electronic, photonic, and energy applications. 
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Chapter 1. Introduction 

 

1.1. Motivation for deep elastic strain engineering 

Over the past two decades, experiments on nanostructured materials have repeatedly 

demonstrated the “smaller is stronger” phenomenon, the concept of which was first introduced 

for micro-structured material systems dating back to the 1950s [1–4]. As materials in the 

nanoscale are mechanically much stronger than their microscale or bulk counterparts, one can 

exert even greater tensile, compressive or shear strains to alter their physical-chemical 

properties for a sufficient amount of time without inelastic relaxation brought up by fracture or 

plasticity. This is a significant improvement, because unlike high-pressure physics where exotic 

properties are realized only through hydrostatic (non-deviatoric) strains (e.g., de-

metallization/insularization of solid sodium under a high-pressure environment in a diamond 

anvil cell), the shear and tensile strain states involved here typically exceed 1% sample-wide, 

giving rise to a class of ultra-strength materials. These materials, thanks to their nanostructures, 

successfully delay the onset of what otherwise could be ~0.2% deviatoric strain limit in 

conventional materials. 

The electronic, optical, thermal, and chemical properties of crystals are functions of the 6D 

strain tensor ε (a 3 × 3 symmetric tensor with six independent strain components), which 

provides a continuously tunable set of variables analogous to the chemical composition of a 

septenary alloy, given that the behavior of a deformable body and composition field are both 

governed by the generalized mass and momentum conservation laws. The total deformation of 

a material point is described by the summation of elastic strain (𝛆e) and inelastic strain (𝛆ie). 

The field of 𝛆e  is a local description for Bravais lattice vectors distortion of otherwise 

unperturbed crystals and can be experimentally measured by crystallography performed inside 

a transmission electron microscope (TEM), such as selected area electron diffraction. 𝛆ie, on 

the other hand, is accompanied by bond switching (bond breaking and reformation with no net 

reduction of total bond count), bond loss (a net reduction of atom coordination number as in 

brittle solids), or phase transformation changes. Suppressing the incipient plasticity including 

defect nucleation and subsequent evolution, for instance, enables the material to experience 

only elastic deformation, making possible the rational tailoring of materials properties – a term 

also called “elastic strain engineering (ESE)”.  
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1.1.1. Conventional and deep elastic strain engineering 

There are ideal and realistic limits to ESE. The former one is the ideal strain, 𝛆ideal, which is 

the maximum strain achievable in a perfect crystal at zero Kelvin without giving rise to lattice 

dynamical instability. Several criteria have been proposed for predicting lattice instability, 

including the Born criterion [5], the Li-Van Vliet’s Λ criterion [6,7], the Miller-Rodney 

criterion [8], and the soft phonon criterion [9]. Among these criteria, soft phonon offers both 

necessary and sufficient conditions when an ideal lattice with Born-Von Karman periodical 

boundary conditions undergoes a uniform displacement/strain-controlled loading mode, and the 

instability mode of the lattice can be characterized by the instable wave vector together with 

the eigenvectors of dynamical matrix. The realistic ESE limit, 𝛆realistic , is much more 

conservative, as it takes into account temperature, time and pre-existing defects. 𝛆realistic 

corresponds to a threshold stress (more commonly known as the material strength) beyond 

which the plasticity or phase transformation takes place. It is very clear that achieving such 

theoretically ideal strain is virtually impossible in any real-world experimental settings, since 

the requirement of being defect-free (not even material surface is allowed to present) is not 

attainable. However, 𝛆ideal still gives us a good indication of the upper bound for designing 

strain magnitude when practicing ESE to a certain material. Also, the ratio between 𝛆realistic 

and 𝛆ideal tells us whether we are in the realm of common ESE or “deep” ESE.  

As a convenient rule of thumb, if 𝛆realistic is on the order of 1/10 of the 𝛆ideal of a material, one 

is practicing conventional ESE. The past two decades have witnessed many works belonging 

to this kind, including but not limited to using strains to promote conductivity in SrTiO3-based 

systems [10–13], to enable chemical reactions on metals and oxides [14], to improve the 

performance of known ferroic oxides (BiFeO3, EuTiO3, etc.) [15], to tailor exciton dynamics in 

ZnO nanowires [16], to facilitate Mott transition in VO2 [17], to enhance light emission in 

germanium for better laser designs [18,19] and so on. Besides research interests, there also 

exists one huge commercial success in the field of conventional ESE: the strain silicon 

technology where a biaxial or uniaxial elastic strain of the order of 1% applied to a thin 

complementary metal-oxide-semiconductor (CMOS) channel of silicon enhances the mobility 

of charge carriers by more than 50% and increases central processing unit (CPU) clock speed 

correspondingly. Such elastic strain is also implemented in the more recent device architecture 

such as the fin field-effect transistors (FinFETs) to continue the strain scaling for CMOS (See 

Table 1.1 for examples of conventional ESE of semiconductors). From a business perspective, 

the strained silicon technology, though belongs to conventional ESE (within ~1/10 of 𝛆ideal), is 

arguably the most successful technology in the entire field of nanotechnology.  
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Table 1.1. Strained silicon technologies in the realm of conventional ESE.  

Materials Geometry 
Reachable 

elastic strain 
Loading mode 

FET device 

made 

Si [20] Si on SiGe 0.55%-1% Biaxial tension 
55 nm n-type 

FET 

Si [21] 
Si sandwiched between 

two SiGe contacts 
-1% Uniaxial compression 

45 nm p-type 

FET 

Si [21] 
Si stretched on two 

ends by Si3N4 
1% Uniaxial tension 

45 nm n-type 

FET 

Si [22] 
Si sandwiched between 

two SiGe contacts 
-1.26% Uniaxial compression 

22 nm p-type 

FET 

Si [22] 
Si stretched by two 

Si:C sides 
1.25% Uniaxial tension 

22 nm n-type 

FET 

Si [23] 
Stressed by substrate 

and drain/source 

1.08% and 

0.57% 

Mixed uni- and biaxial 

tension 
n-type FET 

Si [24,25] 
Fin-shaped, stressed by 

drain/source 
-1.6% to -0.4% 

Vertical compression, 

longitudinal and 

transverse tension  [25] 

n-type FinFET 

 

If one is able to let 𝛆realistic reach a considerable fraction of or even approach 𝛆ideal and sustain 

such deformation for sufficient time, then one is entering into the so-called deep ESE regime 

(“deeply” into the elastic regime). It is necessary to emphasize these ultra-high strain levels 

should be retained sample-wide or at least a significant portion of the functional body instead 

of just in a local region, since it is very common to have only a tiny volume of material, such 

as near crack tip, reached abnormally high strain with other regions barely deformed, which is 

generally not useful for practical ESE. Also, the requirement for having “sufficient time” is 

relative and depends on specific materials application scenarios. For instance, one may want to 

hinder vacancy diffusion and dislocation nucleation so that a 10%+ elastic strain in a FinFET 

chip made of silicon can be sustained at operating temperature for the service life of 3-5 years 

of a smartphone, which is quite different from the relevant timescale for evaluating plastic flows 

in a suspension bridge steel wire rope cable or glaciers. 

1.1.2. What has been done for deep elastic strain engineering experiments 

With the proliferation of ultra-strength nanostructured materials that can sustain a wide range 

of non-hydrostatic and potentially dynamically varying stresses, and various miniaturization-

enabled means of applying ε [26], a historical window of opportunity has now opened up to 

scan a vast unexplored deep strain space for the development of materials and devices with 



12 

desirable properties [27,28]. For example, while it is well known that unstrained Si has an 

electronic bandgap (𝐸g, the energy gap between conduction and valence energy bands) of 1.1 

eV, we know that, when subjected to a strain of say 9%, it would have a different bandgap. 

Furthermore, a 9% tensile strain (significantly greater/deeper than prior approaches adapted by 

conventional ESE) on Si would produce a different bandgap from a 9% shear strain. At large 

strains, all these differently strained pure Si crystals would not behave as the unstrained “typical 

silicon.” An added benefit is that with deep ESE, it is in principle possible to dynamically 

change the mechanical actuation, and switch between these differently strained materials. 

Indeed, recent experiments [29–32] in free-standing geometries have revealed that several 

materials, at nanoscale dimensions typically used in semiconductor devices, are capable of 

withstanding large elastic strains at room temperature without inelastic shear relaxation, phase 

transformation, or fracture. For example, it has been demonstrated that even in the hardest 

material found in nature, diamond, the local tensile elastic strain can reach up to 10% in 

appropriately grown and oriented single-crystal nanoneedles (Figure 1.1a) [29] and nanowires 

(Figure 1.1b) [30], and the sample-wide elastic strain can achieve up to 9%+ in diamond 

microbridge arrays (Figure 1.1c) [31]. In nanowires of silicon, as shown in Figure 1.1d, a 

reversible tensile strain of 15% has been realized in uniaxial tension experiments [32]. These 

findings of deep elastic deformation of semiconductor materials bookended by the ultra-wide 

bandgap (5.6 eV) diamond and the more manufacturing-friendly and ubiquitous silicon have 

opened up potential opportunities to design their performance characteristics with ESE for 

applications such as power electronics, nanophotonics and quantum information processing. 
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Figure 1.1 In-situ near-𝛆ideal deformation experiments of diamond and silicon. (a) Ultralarge diamond nanoneedle 

bending experiment. The load-displacement curves were measured by pushing the nanoindenter tip onto the 

nanoneedle for the fully reversible elastic deformation and the final fracture run. Taken from Ref. [29]. (b) Bending 

of a diamond nanoneedle by pushing toward a rigid wall. Finite-element simulation reproducing the needle 

geometry is also shown. Taken from Ref. [30]. (c) Uniaxial tension of microfabricated diamond bridge samples. 

The load-displacement curve is also shown. Taken from Ref. [31]. (d) Uniaxial tension of single crystalline silicon 

nanowire clamped at two sides. The load-displacement curve for a complete run is present. Taken from Ref. [32]. 

1.1.3. Four mainstays of deep elastic strain engineering 

With the recent success in exploiting the ability of Si and diamond to deform up to near 𝛆ideal  

magnitudes under certain conditions, it is natural to study the physical property or figure-of-

merit (FoM) change in the deformed materials which is obviously the next step to show the 

impact of this strategy on designing semiconductors with improved functional properties 

through deep ESE. In fact, there exist much greater possibilities than what is realized in 

engineering Si or diamond for a wide variety of electronic, optoelectronic, and photonic 

materials employed in communication, information, and energy applications that impact every 

aspect of modern life  [33]. However, in order to have the next decade witnessed explosive 

growth in the application of deep ESE, collective advances on four major scientific fronts must 

be made.  

 

Figure 1.2 Four mainstays of deep ESE. 

As shown in Figure 1.2, the first mainstay is about synthesizing or fabricating deep elastic 

strain-bearing nanostructured materials, including but not limited to carbon nanotubes (CNTs), 

graphene, MoS2 and other 2D materials, and nanocrystals (Si/diamond 

•DFT & excited-
state calculation

•Data mining

•TEM

•X-ray and electron 
tomography 
synchrotron

•AFM

•Lab-on-chip

•NEMS

•CNT

•Graphene & 2D 
materials

•Bulk nanocrystals

Nanostructure 
synthesis

Applying force 
& measuring 

physical effects

Ab initio 
prediction of 
strain effect

Measuring 
strain & 
probing 
inelastic 

relaxation



14 

nanowires/pillars/needles/bridges). The second mainstay is about applying the deep elastic 

strain and measuring physical and chemical effects at the nanoscale, the means of which 

involves nanoindentation/bending by atomic force microscope (AFM), 

nano/microelectromechanical systems (NEMS/MEMS) loading, etc. These are the “tiny hands” 

conveying the strain as envisioned by Richard Feynman in his talk in 1959  [26]. The third 

mainstay is about measuring strain and understanding the different mechanisms for the 

occurrence of inelastic relaxations including plasticity, fracture or phase transition in the 

material. Note that the reason we study inelastic deformation is not to introduce it, which may 

cause retardation of functional properties of our loading-bearing device, but to avoid it for an 

extended time period. Tools capable of doing so are TEM [34], X-ray and electron tomography 

synchrotron, etc. Sometimes molecular dynamics (MD) simulations can also be conducted to 

support experimental findings. The last mainstay, which is also the main focus of this thesis, is 

about using ab initio means to reliably predict how materials physicochemical properties or 

FoMs may be altered by pure ESE assuming microstructural evolution and any other defect 

generation have been got rid of. First-principles density functional theory (DFT) and excited-

state calculations are frequently used. Data science techniques may be utilized. Density 

functional perturbation theory (DFPT) calculations are also conducted in this stage to determine 

the 𝛆ideal. 

1.1.4. Why focusing on engineering electronic properties 

Deep ESE is both a new and broad field. There are a plethora kinds of properties that deserved 

to be studied. In this thesis, the author mainly focuses on understanding how deep ESE alters 

the fundamental electronic properties of perfect semiconductors. It is the electronic band 

structure of a material that dictates almost all physical and chemical properties [35]. In 

particular, the electronic bandgap (a scalar value retrievable from the band structure) is related 

to “chemical hardness” [35,36] and forms a basis for various properties. Since the electronic 

structure tends to be changed dramatically (such as the Herzfeld-Mott metal/insulator 

transition [37]) near the onset of spontaneous relaxation (𝛆ideal), a material stressed near the 

ideal strain surface ε (a 5D surface 𝑓(𝛆) = 0) in 6D results in drastic alteration of the electrical, 

thermal, optical, and magnetic characteristics [28].  

Therefore, not only does ESE help to tailor the value of a figure-of-merit (FoM) as well as its 

character (e.g., direct or indirect bandgap), it can also push chemical [38] and physical 

behavior [39,40] toward extremes. However, it is not until a time when great advances are made 

in the fourth mainstay (i.e. ab initio prediction of strain effects) can we see great deep ESE 

applications in reality for many electronic materials. 

There are various groups of semiconductors whose electronic properties and FoMs deserve the 

deep ESE treatment, including but not limited to elemental semiconductors (Si, diamond, Ge), 
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oxides, compound semiconductors (GaN, SiC), and 2D materials. The following is a non-

exhaustive list:  

Silicon  

Being the most versatile semiconductor, silicon has been used in virtually all commercial chips 

that have affected many aspects of modern life. The strained silicon technology is the “poster 

child” for ESE. However, this is only a “tip-of-the-iceberg” in terms of how much Si and 

diamond can deform. As shown in Section 1.1.1, recent experiments by our collaborators [29–

32] harbinger a new age of deep ESE of the band structure and device performance of electronic 

materials.  

 

If one can apply into a real device a significant fraction of the amount of what our collaborators 

have achieved in Si and diamond single crystalline nanoneedles and nanowires, we can expect 

to realize order-of-magnitude enhancement in transport properties. If given industrial 

limitations, it is difficult to achieve considerable strain magnitude along one particular loading 

direction, one can also resort to combining tension/compression/shear modes (with affordably 

small magnitude for each of the 6D strain components) to achieve the equivalent or even better 

improvement in key FoMs. Either way, a fundamentally much greater improvement in devices 

can be expected if we are able to realize controlled deep ESE in Si or diamond.  

 

Diamond  

Though silicon will continue to dominate semiconductor manufacturing for years and probably 

decades to come, more and more chip designers and engineers are paying attention to alternative 

semiconductors, known as the 3rd-gen semiconductors. Among these materials, diamond, with 

its exceptionally high hardness and stiffness, has extremely advantageous electronic properties 

that enable ultrawide-bandgap applications [33,41]. According to experimental 

measurements [42], diamond has an outstanding charge carrier mobility of ~3000 cm2 V−1 s−1, 

charge carrier saturation velocity >0.8 × 107 cm s−1 (high-frequency application), dielectric 

breakdown field in excess of 10 MV cm−1 (high-voltage applications). Diamond’s Johnson’s 

FoM is about 8200, ensuring a high power-frequency product for device applications. The 

Baliga’s FoM of diamond is much higher than that of silicon. It also has a second-to-none 

thermal conductivity (>2000 W m−1 K−1) among all known materials with a high Keyes’ FoM, 

making it good at heat removel in power electronics. Some defect centers found in diamond, 

such as the NV‐center, also have a great potential being used as a platform of qubit for quantum 

information applications. 

Despite hard to achieve near-𝛆ideal strains in epitaxy architecture of diamond, recent studies 

have confirmed they are achievable in free-standing structures. As introduced in Section 1.1.1, 

the authors’ collaborators have shown that nanoscale needles and wires of diamond can be bent 

to a local maximum tensile elastic strain of more than 9% [29,30]. More recently, the author’s 

group has helped in realizing micrometer-length ultralarge elastic deformation of diamond 
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ribbons of 8%+ and sustaining it for a sufficiently long time [31], indicating a vital early step 

in potentially achieving deep ESE by reversible loading for diamond systems. 

Therefore, as noted in Ref. [28] many possibilities remain to be investigated as to what pure 

silicon can do as the most versatile electronic material and what an ultrawide bandgap material 

such as diamond, with many appealing functional FoMs, can offer after overcoming its present 

commercial immaturity.  

Perovskites 

ESE for ferroics was triggered by the illustration that a non-ferroelectric oxide can be made 

ferroelectric at room temperature purely through mechanical strains. For example, 1% biaxial 

tensile strain can elevate the ferroelectric transition temperature of SrTiO3 to near room 

temperature [43]. EuTiO3 could be transmuted from a normal dielectric into the strongest 

ferroelectric ferromagnet by epitaxy strains on the order of 1% [44]. In addition, experiments 

and ab initio calculations have also shown that biaxial strain exerted upon SrTiO3 can tailor 

transport properties [12] and facilitate accessible switching of electronic defect type [10].  

Going beyond misfit strain from epitaxy, Chi et al have recently designed a three-pointing 

bending apparatus with in-situ impedance measurement capabilities [45]. Combining external 

(strain) fields with the existing substrate effect would further tune the strain level in material to 

achieve greater performance enhancement and more evident physical phenomena exploration. 

With an ever-increasing 𝛆realistic imparted, the prospect of deep ESE for thin film materials is 

very good.   

2D materials 

2D semiconductors/semimetals such as transition metal dichalcogenides (TMDs) and graphene 

are another material class suitable for deep ESE. AFM experiments have been conducted to 

measure their intrinsic strength and elastic properties (Figure 1.3a and b) [46,47]. Although 2D 

materials only have three in-plane strain components, there are also three degrees of freedom 

for elastic bending. Per the Cauchy-Born rule, the positions of individual atoms in a crystal 

follow the crystal lattice when strained. This approximation holds in general for Bravais lattice. 

However, the 2D hexagonal lattice considered here is a composite of two mutually shifted 

sublattices and the Cauchy-Born rule is not obeyed. Therefore, the internal degrees of freedom 

between the sublattices are also considered in our calculations. In Figure 1.3c, more than 40% 

or even orders of magnitude improvement can be already achieved in a variety of 2D materials 

by strains only in the conventional ESE level. It is expected deep ESE would trigger even more 

fascinating results on the electronic properties of these materials. 
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Figure 1.3 Ultralarge deformation of 2D materials and strain effect in functional 2D materials. (a-b) The AFM 

indentation experimental setups for graphene and MoS2 as well as the associated load-indentation depth curve are 

shown. Exactly how much elastic strain the free-standing 2D material withstood before fracture was not measured 

in each experiment, but one can expect the 𝛆realistic in these 2D materials is quite high. Taken from Refs. [46,47]. 

(c) Strain effect on room temperature intrinsic electron mobility of common 2D semiconductors. Results of 

materials with a 3% tensile strain are in blue. The image is taken from Ref. [48].  

1.2. Motivation for ab initio calculation and machine learning 

Deep ESE deals with material states that are far from equilibrium for optimizing functional 

properties and performance. A strained material is in a state of higher energy than when it is in 

a stress-free state, characterized by the strain energy density (h, in units of meV/Å3) [28]. 

Therefore, addressing the following question is at the heart of deep ESE: What is the energy 

cost (h) to achieve the desired property change? Consider the challenges of increasing the 

electron mobility of Si by 1000 cm2 V-1 s-1, converting germanium from an indirect to direct 

bandgap semiconductor, or transmuting diamond from an ultrawide-bandgap material into a 

medium- or even small-bandgap material so that its potentially appealing characteristics for 

microelectronics and optoelectronics could be realized. To achieve the above transitions in the 

most efficient manner, it is important to design 𝜺 through the most optimal combination of its 

normal and shear components [28]. 

To address the foregoing question, we resort to deep ESE which exploits first-principles 

modeling and the latest advances in artificial intelligence [28]. To set the scene, consider a 

situation where it is desirable to examine all possible combinations of the components of 𝜺, 

over a range of potential interest, say between −10% and +10% in each of the six independent 

strain components. Here, say that the objective is to determine the least energetically expensive 

route to decrease the bandgap of channel Si material by 1 eV to realize enhanced performance. 
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We consider a strategy of conducting a limited number of experiments that provide theoretical 

simulations with valuable parameters to benchmark, followed by batch runs of simulations that 

guide further deep ESE. Later the loading case which yields the optimal carrier mobility as 

predicted by simulations should be confirmed in experimental measurement. This way, we can 

do high-throughput computations rather than high-throughput experiments to save time and 

cost. Indeed, the idea of discovering and deploying advanced materials twice as fast and at a 

fraction of the cost is the cornerstone of the ambitious Materials Genome Initiative. This 

example for exploring the materials space offers a close integration between computation and 

experiment and significantly reduces the risks involved in an Edisonian way to innovation 

characterized by prolonged hunt-and-try cycles. 

In our particular work, when practicing deep ESE by simulations we are required to describe 

and predict the properties of solids such as Si and diamond based on our understandings of the 

fundamentals of nature down to the atomic scale. When scaling microscopic theories up to 

explain actual materials, the difficulty emerges from the sheer number of particles (on the order 

of 𝑂(1023)  and the complexity of interactions among them. Luckily, advances in 

algorithms/theories and abundance in computational resources have enabled the prediction of a 

wide range of properties in recent decades without turning to parameter fitting or empirical 

modeling. 

However, although the ab initio calculations such as those involving many-body corrections 

can provide an accurate evaluation of physical properties [49], the scope of such calculations is 

somewhat limited to about 10,000 strain points because of high computational cost [28]. In the 

abovementioned case study, by discretizing 𝜺 with a regular grid comprising 20 nodes separated 

at each 1% strain interval (a very coarse grid in the practice of deep ESE) over the strain range 

of −10% to +10%, the computational model would entail about 107 bandgaps. Even if we can 

use preexisting knowledge about crystal/strain symmetries to cross out some redundant cases, 

the amount of strain cases to be evaluated is still around millions, up to two orders of magnitude 

higher computational requirement than what can be reasonably achieved presently [28].  

To overcome these difficulties, proper exploitation of the produced information is of paramount 

importance, a task that can be accomplished by machine learning (ML). The ML machinery has 

made significant inroads into many fields of materials science as a powerful tool for accurately 

and acceleratedly mapping out-of-equilibrium phases of matters [50], solving quantum many-

body problems [51], decoding crystal structures [52,53], fitting interatomic potentials [54–56], 

mechanical properties extraction [57,58], and so forth. It helps to harvest a basic understanding 

of the physical factors underlying materials structures and properties and may give rise to the 

revelation of Matthiessen-like rules.  

ML works that focus on the electronic properties of undeformed materials include bandgap and 

band structure fitting [59,60] for different material families (ABX3 perovskites [61,62], 
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elpasolite compounds [63], general inorganic solids [64–68], etc), Brillouin zone 

exploration [69], and bandgap prediction in 2D hybridized structures [70]. To the best of the 

author’s knowledge, no ML efforts have been made so far in the field of deep ESE for 

semiconductor electronic properties in the 6D strain hyperspace.  

In this thesis, we would present methods that combine ML and ab initio calculations to 

investigate how elemental semiconductors such as silicon and diamond alter their bandgap and 

band structure under general 6D deep elastic strains and identify energy-efficient pathways to 

engineer targeted FoMs. These methods invoke deep neural networks (NNs) and convolutional 

neural networks (CNNs) to assess, to a reasonable degree of accuracy, material properties as 

functions of strain based on a limited amount of ab initio data. 

1.3. Thesis structure overview 

Generally speaking, the ML model and workflow we aim to develop should work for any 

semiconductor. For the purpose of model development, we need to choose 1-2 representative 

material systems in which ESE is practiced. In the scope of this thesis, we primarily focus on 

two semiconductors, namely silicon and diamond, not only because they are commercialized 

or important, but also due to the near-𝛆ideal deformations already realized in the nanostructures 

of these semiconductors in real-world experiments (Figure 1.1), making them the most likely 

ones whose electronic properties can be engineered by deep elastic strains in the near future. 

The rest of the thesis is as follows: we begin by briefly review in Chapter 2 the fundamental ab 

initio theories and ML methods we relied our study upon. Then, we introduce our deep NN 

model and CNN model in Chapter 3 and Chapter 4, respectively. In these two chapters, the new 

behavior and physics we discovered in silicon and diamond by using these models are discussed 

in detail. Next, we present in Chapter 5 joint machine learning-finite element simulation (ML-

FEM) studies of electronic property engineering in experimentally feasible loading scenarios, 

followed by Chapter 6 where applications of the models in studying phonon and defect related 

properties are introduced. We conclude the thesis in Chapter 7 by identifying several the 

limitation of ML models and calling for close collaboration with experiments while practicing 

deep ESE.  
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Chapter 2. Fundamental Theory and Methodology 

 

2.1. Deformation and strain measures 

The semiconductors we studied are three-dimensional (3D) deformable bodies. We can denote 

the coordinate of a point in such an undeformed and homogeneously deformed body as 𝐗 and 

𝐘, respectively. A corresponding displacement vector 𝐮 referenced to 𝐗 can then be defined 

as  𝐮 =  𝐘 −  𝐗 . Then the transformation of the material point from the undeformed to 

deformed state can be injectively (uniquely) described by a second-order deformation gradient 

tensor 𝐅 as: 

𝐅 =
∂(X + 𝐮)

∂X
= 𝐈 +

∂𝐮

∂X
. (1) 

This F eliminates the rigid-body translation upon which the material properties do not change. 

Through polar decomposition, 𝐅 can be factored as: 

𝐅 =  𝐑𝐔 =  𝐕𝐑 (2) 

where 𝐑 ∈ 𝑆𝑂3 describes rigid body rotation, and 𝐔 (or 𝐕 = 𝐑𝐔𝐑𝐓) is the right (left) Cauchy-

Green tensor.  

It is noted that there are multiple strain (𝜺) measures to evaluate a given deformation. There is 

a family of generalized strain measures, namely the Seth-Hill family of strain measures, that 

can be associated with the same 𝐅: 

𝜺(𝑚) = {
1

𝑚
(𝐔𝑚 − 𝐈), if 𝑚 ≠ 0;

ln𝐔, if 𝑚 = 0.
 (3) 

Some strain measures of special interest included in this family are: 

i) 𝑚 = 0, 𝜺(𝟎) = ln𝐔 (the logarithmic strain, or more commonly known as the true 

strain) 

ii) 𝑚 = 1, 𝜺(𝟏) = 𝐔 − 𝐈 (the Biot strain, or more commonly known as the nominal 

strain) 

iii) 𝑚 = 2, 𝜺(𝟐) = 
1

2
(𝐔𝟐 − 𝐈) =

1

2
(𝐅𝐓𝐅 − 𝐈) (the Green-Lagrange strain) 

iv) 𝑚 = −2, 𝜺(−𝟐) = 
1

2
(𝐈 − 𝐔−𝟐) =

1

2
(𝐈 − 𝐅−𝐓𝐅−𝟏)  (the Euler-Almansi strain). 

At small deformations, all the above strain measures are close to each other. At each 

configuration along a path of deformation, any infinitesimal increment of work (or power) per 
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unit volume, 𝑑𝑤 (or 𝑑𝑤̇) by the traction on this volume can be expressed in terms of differential 

strain:  

𝑑𝑤 =  𝝉 ∶ 𝑑𝜺 or 𝑑𝑤̇ = 𝝉 ∶ 𝑑𝜺̇ (4) 

where different choices of strain ( 𝜺 ) measures in the above formulation give different 

work/power-conjugate stress (𝝉) measures. For example, the Green-Lagrange strain has the 

second Piola-Kirchhoff stress as its conjugate pair. 

Furthermore, if there exist certain constraints that allow one to uniquely obtain 𝐅 from 𝜺, then 

the deformation space becomes 6D [71]. For a deformed lattice, if the loading direction is along 

x1 for uniaxial tension, or along x1 on a plane orthogonal to x3 for pure shear, we can further 

simplify the 𝐅 tensor as an upper triangular matrix: 

𝐅 = [

F11 F12 F13

0 F22 F23

0 0 F33

] (5) 

Then the Green-Lagrange strain 𝜺(𝟐) can be written as: 

𝜺(𝟐) =
1

2
[

F11
2 − 1 F11F12 F11F13

F11F12 F12
2 + F22

2 − 1 F12F13 + F22F23

F11F13 F12F13 + F22F23 F12
2 + F22

2 + F33
2 − 1

] (6) 

Note there can be other unique deformation spaces [71]. For instance, 𝐅 is usually constrained 

to be symmetric and has 6 degrees of freedom in performing atomistic simulation at constant 

stress [71]. In this case, 𝐅 can be uniquely determined through 𝐅 = √1 + 2 𝜺(𝟐).  

2.2. Band structure and bandgap 

Solutions to the Schrödinger equation for an (ideal) crystal such as pure silicon or diamond, can 

be expressed as a periodic modulation of a plane wave, according to the Bloch theorem:  

𝜓𝑛𝐤(𝐫)  = 𝑒𝑖𝐤∙𝐫𝑢𝑛𝐤(𝐫), (7) 

where 𝑢𝑛𝐤(𝐫 + 𝐑) = 𝑢𝑛𝐤(𝐫)  for all 𝐑  of the Bravais lattice is the periodic function. The 

corresponding energies 𝐸𝑛(𝐤) for each band index n are continuous functions in wave vector k 

and constitute the energy bands. The range of energy in a solid where no electronic states can 

exist is called bandgap (𝐸g). The value of 𝐸g varies a lot across solids, resulting in different 

electrical, thermal, optical and magnetic characteristics.  

Upon straining, the original 𝑂ℎ crystal point group of a diamond cubic lattice no longer holds 

and 𝐸𝑛(𝐤) and 𝐸g vary accordingly. For example, the point group turns into 𝐷2ℎ under a three-

normal-strain. The Brillouin zone for deformed Si, in this case, is shown in Figure 2.1. It is no 

longer a regular truncated octahedron with equilateral hexagonal and square faces. The 

reciprocal space lattice vectors are adjusted by the inverse transpose of the deformation gradient 
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tensor in real space, i.e., 𝐅−T, as a result of the deformation. We keep the Γ label for the center 

of a Brillouin zone. In undeformed Si or diamond, the centers of the square and regular 

hexagonal surfaces on the Brillouin zone boundary are degenerate and labeled as 𝑋 and 𝐿, 

respectively. For comparison simplicity, we follow a similar notation scheme and still denote 

the ‘𝑋’-type points as the centers of the tetragon surfaces and ‘𝐿’-type points as the centers of 

the regular/non-regular hexagonal surfaces. The lines that connect the Γ point to the ‘𝑋’-type 

points are labeled as ‘Δ’-type. This way, the six ‘𝑋’- and ‘𝐿’-type points, though non-degenerate, 

would keep the correct fractional coordinates of the 〈0.5,0,0.5〉- and 〈0.5,0,0〉-type, and the k-

points along the Γ-‘𝑋’ line would all have the 〈𝜁, 0, 𝜁〉-type coordinates. These notations will 

be used repeatedly in the rest of this thesis. 

 
Figure 2.1 Primitive cell under elastic strain. (a) Deep ESE is achieved by applying a reduced deformation gradient 

tensor to the undeformed diamond cubic lattice of Si or C in the real space. (b) Brillouin zone of diamond cubic 

crystal under a general strain. It is a tetradecahedron with 8 hexagonal and 6 quadrilateral faces. The discussions 

in the subsequent sections of this thesis will incorporate the same labels and k coordinates as shown here. The so-

called 〈𝜁, 0, 𝜁〉-type coordinates include 〈𝜁, 0, 𝜁〉, 〈𝜁, 𝜁, 0〉, and 〈0, 𝜁, 𝜁〉. 

2.3. First-principles calculations 

The evaluation of the properties of semiconductors in our study greatly relies on ab initio 

calculations. This section briefly reviews the DFT and many-body GW approximation method 

which we used for high-throughput high-fidelity electronic structure calculations. 

2.3.1. Density functional theory 

In order to understand many of the microscopic properties of a system, one can jot down the 

total Hamiltonian of all the nuclei and electrons in the Hartree atomic unit system as: 
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𝐻 = (
1

2
∑

𝑍𝑗𝑍𝑗′

|𝐑𝑗 − 𝐑𝑗′|
𝑗≠𝑗′

+
1

2
∑

1

|𝐫𝑖 − 𝐫𝑖′|
+

1

2
∑

−𝑍𝑗

|𝐫𝑖 − 𝐑𝑗|
𝑖,𝑗𝑖≠𝑖′

)

+ (∑
𝐏𝑗

2

2𝑀𝑗
𝑗

+ ∑
𝐩𝑖

2

2
𝑖

) 

(8) 

in which 𝑍  and 𝑀  denote nucleus charge and mass, 𝐑  and P denote nucleus position and 

momentum, and r and p denote electron position and momentum. 𝑖 and 𝑗 enumerate all the 

electrons and nuclei, respectively. The Hamiltonian is expressed on the right-hand side as the 

summation of potential (first bracket) and kinetic energy (second bracket) of all particles. 

Specifically, the first three potential terms, from left to right, represent the totaling of nucleus-

nucleus, electron-electron, and nucleus-electron pairwise electrostatic interactions, respectively. 

The last two terms describe the kinetic energy of all the nuclei and electrons, respectively.  

Applying the adiabatic or Born-Oppenheimer approximation, on the ground that the mass of a 

nucleus is much larger than the electron mass and the nuclei can be considered as immobile 

relative to the electrons, (8) can be simplified to: 

𝐻elec  =
1

2
∑

1

|𝐫𝑖 − 𝐫𝑖′|
𝑖≠𝑖′

+ ∑ ∑
−𝑍𝑗

|𝐫𝑖 − 𝐑𝑗|
𝑗𝑖

+ ∑
𝐩𝑖

2

2
𝑖

 (9) 

which satisfies the time-independent Schrodinger equation with N-electron wave function 

Ψ(𝐫1, 𝐫2, … , 𝐫𝑁): 

𝐻elecΨ = 𝐸Ψ. (10) 

It is noted that the formulation above neglects relativistic effects and one can resort to the Dirac 

equation for the incorporation of spin orbit effects.  

According to the Hohenberg-Kohn theorems, the external potential, and hence the total energy, 

for a system is a unique functional of the electron density 𝜌(𝐫). Specifically, the total energy E 

can be expressed as a functional of 𝜌 as  

𝐸[𝜌(𝐫)] = 𝐸T[𝜌(𝐫)] + 𝐸H[𝜌(𝐫)] + ∫ 𝑑𝐫𝜌(𝐫)𝑉ext(𝐫) + 𝐸xc[𝜌(𝐫)], (11) 

where 𝐸T is the kinetic energy, 𝐸H =
1

2
∫ 𝑑𝐫 ∫ 𝑑𝐫′ 𝜌(𝐫)𝜌′(𝐫)

|𝐫−𝐫′|
 is the Coulomb (or Hartree) energy, 

𝑉ext is the external potential (if the Hamiltonian is separated into ion core and valence electrons, 

𝑉ext represents the external potential due to the ion), and 𝐸xc is the exchange-correlation energy.  

Compared to the wave function Ψ(𝐫1, 𝐫2, … , 𝐫𝑁), 𝜌(𝐫) is only a single-variable function that is 

much more trackable. Also, 𝐻elec  and ground state energy can be determined through 

minimization of 𝐸[𝜌(𝐫)]. In other words, ground state energy can be acquired variationally: the 

density that minimizes the total energy is the ground state density.  
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To evaluate 𝐸[𝜌], Kohn and Sham developed a practical approach [72]. In their formulation, 

the ground state charge density of a fictitious system with non-interacting particles moving in 

an “effective” potential (𝑉eff(𝐫)) is constructed as  

𝜌(𝒓) = ∑ |𝜑𝑖(𝐫)|2

𝑖

, (12) 

where 𝜑𝑖(𝐫) are a set of Kohn-Sham orbitals. Varying 𝑉eff(𝐫) so that 𝜌(𝐫) minimizes the total 

ground state energy of the interacting system subject to the constraints on these 𝜑𝑖(𝐫) leads to 

a set of one-electron Schrodinger equations, known as the Kohn-Sham equations, that can be 

solved for 𝜑𝑖(𝐫): 

(−
∇2

2
+ 𝑉eff(𝐫)) 𝜑𝑖(𝐫) = 𝐸𝑖𝜑𝑖(𝐫). (13) 

It is an eigenvalue equation with 𝐸𝑖 being the eigenvalues for the corresponding 𝜑𝑖(𝒓) and  

𝑉eff(𝐫) = ∫ 𝑑𝒓′
𝜌′(𝐫)

|𝐫 − 𝐫′|
+ 𝑉ext(𝐫) +

𝛿𝐸xc[𝜌(𝐫)]

𝛿𝜌(𝐫)
. (14) 

The functional derivative of 𝐸xc is the exchange-correlation potential.  

Many options of density functional approximations have been proposed for 𝐸xc (Jacob’s ladder). 

The very first approach is the local density approximation (LDA) where 𝐸xc[𝜌] is expressed in 

terms of the exchange-correlation energy per particle of a uniform electron gas (𝜖XC
gas

) with 

electron density 𝜌(𝐫): 

𝐸xc
LDA[𝜌] = ∫ 𝑑𝐫𝜌(𝐫)𝜖XC

gas
(𝜌(𝐫)). (15) 

Building upon the LDA approximation to incorporate the local density gradient in expressing 

𝐸xc is the generalized gradient approximation (GGA): 

𝐸xc
GGA[𝜌] = ∫ 𝑑𝐫𝜌(𝐫)𝜖XC(𝜌(𝐫), ∇𝜌(𝐫)). (16) 

This thesis adopted the GGA method developed by Perdew, Burke, and Ernzerhof (PBE) for 

most of the ground state DFT calculations and as the starting point for excited-states 

calculations. 

We can see from (14) that the Hartree term and the exchange-correlation term rely on 𝜌(𝐫) and 

hence on the Kohn-Sham orbitals by (12). But these 𝜑𝑖(𝐫) are what we are looking for when 

trying to solve (13). Therefore, an iterative process, known as the self-consistent field (SCF) 

procedure, is adopted as follows (Figure 2.2): 
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Figure 2.2 The iterative process for SCF calculation 

2.3.2. The GW approximation 

It is important to recognize that the N single-electron states 𝜑𝑖 correspond to made-up particles 

having the same charge density as the interacting system and should not be assigned to a 

particular physical meaning. When an electron is moved to an unoccupied state with higher 

energy, a quasiparticle is formed. The misinterpretation of these 𝐸𝑖 as the quasiparticle energies 

is the cause of the electronic bandgap underestimation problem [73]. This underestimation in 

DFT calculation within GGA can be as much as 0.4-0.5 eV for silicon. Considering the intrinsic 

bandgap of silicon is measured to be 1.1 eV in experiments, this error brought by ground-state 

DFT is too large for our ESE studies, and we adopt a theory based on Green’s function to 

describe electron excitations in solids. This theory can better account for electron excitation 

than plain DFT since its formulation involves the excited state energies of the interacting 

electron systems with N-1 and N+1 electrons.  

We can introduce a self‐energy (∑) to determine such a Green’s function. With the system 

described as a polarizable medium, GW approximation [49] (G for Green's function and W for 

screened Coulomb interaction) can be used to express ∑. In this thesis, we primarily use the 

single-shot G0W0 approach to evaluate ∑: 

∑ ≈ 𝑖GW. (17) 

This is the lowest order term in an expansion of ∑ in W. The GW approximation is very popular 

for the calculation of band structures in solids [74], which is the main focus of our research. We 

did not in our work adopt the fully self-consistent solution not only because it is 
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computationally demanding, but it also sometimes does not yield the closest quasiparticle 

energy compared with experimental results.  

2.4. Machine learning  

2.4.1. Basic theory and concept 

A basic pursuit of science is the formulation of theories from existing knowledge to make 

predictions that are empirically verified to be accurate. In most cases, the predictive theory can 

be expressed by a mathematical mapping G which takes in a group of input x to fit some output 

t. Here, G can be fairly simple, as in using the Coulomb potential for charged defects assigned 

with Kröger-Vink formal charges, or it may be slightly delicate with more information 

incorporated, as in the same model but with an account for the Debye screening, or it may be 

demandingly complex, as in models that describe a nuclear fusion. There are no restrictions on 

the dimensions of x and t. The collection of the known outputs and inputs is the training set. 

The goal of a researcher is to propose a function relationship that can determine the output value 

for another set of x and t not used during the training. If the values of t are from a discrete set 

(failure modes, phonon stability, material phases, etc.), the process of proposing a G is called 

classification. If the value of t is a continuous variable (bandgap, effective mass, strain energy 

density, etc.), the process is then known as regression. Supervised machine learning is nothing 

different from the conventional scientific query except that the predictive theory (or the 

constitutive equation) is learned and determined by a computer rather than a human, which of 

course, saves the latter much time. 

In most, if not all, situations, a learner may exhaust the hypothesis space and still cannot come 

up with a function or a model that describes all the current data 100% accurately and meanwhile 

predicts any other newly incoming data 100% accurately. In these cases, the predictions are 

expressed as t = c + G(x) where G is the function guessed (or, in a more scientific term, 

summarized) by the learner - be it a machine or a human researcher - to describe the materials 

science phenomena at hand and c is a random error or loss. Therefore, the goal of any model 

development and certainly our development of a strain model boils down to minimize the loss. 

That is to say, we would propose a model whenever be used to predict a material-related value 

under a particular deformation, say 10% uniaxial compression, a reasonably small deviation 

from the ground true value computed by the first-principles method can be achieved.  

There are certain ML outcomes that we surely want to avoid in numerical research. They are 

underfitting and overfitting, both of which mean the model cannot generalize well. Underfitting 

(high bias) is the case in which c is still very large, indicating the model has yet learned much 

from the training dataset. Overfitting (high variance) is the case where c is extremely small, but 

the F is unreliable. The aim is to find the trend rather than fit a line to cut through all the data 
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points. This is due to the model learning “too much” from the training dataset. One can think 

of a normal computer program as utterly overfitted, since it only provides answers robotically 

to the inputs they are trained (programmed) for but not others. Many numerical regularization 

techniques have been developed by the ML community to suppress these issues and have the 

right bias-variance trade-off, among which we used dropout and weight regularizations in our 

study.  

Active learning and uncertainty estimation 

Active learning entails a class of ML algorithms for the automatic assembly of the training set.  

Despite stunning accuracies in training, deep learning algorithms may not be good at 

quantifying the uncertainty of model predictions. Such failure may cause problems especially 

in risk-sensitive areas  [75]. In this thesis, the goal is to reduce the uncertainty compared to that 

generated in a random sampling of strains. It is often convenient to begin with subsets of the 

data that offer uncertain levels of reliability and accuracy. Various uncertainty estimates have 

been proposed [76]. The particular choice of an uncertainty quantification procedure greatly 

influences performance in the active learning part. There are three main ways to perform an 

uncertainty estimation for the NN: ensembling [77], variational inference [78], and dropout-

based inference [79].  

Ensembling is a mere stacking of a few similar models, which are trained starting from different 

parameters initialization or on the different subsets of data; various modifications exist [80,81].  

This method is not model-specific and yet achieves near state-of-the-art performance in some 

applications [82]. The main drawback is that one needs to train a number of models and the 

memory consumption, training and inference time are scaling proportionally: an ensemble of 

10 models will take 10 times more computational resources, which are used only to produce an 

uncertainty estimate. 

Variational inference is a standard Bayesian technique, which relies on the stochasticity 

incorporated within the model in a form of the model's parameters being the random 

variables [78]. This method produces robust and theoretically bounded uncertainty estimates; 

however, the model needs to be constructed and trained in a special way, which increases the 

training time. Moreover, the variational inference procedure is infeasible for the case of a large 

number of parameters and large datasets without special assumptions and approximations [83]. 

The utilization of dropout [84,85] as an “engineering” way of the model regularization led to 

better results in the number of ML areas. One of the ways to interpret the dropout is 

Bayesian [79]. Dropout-based inference may be seen as a Bayesian approximation of the 

variance of the ML output: in our study, to get the uncertainty estimate for a given strain one 

needs to enable the dropout during the inference time and then calculate the variance of the few 

stochastic passes of the same sample through the model. 
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Data fusion 

As defined in the monograph “Data Fusion Lexicon” by Franklin E. White [86], data fusion is 

“a process dealing with the combination of data and information from multiple sources to 

achieve refined position and identity estimates.” In our study, through comparing the DFT-PBE 

calculation results with experimental measurement, we realized the need for additional data 

obtained from a different and more accurate level of theory (the GW calculation) to achieve an 

improved dataset. The joint force of both datasets allows us to achieve improved information 

with less error. The superiority brought by fusion is obvious, as will be shown in detail in 

Chapter 3 and Chapter 4.  

2.4.2. A general formulation for elastic strain engineering by supervised learning 

In formulating the problem from a statistical learning point of view, we can define an input data 

– strain tensor 𝜺 ∈ 𝐷 ⊂ 𝑅6, as well as output data – electronic band structure represented as 

energy eigenvalues in a predefined 𝐤-mesh 𝜖 ∈ 𝑅𝑑. One part of the problem is to predict the 

mapping  

𝑓: 𝐷 → 𝑅𝑑, (18) 

using some training data 𝑆train = {(𝜺(1), 𝜖(1)), (𝜺(2), 𝜖(2)), … , (𝜺(𝑛), 𝜖(𝑛))} and approximation 

model 𝑓: 𝐷 → 𝑅𝑑. We can access the quality of the approximation via the loss function  

𝐿(𝑓|𝑆) =
1

|𝑆|
∑ ||𝑓(𝜺(𝑗)) − 𝑓(𝜺(𝑗))||2

𝜺(𝑗)∈𝑆

, (19) 

and thus formulate the fitting problem as an optimization problem  

𝐿(𝑓|𝑆train) → min. (20) 

Theoretically, the mapping (1) is piecewise smooth and is known to contain some symmetries. 

However, the practical evaluation of the function 𝑓  available to us via various DFT 

approximations 𝑓PBE and 𝑓GW  differs by accuracy and evaluation time. In general, GW 

calculations are more precise due to the advanced level of many-body perturbation theory 

involved and we thus refer to them as the “ground truth”. Meanwhile, PBE approximation turns 

out to be useful in the early training stages, since we can obtain large amounts of reasonable 

data to pre-train our model on. The output dimensionality 𝑑  depends on the accuracy one 

possesses. We take advantage of the 8 × 8 × 8 Monkhorst-Pack 𝐤-point mesh and only 4 energy 

bands: valence band (VB), conduction band (CB), and their nearest-neighbor bands, 

respectively, if we were to describe the energy dispersions near the Fermi level of a 

semiconductor. 

Band structure calculations take time. Since we can access the answer 𝑓GW(𝜺) for an arbitrary 

strain 𝜺, we can take advantage of it and perform a smart design. We refer to the initial dataset 

we obtained as 𝑆init = {(𝜺(1), 𝜖(1)), (𝜺(2), 𝜖(2)), … , (𝜺(𝑁init), 𝜖(𝑁init))}, and the unlabeled pool 
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set as 𝑆pool = {𝜺(1), 𝜺(2), … , 𝜺(𝑁pool)} ⊂ 𝐷. We do not know the answers 𝜖(1), 𝜖(2), … , 𝜖(𝑁pool) 

from the 𝑆pool in advance but we can obtain them using the oracle model 𝑓GW in exchange for 

computational resources spent. We will also need a separate test set 𝑆test =

{(𝜺(1), 𝜖(1)), (𝜺(2), 𝜖(2)), … , (𝜺(𝑁test), 𝜖(𝑁test))}  ⊂ 𝐷 to access the quality of the approximation.  

The idea of active learning is to select some samples 𝑆selected ⊂ 𝑆pool using an uncertainty 

estimator  

𝑈𝐸(𝑓,⋅): 𝐷 → 𝑅+, (21) 

 

which ranks input data from the 𝑆pool. Those rankings are processed via an acquisition function  

𝐴(𝑓,⋅, 𝑈𝐸): 𝑆pool → 𝑅+. (22) 

In most cases, we just select the samples with the largest uncertainty estimates: 𝐴(𝑓,⋅

, 𝑈𝐸): 𝑆pool → 𝑈𝐸(𝑆pool). However, to save time spent on the ab initio calculations, we would 

like to sample as few points as possible. If we define the desirable accuracy as 𝛿, then we can 

formulate an active learning problem as an optimization one:  

|𝑆selected| → min      subject to  𝐿(𝑓|𝑆test) < 𝛿. (23) 

While the process of obtaining the solution of the optimization problem (19) is straightforward 

for given data 𝑆train, a rigorous solution to (22) is time-consuming since one needs to explore 

all the possible subsets of 𝑆train. Here we will make use of a greedy approach, training the 

model on 𝑆train and then taking a small subset from 𝑆pool to calculate using an ab initio model. 

Uncertainty estimation procedure helps us to select the samples that are somewhat hard for the 

model; together with the calculated answers we add additional data to 𝑆train and the process 

starts again, with an increased training set. This procedure aims at minimization of the selected 

dataset 𝑆selected  in a greedy way, checking an actual error on the test set 𝑆test  after each 

iteration. 

2.4.3. Models included in this work 

This section reviews the various ML models we adopted in our ESE work, including feed-

forward NN, CNN, ensemble-tree methods, and k-nearest neighbor classification method. 

Feed-forward NN & CNN 
 

As arguably the most successful and powerful method of ML, artificial NNs have been 

permeating the field of materials science introducing a research paradigm where large data are 

exploited to meet the satisfaction of empirical modeling. As shown in Figure 2.3a, NN is based 

on a collection of linked entities called neurons. The connections between neurons can send 

“signals” from one to another, similar to biological synapses. The input signal to a specific 

neuron may come from multiple other neurons and is mathematically represented as a weighted 
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sum 𝑧 = 𝑤𝑇𝑥 + 𝑏, where b is called bias. After being rectified by an activation function (in 

Figure 2.3a, a step function), the signal is passed on to the next neuron. This is the simplest NN 

architecture known as the perceptron. In a typical NN training for predicting strain effect, there 

is a network of neurons like this forming intermediate hidden layers, as depicted in Figure 2.3b.  

 

 

Figure 2.3 (a) Basic architecture of a perceptron. (b) Illustration of an NN with a hidden layer (multilayer 

perceptron).  

In order to effectively minimize the loss of the NN model, i.e., to reduce the c in equation t = c 

+ G(x), the weights of the NN are sequentially adjusted by a backpropagation algorithm to 

make signal transfer along some neuron pathways stronger than the other. This learning process 

is bound to yield a well-optimized model capable of accounting for huge numbers of salient 

features in its hidden layers as introduced in other structure-property fitting works [56,87–89].  

It is noticed that in a multilayer perceptron each neuron is fully connected to all neurons in the 

subsequent layer (Figure 2.3), making it prone to overfitting (Section 2.4.1). Instead of 

“barbering” the connectivity through dropout, CNNs adopt a different regularization approach 

by exploiting the hierarchical pattern in data. In feed-forward NN, the hidden layers are all the 

middle layers between the input and output layer, whereas in CNN hidden layers refer to the 

layers that conduct convolutions, as depicted in Figure 2.4. CNN is regarded by the ML 

community as a powerful tool for extracting features out of an image-type object. In our ESE 

of properties of materials, similar hierarchies exist in band structures, which can be treated as a 

stacked 3D image (details can be found in Chapter 4).  

 

(a) (b) 
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Figure 2.4 A general CNN architecture for classification. Adapted from Ref. [90]. 

Ensemble-based methods 

Two popular ensemble methods, random forests regression (RFR) and gradient boosting 

regression (GBR), are also used in learning the bandgap variations under large elastic strains. 

They predict (regression or classification) by combining the outputs from individual trees, as 

shown in Figure 2.5. These two methods differ in the way the trees are built.  

 
Figure 2.5 A schematic of the ensemble-tree architecture of the adopted GBR/RFR. 
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Chapter 3. Deep elastic strain engineering of 

semiconductor electronic properties by neural networks 

 

3.1. Chapter introduction 

In previous studies, bandgap engineering for semiconductors (mainly Si) used in functional 

devices was conducted largely by tuning only one or two strain components [91]. However the 

optimal FoM of a material may be located in a more general place in the 6D hyperspace, where 

a combination of normal and shear components exist. The author and his collaborators aim to 

explore this 6D strain space by analyzing highly nonlinear relations between electronic 

properties and the strain tensor.  

In the subsequent sections, a deep NN model capable of learning the electronic band structure 

and bandgap of silicon from ML through a limited amount of calculations is introduced. The 

resultant accuracies of and techniques incorporated into the ML model are presented in Section 

3.2. Different strains may result in the same bandgap, and in seeking a specific bandgap, or any 

other material FoM, one should choose the strain with a minimal effort required given the non-

uniqueness of choice of a given target property or FoM. For this purpose, the density of states 

of bandgap envelope introduced in Section 3.3 of this chapter is important in understanding and 

utilizing deep ESE. In this work, the elastic strain energy density is used as a scalar metric or 

“norm” of the strain tensor for rationally choosing the ESE route that requires the least energy 

penalty and corresponds to the safest deformation manner in principle. For example, the model 

is demonstrated to locate the most energy-efficient pathway in the 6D strain hyperspace to 

transform silicon from a semiconductor to metal or specific deforming ways in a low-

dimensional strain space to convert silicon’s bandgap from indirect to direct (Section 3.4). 

Note: some argumentation and figures/tables in this chapter are directly taken from the 

author’s publication of Ref.  [28]: Shi et al, Deep Elastic Strain Engineering of Bandgap 

through Machine Learning, Proc. Natl. Acad. Sci. 116, 4117 (2019). 
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3.2. Machine learning models and outcomes 

We aim to describe the electronic bandgap and band structure as functions of strain by training 

ML models on DFT data. This approach leads to reasonably accurate training with much fewer 

computed data than fine-grid ab initio calculations and a fast evaluation time. The DFT 

calculations were conducted in two settings: a large computationally inexpensive DFT-PBE 

dataset obtained for fitting and a small but accurate GW dataset for correction.  

As depicted in Figure 3.1a, the strain tensor and/or the 𝐤-point coordinates are fed into different 

ML models as input to fit or make predictions about energy eigenvalues or bandgap. Figure 

3.1b demonstrates the accuracy of these models on the PBE data, the best of which is attained 

by the NN. The data fusion technique [92,93] is adopted to further improve the learning 

outcome of bandgap, namely the most technically important property for electronic material. 

More specifically, given 𝐸g
PBE computed using an approximate baseline level of theory (PBE) 

at a particular query strain case, a related 𝐸g
GW value corresponding to a more accurate and more 

demanding target level of theory (GW) can be estimated as a function of both 𝐸g
PBE and 𝜺. 

Therefore, the 𝐸g
GW consistent with the query strain case is learned using exclusively 𝜺 and 

𝐸g
PBE as input, as illustrated in Figure 3.1b and Table 3.1. The resulting data fusion model 

reduces the mean absolute error (MAE) in the prediction of bandgap by more than half for 

kernel-based ensemble methods and allows the bandgap predicted by NN be reach an extremely 

high accuracy of 8 meV, as shown in Figure 3.1b and Table 3.2. We also acknowledge that 

features such as bond length and bond angle can be used as the ML input. However, the change 

in lengths and angles depends on the orientation of such bonds relative to the strain directions, 

and the combination over all the orientations becomes a more complex descriptor (higher-

dimensional) than the 6D strain. The current approach would work in general regardless of the 

number of atoms in the unit cell of any material system, as it depends on the number of bands 

and the k-mesh density only. For these reasons, we did not need to directly featurize bond 

information in the present work.  
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Figure 3.1 ML model and outcomes. (a) ML workflow for NN fitting. For a typical bandgap prediction task, the 

input contains the strain information and the target is either 𝐸g
PBE or 𝐸g

GW, depending on which dataset we use. In 

the data fusion process, the bandgap predicted from fitting the PBE dataset is also taken in as an input to fit the 

GW bandgap. For the whole band structure fitting task, the input contains both strain information and the k-point 

coordinates and the target is the energy dispersion 𝜖𝑛(𝐤; 𝜺), where 𝑛 is the band index, 𝐤 is the wavevector and 𝜺 

is the crystal strain tensor. The hidden layer structures of the two associated deep NNs are also depicted. (b) Better 

bandgap fitting results measured by MAE are yielded by data fusion compared to the sole use of 𝜺 as input to fit 
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GW data. Inset: data fusion-based learning of the difference between 𝐸g
PBE  and 𝐸g

GW . Ensemble methods on 

decision tree classifiers including gradient boosting regression (GBR) and random forest regression (RFR), 

Lagrange interpolation and NN are adopted for ML fitting. (c) Reachable bandgap values for various ℎ within the 

whole deformation space for silicon. The region where the strained silicon has a direct bandgap is colored in red. 

The red circle on the horizontal axis indicates the lowest energy penalty for the semiconductor-to-metal transition. 

The arrow on the horizontal axes in (c) indicates reachable ℎ by in-situ experiment. (d) The most energy-efficient 

strain pathway (𝜀1 ≡ 𝜀11, 𝜀2 ≡ 𝜀22, 𝜀3 ≡ 𝜀33, 𝜀4 ≡ 𝜀23, 𝜀5 ≡ 𝜀13, 𝜀6 ≡ 𝜀12) to reach the zero-bandgap state, i.e. the 

lower-envelope function 𝐸g
lower(ℎ) in silicon corresponding to the red-dotted line in (c). (e) GW band structure 

associated with the 0-eV bandgap state. The fractional coordinates for the three high-symmetry points along the 

selected 𝐤-path are (0.5, 0, 0), (0, 0, 0) and (0.5, 0, 0.5), respectively.  

Table 3.1 MAE and RMSE (in units of eV) for ML algorithms for bandgap prediction with or without data fusion. 

Here, the Lagrange polynomial of degree 8 is used. Relative error: the norm of the difference between the true 

value and the prediction divided by the norm of the true value. 

   ML algorithms 
GW GW+PBE 

MAE RMSE MAE RMSE 

Lagrange 0.0211 0.0274 0.0186 0.0241 

GBR 0.0334 0.0521 0.0135 0.0209 

RFR 0.0434 0.0596 0.0145 0.0215 

NN 0.0099 0.0144 0.0080 0.0118 

NN relative error 1.72% 2.78% 1.38% 2.05% 

 

Table 3.2 Root mean squared error (RMSE) for various ML algorithms for the bandgap and band structure 

prediction tasks from PBE data for silicon (in units of eV). 𝜺normal  and 𝜺6D  denote three-normal-strains and 

general deformation cases, respectively. Lagrange polynomial of degree 9 is used. For all the details on ML and 

DFT settings, see Section 3.5 Technical details.  

ML input 
ML algorithms 

ML target 
Lagrange GBR RFR NN 

𝜺normal 0.0150 0.0367 0.0247 0.0049 
𝐸g 

𝜺6D - 0.0743 0.0781 0.0264 

𝐤 and 𝜺6D 
VB - 0.1125 0.1078 0.0131 

𝜖𝑛(𝐤; 𝜺) 
CB - 0.1593 0.1555 0.0184 

 

We next show that our NN-based surrogate models can successfully learn from several datasets 

and assimilate them. This capability is becoming increasingly important with the spread of 

materials property databases that collect data from different studies [94,95]. The incremental 

training of the NN starts from the same weights but is done on the extended dataset with the 

additional data included. We also increase the learning rate of the stochastic gradient descent 

algorithm and regularizers (dropout rate and weight regularization [96]) to circumvent 

limitations arising from the same local minima of the loss function established during the 

training on the initial dataset. This allows the model to not only handle additional training on 

the incoming data appended to a database but do it much faster than from scratch. 
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Table 3.3 Si bandgap prediction errors, RMSE and MAE (in units of eV), for the incremental fitting scenario on 

reduced datasets. The error in both metrics is reduced for both 𝜺normal and 𝜺6D datasets after the incremental fitting.  

 

 
𝜺normal 𝜺6D 

before after before after 

RMSE 0.0403 0.0069 0.0264 0.0253 

MAE 0.0167 0.0052 0.0179 0.0167 

Numerical experiments conducted on the NN model demonstrate that incremental fitting of the 

models effectively reduces the error on a new dataset, see Table 3.3. Such incrementally fitted 

models are, thus, equally applicable to the bandgap approximation and various optimization 

tasks. Moreover, these models may be reused when shifting to other materials such as Ge or 

GaAs, since the implicit insights about symmetries, transitions and extreme cases are stored in 

the parameters of NN. Training the model for the other material starting from the weights for 

Si would significantly reduce the time and amount of data needed due to knowledge transfer, 

also referred to as transfer learning [97], leading to the rapid development of versatile surrogate 

models for deep ESE. 

3.3. “Density of states” of bandgap 

In ESE experiments, the objective is to identify the highest or lowest bandgap that can be 

achieved through the expenditure of a certain elastic strain energy density (ℎ) defined as:  

ℎ(𝜺) ≡
𝐸(𝜺) − 𝐸0

𝑉0
, (24) 

where 𝐸(𝜺) is the total energy of the cell deformed by strain 𝜺, and 𝐸0 and 𝑉0 are the total 

energy and volume of the undeformed cell. Here, we data-mine the 6D deformation by machine 

learning the bandgap distribution and the elastic strain energy density against 𝜺. The many-to-

many relation between ℎ(𝜺) and the bandgap 𝐸g(𝜺) is shown in Figure 3.1c. In the stress-free 

equilibrium state, silicon has a bandgap of 1.1 eV; with an increase in strain energy density, a 

variety of possible bandgaps emerge. Even silicon with strain energy density as small as 0.5 

meV/ Å3  can become quite a different material from the stress-free silicon. As ℎ  further 

increases, the largest allowable bandgap drops and an “envelope” forms, as evidenced by the 

change of maximal and minimal bandgap reachable under a fixed ℎ . The shading of the 

envelope regions in Figure 3.1c reflects the distribution of the available bandgap. A darker 

shading qualitatively indicates that the number of possible strains to achieve a specific bandgap 

at a given ℎ  is higher. Outside the envelope the shading color is white, meaning that the 

corresponding bandgap is not attainable. Mathematically, we can define the cumulative 

“density of states” of bandgap as:  

 



37 

𝑐(𝐸g′; ℎ′)  ≡  ∫
ℎ(𝜺)<ℎ′

𝑑6𝜺𝛿(𝐸g′ − 𝐸g(𝜺))  

=  ∫ 𝑑6𝜺𝛿(𝐸g′ − 𝐸g(𝜺))Θ(ℎ′ − ℎ(𝜺)) 

(25) 

where 𝑑6𝜺 ≡ 𝑑𝜀1𝑑𝜀2𝑑𝜀3𝑑𝜀4𝑑𝜀5𝑑𝜀6  in the 6D strain-space, 𝛿(⋅) is the Dirac delta function, 

and Θ(⋅) is the Heaviside step function. We then define the “density of states” of bandgap at ℎ′ 

by taking the derivative of 𝑐(𝐸g′; ℎ′)  with respect to ℎ′:  

𝜌(𝐸g′; ℎ′)   ≡   
∂𝑐(𝐸g′; ℎ′)

∂ℎ′
  =   ∫ 𝑑6𝜺𝛿(𝐸g′ − 𝐸g(𝜺))𝛿(ℎ′ − ℎ(𝜺)) (26) 

The meaning of density of states of bandgap can be described by considering elastically strained 

states within the (ℎ −
𝑑ℎ

2
, ℎ +

𝑑ℎ

2
) energy interval, and the resultant distribution of bandgaps 

arising from these states. The density of states of bandgap function 𝜌(𝐸g; ℎ) offers a blueprint 

for determining which bandgaps are accessible at what energy cost. One can use the definitions 

above not only for bandgap, but also generally for any scalar property that will provide an 

essential road map for deep ESE such as the thermoelectric FoM 𝑧𝑇, Baliga’s FoM [98], Curie 

temperature [27], etc. An upper-envelope function 𝐸g
upper

(ℎ)  and lower-envelope function 

𝐸g
lower(ℎ) can also be defined based on 𝜌(𝐸g; ℎ):  

𝐸g
upper

(ℎ)   ≡   max supp𝐸g
(𝜌(𝐸g; ℎ)),      𝐸g

lower(ℎ)   ≡   min supp𝐸g
(𝜌(𝐸g; ℎ)) (27) 

which are rendered as black and red dotted lines in Figure 3.1c, so the non-zero density of 

bandgaps falls within (𝐸g
lower(ℎ), 𝐸g

upper
(ℎ)). In deep ESE, 𝐸g

lower(ℎ) also indicates the path 

to obtain the fastest change in 𝐸g. For instance, if the goal is to reduce the bandgap of silicon 

from 1.1 eV as fast as possible, with the least cost of elastic energy, the red-dotted line in Figure 

3.1c (which is further detailed in Figure 3.1d) offers the best design of the strain tensor 𝜺 to 

achieve this goal.  

It is seen from Figure 3.1c that, with the application of a relatively small amount of mechanical 

energy, the overall distribution of Si bandgap shifts downward. This means that by modulating 

the strain (shear/tension/compression combinations) in multiple directions, strained silicon 

becomes capable of absorbing a different part of the electromagnetic spectrum than when it is 

in a stress-free state. It was also found that the bandgap of Si can vanish, corresponding to the 

semiconductor-to-metal transition in the 6D strain space (see Figure 3.1e for the band structure). 

Figure 3.1d illustrates that silicon’s “fastest path to metallization” is actually a curved path in 

the strain space: the initial fastest-descent direction for 𝐸g (at h = 0) is quite different from when 

𝐸g hits zero and linear perturbation theory such as the deformation potential theory [99] is not 
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expected to work well in deep-strain space. In the case of diamond, deep ESE provides an 

opportunity to reduce its bandgap to a level comparable to that of InAs. Our results thus 

demonstrate that by straining diamond in the most optimal way, it can be transformed to mimic 

the properties of a lower bandgap semiconductor while almost preserving its uniqueness such 

as high strength and thermal conductivity, thereby paving the way for designing hitherto 

unexplored combinations of material characteristics.  

Another important issue for optical applications pertains to whether the bandgap is direct or 

indirect. This direct bandgap envelope is a subset of the density of states of bandgap. We define 

the density of direct bandgaps in parallel to (25), (26) and (27), but with 𝐸direct 𝐸g
 instead of 𝐸g, 

to obtain density of states of direct bandgap 𝜌d(𝐸direct 𝐸g
; ℎ)  and its bounds 𝐸direct 𝐸g

upper
(ℎ), 

𝐸direct 𝐸g

lower (ℎ). Obviously, if direct bandgaps exist at any strain, for that strain there will be  

(𝐸direct 𝐸g

lower (ℎ), 𝐸direct 𝐸g

upper
(ℎ))   ⊆   (𝐸g

lower(ℎ), 𝐸g
upper

(ℎ)). (28) 

Our deep ESE model found within experimentally accessible strain range that the indirect-to-

direct bandgap transition takes place in silicon in the high ℎ region and a minimum strain energy 

density ℎd
min exists for the direct bandgap to appear (the red region in Figure 3.1c):  

ℎd
min   =   min  suppℎ(𝐸direct 𝐸g

upper
(ℎ) − 𝐸direct 𝐸g

lower (ℎ)). (29) 

The conventional way to modulate electronic properties in semiconductors is the so-called 

compositional grading technique. Through varying the stoichiometry of a semiconductor, as for 

example by molecular beam epitaxy, a graded bandgap can be produced [103]. This means of 

tweaking the material property is conceptually based on traditional chemical alloying, whereby 

the chemical composition is tuned in an alloy melt to produce desirable strength or ductility. 

Invoking this approach, conventional bandgap engineering resorted to chemical alloying such 

as GaAl1−xAsx  or Ga1−xInx As. However, we have demonstrated here that the stress-free 

situation is usually not the optimal state for a FoM, and elastic strains allow the bandgap to 

exhibit many more possible values so that each pure material candidate should occupy a much 

larger hyperspace enabled through the achievable 6D strain space. The more general bandgap 

engineering approach should utilize gradients in both composition and strain to achieve the 

desired band alignment. 

3.4. Exploring bandgap ridgelines in strain space 

Here we choose the most widely-used semiconductor material, Si, as an example to demonstrate 

the generality and flexibility of our method. Since the full 6D strain space does not allow for 

easy visualization, we restrict ourselves to tensile and compressive normal strains only (𝜀4 =
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𝜀5 = 𝜀6 = 0) for illustration purposes. Note that combinations of tensile and compressive 

strains can be used to generate shear strains in the material even though not all shear strains are 

considered. Figure 3.2 illustrates the isosurface for Si bandgap, i.e., the set of points in the strain 

space where the bandgap equals some given value, for different 𝐸g levels obtained by our high-

throughput NN model. The most striking visual feature of this 𝐸g-isosurface in 𝜀1𝜀2𝜀3 space is 

its piecewise smoothness. There are cusp singularities of a different order: ridgelines where two 

smooth pieces of the 𝐸g -isosurface meet, and corners where three ridgelines meet. These 

singularities are characterized by discontinuities in the slope (but not value) in the strain space 

due to band cross-over or even band topology change. Such cuspy features also exist in 𝐸g-

isosurface in the general-𝜀1𝜀2𝜀3𝜀4𝜀5𝜀6  space, although they are more difficult to visualize 

directly. One can mathematically define these non-smooth features on the 5D isosurface 

(embedded in 6D) as nth-order ridges (𝐸g) if they are differentiable in 5-n directions, while 

sustaining a change in slope in the other n directions in the strain-space. 

Since both the crystal structure and deformation tensor have symmetries, and the bandgap as a 

function of strain is invariant with respect to some of them, the “paleolith”-like 𝐸g-isosurface 

(in analogy to the Tresca yield surface in the strength of materials) has the following symmetry 

structure:  

(i) The points μ (the most “compressive” hydrostatic strain point on the 𝐸g-isosurface) 

and χ (most “tensile” hydrostatic strain point on the 𝐸g-isosurface) lie on the 𝜀1 =

𝜀2 = 𝜀3 line. We thus denote their strain space coordinates by (𝑎, 𝑎, 𝑎) and (𝑏, 𝑏, 𝑏), 

respectively. At small or moderate 𝐸g, χ splits and gives rise to a topologically new 

triangular region χ1χ2χ3 as shown in Figure 3.2. It will later be shown these χ-type 

points form the direct bandgap region on the 𝐸g-isosurface. 

(ii) The points α𝑗   (𝑗 = 1,2,3) form a regular triangle which lies in a plane orthogonal 

to the 𝜀1 = 𝜀2 = 𝜀3  line. Their coordinates are denoted by (𝑐, 𝑑, 𝑑), (𝑑, 𝑐, 𝑑) and 

(𝑑, 𝑑, 𝑐), respectively.  

(iii) The points β𝑗  (𝑗 = 1,2,3)  also form a regular triangle which lies in a plane 

orthogonal to the 𝜀1 = 𝜀2 = 𝜀3  line. Their coordinates are denoted by 

(𝑒, 𝑒, 𝑓), (𝑓, 𝑒, 𝑒) and (𝑒, 𝑓, 𝑒), respectively.  
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Figure 3.2 Bandgap isosurfaces for silicon in the 𝜀1𝜀2𝜀3 strain space appear to have the paleolith shape for every 

𝐸g level. The main corners (χ, μ, α𝑗, β𝑗) of an isosurface at 𝐸g = 0.9 eV are indicated by different colors. The red 

triangular faces indicate the direct bandgap region at different 𝐸g levels. As bandgap increases, the area for the red 

triangle eventually shrinks to a single χ point. GW model used as a reference. 

   

The shape of the isosurface is similar for both PBE and GW bandgaps, although the specific 

strain values may differ for the same PBE and GW bandgap levels. It was found that the easiest 

way (with the least ℎ(𝜺normal)) to obtain the 0-eV bandgap without any shear strain is to apply 

a normal strain of -3.86% and 4.36% along any two of the three 〈100〉 directions while leaving 

the third 〈100〉 direction undeformed. Therefore, there are six strain cases that are equivalent, 

as indicated by red dots in Figure 3.3b. The position of the vertices of the 𝐸g-isosurface in the 

strain space is the function of selected bandgap value, and the detailed relationship between the 

bandgap and the strains is shown in Figure 3.3c. According to our PBE+GW model, the 

maximum bandgap reachable by strained silicon is 1.24 eV under a hydrostatic tensile strain of 

6.5%. It should be noted that silicon strained to such an extent almost reaches the maximum 

theoretical efficiency, known as the Shockley-Queisser limit [104], of a single p-n junction 

solar cell. This demonstrates the theoretical feasibility of the application of deep ESE for 

performance improvement in solar energy conversion devices. 
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Figure 3.3 (a) Bandgap isosurface shown through the 𝜀1 − 𝜀2 projection of Si at 1 eV level with GW data. The 𝜒 

point corresponds to the direct bandgap case and it splits into three at small 𝐸g as shown in Figure 3.2. (b) 0-eV 

bandgap isosurface in the strain space based on GW data. The blue point corresponds to the strain-free state; red 

points are cases with the least ℎ on this isosurface. (c) Strain space coordinates of the bandgap isosurface corners 

(defined as in Figure 3.2) as a function of the bandgap level. In the cases where three 𝜒-type points exist, 𝑏 equals 

the average coordinate of them. 

The formation of the 𝐸g-isosurfaces, such as the ones in Figure 3.2, is due to the relative position 

of valence band maxium (VBM) and conductiona band minimum (CBM). Despite different 

shape variations of the two energy bands, modulating elastic strain provides possibilities for the 

VBM and CBM to differ by the same amount. For undeformed silicon with a bandgap of 1.1 

eV, the VBM is located at the Γ-point and the CBM lies on the straight line (the Δ-line in the 

k-space) and is positioned at about 85% of the way from the Brillouin zone center to the zone 

boundary [105]. Under the three-normal-strain, the cubic crystal symmetry of Si is lifted and 

we follow the k-point labeling scheme explained in Section 2.1 to describe band extrema 

positions. It is found that VBM remains at Γ irrespective of deformation whereas the position 

of CBM can be greatly affected by external strains. Using the geometry of the 𝐸g-isosurface as 

a visualization tool, we identify four types of k-space transition in CBM that may happen across 

the ridgelines on the isosurface.  

Starting with the strain points on the lower faces separated by μ − α𝑗  ridgelines of the 𝐸g-

isosurface in Figure 3.2, we found that the CBM remains the relative position along the ‘Δ’-

type line as in the undeformed case, and that crossing the ridgelines only switches CBM among 

(𝑘1, 𝑘1, 0), (0, 𝑘1, 𝑘1), and (𝑘1, 0, 𝑘1), where 𝑘1 ≈ 0.425. We term this transition occurring in 

the small strain region as the ‘Δ’-switching. In this case, the linear deformation potential theory 

can be used to describe the strain effects on the band extremum [99]. However, investigation 

of the large deformation points on its upper faces in Figure 3.2 reveals that the CBM would not 

retain its location and major changes would happen.  

Our ML model captures the occurrence of ‘L-Δ’ transition across the β𝑖 − α𝑗  ridgelines where 

the CBM changes to ‘L’ points in k-space, see Figure 3.4a-b for an example. The large, non-

perturbative deformation makes the conventional theory ineffective in predicting it. Moving 
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further toward χ in the strain space, CBM would remain at ‘L’ and a cross-over of the χ2 − β𝑗 

ridgelines is referred to as an L-switching. Indirect-to-direct bandgap transition occurs near the 

upper tip of the paleolith-like isosurface where CBM appears at Γ, as shown in Figure 3.4c. 

This can be explained by the competition between drops of different band edges. In general, as 

strain increases the band edge at both Γ and ‘L’ would decrease.  

As a result of high strains, the energy decrease at Γ  is faster and eventually the bandgap 

becomes direct, as shown in Figure 3.4d. When the strained Si turns into a direct bandgap 

semiconductor, it would exhibit a significant enhancement in its optical transitions around the 

fundamental adsorption edge compared to an undeformed Si, due to the elimination of phonon 

involvement to facilitate adsorption or emission. Furthermore, as absorbance increases 

exponentially with thickness in a material, a solar cell based on direct bandgap Si with a high 

adsorption coefficient would require much less thickness to absorb the same amount of light, 

paving the way for the design of light-weight high-efficiency solar cells. Table 3.4 summarizes 

all the details of the k-space transitions, thus resolving the conduction band properties 

exhaustively for a wide range of strains.   

 
Figure 3.4 Illustration of k-space transition in Si predicted by deep ESE. All the transitions are verified by GW 

calculations. (a-b) represents the ‘Δ-L’ transition and (b-c) shows the indirect-to-direct transition. The CBM (red 

arrows) locates at k-point (0.433, 0.433, 0), (0.5, 0, 0), and (0, 0, 0) respectively. (d) The enlarged band structure 

around Fermi energy shows the competition of the three possible CBM positions. The three-normal-strain cases 

for (a-c) correspond to points on different faces of the bandgap isosurface in Figure 3.2.  
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Table 3.4 k-space CBM transitions. Each of 12 separating ridgelines of the iso-bandgap body tabulated. The 

constants 𝑘1 and 𝑘2 are approximately equal to 0.425 and 0.5, corresponding to points on Δ and L, respectively.    

Type Change of “carapace” k-coordinate of CBM 

‘Δ’-switching 

 

Δ1 ↔ Δ2 (0, 𝑘1, 𝑘1) ↔ (𝑘1, 0, 𝑘1) 

Δ2 ↔ Δ3 (𝑘1, 0, 𝑘1) ↔ (𝑘1, 𝑘1, 0) 

Δ3 ↔ Δ1 (𝑘1, 𝑘1, 0) ↔ (0, 𝑘1, 𝑘1) 

‘L’-switching 

 

L1 ↔ L2 (𝑘2, 0, 0) ↔ (0, 𝑘2, 0) 

L2 ↔ L3 (0, 𝑘2, 0) ↔ (0, 0, 𝑘2) 

L3 ↔ L1 (0, 0, 𝑘2) ↔ (𝑘2, 0, 0) 

‘L-to-Δ’ transition 

 

L1 ↔ Δ2 (𝑘2, 0, 0) ↔ (𝑘1, 0, 𝑘1) 

L1 ↔ Δ3 (𝑘2, 0, 0) ↔ (𝑘1, 𝑘1, 0) 

L2 ↔ Δ1 (0, 𝑘2, 0) ↔ (0, 𝑘1, 𝑘1) 

L2 ↔ Δ3 (0, 𝑘2, 0) ↔ (𝑘1, 𝑘1, 0) 

L3 ↔ Δ1 (0, 0, 𝑘2) ↔ (0, 𝑘1, 𝑘1) 

L3 ↔ Δ2 (0, 0, 𝑘2) ↔ (𝑘1, 0, 𝑘1) 

Indirect-to-direct bandgap transition 

 

L1 ↔ Γ (𝑘2, 0, 0) ↔ (0, 0, 0) 

L2 ↔ Γ (0, 𝑘2, 0) ↔ (0, 0, 0) 

L3 ↔ Γ (0, 0, 𝑘2) ↔ (0, 0, 0) 

 

3.5. Technical details 

First-principles calculation details 

We used the PBE [106] exchange-correlation functional and the projector augmented wave 

method (PAW) [107] in our DFT simulations implemented in the Vienna Ab initio Simulation 

Package (VASP) [108] with spin-orbit coupling incorporated. A plane wave basis set with an 

energy cutoff of 520 eV was adopted to expand the electronic wavefunctions. The Brillouin 

zone integration was conducted on a 13 × 13 × 13 Monkhorst-Pack 𝐤-mesh [109] (6 × 6 × 6 

for GW calculations). Atomic coordinates in all the structures were relaxed until the maximum 

residual force was below 0.0005 eV Å−1. We focused on the strain range of {−5% ≤ 𝜀𝑗 ≤

10%, 𝑗 = 1, … , 6} for silicon.  

Since the material properties do not change upon rotations of the crystal, we eliminated the 

rotational degrees of freedom by adopting an upper triangular deformation gradient tensor to 

map out deformation cases, as outlined in Section 2.1. This treatment ensures a one-to-one 

correspondence between the applied strains and deformation cases, and we have exploited 

symmetry in this setting for general 3D and 6D cases and implemented it in our study to avoid 

repetitive calculations. For example, consider the following four arbitrary strain cases:  
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𝜀A = (𝜀11, 𝜀22, 𝜀33, 𝜀23, 𝜀13, 𝜀12) 

𝜀B = (𝜀11, 𝜀22, 𝜀33, 𝜀23, −𝜀13, −𝜀12) 

𝜀C = (𝜀11, 𝜀22, 𝜀33, −𝜀23, 𝜀13, −𝜀12) 

𝜀D = (𝜀11, 𝜀22, 𝜀33, −𝜀23, −𝜀13, 𝜀12) 

They ought to be equivalent and we can have three times more additional data. Such symmetry 

acts as a regularizer and helps to reduce overfitting if our goal is to train a bandgap model or 

finding the density-of-states of bandgap distribution against varied elastic strain energy 

densities. 

 

Machine learning details 

NN fitting is implemented within the Tensorflow [110] framework. To predict the bandgap we 

used deep NNs with four hidden layers with a (64→128→256→256) structure in the case of 

three-normal-strains (𝜺normal) and a (512→256→256→256) structure for the general case with 

shear strains (𝜺6D). For the more complicated task of band energy prediction at a single 𝐤-point, 

the architecture of (512→256→256→256) was used. The leaky rectified linear unit was chosen 

as an activation function. We used the Adam stochastic optimization method [111], the 

orthogonal weight initialization [96] and the dropout technique to prevent overfitting. The tree-

based ensemble algorithms were implemented in Scikit-learn [112]. For our regression task, we 

used two types of ensembling on decision trees: the random forest regression [113] and the 

gradient boosting regression [114]. The architecture is shown in Figure 3.1a. Hyper-parameters 

tuning was executed by using cross-validation on a training set to enhance the fitting process.  
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Chapter 4. Deep elastic strain engineering of 

semiconductor electronic properties by convolutional neural 

networks 

 

4.1. Limitations of feed-forward neural networks  

Chapter 3 demonstrates a framework that, in principle, can be used for tailoring properties such 

as energy gaps between different electronic bands of any other material by recourse to deep 

ESE and deep learning. But is it capable of tailoring any other electronic properties, such as 

those related to not only the energy band levels but also the energy band curvatures?   

 

While the feed-forward NN models presented in Chapter 3 are adequate for rapid data collection 

in a highly specialized model [28,115], they do not offer sufficient flexibility and accuracy for 

optimizing a broader consideration of physical characteristics such as the effective mass of 

electrons and holes, which is a second-derivative of 𝐸𝑛(𝐤;  𝜺) with respect to 𝐤 and a strong 

sensitivity to noise. Therefore, it is appropriate at this stage of development of ML to 

incorporate a priori physics-informed NN architectures into the calculations in such a way that 

various performance characteristics and FoM estimates could be much better optimized through 

a judicious combination of DFT and deep learning. These recent advances enable multi-

property optimization and Pareto-front type tradeoff analysis.  

To accomplish these goals, this chapter introduces a physics-informed CNN technique that is 

more versatile, accurate, and efficient in its capability to facilitate autonomous deep learning of 

the electronic band structure of crystalline solids than the NN architecture hitherto employed to 

address this class of problems. More advanced algorithms and data representation schemes are 

involved to provide markedly improved ML outcomes. The techniques described here enable 

detailed analysis of band structures in the general 6D strain space to optimize select FoM of 

interest for specific performance targets. Moreover, our method achieves sufficient accuracy 

not only for the deep analysis of bandgap and of the shape of band structure, but also for 

capturing the curvature of the band and the effective mass.   

Some argumentation and figures/tables in this chapter are directly taken from the 

author’s own publication of Ref.  [116]: E. Tsymbalov*, Z. Shi*, M. Dao, S. Suresh, J. Li and 

A. Shapeev, Machine learning for deep elastic strain engineering of semiconductor electronic 

band structure and effective mass, npj Computational Materials, In press, (2021). *Equal 

contribution. 
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4.2. Digital-image view of band structures 

Inspired by the wide adoption of deep learning in the field of computer vision [117], an analogy 

is drawn between the color spectrum in a digital image and the band structure, regardless of 

whether it applies to electronic, phononic or photonic band structure. Using this analogy, energy 

dispersions is envisioned as stacked 3D “images”, with the reciprocal coordinates 𝐤 ≡ (k1, k2, 

k3) representing the “voxels” (i.e., 3D “pixels” of a digital image) and with 𝐸𝑛 denoting the 

spectrum and intensity of colors (similar to the RGB or grayscale of an image) at each voxel 

for a particular 3D image, where 𝑛 is the particular band among a total of N bands. Energy 

bands are piecewise-smooth functions in the reciprocal space, and the information within the 

energy dispersion of a specific band includes intraband correlations with respect to 𝐤. An 

illustration of this pictorial view of the band structure can be found in Figure 4.1a. Note that 

previous ML schemes based on simple feed-forward NN treated an energy band as a flattened 

array of independent values [28] - thereby neglecting to account for intraband correlation.  
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Figure 4.1 Two different views of band structure. (a) Different representations of a band structure. In the “flattened” 

view, a band structure is represented as N stacked flattened arrays (vectors) and processed like independent values. 

Each array is m3 in length. In the “digital image” analogy, the band structure is envisioned as N different 3D images 

stacked together, each of which has a “voxel” dimension of m × m × m. The eigenvalues on an energy band can 

then be thought of as the “color-scale” of the voxels. (b) Comparison of the two different approaches to machine 

learning. We predict the eigenvalues for each energy band separately by utilizing the “flattened” band structure 

representation to obtain the entire band structure. 

In prior work [28], different bands were analyzed separately by NN (Figure 4.1a, b). Although 

this approach was sufficient to predict energy eigenvalues for a specific band or bandgap 

variations arising from strain, it could not capture interband physics accurately for the entire 

band structure because of limited data. The energy bands analyzed in the present method, 

however, are not “independent” of one another, as shown in Figure 4.1, and they collectively 

describe the physical characteristics of the crystal. For example, consider a single electron in a 

periodic potential resulting from the interaction of the electron with the ions and other electrons. 

Solving the Schrödinger equation provides the solution for a series of Bloch waves, each of 

which has a predicted dispersive form. Through the first-principles method, all the quantized 

energy levels are determined. Specifically, the nth band is not calculated in isolation, but is 

determined from the collective influence of its neighboring bands, including the adjacent (n - 

1)th and (n + 1)th bands as well as other non-adjacent bands. In other words, information from 

interband correlation influencing the nth band is included in the band structure of the crystal.  

To reveal the internal structure of the band data in our model, we incorporate CNN into our ML 

scheme. CNN is known for its capability to extract hierarchical patterns in digital images and 

to assemble complex patterns by integrating information from smaller datasets [118]. Utilizing 

the digital image analogy for the band structure, CNN is thus expected to serve as a useful tool 

for extracting useful patterns, or intraband/interband correlations.   

4.3. Model description, training, and active learning 

The general setup of the proposed model is illustrated in Figure 4.2a. It consists of a fully-

connected part followed by a CNN part. At the outset, the strain tensor ε is taken as the input 

and transformed into a feature vector through a series of fully-connected layers, as depicted in 

Figure 4.2a. This feature vector has a length of Nm3, where m3 is the number of 𝐤-points 

sampled in the Brillouin zone, and N is the number of bands we want to represent. Depending 

on the 𝐤-mesh density, the feature vector can be adopted as a rich representation of the intraband 

information for a band structure. Currently, this part has four hidden layers with a structure of 

(6→128→256→512→512)n, where 512 = m3, for n = 1, 2, ..., N separately, totaling ~1.1 million 

parameters. N is most often taken to be 4 in this work, sufficient for describing near-CBM/near-

VBM properties of diamond for a particular strain state. Here, the band energy dispersion for 

the top valence band (𝑛 = 𝑛VB), the lowest conduction band (𝑛 = 𝑛CB), and their adjacent two 

bands (𝑛 = 𝑛VB - 1 and 𝑛 = 𝑛CB + 1), could all be represented via 4 vectors each of which has 
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a length of m3
. Stacking them together, we build an m × m × m × 4 tensor representation of the 

band structure for any individual strain data, as illustrated in Figure 4.2b. This process is similar 

to the decoding part of an autoencoder [119] whereby a representation as close as possible to 

the band structure is generated. The resulting tensor is then fed into the next block of 

convolution. 

The convolutional part consists of several blocks that update this tensor representation until the 

final output is determined. Note that the output tensor retains the same dimension of the band 

structure, i.e., m × m × m × N. This extraction process proceeds through many layers to deliver 

a band structure tensor with features that capture deep intra- and inter-band information. This 

output comprising the complete ML inference represents the band structure obtained by DFT 

calculations (Figure 4.2a-b). In each convolutional block in the CNN part, the convolution is a 

two-step sequence. In the first step, a 3 × 3 × 3 × 1 kernel accounting for the intraband 

correlation (with periodical boundary conditions and symmetry) is used. In the second step, a 1 

× 1 × 1 × 3 kernel accounting for the interband correlation is adopted. The convolution blocks 

can be stacked up at one’s discretion. The model yielding the lowest error in our study has three 

CNN blocks, totaling ~276,000 parameters. One can also use a one-step convolution (3 × 3 × 3 

× 3) kernel instead of the aforementioned two-step convolution (3 × 3 × 3 × 1)→convolution 

(1 × 1 × 1 × 3) kernel, with more weights per block but better accuracy. Also, since 8 × 8 × 8 

is still a relatively coarse 𝐤-mesh, when performing min𝐤, max𝐤 or 𝐤-derivative operations, we 

use polynomial interpolation on top of the floating-point 8 × 8 × 8 representation, before 

carrying outs such operations.  
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Figure 4.2 ML model description. (a) CNN architecture for band structure prediction. The strain components are 

passed through fully connected layers, with the last layer reshaped into a rank-5 tensor. After a few convolutional 

layers with residual connections28 that improve convergence, the network produces the band structure as the output, 

which is fitted against the targeted DFT-computed band structure. A mesh comprising 8 × 8 × 8 𝐤-points is used. 

(b) Tensor representation and physical insights incorporated into the CNN model: time-reversal symmetry, 𝐤-

space periodicity, and inter- and intra-band convolution. 

The power of this approach lies in the architecture of the proposed CNN model, which is 

tailored to the known physical structure and exploratory data analysis results (Figure 4.2b and 

Section 4.8 Figures A4.1 and A4.2) in order to simplify training and to speed up inference. In 

particular, it takes advantage of: 

i) The time-reversal symmetry, i.e., 𝐸𝑛(−𝐤) = 𝐸𝑛(𝐤) which holds for the diamond 

crystal. Corresponding tensor representation preserves this property. 

ii) The correlation between the same 𝐤-point of different bands (interband correlation). 

An interband convolution between the bands is applied at each 𝐤-point so that bands 

influence one another. 

iii) The correlation between the energy eigenvalues associated with adjacent 𝐤-points 

of the same band (intraband correlation), which ascertains that the band energy is a 

piecewise-smooth function of the 𝐤-space coordinates. The intraband convolutions 

are carried out over several cycles so that the underlying physics of how energy 

eigenvalues from adjacent 𝐤-points affecting one another are learned accurately. 

iv) Band structure calculations that benefit from the periodic nature and symmetry of a 

crystal lattice. The band structure plot resulting from restricting 𝐤  to the first 

Brillouin zone, also known as the reduced zone scheme, is typically used. This 

reciprocal lattice periodicity is represented in our model using a special technique 

for the periodic boundary condition that follows the reduced zone scheme.  

The training of our model is achieved in three parts: preliminary training, data fusion, and active 

learning. In the first part, preliminary training was performed on the large dataset (~35,000 

strain samples) of the computationally inexpensive DFT-PBE calculations. After a prescribed 

level of accuracy (less than 0.5% relative error) was achieved, in the second part, we performed 

training on a much smaller set (~6,000 strain-samples) of the accurate GW calculation, starting 

from the NN parameters learned in the previous stage. This approach is known as knowledge 

transfer, as some of the knowledge gathered by NN from the low-fidelity PBE data is exploited 

to ease the training on the relatively more costly and reliable GW data. See Figure 4.3 for a 

schematic of this process and Section 4.8 for computational details.  
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Figure 4.3 The entire ML scheme involves pre-train, data fusion, and active learning. The solid arrows show the 

workflow, and clock symbols indicate the relative time required for ab initio calculations. 

Another integral part of our training is active learning (Figure 4.3), which entails a class of 

machine-learning algorithms for the automatic assembly of the training set.  Here the goal is to 

reduce the uncertainty compared to that generated in a random sampling of strains. It is often 

convenient to begin with subsets of the data that offer uncertain levels of reliability and accuracy. 

Various uncertainty estimates have been proposed [76]. The particular choice of an uncertainty 

quantification procedure greatly influences performance in the active learning part. There are 

three main routes to uncertainty estimation in NN: ensembling [77], variational inference, and 

dropout-based inference. Straightforward ensembling requires a few separate models to be 

trained, but it imposes additional computational costs to both training and inference procedures. 

On the other hand, variational inference requires the usage of Bayesian NNs (which have 

probability distributions instead of real-valued weights), and they also lead to costly training 

and inference steps. Dropout can be seen as an intermediate solution: it can be applied in a 

simple way to the existing NNs with fully-connected layers and also has a theoretical 

justification in the Bayesian framework [120].  

Here, we use the dropout uncertainty estimation enhanced with the Gaussian processes for 

stability [121] to sample the most “uncertain” strain cases for further improvement of the model. 

Specifically, after the first round of the training on the GW data, we performed a calculation 

over a large set of random strains in 6D and chose a small amount of ~200 strain cases with the 

largest expected error as evaluated by this intermediate model (uncertainty measurement). 

These strain cases were added to the training set for the next round of training, as illustrated in 

Figure 4.3. Our study indicates that 5-10 cycles of the above active learning enable the trained 

CNN to reach the same level of accuracy with two to three times fewer data, thus considerably 

reducing the total amount of ab initio calculations without compromising the robustness of our 

ML model, see Figure 4.4a-b.  
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Figure 4.4 ML accuracy and comparison of the different ML models. (a) Steady improvement of model 

performance in terms of MAE during active learning with and without uncertainty estimation on PBE data. (b) 

MAE of the bandgap estimation reduces with active learning iterations. 200 strain values were sampled at each 

step. The last three iterations did not contribute to the error reduction. (c) Physics informed CNN holds advantages 

against band-fitting NN and band-fitting KRR in every front while being able to accomplish predictions tasks the 
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sole-purpose NN and KRR cannot do. The “Γ gap” is the difference between CB and VB at Γ and usually does not 

coincide with 𝐸g. (d) Physics-informed CNN holds significant advantages over band-fitting NN while being able 

to accomplish prediction tasks, which the feed-forward NN and KRR do not offer. “Γ gap” is the difference 

between the conduction band (CB) and valence band (VB) at Γ and it usually does not coincide with 𝐸g . (e) 

Accuracy of CNN and other models for CBM position classification task. (f) Inference time comparison. The CNN 

is much faster than its closest accuracy competitor band-fitting KRR model, providing a reasonable balance 

between time and accuracy capabilities.  

4.4. Model accuracy and performance 

The ML framework outlined in Figure 4.3 achieves high accuracy in a variety of tasks compared 

to existing ML methods. The CNN model outperforms our previous simple feed-forward NN 

architecture as well as an ensemble of kernel ridge regression (KRR) based models for band 

structure prediction, achieving a relative error no greater than 0.5%, as shown in Figure 4.4d. 

The predictions of properties related to the band structure, such as the bandgap 𝐸g (defined as 

the energy difference between the CBM and VBM values), were treated in a previous study in 

Chapter 3 as an isolated ML regression problem with a direct fit to the scalar 𝐸g  and the 

estimation of CBM and VBM as two separate tasks with many repetitive ML runs. The present 

CNN model does not have this constraint. It is capable of simultaneously predicting intra- and 

inter-band property/values, including 𝐸g, CBM and VBM, and interband electron excitation and 

photon emission energy at every 𝐤-point (any vertical transition between any two bands), with 

a level of accuracy on par with or better than other models (Figure 4.4c-d and Section 4.8 Tables 

A4.1 and A4.2).  

The current ML framework also achieves high reliability in locating the band edge 𝐤-points. 

Here, the present machinery surpasses all the other models by a significant margin, as shown 

in Figure 4.4e for the specific case of finding the CBM position for diamond. Locating CBM is 

a demanding classification problem due to a large number of classes: there are seven 

possibilities for diamond CBM location under 6D elastic strain. Predicting the entire band 

becomes inevitable for wide-bandgap materials such as diamond to achieve a high classification 

accuracy. Thus, the present CNN model captures the subtle difference between two CB 𝐤-

points.  

The proposed framework is also shown to be sufficiently fast in terms of inference time to 

perform swift exploration and optimization in the 6D space of admissible strains. Though 

architecturally much more complex, the present model outcompetes KRR-based models by 

more than two orders of magnitude in computational speed, as shown in Figure 4.4f. The CNN 

model has a time complexity comparable to simple NNs. In the next section, we discuss 

examples of elastic strain engineering of a diamond crystal. 
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4.5. Results and discussion 

We now consider the optimization of band structure shape and curvature and effective electron 

mass of diamond at certain 𝐤-points. For this purpose, we explore the entire 6D strain space to 

identify energy-efficient pathways to metallize diamond by turning it into an electrical 

conductor with zero bandgap while preserving phonon stability. These results extend our deep 

learning analytical capabilities beyond those used previously to identify the conditions for the 

metallization of diamond using ESE (See Chapter 5 for more details). 

4.5.1. Density of states of bandgap and bandgap isosurface 

Here we consider bandgap, arguably the most important band structure feature, as an example 

of the material property set as a target for deep ESE. The first objective is to identify the 

bandgap limits that can be reached by strained diamond within the phonon-stable region for 

ESE. We find the bandgap of diamond can be increased to realize better performance in power 

electronics and optical applications. It can also be transformed to resemble the properties of any 

small-bandgap semiconductors and to exhibit a complete semiconductor-to-metal transition to 

become a metal-like electrical conductor at different strain states. The next objective is to 

determine the transitions between direct and indirect bandgap. Our study shows that the Γ point 

or the center of the Brillouin zone is associated with a direct bandgap, and it is achieved only 

when the proper shear strain components are imposed. Among all possible strains in the 6D 

strain space, the present model has identified a number of strain states that result in a direct 

bandgap in diamond. These are illustrated in Figure 4.5a. The present calculations explore the 

entire 6D strain state to identify optimal pathways for deep ESE within the full spectrum of 

theoretical possibilities. The power of ESE is demonstrated not only in tuning the bandgap value 

but also in facilitating the indirect-to-direct bandgap transition that benefits photon emission 

and absorption. 

In ESE, there would be many possible choices of 𝜺 to reach a certain value of direct or indirect 

bandgap. Applications of these strain states, 𝜺’s, require different amounts of strain energy. We 

take the same elastic strain energy density as defined in Chapter 3: ℎ(𝜺) ≡
𝐸(𝜺)−𝐸0

𝑉0
, where 𝑉0 

is the undeformed supercell volume, 𝐸0 and 𝐸(𝜺) are the total energy of the undeformed and 

deformed supercell, respectively. The resultant distribution of available bandgap values 𝐸g 

plotted against ℎ represents the “density of states of bandgap” as shown in Figure 4.5a. There 

exist many strain states with an elastic strain energy density that can reach a direct 3-eV 

bandgap in diamond. These strain states lie in the region bounded by the red dashed line. If one 

aims for the most energy-efficient strain case to achieve the goal, one should choose the left-

most strains at a certain bandgap level. An upper- and lower-bound function can also be defined 

to describe the limits of reachable bandgap in strained diamond, as indicated by the black dotted 
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lines in Figure 4.5a. Similarly, an increase in the bandgap can be explored by following the 

upper-bound function (upper black dotted line in Figure 4.5a). This line represents pure triaxial 

compression, i.e., 𝜀11 = 𝜀22 = 𝜀33 < 0, 𝜀23 = 𝜀13 = 𝜀12 = 0.  

 
Figure 4.5 Density of states of bandgap and bandgap isosurfaces. (a) Bandgap values achievable through elastic 

strain engineering for various values of elastic strain energy density ℎ within the strain space. The green shading 

of the region reflects the distribution of the available bandgap. The boundary of the strain region where a direct 

bandgap could occur is indicated by the red dashed line. Inset is the visualization of the direct bandgap strain cases 

in 6D. Every strain state is represented here as a hexagon with vertices on the 𝜀11, 𝜀13, 𝜀33, 𝜀23, 𝜀22, 𝜀12 axes. Black 

webs correspond to random 6D strains; brown webs correspond to the direct bandgap strains generated by our ML 

model. The most energy-efficient pathway to decrease the bandgap (i.e., the lower-bound function) and the upper 

bound of the attainable bandgap is denoted by the black dotted lines. (b)-(d) Bandgap isosurfaces in the 𝜀11𝜀22𝜀33 

(normal only) strain space at 2 eV, 3 eV, and 4.25 eV levels, respectively. The carapaces (Δ1, Δ2, and Δ3 ), 
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ridgelines (r1, r2, and r3), and corner (μ) are indicated in red, green, and purple letters, respectively. (e) Bandgap 

isosurface in the 𝜀23𝜀13𝜀12 (shear only) strain space at 3.5 eV. The yellow arrow indicates a change of carapaces 

on this isosurface pertaining to indirect-to-direct bandgap transition in diamond. The corresponding change from 

the indirect bandgap structure to the direct bandgap structure of CBM 𝐤-space coordinates from X1 (0, 0.5, 0.5) to 

Γ (0, 0, 0) is shown in band structure plots (f) and (g), respectively. Red arrows in both plots indicate the CBM. 

Strain cases resulting in the same value of bandgap form an isosurface12 in the 6D space. For 

visualization purposes, we show only a 3D subspace by fixing three of the six strain components. 

Figure 4.5b-d illustrate the situation where only compressive and tensile normal strains are 

present (𝜀23 =  𝜀13 = 𝜀12 = 0). Key features of this bandgap isosurface in 3D include surfaces 

that are piecewise smooth (“carapaces”), ridgelines where two carapaces meet, and corners 

where three ridgelines meet. The multifaceted nature of the bandgap isosurface is attributed to 

the switch of the CBM 𝐤 -space position. As a consequence of strain tensor and crystal 

symmetries, this isosurface has the following features: 

- Three carapaces (the hard upper shell exoskeletons of turtles, tortoises and crustaceans) 

labeled in red as Δ1, Δ2,  and Δ3  correspond to strain cases with the same value of 

indirect bandgap but different CBM positions: (0, 0.375, 0.375), (0.375, 0, 0.375), and 

(0.375, 0.375, 0), respectively.  

- Three ridgelines labeled in green as r1, r2,  and r3  correspond to strain cases with 

relations 𝜀22 =  𝜀33, 𝜀33 =  𝜀22, and 𝜀11 =  𝜀22, respectively.  

- The corner μ labeled in purple is the intersection of r1, r2, and r3 and is the most “tensile” 

hydrostatic strain point on the bandgap isosurface, i.e., 𝜀11 =  𝜀22 = 𝜀33. 

The bandgap isosurface of strain cases where only shear strain components are present (𝜀11 =

 𝜀22 = 𝜀33 = 0 ) is plotted in Figure 4.5e. Besides three different indirect bandgap CBM 

positions at X1: (0, 0.5, 0.5), X2: (0.5, 0, 0.5), and X3: (0.5, 0.5, 0), three-shear-strains can also 

give rise to direct bandgap in diamond where CBM is at the Γ point. The change from the 

carapace labeled X1 to that labeled Γ thus indicates an indirect-to-direct bandgap transition in 

diamond (yellow arrow in Figure 4.5e). The corresponding band structures for the indirect and 

direct bandgap are shown in Figure 4.5f and g, respectively.  

4.5.2. Bandgap reduction capability ranking  

We also acknowledge that it is not straightforward yet to achieve the identified optimal 6D 

complex strain states introduced in Figure 3.1d and e in a commercial device of today. 

Nevertheless, the development of new experimental methods is not beyond the realm of 

research and development possibilities in the future that are afforded by MEMS and NEMS and 

various instruments and tools available to design and fabricate complex geometries and 

shapes [122–125]. Also, precise strain control can be achieved through the fabrication of micro 

and nanodevices, and various quantitative force-displacement probes that can measure down to 

pico-Newton forces and nanometer displacements. To provide additional information that may 
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be able to guide future experiments, we demonstrate in Figure 4.6 the ranking of common 

diamond or silicon crystal orientations to attain the same target bandgap through uniaxial tensile 

or compressive straining (i.e., constrained straining without allowing for the Poisson effect) can 

differ at different strain levels. For example, in order to achieve a 5-eV bandgap in diamond, 

uniaxial tensile straining along <100> direction requires a smaller strain magnitude than along 

<111> direction; whereas to achieve 4 eV bandgap in diamond, uniaxial tensile straining along 

<111> direction requires a smaller strain magnitude than along <100> direction, as depicted in 

Figure 4.6a. It is also found that allowing internal atomic relaxation during straining results in 

evident structural reconfiguration, especially in large deformation cases. Some of the diamond 

straining cases may even facilitate graphitization [115,126]. This section is a complement and 

correction to the study in the SI Appendix Note S3 and Figure S3 of Ref. [28], where only non-

relaxed results were given for silicon.  

 
Figure 4.6 Bandgap change as a function of strain for uniaxial straining along different crystal orientations in (a-

b) diamond and (c-d) silicon with relaxed and non-relaxed atomic structures, respectively. 
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4.5.3. Machine learning for effective mass 

The effective mass of an electron is a key parameter that influences carrier mobility and 

electrical conductivity in semiconductor materials. If we denote the conduction band energy 

dispersion as 𝐸𝑛CB
(𝐤) = 𝐸𝑛CB

(𝑘1, 𝑘2, 𝑘3), then the corresponding electron effective mass tensor 

can be defined in terms of the Hessian matrix H( 𝐸𝑛CB
(𝐤 )) consisting of second partial 

derivatives with respect to 𝐤. These partial derivatives are approximated for 𝒎∗ at a particular 

𝐤-point (such as CBM). 

Based on the values drawn from our ML model, 𝒎∗ for an undeformed diamond at CBM is 

extracted by fitting the band structure:  

𝒎∗ = [
1.55𝑚e 0 0

0 0.31𝑚e 0
0 0 0.31𝑚e

], 

where 𝑚e is the free-electron mass. Given that 𝒎∗ is a second derivative, it reveals not only the 

shape of an energy band but also its curvature, thereby providing more detailed information on 

band dispersion. The anisotropy at CBM is characterized by a longitudinal mass (𝑚L
∗  = 1.55𝑚e) 

along with the corresponding equivalent (100) reciprocal space direction and two transverse 

masses (𝑚T
∗  = 0.31𝑚e) in the plane perpendicular to the longitudinal direction. Our results for 

𝑚L
∗  and 𝑚T

∗  are close to both the GW and experimental values (see Table 4.1), offering more 

evidence for the reliability of our electronic band structure representation. A plot that 

demonstrates the agreement between our model and GW calculations for effective mass 

components is shown in Figure 4.7.  

 

Table 4.1 Longitudinal and transverse electron effective masses at CBM in undeformed diamond (in units of free-

electron stationary mass 𝑚e). The results obtained through our CNN model are compared with experiments [127], 

our previous NN model [28], and explicit calculations using existing methods including GW0, linear muffin-tin-

orbital (LMTO) model [128] and G0W0 [129]. 

 
CNN 

(this work) 
NN 

GW0 

(this work) 
LMTO G0W0 Experiment 

𝑚L
∗   1.55 1.63 1.44 1.5 1.1 1.4 

𝑚T
∗  0.31 0.31 0.31 0.34 0.22 0.36 

𝑚L
∗  /𝑚T

∗  5.0 5.16 4.61 4.41 5.0 3.89 
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Figure 4.7 The reciprocal of the effective mass tensor components at the CBM as a function of hydrostatic strain. 

Predictions made by our ML model are shown in comparison to values obtained from GW calculations.  

We also studied the 6D strain space to obtain the conduction-related properties and the elastic 

strain energy density as functions of 𝜺. Here, we adopted our ML model to acquire the relation 

between the “conductivity effective mass” for the conduction electron 𝑚cond
∗ (𝜺) and ℎ(𝜺), as 

shown in  

Figure 4.8a. The values of scalar 𝑚cond
∗  are obtained by averaging individual longitudinal and 

transverse effective masses, as in Ref.  [130].  The blue shading in  

Figure 4.8a reveals the distribution of the available 𝑚cond
∗ , with darker shading implying more 

strains are able to reach a specific value of 𝑚cond
∗  at a given ℎ.  

The cumulative “density of states” of conductivity effective mass can be defined as 

𝑐(𝑚cond
∗ ′

; ℎ′) ≡  ∫ 𝑑6𝜺𝛿 (𝑚cond
∗ ′

− 𝑚cond
∗ (𝜺))

ℎ(𝜺)<ℎ′

=  ∫ 𝑑6𝜺𝛿 (𝑚cond
∗ ′

−  𝑚cond
∗ (𝜺)) Θ(ℎ′ − ℎ(𝜺)),  

(30) 

where 𝛿(⋅)  and Θ(⋅)  are the Dirac delta and unit step functions, respectively, 𝑑6𝜺 ≡

𝑑𝜀11𝑑𝜀22𝑑𝜀33𝑑𝜀23𝑑𝜀13𝑑𝜀12  in the 6D strain space. The density of states of conductivity 

effective mass (𝑔) at ℎ′ can then be defined by the derivative of 𝑐(𝑚cond
∗ ′

;  ℎ′) with respect to 

ℎ′: 
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𝑔(𝑚cond
∗ ′

; ℎ′) ≡  
𝜕𝑐(𝑚cond

∗ ′
; ℎ′)

𝜕ℎ′

=  ∫ 𝑑6𝜺𝛿 (𝑚cond
∗ ′

−  𝑚cond
∗ (𝜺)) 𝛿(ℎ′ − ℎ(𝜺)). 

(31) 

The meaning of 𝑔 is explained by considering in the (ℎ −
𝑑ℎ

2
, ℎ +

𝑑ℎ

2
) interval all possible 

elastically strained states and the resultant distribution of 𝑚cond
∗  arising from these states. Other 

plots of the density of states of individual effective mass tensor components are also available 

in  

Figure 4.8. Moreover, the developed framework enables high-quality predictions of the 𝒎∗ 

tensor components (as well as their averages) for every 𝐤-point at various deformation cases.  
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Figure 4.8 ML-based exploration of electron effective mass tensor. (a) Density of states of conductivity effective 

mass. A darker shading implies more strains can reach a specific value of 𝑚cond
∗  at a given ℎ. The red dashed line 

indicates the region of the possible direct bandgap configurations. Inset is the zoomed-in plot near ℎ = 0 of the 

𝑚cond
∗  distribution. Distribution of effective mass tensor components (𝑚11

∗ , 𝑚22
∗ , and 𝑚33

∗ ) for various ℎ are shown 

in (b), (c), and (d), respectively. 
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4.5.4. Multi-objective optimization 

Direct bandgap together with a small effective mass within a semiconductor material is a 

preferable combination in the design of radiation detectors and photovoltaic cells that enables 

the combination of high conductivity and light yield. Moreover, lower elastic strain energy 

density means less effort for reaching the same property design in ESE. The three objectives, 

however, generally cannot be minimized simultaneously, to give the hands-down best solution; 

instead, there exists a set of Pareto-efficient solutions, which do not allow for any member of a 

triplet (𝐸g, 𝑚𝑐𝑜𝑛𝑑
∗ , and ℎ) to improve (i.e., decrease) without negatively affecting the other two 

members. The 3D Pareto front of minimized 𝐸g, 𝑚cond
∗ , and ℎ, shown in Figure 4.9a, indicates 

a compromise in simultaneously having a small bandgap and conductivity effective mass. It is 

not possible to achieve, for example, a near-zero bandgap and 𝑚cond
∗ < 0.25𝑚e without paying 

a considerable penalty in ℎ by straining diamond, as indicated by the “infeasible region” in 

Figure 4.9a. Also, it is likely to find higher ℎ values that correspond to the same combination 

of (𝐸g, 𝑚cond
∗ ). In Figure 4.9a, such elastic strain energy density values are associated with 

strain cases in the “feasible region”. Additionally, Figure 4.9b could serve as a blueprint to 

access all possible (𝐸g, 𝑚cond
∗ ) combinations achieved by straining diamond in order to find the 

smallest elastic strain energy density (ℎmin) for each combination. Note that it includes more 

(𝐸g, 𝑚cond
∗ ) combinations and is not a projection of Figure 4.9a onto the 𝐸g − 𝑚cond

∗  plane. 
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Figure 4.9 Multi-objective optimization. (a) Pareto front for minimizing 𝑚cond

∗ , bandgap and ℎ. The color contours 

denoted different ℎ values. The (𝐸g, 𝑚cond
∗ , ℎ) triplets within the Pareto front are feasible, meaning that there exist 

strain cases that can realize the three properties. (b) Color contours of the smallest elastic strain energy density 

(ℎmin) required for achieving any combinations of bandgap and 𝑚cond
∗ . (b) is not a 2D projection of (a) in which 

only optimized (minimized) 𝐸g and 𝑚cond
∗  exist. 
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4.6. Chapter conclusion 

In summary, by recognizing that the band dispersion is structured and highly correlated in 

continuous  𝐤,  𝜺, and discrete n, the method presented in this work provides better 

approximation and less uncertainty in the estimation of key figures of interest in scientific and 

technological applications of semiconductors. This task is made possible through the 

implementation of physics-informed NN architecture, synergistic PBE+GW data sampling, and 

active learning. Specifically, the CNN-based network structure we developed can handle the 

tasks of the fast query of properties of any electronic materials, including bandgap, band edges, 

and the energy difference between electron athermal (phonon-free) band transition, at accuracy 

on par with or better than their purpose-specific counterparts. Direct utilization of this fitting 

scheme on diamond reveals the strain levels where indirect-to-direct bandgap transition or 

insulator-to-metal transition takes place. 

To accomplish the task of band structure prediction, our network offers the capabilities of 

learning the complex intra- and inter-band correlation in a self-directed manner while taking 

into account important physical characteristics, such as crystal periodicity and time-reversal 

symmetry. As an example, the application of our method on computing the extremely sensitive 

energy dispersion related properties such as the effective mass tensor demonstrates that the 

method is capable of capturing the second-order details of band structure within a level of 

precision comparable to that of the underlying calculation method. Multi-objective Pareto 

optimizations are also carried out aided by this model. The general ML framework we propose 

here thus effectively alleviates the heavy dependence upon DFT calculation, which takes up 

about 99% of the model construction time in an otherwise typical first-principles materials 

design project without ML. At the same time, it provides an avenue for deploying physics-

informed deep learning. Finally, active learning technique coupled with data fusion provides 

smart and autonomous searching of the vast region of the 6D strain space for optimizing FoM.  

4.7. Technical details 

First-principles calculation details 

We used the PAW [107] in our DFT simulations implemented in the VASP [108], with the 

exchange-correlation functional of PBE [106]. In all calculations, the electronic wavefunctions 

were expanded in a plane wave basis set with an energy cutoff of 600 eV. An 8 ×  8 × 

8 Monkhorst-Pack [109] 𝐤-point mesh was used to conduct the Brillouin zone integration. The 

maximum residual force allowed for atoms after structural relaxation is 0.0005 eV Å−1 . 

Computations that invoke GW corrections were conducted on top of the above PBE-PAW 

settings. We chose to sample the strain cases in a range of {−0.15 ≤  𝜀𝑖𝑖  ≤  0.15, −0.1 ≤

 𝜀𝑖𝑗  ≤  0.1, (𝑖, 𝑗 = 1, 2, 3)}  that yield stable structures, ie. without imaginary phonon 

frequencies.  
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Database construction and validation 

In the data generation step of database construction, we took the Latin-Hypercube-

sampled [131] strain points and adopted the above parameters in our ab initio calculations to 

acquire the bandgap, band structures and related properties for every deformed structure. To 

validate our data, we compared them with accessible values obtained in experiments. 

Specifically, the undeformed diamond properties are widely available, and we validated our 

many-body G0W0 calculation settings by matching our result at zero-strain with the 

experimental lattice constant, elastic properties, dielectric constant, and most importantly, 

bandgap and band structure of diamond. Since we have adopted phonon calculations to 

eliminate the cases where phase transitions (such as graphitization [115,132]) could happen and 

focused our search on the elastic regime, the diamond structures which we conducted high-

throughput computations are all of the sp3 hybridization type. Therefore, unlike the Materials 

Project database construction [95] where separate DFT settings and experimental references 

had to be employed for different classes/phases of materials across a much larger chemical 

space, it would be enough for us to use one undeformed diamond as the reference to benchmark 

the calculations. 

In addition, for strain cases of greater interest (such as the near metallization and direct-bandgap 

strain cases), we went beyond the single-shot G0W0 method and used partially self-consistent 

GW0 calculation settings (allowing Green’s function iterations to acquire more accurate 

bandgap) that is known to obtain results better than calculations with hybrid-functional 

DFT [133] and comparable with experimental measurement for many semiconductor 

materials [134].  

Despite high reliability in the accuracy with our GW dataset, it is still far from large enough to 

train the NN in an adequate way without overfitting, due to the formidable computational 

expense of carrying out tens of thousands of GW calculations. To tackle this issue, we firstly 

adopted data fusion to take the quantitative advantage of the PBE dataset (~35000 strain points) 

and the qualitative advantage of the GW dataset (~6000 strain points). Also, we introduced 

active learning cycles to reduce errors compared to complete random sampling. After the first 

round of the training on the GW data, we performed an estimation over a large set of random 

strains in 6D and chose a small amount of ~100 strain cases with the largest expected error as 

evaluated by this temporary model. These strain cases were added to the training set for the 

next round of training. Our study indicates that 5-10 cycles of the above active learning may 

enable the trained CNN to reach the same level of accuracy with twice or three times less 

additional data, thus considerably reducing the total amount of ab initio calculations without 

compromising the robustness of our machine learning model.  
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4.8. Chapter appendix 

Figure A4.1. Average Pearson correlation coefficient between the energies in two points separated by a given 

Manhattan distance in 𝐤-space fractional coordinate. Unsurprisingly, the correlation is strongest in the case of two 

adjacent 𝐤-points. This is exploited by the convolution layers in our network, which introduces the correlation of 

adjacent 𝐤-points (i.e., the intraband correlation). 

 
 

Figure A4.2. Average Pearson correlation coefficient between the energies in the same points in 𝐤-space but 

different bands. The correlation is strong in the case of adjacent bands: top VB (𝑛 = 𝑛VB), lowest CB (𝑛 = 𝑛CB) 

and its adjacent band (𝑛 = 𝑛CB + 1). This is exploited by the convolutions over the band dimension in the CNN 

layers, which introduces the interband correlation. 
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Table A4.1. Accuracy comparison among specialized models. This means that all the models (except for the CNN) 

were trained for the selected task only.  

 CNN NN KRR 

Bandgap prediction 

RMSE, eV 

(relative error, %) 

0.108214  

(2.22%) 

0.096223 

(1.83%) 

0.168535 

(3.21%) 

MAE, eV  

(relative error, %) 

0.072424  

(1.38%) 

0.062605 

(1.19%) 

0.122125 

(2.33%) 

Γ gap prediction 

RMSE, eV  

(relative error, %) 

0.088265 

(1.62%) 

0.085658 

(1.57%) 

0.439139 

(8.05%) 

MAE, eV  

(relative error, %) 

0.053497 

(0.98%) 

0.055520 

(1.02%) 

0.347457 

(6.37%) 

CBM prediction (classification problem) 

Accuracy 98.56% 94.30% 66.20%* 

Inference time 

Time 14.4 ms ± 59.2 µs 1.29 ms ± 14.6 µs 48.8 ms ± 287 µs 

* Linear model was used instead of radial basis function kernel 

 

Table A4.2. Accuracy comparison among ensemble models. This means that all the models (except for CNN) were 

trained for the VB and/or CB prediction; other measures were inferenced as in the proposed model. 

 CNN NN KRR 

VB prediction 

Mean RMSE, eV  

(relative error, %) 

0.038464 

(0.23%) 

0.052195 

(0.31%) 

0.043643 

(0.26%) 

Mean MAE, eV  

(relative error, %) 

0.031379 

(0.19%) 

0.042052 

(0.25%) 

0.035710 

(0.21%) 

CB prediction 

Mean RMSE, eV  

(relative error, %) 

0.045981 

(0.30%) 

0.111479 

(0.72%) 

0.059352 

(0.38%) 

Mean MAE, eV  

(relative error, %) 

0.035453 

(0.23%) 

0.091714 

(0.59%) 

0.042620 

(0.27%) 

Inferenced bandgap prediction 

Mean RMSE, eV  

(relative error, %) 

0.108214  

(2.22%) 

0.158525 

(3.02%) 

0.101998 

(2.13%) 
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Mean MAE, eV  

(relative error, %) 

0.072424  

(1.38%) 

0.120696 

(2.30%) 

0.082020 

(1.56%) 

Inferenced Γ gap prediction 

Mean RMSE, eV  

(relative error, %) 

0.088265 

(1.62%) 

0.149067 

(2.73%) 

0.097539 

(1.79%) 

Mean MAE, eV  

(relative error, %) 

0.053497 

(0.98%) 

0.105048 

(1.92%) 

0.063617 

(1.17%) 

CBM prediction (classification problem) 

Accuracy 98.56% 95.50% 93.75% 

Inference time 

Time 14.4 ms ± 59.2 µs 2.48 ms ± 32.2 µs 25 s ± 105 ms 
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Chapter 5. Semiconductor electronic bandgap mapping in 

experimentally feasible loading geometry 

5.1. Chapter introduction 

Experimental realization of ultra-large elastic deformation in nanoscale diamond and machine 

learning of its band structures have created opportunities to address new scientific questions. 

Can diamond, with an ultrawide bandgap of 5.6 eV, be completely metallized, solely under 

mechanical strain without phonon instability, so that its bandgap fully vanishes?  

The answer is yes, based on the results shown in Figure 4.5a. This is a quick answer given by 

first-principles modelers though. In previous chapters, models capable of predicting any band 

structure related properties are proposed. One can resort to the density of states of bandgap plot 

for not only knowing it is possible to metallize diamond, but also finding the most energy-

efficient strain pathway to achieve metallization. However, is this strain pathway achievable in 

experimentally feasible loading geometries of diamond? After all, a sample in the real-world 

cannot be arbitrarily deformed by strain states such as that in Figure 3.1d.  

The immediate intuition is to build up such a geometry and conduct simulations to get out the 

properties. However, the first-principles simulation capable of accurately evaluate the 

electronic bandgap cannot deal with such a large system with tons of atoms (the DFT 

calculation time scales by 𝑂(𝑁3), where 𝑁 is the number of atoms). Finite-element (FEM) 

simulations, on the other hand, can easily deal with geometry as such and evaluate the strain 

distributions inside the material, but it does not have any functionality to compute bandgap. 

How to integrate the power of both computational tools to map out the distribution of bandgap, 

or any other electronic FoM, in a deformed geometry? 

In this chapter, we try to address this question. Through first-principles calculations, FEM 

validated by experiments, and deep learning, we show here that metallization/de-metallization, 

as well as indirect-to-direct bandgap transitions, can be achieved reversibly in diamond below 

threshold strain levels for phonon instability. We identify the pathway to metallization within 

6D strain space for different sample geometries. We also explore conditions that promote phase 

transition to graphite. These findings offer opportunities for tailoring properties of diamond via 

strain engineering for electronic, photonic, and quantum applications.  

In the subsequent sections, we focus on addressing the following scientific questions, 

respectively:  

• Is it possible to metallize diamond at room temperature and pressure, from its natural 

unstrained state with an ultrawide electronic bandgap of 5.6 eV to full metallization with 

0-eV bandgap, without phonon instability or structural transformation such as 

graphitization, solely through the imposition of strain? (Section 5.2) 
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• What are the conditions that trigger indirect-to-direct bandgap electronic transition, or 

a competing graphitization phase change, in diamond under straining? (Section 5.2) 

• How much of such “safe” metallization can be realized within deformation conditions 

that have already been shown to be achievable experimentally? (Section 5.3) 

• How do crystallographic and geometric variables influence the metallization of 

diamond? (Section 5.3) 

• What are the strain states and a viable low strain energy density path to achieve such 

“safe” bandgap metallization in other loading geometries? (Section 5.4)  

 

Some argumentation and figures/tables in this chapter are directly taken from the 

author’s own publication of Ref.  [115]: Z. Shi*, M. Dao*, E. Tsymbalov, A. Shapeev, J. Li 

and S. Suresh, Metallization of diamond, Proc. Natl. Acad. Sci. 117, 24634 (2020).  

5.2. “Safe” metallization of diamond  

In this section, we demonstrate that it is possible to achieve 0-eV electronic bandgap in diamond 

exclusively through the imposition of reversible elastic strains, without triggering phonon 

instability or phase change [9,135]. This discovery implies that reversible metallization/de-

metallization is feasible through the design of mechanical loading conditions and geometry in 

nanoscale diamond.  We further show that “safe” metallization can be achieved at elastic strain 

energy density values comparable to what has been demonstrated in experiments of reversible 

deformation of diamond nanopillars [9,135]. Our results also reveal that even simple bending 

of low-index <110> oriented monocrystalline diamond nanoneedles can effectively reduce the 

bandgap from 5.6 eV down to 0 eV without phonon instability, at about 10.8% local 

compressive elastic strain. Further bending the nanoneedle can however induce phonon 

instabilities [9] that lead to irreversible sp3 → sp2 (diamond to graphite) phase transition or 

fracture.  Indeed, plasticity induced by such sp3 → sp2 phase-transition has recently been 

observed in the large bending of a single-crystalline diamond pillar [132], substantially 

agreeing with our calculations. Similar graphitization transition is also seen in nanoindentation 

experiments [126]. Navigating the treacherous elastic strain space above 80 meV/Å3 or at > 9% 

local compressive or tensile principal elastic strain to induce complete metallization in diamond 

without encountering phonon instabilities is an important demonstration for power electronics, 

optoelectronics and quantum sensing systems, the pursuit of which is a primary objective of 

this investigation.  

Whether mechanically strained or not, the absence of imaginary phonon frequency for the 

wavevector in the entire Brillouin zone is the hallmark of a locally stable crystal 

lattice [6,9,136]. If a strained perfect crystal lattice has a stable phonon band structure, then at 

T = 0 K and in the absence of defects such as free surfaces, interfaces and dislocations, this 
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lattice is guaranteed to avoid spontaneous phase transition or defect nucleation.  Consequently, 

phonon stability is the minimal requirement for lattice stability and loading reversibility [9]. If 

such a phonon-stable diamond can have zero electronic bandgap, Eg = 0 eV (reduced from Eg = 

5.6 eV at zero strain), then this extreme electronic material [33] is expected to demonstrate 

unprecedented functional flexibility, from ultrawide bandgap semiconductor to the far-infrared 

and even metallic, in one material, without any change in chemical composition and possibly 

under dynamic loading. The electronic band structures of diamond under tensorial strain can be 

predicted with high accuracy based on ab initio DFT followed by GW calculations [49]. 

However, because GW calculations are computationally expensive, it is necessary to invoke a 

stress-strain constitutive law for modeling large elastic deformation of diamond in any arbitrary 

sample geometry, along with fast proxy models for the electronic and phonon band structures. 

In this work, we employ ML algorithms of band structures (as introduced in previous chapters 

of this thesis), so as to perform coupled ab initio and finite element calculations with 

constitutive laws based on NNs (see Methods for details).  

 
Figure 5.1 Metallization of diamond. (a) Stratification of the strain hyperspace into regions of metallization and 

bandgap transition in diamond. Metallization in elastically strained diamond for different values of normal strain 

components 𝜀11, 𝜀22 and 𝜀33, with the other three strain components held fixed. The plane with fixed 𝜀33 cuts the 

3D volume and results in a projection onto the 𝜀11-𝜀22 2D plane. (b) Detailed characterization of the 𝜀11-𝜀22 strain 

space includes a region of direct metal (brown) strains within the region of direct bandgap (blue) strains and a 
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region of indirect metal (brown) strains within the nonzero indirect bandgap strains (white zone with magenta 

symbols). Alternative visualization of the metallization strains in Figure 5.1a is presented in Section 5.6 Figure 

A5.2. (c) Elastic strain energy density (h) analysis of the direct metal region in (a). The axes in (c) are absolute 

strain component values of 𝜀11  and 𝜀22, with the other four strain components fixed. Color contours indicate 

regions of constant h for different deformation states. (d) GW band structure showing complete closure of bandgap 

leading to metallization of diamond which is subjected to deformation at a 6D strain state in the [100][010][001] 

coordinate frame. This particular strain case corresponds to the black star symbol in (d). 

We first present some 6D strain states in Figure 5.1 which make the bandgap of diamond vanish 

without phonon instability or graphitization. In the crystallographic [100][010][001] coordinate 

frame, our calculations revealed one such complete and “safe” metallization region as shown 

in Figure 5.1a. It illustrates a region of “safe” metallization of diamond without phonon 

instability and demonstrates reversible indirect-to-direct bandgap transitions under large elastic 

strains. Possible strain states in the 3D space of normal strains 𝜀11, 𝜀22 and 𝜀33 within which 

“safe” metallization is induced (highlighted in brown color) are shown. Regions of 

metallization are also plotted in Figure 5.1b in the 2D strain space of 𝜀11 versus 𝜀22 , with the 

other four strain components held fixed (i.e. formed as a result of 2D projection out of 3D strain 

region tessellated by cubes onto the plane 𝜀33 = −0.056 in Figure 5.1a). The triangle data points 

of different colors in Figure 5.1b represent results of computational simulations of the effect of 

mechanical strain on bandgap and band structure. Two types of “safe” metallization, direct 

metal and indirect metal (where the bandgap that closes is indirect, i.e. from two different k-

points), are identified.  

 

The 2D region of direct metal, shaded in brown, is embedded within the strain space of direct 

bandgap (blue region, Figure 5.1b). The contours of strain energy density are plotted in 2D 

strain space in Figure 5.1c. Figure 5.1d is a plot of the GW band structure for diamond deformed 

to this particular strain state, resulting in a direct metal (see Section 5.6 Figure A5.1 for 

comparison of GW band structure with that for DFT). Note that the strains and strain energy 

density values in Figure 5.1 are comparable to the values achieved experimentally [29,30] in 

reversible ultra-large elastic bending of diamond nanoneedles or pillars.    

 

In Figure 5.2a, the GW band structure is plotted to illustrate such indirect-metal state at point c 

(Figure 5.1b) inside this zone of “safe” metallization. Examples of nonzero direct and indirect 

bandgap cases indicated by the band structure plots are shown in Figure 5.2b-c, respectively. 

The area shaded in gray outside of the dashed lines is the region of large elastic strains and 

unstable metallization where phonon instability leading to defect nucleation and/or phase 

transition occurs [9]. Figure 5.2d reveals pronounced reduction in phonon frequency and the 

occurrence of soft mode associated with strain point f in Figure 5.1b where phonon instability 

and associated phase transition from diamond to graphite takes place. The location of the special 

strain region containing metallization is not unique in a general 6D strain hyperspace and such 

stratified regions may exist in a broad range of semiconductors. Our findings offer a systematic 

strategy in the search for strain-engineered semiconductor to metal transition, indirect-to-direct 

bandgap transition, as well as phase transition. 
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Figure 5.2 GW band structures and phonon stability of strained diamond. (a) Band structure of diamond strained 

within the “safe” metallization region resulting in an indirect metal. Strained diamond (b) with a direct bandgap 

(point d in Figure 5.1b), and (c) with an indirect bandgap (point e in Figure 5.1b). The strain region of phase 

transformation in diamond (usually associated with phonon instability) is shaded in gray color in Figure 5.1b. (d) 

A phonon DOS plot corresponding to point f in Figure 5.1b illustrates imaginary phonon frequencies (indicated 

by the magenta arrow) when structural instability occurs. A magnified view near-zero frequency is shown in the 

inset. 

5.3. Joint machine learning-finite element modeling of bandgap 

Experiments show that diamond nanoneedles exhibit ultra-large elastic bending before 

fracture [29]. Such deformation, resulting in local compressive strains larger than -10% and 

tensile strains in excess of 9%, is reversible upon release of the load. Here we apply simulations 

to determine bandgap modulation in bent diamond nanoneedles at maximum local strain levels 

that are known to be experimentally feasible (see Table 5.1). Figure 5.3a schematically 

illustrates the method whereby a diamond indenter tip pushes on a diamond nanoneedle to 

induce large deformation [29]. FEM is used to simulate the sideward bending moment of the 
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diamond needle upon contact with the indenter tip and to account for nonlinear elasticity, the 

orientation of the cubic lattice with respect to the needle axis, the bending direction, and 

possible friction between the indenter tip and the needle.  

 
Figure 5.3 Experimental loading of diamond nanoneedles. (a) Schematic showing an as-grown, aligned, and bent 

nanoneedle. With the crystal orientation along the needle longitudinal direction known (blue arrows), the 

positioning angle 𝜑 defines the pre-selected crystal coordinates (black dotted arrows) versus the selected reference 

crystal coordinates (red arrows). 𝜑 is modulated by rotating the substrate in the alignment stage, introducing an 

additional degree of freedom and many more combinations of strain states in the bent needle. The needle is then 

bent when pushed by the side surface of a cube corner indenter tip, as described in Ref. [29]. Small blue arrows 

along the needle in the deformed configuration indicate the local crystallographic needle axis. (b) Bending of the 

diamond nanoneedle by diamond nanoindenter tip inside a scanning electron microscope. Micrograph is taken 

from Ref. [29]. 

Table 5.1 Limits for elastic strains and strain energy density from experiments [29,30,137] and calculations. The 

deformation of nanoneedle is limited by tension, i.e., failure first takes place on the tensile side of the nanoneedle. 

The strains listed below for the compressive strains in the nanoneedle correspond to the point at which failure first 

occurs on the tensile side of the nanoneedle. Since higher compressive strains can be achieved without failure in 

pure compression of diamond, the compressive strains listed below are lower bound estimates.   

Crystallographic 

orientation of 

diamond 

nanoneedle 

Experimental results 
Theoretical limit for bending diamond 

nanoneedle (for experimental configuration) 

Theoretical limit for 

“safe” metallization 

in general 6D strain 

space (this study) 
Tensile side Compressive side Tensile side Compressive side 

<100> 13.4%  -14.0%  - - 

≤ 98.7 meV/Å3 <110> 9.6%  -10.1%  12.1% -14.5% 

<111> 8.8% -9.9%  8.8%  -27.0%  

 

Figure 5.4a shows FEM results of local compressive and tensile strains of the deformed 

geometry of <110> diamond nanoneedle, with the maximum compressive and tensile strains of 

-10.8% and 9.6% respectively. The accuracy of FEM predictions is validated by direct 

comparison with experimentally measured indentation load plotted against displacement  [29]. 

The corresponding predictions, from our simulations, of the distribution of bandgap are also 

plotted in Figure 5.4a. The onset of “safe” metallization appears in the severely strained 

compressive side of the nanoneedle at a local strain of -10.8%, as shown in Figure 5.3b. The 

propensity toward increasingly more metal-like behavior with increasing strain is independent 
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of friction between the indenter and the nanoneedle (see Section 5.6 Figure A5.3). The <110> 

nanoneedle can withstand up to 12.1% local tensile strain before incurring phonon instability 

on the tensile side, at a bandgap of 0.62 eV, as shown in Figure 5.4d. The maximum attainable 

local tensile strain of 9.6% on the tensile side of <110> single crystal natural diamond 

samples  [30], as compared to theoretical predictions of higher values (Figure 5.4b and Table 

5.1), could be attributed to the presence of dislocations and/or other surface-related 

defects [138–141]. The compressive side is more tolerant to deformation. The maximum 

attainable compressive strain could be on the order of -20% along a low-index orientation [137], 

suggesting that there is room for additional elastic deformation after achieving “safe” 

metallization in compression-dominated regions. Note that due to the zero-point motion 

effect [142] and the Varshni effect  [143], for physical experiments performed at room 

temperature, the bandgap of diamond is expected to be even smaller than estimated here by 0.4-

0.6 eV [144,145]. This understanding leads to the inference that safe metallization in diamond 

can occur at elastic strain levels somewhat smaller than indicated by our analysis, making it 

even more easily achievable than appears from the quantitative results plotted here (see Section 

5.5 for details).  
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Figure 5.4 Metallization in diamond nanoneedles. (a) FEM predictions of the local compressive and tensile strain 

distributions and ML prediction of the distribution of bandgap for a diamond nanoneedle with its <110> 

crystallographic direction aligned with the needle axis. (b) FEM-ML predictions of the local maximum principal 

(compressive/tensile) strain and bandgap distributions for the <110> diamond nanoneedle deformed at the 

theoretically approachable maximum tensile strain of 12.1%.  The FEM plots in (a) and (b) are contributed by Dr. 

Ming Dao. (c) Increasing magnitude of bending in the <110> nanoneedle causes a significant reduction in bandgap 

of diamond from 5.6 eV (zero strain) down to 0 eV for a maximum local compressive strain of -10.8% (the 

corresponding maximum local tensile strain on the tension side is 9.6%). (d) Local tensile strain beyond 12.1% 

results in fracture or graphitization on the tensile side of the nanoneedle according to our ab initio calculations, 

even when there are no pre-existing defects. See also Section 5.6 Figure A5.4 for the evolution of elastic strain 

energy density, bandgap and the corresponding band structure at the maximum compression site in the nanoneedle, 

showing the metallization process. 

 

Figure 5.5 Orientation dependent bandgap changes and indirect-to-direct bandgap transitions. (a) Reduction of the 

lowest bandgap as a function of strain in nanoneedles of and orientations, respectively. (b) The definition of the 

reference crystal orientation for the three diamond nanoneedle families: [010]/[001] for a [100] needle, [11̅0]/[001] 

for a [110] needle, and [1̅21̅]/[1̅01] for a [111] needle. The green triangle indicates the (111) plane for the 

nanoneedle. (c) Reduction of the lowest bandgap (left axis) and development of direct bandgap region volume 

(right axis) in nanoneedles of orientation. These volumes are colored in red on the tensile side of the bent needles 

plotted next to the data points. Graphitization occurs in the nanoneedle right after 8.8% local tensile strain, as 
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indicated by the grey region. The direct bandgap region volume is expressed in terms of the number of FEM nodes 

that correspond to a direct bandgap.  

Crystallographic orientation of the nanoneedle axis is another variable determining the extent 

of large deformation, and the resultant bandgap modulation. This orientation effect is illustrated 

in Figure 5.5a-b. Among the three types of nanoneedles studied, the <110> and <111>-oriented 

nanoneedles require relatively smaller tensile strains to reduce bandgap through straining, 

whereas the <100> orientation is the hardest orientation to reduce bandgap below 2 eV or 

approach metallization. This distinction can be attributed to the difference in flexibility to 

access all six components of the strain tensor expressed in the [100][010][001] coordinate frame. 

Despite the possibility of extremely large strain in a <100>-oriented nanoneedle, this orientation 

primarily facilitates normal strains (with the shear components 𝜀23 , 𝜀13 , and 𝜀12  being 

relatively much smaller) and the resultant maximum bandgap reduction is limited before 

phonon instability is reached, causing fracture or phase transformation [9]. For deformation of 

the <110> and <111>-oriented needles, on the other hand, it is relatively easier to initiate both 

normal and shear strain components necessary for band structure engineering [146–149] and 

the resultant bandgap modulation. In the <111> oriented needles, these strain conditions further 

facilitate indirect-to-direct bandgap transitions in diamond. The spatial evolution of the “safe” 

direct bandgap regions in our nanoneedles can be found in Figure 5.5c. Bending direction is 

another geometrical factor. For a low-index oriented needle, we find bending direction has little 

influence on the maximum bandgap reduction in the bent needle. 

Beyond the configurations considered here, more complex 3D loading geometries with holes 

and notches through topology optimization [125] and micro- and nano-machining of geometric 

features [150,151], can be designed without exposing the metallized zone to near-surface 

regions [152], further increasing possibilities for metallizing diamond. These methods for deep 

ESE are equally applicable to map the indirect-to-direct bandgap transition locations in 

diamond for the most general 6D straining case, as indicated in Figure 5.1a-b and Figure 5.2b. 

When a strained diamond is transformed into a direct bandgap semiconductor, even only locally 

at the site of maximum strain, it would exhibit a fundamental enhancement in its optical 

transitions around the adsorption edge compared to an undeformed diamond in its natural state. 

This transition arises from the absence of phonon involvement (momentum change of electron) 

in the adsorption or emission process. Since absorbance increases exponentially with thickness 

in a material, a light energy conversion device based on direct bandgap semiconductor with a 

high adsorption coefficient and rationally engineered bandgap value would require much less 

thickness to absorb the same amount of light with a variety of wavelengths, from the visible to 

the far-infrared. These considerations could pave the way for designing high-efficiency photo 

detectors and emitters from UV to the far-infrared on a single piece of diamond. As photons 

and excitons are the primary tools for quantum information processing, this extreme ability to 

mold diamond’s band structure will also be highly consequential for quantum sensing and 

quantum computing applications.  
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5.4. Loading geometry design 

For future deep ESE practices in real-world devices, there are at least two more basic factors to 

consider: (i) The load-bearing structure should be easy to make into a device; (ii) Elastic strains 

should be relatively easy to be applied to the load-bearing structure. Therefore, it becomes 

immediately clear that standing nanoneedle structure, such as the ones in the previous section 

and those mentioned in Figure 1.1 of Section 1.1.1 is hard to be used as a device. But with the 

tools put forward in the previous section, we should be able to tackle (i) by coming up with 

geometries that are similar to that of a semiconductor device. But to tackle (ii), it turns out to 

be more challenging. The requirement for being “easy” in (ii) not only requires the straining 

pathway to be as energy-efficient as possible but also means we should try to use existing or 

experimentally feasible loading apparatus. Therefore, it becomes immediately clear that some 

of the peculiar strains, especially those with complex multi-dimensional strain states (Figure 

3.1c-d) are not straightforward to achieve, and it may take years of significant efforts to be 

achieved in practical devices, despite Feynman’s prophecy to use “a hundred tiny hands” in the 

micro-world [26]. How to achieve a desirable FoM (again, say a 0-eV bandgap in diamond) in 

a familiar geometry by deep ESE with known experimental stressors at a reasonable amount of 

elastic strain energy cost?  

To approach this four-fold challenge, we hereby come up with a relatively device-friendly 

diamond thin film design (most semiconductor electronic devices are based upon thin film 

technology), undergoing large biaxial straining in the horizontal directions and large uniaxial 

compression along the vertical direction. The FEM simulation result for this loading geometry 

is shown in Figure 5.6a, where a slab of diamond is compressed by vertically aligned spherical 

diamond indenters and at the same time experiencing in-plane equil-biaxial tension. The most 

highly strained region has a three-normal strain state of 𝜀11 = 𝜀22 ≈ −
𝜀33

2
, 𝜀23 = 𝜀13 = 𝜀12 ≈

0. As shown in Figure 5.6b-c, this strain case gives a 0-eV bandgap in diamond. Separate GW 

band structure calculation (Figure 5.6d) and phonon stability check were conducted to confirm 

this case. It is also found that the onset of zero bandgap corresponds to h ≈ 98 meV/Å3, an 

energy cost that is smaller than what we proposed in the previous section.  

Although only artificially incorporated in the study, we envision the large biaxial strain can be 

collected from two sources, namely substrate effect and external strain field. Previous 

theoretical [153] and experimental studies [154] have discussed the possibility of a 7.3% strain 

in diamond grown atop Si substrate with a 45° rotation. As for introducing additional strain, we 

point to the recent three-point bending design by Chi et al [45], which could be adapted to 

elevate the biaxial strain level and perform in-situ electrical properties measurement.  
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Figure 5.6 Metallization of diamond in designed geometry. (a) FEM predictions of 𝜀33  distributions in the loading 

geometry. The diamond thin film is compressed by two vertically aligned spherical diamond indenters on both 

sides (contributing to 𝜀33 ) and at the same time equil-biaxially stretched by 𝜀11 = 𝜀22 ≈ 7% . The plot is 

contributed by Dr. Ming Dao. (b) ML mapping of bandgap in the loading geometry. (c) Reduction of bandgap as 

increasing compression in the vertical direction. As strain state approaches 𝜀11 = 𝜀22 ≈ −
𝜀33

2
, the metallization of 

diamond is achieved. Not that the bandgap does not start to drop from 5.6 eV since we applied biaxial strain before 

the compressive loading. (d) The GW band structure plots of four cases labeled in (c). In this case the most deeply 

strained region in the diamond will turn into an indirect metal. 

5.5. Theoretical details 

First-principles calculations 

In this section, the same VASP [108] was used for DFT calculations to predict the evolution of 

bandgap and band structure of diamond subjected to mechanical deformation. We invoked the 

generalized gradient approximation in the form of PBE exchange-correlation [106] functional 

and the projector augmented wave method (PAW) [107] in our DFT computation. A plane-

wave basis set with an energy cutoff of 600 eV was adopted to expand the electronic 

wavefunctions. The Brillouin zone integration was conducted on a 13 × 13 × 13 Monkhorst-

Pack [109] k-point mesh and atomic coordinates in all the structures were relaxed. 

GW corrections were performed when bandgap evaluations were needed. It is known that an 

extremely accurate GW calculation would involve choosing “infinitely” large values for several 

interdependent parameters [155,156]. Given the situation that we need to construct a huge 

dataset of GW bandgaps for machine learning purposes and conduct many calculations for 

varied 6D strain cases, we hereby struck a balance between efficiency and effectiveness. 

Specifically, we chose the q-grid to be 6 × 6 × 6, the screened cutoff to be 600 eV, and the 

number of bands for both dielectric matrix calculation and Coulomb hole summation to be 600. 

In addition, beyond the single-shot G0W0 method, we allowed two to three iterations of Green’s 

function in our calculations to obtain accurate quasi-particle shifts. This partially self-consistent 

GW0 calculation is known to yield results that are in agreement with available experimental 

measurement for semiconductor materials [134] and better than plain DFT calculations using 

hybrid functionals [133]. For undeformed diamond, our calculation indicates a +1.5 eV GW 

correction to the DFT-PBE bandgap, which matches values reported in recent literature [157]. 

For general 6D strain cases, this correction may vary (see Section 5.6 Figure A5.1 for an 

example).  

We also acknowledge that, even at 0 K, due to the quantum zero-point motion, further 

corrections need to be made to the electronic levels of diamond. This renormalization of 

bandgap could be -0.6 eV to -0.4 eV for undeformed diamond [144,145]. We consider this 

correction value to be negative in other cases of our interest. According to the temperature-

dependent “adiabatic Allen-Heine formula” [142,158], by setting 𝑇 = 0 to zero-out the Bose-
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Einstein occupancy factors, the zero-point renormalization of the band structure (Δ𝐸𝑛𝐤
ZP) arising 

from the electron-phonon interaction could be expressed as: 

Δ𝐸𝑛𝐤
ZP ≡ Δ𝐸𝑛𝐤(𝑇 = 0) =  ∑ ∫

𝑑𝐪

ΩBZ
[∑

|𝑔𝑛𝑛′𝜈(𝐤, 𝐪)|2

𝜀𝑛𝐤 −  𝜀𝑛′𝐤+𝐪
𝑛′

]

𝜈

+ Σ𝑛𝐤
DW, (32s) 

 

where 𝜀𝑛𝒌 is the single-particle eigenvalue of an electron with crystal momentum 𝐤 in the band 

𝑛, the integral is over the Brillouin zone of volume ΩBZ, the outermost summation is over all 

phonon branches 𝜈, and the first-order electron-phonon matrix elements 𝑔𝑛𝑛′𝜈(𝐤, 𝐪) describes 

the scattering from an initial state with wave vector 𝐤 to a final state with wave vector 𝐤 + 𝐪, 

with the emission or absorption of a phonon with crystal momentum 𝐪 belonging to the phonon 

branch 𝜈. The first term on the right-hand side is the Fan-Migdal self-energy term [159] and the 

Σ𝑛𝐤
DW term is the Debye-Waller (DW) self-energy term. Given the DW term are normally much 

smaller than the Fan-Migdal term (about 1:5 in diamond [144]), the deciding factors to the sign 

of Δ𝐸𝑛𝐤
ZP  are the denominators 𝜀𝑛𝐤 − 𝜀𝑛′𝐤+𝐪 . The change of bandgap can be qualitatively 

evaluated by considering the relative shift of the VBM and CBM. For VBM, we can further 

assume the coupling primarily comes from scattering within the valence bands. Since no values 

of 𝜀𝑛′𝐤+𝐪 in the valence bands can be larger than 𝜀𝑛VBM𝐤, the denominators 𝜀𝑛VBM𝐤 − 𝜀𝑛′𝐤+𝐪 

would always be positive and the resultant Δ𝐸𝑛VBM𝐤
ZP  would also be positive. Similarly, 

𝜀𝑛CBM𝐤 −  𝜀𝑛′𝐤+𝐪 at CBM and the resultant Δ𝐸𝑛CBM𝐤
ZP  would always be negative. The upward 

shift of VBM and downward shift of CBM would, therefore, result in an overall reduction in 

the computed bandgap of diamond. Therefore, from this perspective, we provided a generally 

conservative estimation of the strain magnitude required for engineering the bandgap. The 

actual bandgap may be even smaller than we predicted at particular strain levels as in Figure 

5.4, allowing metallization to be safely achieved more easily.  

Diamond primitive cells were used for DFT and GW calculations. Supercells were not used in 

order to circumvent the problem caused by band folding when determining the direct/indirect 

nature of the bandgap. All band structures were plotted by VASP with a Wannier90 

interface [160–162].  

To identify the phonon instability boundaries, we performed phonon stability calculations for 

densely sampled strain points in 3D or 2D strain space. These calculations were primarily 

carried out using the VASP-Phonopy package [163]. 3 × 3 × 3 supercells were created, and 

phonon calculations were conducted with a 3 × 3 × 3 k-point mesh. Whenever accurate phonon 

stability check was needed for diamond primitive cell, DFPT [164] as implemented in Quantum 

ESPRESSO [165] was adopted, with a dense 11 × 11 × 11 k-grid and 6 × 6 × 6 q-grid. 

Machine learning 

The bandgap distribution in diamond nanoneedles deformed to different strains was computed 

using machine-learning algorithms. This is done by representing deformation as a strain tensor 
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and using a NN to fit the strain states against respective bandgap values obtained accurately by 

first-principles calculations. The NN fitting is implemented within the TensorFlow framework, 

an end-to-end open-source machine learning platform released by Google [110]. The specific 

design, similar to our previous work [146], involves a feed-forward architecture with hidden 

layers capable of learning the variations of band structure and bandgap with respect to large 

mechanical deformation. In order to integrate both the PBE and GW datasets we prepared by 

first-principles calculations and to produce more consistent and accurate machine learning 

outcomes, the “data fusion”  technique same as our work in Ref. [146] was used. It took the 

quantitative advantage of PBE and the qualitative advantage of GW by interpolating between 

them to achieve decent NN fitting results with only ~104 PBE and ~103 GW calculations, 

successfully alleviating the need for the otherwise impractical sub-million-level amount of 

computations.  

Finite element modeling 

The ABAQUS (Dassault Systèmes Simulia Corp., Providence, RI, USA) software package was 

employed to conduct FEM analyses on specimen models, which replicated the 3D geometry of 

the diamond nanoneedles. Both the nanoneedle and the cube corner indenter were treated as 

deformable solids with the same material properties. A sliding contact was specified between 

the tip of the nanoneedle and the top surface of the indenter. Geometric nonlinearity induced 

by large deformation was accounted for. Neo-Hookean nonlinear elasticity model was used to 

simulate large deformation. The equivalent small-strain Young’s modulus is 1100 GPa and the 

Poisson’s ratio 0.0725 [29]. Since friction makes a negligible change to the deformed shape, 

the friction coefficient between the nanoneedle and the indenter was taken to be 0.1. 

5.6. Chapter appendix 
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Figure A5.1. Deformed diamond band structures plotted in the scheme of DFT-PBE and GW. The 6D strain case 

is the same as in Figure 5.1d. There is about +0.68 eV GW correction in the DFT-PBE bandgap at this particular 

strain case. 

 

Figure A5.2. Spiderweb-plot illustrating the metallization strain cases (colored as cyan webs) in the 3D space of 

normal strains 𝜀11, 𝜀22 and 𝜀33 spanning −20% (i.e. compressive strain of 0.2) to +10% (i.e. tensile strain of 0.1), 

with shear components 𝜀23, 𝜀13, 𝜀12 all fixed to be constants as in Figure 5.1a. Strain components of the same 

magnitude belong to the same concentric circle in the plot. 

 

Figure A5.3 ML prediction of the bandgap distribution for the same <111> nanoneedle bent by the same amount 

and friction coefficient μ from 0 (perfectly smooth contact) to 1. The propensity of bandgap reduction during 

deformation is seen from our simulations to be independent of the level of friction between the indenter and the 

nanoneedle. 
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Figure A5.4. Evolution of elastic strain energy, bandgap, and the corresponding band structure at the maximum 

compression site in the nanoneedle, showing the metallization process. 
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Chapter 6. Engineering phonon and defect related 

properties by machine learning 

6.1. Chapter introduction 

As mentioned in Chapter 1, there are the idealistic limit (𝛆ideal) and realistic limit (𝛆realistic) to 

ESE. The former, also know as the ideal strain, is the upper bound of reachable strain in a 

perfect material at T = 0 K beyond which relaxation will find a way to set in, either through 

fracture, plasticity or phase transition. It should be noted that both the zero-temperature and 

defect-free requirements are too absolute to be true in a realistic experimental environment. The 

fact that every material must have a surface already makes the 𝛆ideal unattainable. In practice, 

the 𝛆realistic appears to be much more conservative and is a proper subset of 𝛆ideal in the 6D 

strain space, by considering temperature, microstructure, and defects that are present in the 

materials. Typically, the 𝛆ideal  of deep ESE ought to be significantly larger than that of 

conventional ESE. It is no wonder that all the recent deep ESE experiments were conducted 

using nanostructured materials such as silicon and diamond, whose small sizes and single 

crystalline nature almost left no room for defects such as dislocations, grain/twin boundaries, 

etc. and made possible the approach of 𝛆ideal.  

Even though 𝛆realistic is more directly usable, it varies case by case and it is typically hard to 

be reproduced given slightly different experimental conditions even for the same material. With 

a limitation in computational tools and predictive capabilities of AI, in the first part of this 

chapter, the author focuses on mapping 𝛆ideal of a semiconductor in the 6D strain hyperspace, 

which is a simpler ML target and warrants numerical research.  

Unwelcome as higher-dimensional defects are for deep ESE, 0-dimensional (point) defects in 

the format of dopants can sometimes be a good thing for enhancing functional electronic 

properties of materials. For example, to function as a semiconductor or conductor, a wide 

bandgap material may include defects with additional localized electronic states inside the 

bandgap of the material, but proximate to the edges of the CBM and/or the VBM. If the energy 

difference between the localized electronic states of the defect and either the CBM (n-doping) 

or the VBM (p-doping) is sufficiently small, then it is possible for the defects to be ionized by 

thermal fluctuation energy.  

A material may comprise defects in suitable concentrations measurable by experimental 

methods such as X-ray photoelectron spectroscopy (XPS). Compared to the host element, the 

existence of these dopants is extremely rare, usually quantified by ppm, and normally has 

negligible detrimental effects on the mechanical strength of the material. Since their pros way 

outweigh the cons, dopants are often actively introduced and dispersed in the host material by 

means such as ion implantation and diffusion.  
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Defect doped material may be used in a variety of suitable semiconductor devices including, 

for example, photonic devices, optoelectronic devices, high-speed electronic devices, spintronic 

devices, photovoltaic devices, light-emitting devices (e.g., light-emitting diodes), and the like. 

In the second part of this chapter, the author applies ML to the study of point defect properties 

in semiconductors undergoing deep ESE. As before, the versatile ultra-wide bandgap material 

diamond is chosen to showcase the ML outcomes.  

 

Some argumentation and figures/tables in this chapter are directly taken from the 

author’s own manuscript in preparation as well as patent of Ref. [166]: Elastic Strain 

Engineering of Defect Doped Materials, (2020) International Publication Number 

WO/2020/076519. 

6.2. Machine learning for phonon stability boundary in strain 

hyperspace 

6.2.1. Phonon stability boundary in 3D and 6D hyperspaces 

Chapter 3 and Chapter 4 offer an investigation upon how the electronic properties of different 

semiconductors change within a 6D strain hyperspace. The strain data points sampled for both 

silicon and diamond by the authors are conservative ones, i.e., all the strain cases sampled are 

phononic stable, but not all phononic stable strain cases are sampled. If we have enough 

computational resources to compute the phonon stability for all strain cases, what would be the 

aggregation of the phononic stable ones looks like in the strain hyperspace? Given the soft 

phonon criterion offers both necessary and sufficient conditions for crystal lattice instability, in 

other words, what would be the ideal limit for ESE? It is a must-ask question when practicing 

deep ESE. 

For visualization purposes, we first trained ML models to showcase the stability boundaries in 

two 3D subspaces by fixing three of the six strain components (See Table 6.1 for accuracies 

report). We again rely on first-principles calculations for dataset curation. Phonon calculations 

were mainly conducted using the VASP-Phonopy package [163]. 2 × 2 × 2 supercells of 16 

carbon atoms were created, and phonon calculations were conducted with a 3 × 3 × 3 𝐤-point 

mesh. We also took full advantage of the known symmetries to further reduce the computations 

needed when collecting the strain data. Figure 6.1a and b illustrate the situation where only 

compressive and tensile normal strains are present (𝜀23 =  𝜀13 = 𝜀12 = 0). Figure 6.1c and d 

show the stability boundary for three-shear strain cases (𝜀11 =  𝜀22 = 𝜀33 = 0). Similar to the 

bandgap isosurfaces introduced in Chapter 3 and Chapter 4, the multifaceted nature of this 

boundary is attributed to the change of the onset of the soft phonon wave vector 𝐪𝐜. In general, 

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020076519
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there are three types of 𝐪𝐜. Following the same notation rules as introduced in Chapter 2, 

they can be denoted as: 

• The Γ type: 𝐪𝐜 = (0, 0, 0) 

• The ‘Δ’ type: 𝐪𝐜 = (𝜉, 𝜉, 0), (𝜉, 0, 𝜉) or (0, 𝜉, 𝜉), where 0 < 𝜉 < 0.5 

• The ‘L’ type: 𝐪𝐜 = (0, 0, 0.5), (0, 0.5, 0) or (0.5, 0, 0) 

 

 
Figure 6.1 3D Phonon stability boundaries. The stability boundary for the three-normal strain (𝜀11𝜀22𝜀33) space as 

colored by (a) the elastic strain energy density, ℎ (meV/Å3) and (b) onset of soft phonon wave vector 𝐪𝐜. The 
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stability boundary for the three-shear strain (𝜀23𝜀13𝜀12) space as colored by (c) ℎ and (d) 𝐪𝐜. All the strain axes are 

in terms of percentage. The rules for labeling the types of 𝐪𝐜 on the facets of the stability boundaries in (b) and (d): 

red/purple for Γ/near-Γ type, blue for ‘L’ type and yellow for ‘Δ’ type.  

We next move on to learn the phonon stability boundary in 6D and acquired the pair-plot 

visualization, as shown in Figure 6.2. This plot is made up of snapshots that characterize the 

shape of stability boundary in 2D subspace in 30 off-diagonal places and histograms in 6 

diagonal places. Symmetries due to crystal deformation are obeyed when rendering this plot 

through ML models. One can think of the 6 subfigures in the top left corner of pairwise-normal-

strain boundaries as origin-passing vertical or horizontal cuts of the 3D volume in Figure 6.2, 

and the 6 subfigures in the lower right corner of pairwise-shear-strain boundaries as origin-

passing vertical or horizontal cuts of the 3D volume in Figure 6.2. The remaining 18 subfigures 

of mixed pairwise-normal/shear-strain boundaries take more interesting shapes that are subject 

to future detailed studies.  

 
Figure 6.2 Pair-plot visualization of phonon stability boundary. The off-diagonal subfigures are 2D cuts of the 6D 

space with the other 4 strain components fixed at 0. For example, strains in the 𝜀11𝜀12 subfigure in the lowest-left 
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corner have (𝜀22 = 𝜀33 = 𝜀23 = 𝜀13 = 0). The diagonal subfigures are the histograms for all strain cases spanning 

-40% to 40%. Due to the symmetry in strain space, the 15 subfigures in the upper triangular region have a one-to-

one correspondence with the other 15 subfigures in the lower triangular region at relative positions.  

Table 6.1 Summary of ML accuracies for phonon stability, DOS, and band structure for the strain cases in the 

𝜀11𝜀22𝜀33-space, the 𝜀23𝜀13𝜀12-space, and the general 6D hyperspace.  

 Three-normal strain Three-shear strain General 6D strain 

Phonon stability 

boundary 
98% 97% 95% 

Phonon DOS MAE = 0.01 MAE = 0.01 MAE = 0.05 

Phonon band 

structure 
Max rel. error = 4.5% Max rel. error = 5% Max rel. error = 5% 

6.2.2. Phonon band structure and density of states 

Similar to electronic band structure, a crystal’s phonon band structure 𝜔𝜈(𝐪; ε) is a function of 

the 3D wave vector 𝐪 and strain ε, there are 9 dependent variables (10 with the integer phonon 

band index ν). Again, it is inadvisable to tabulate 𝜔𝜈 (𝐪 ; ε) as billions of first-principles 

calculations may be required. Hereby, we adopted ML algorithms same as those introduced in 

Chapter 3 and Chapter 4 to fit the phonon dispersion, the results of which are shown in Table 

6.1. We also studied the variation of phonon DOS, 𝑔(𝜔; ε), as a function of the 6D strain (Figure 

6.3 and Table 6.1) and obtained decent results. 

 
Figure 6.3 Comparison of the ML predicted phonon DOS and true phonon DOS at different strain states. The 

“ground truth” of phonon DOS here is obtained from first-principles calculations. The physical unit of the 
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horizontal axes is that of frequency (THz), and that of the vertical axes is the number of states per unit cell per 

THz. The occurrence of imaginary phonon frequencies in the second strain case is indicated by the purple arrow.  

Finally, just as the derivative of the electronic band is related to group velocity, the derivative 

of phonon band (𝛁𝐪𝜔𝜈(𝐪; ε)) also contains important physical meaning, namely the speed of 

sound. Other important properties such as the lattice thermal conductivity or the Grüneisen 

parameter [167] can also be derived based on phonon calculation results. Similar to the Pareto 

optimization process introduced in Section 4.5.4, finding the best combination of thermal 

properties or even the best combination of thermal+electronic properties at various strain states 

warrants another good numerical research.  

6.3. Machine learning for strain engineering defect ionization energy  

Materials with a wide bandgap often do not have enough charge carriers (e.g., holes and/or 

electrons). For example, the implementation of diamond, an ultra-wide bandgap material, as a 

semiconducting or conducting material has conventionally been unsuccessful due to the 

difficulty in effectively doping the material with a defect capable of producing electrons (e.g., 

an n-type dopant). Furthermore, depending on the choice of defect, the defect ionization energy 

(𝐸I) can vary greatly within the same material. In some materials, the energy to ionize a defect 

in a deep dopant state is too large to be facilitated by room-temperature thermal fluctuations. 

As a result, a defect in a deep dopant state (such as substitutional nitrogen in diamond) typically 

does not contribute charge carriers to the conduction band and/or valence band, resulting in a 

material that is incapable of being used in a semiconducting or conducting device. Thus, there 

is a need for methods and systems to further tune the value of 𝐸I for wide- and ultrawide-

bandgap materials to facilitate their use in devices. 

In view of the above, we have realized and appreciated that elastic strain can be used to control 

the doping level in a substitutional defect doped diamond. To find the strain cases which yields 

a transition of nitrogen substitutional dopant from a deep dopant state to a shallow dopant state 

(𝐸I no greater than several 𝑘B𝑇) in diamond, we first have a study of its defect structure at an 

undeformed and several hydrostatically (non-deviatorically) compressed states. The defect 

phenomenon revealed by high-pressure physics [168] will give us useful insights into deep ESE 

later.  

As shown in Figure 6.4a, the nitrogen point defect (Nc) at equilibrium (undeformed) state is 

bound to four carbon atoms (C-atoms) and has tetrahedral symmetry. There exists, however, a 

spontaneous symmetry breaking of the tetrahedral symmetry to one of four equivalent low-

symmetry variants. In each symmetry variant, the nitrogen atom breaks a bond with one of the 

four C-atoms it is bound to and forms shorter bonds with the other three C-atoms. As a result, 

the nitrogen point defect is in a deep donor state that is ~2.2 eV below the conduction band 

edge. As such, the nitrogen point defect is impossible to be ionized by room-temperature 
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thermal fluctuations and therefore will not contribute charge carriers to the conduction band. 

The above phenomenon is backed by DFT calculations.  

 
Figure 6.4 Atomic-level understanding of ESE in N-doped diamond. (a) Spontaneous tetrahedral symmetry 

breaking in diamond with nitrogen dopant, wherein one N-atom is bound to three out of the four C-atoms at the 

corners of the tetrahedron, forming a skewed defect structure. (b) Monotonic reduction of the energy barrier 

between skewed and centered N configuration upon straining. At the ground state, i.e., in an undeformed diamond, 

N tends to sway from the center of the sp3 tetrahedral site. But with increasing hydrostatic compression, the N 

atom moves to the center of the tetrahedral site bounded by four other C atoms (symmetrical site). (c) Nudged 

Elastic Band calculation [169,170] provides another demonstration of this transition. The color bar represents the 

magnitude of compression. (d) DOS plot near CBM for undeformed and deformed structure. Note that the energy 

differences between CBM and defect level (∆𝐸shallow and ∆𝐸deep) are not defect ionization energies. This is a 

schematic showing the realization of relatively shallower N dopant. 

When the diamond is elastically compressed by as much as 10%, our DFT calculations reveal 

that the nitrogen defect structure will be structurally reconfigured. Figure 6.4b shows, as strain 
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is applied to the nitrogen-doped diamond, the N-atom gradually moves to the center of the 

tetrahedral site bounded by four other C-atoms, until the crystal is symmetric. This process is 

further quantified in Figure 6.4c, which is a plot of the strain from asymmetrical to symmetrical 

orientation for nitrogen-doped diamond. The application of a 10% hydrostatic compressive 

strain allows the energy barrier to vanish, which indicates the symmetric, tetrahedral structure 

is energetically stable. Applying a compressive strain to a region of diamond comprising a 

nitrogen point defect can therefore provide a transition to a shallower n-type dopant state 

(Figure 6.4d).   

To look for such transition in the 6D strain hyperspace, we followed the workflow similar to 

that in Chapter 3 and Chapter 4 to train a ML model that takes in a strain (within the 𝛆ideal 

boundary found in Section 6.2.1) and predicts the 𝐸I. By plotting the resultant 𝐸I’s against the 

elastic strain energy density (h), we can locate from Figure 6.5 a plethora of strain pathways 

towards shallow Nc states with  𝐸I < 𝑘B𝑇 that readily contribute delocalized electron carriers to 

the conduction band by thermal ionization. We can compare the donor level of N in elastically 

strained diamond with other substitutional defects such as SbC, BC, PC, and SC.  

 
Figure 6.5 Density of states of donor ionization energy. Reachable 𝐸I  values for various h within the whole 

deformation space for diamond with Nc centers. The red shading of the region reflects the distribution of available 

𝐸I. The bottom black dotted line delineating the lower boundary of the entire red envelope indicates the lowest 

energy penalty path for attaining a decreased 𝐸I (including the realization of deep-to-shallow donor transition) in 

a general strain hyperspace. The upper bound of the reachable 𝐸I is denoted by the black dotted line on the top. 

 

Similar to the mathematical formulation of density-of-states of bandgap (Chapter 3) and 

density-of-states of effective mass (Chapter 4), a function that describes the resultant 

distribution of 𝐸I arising from all possible elastically strained states in the (ℎ −
𝑑ℎ

2
, ℎ +

𝑑ℎ

2
) 
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interval can be defined. Specifically, the cumulative density-of-states of defect ionization 

energy can be defined as 

𝑐(𝐸I
′; ℎ′) ≡  ∫ 𝑑6𝜺𝛿(𝐸I

′ − 𝐸I(𝜺))

ℎ(𝜺)<ℎ′

=  ∫ 𝑑6𝜺𝛿(𝐸I
′ −  𝐸I(𝜺))Θ(ℎ′ − ℎ(𝜺)),  (33) 

where 𝛿(⋅)  and Θ(⋅)  are the Dirac delta and unit step functions, respectively, 𝑑6𝜺 ≡

𝑑𝜀11𝑑𝜀22𝑑𝜀33𝑑𝜀23𝑑𝜀13𝑑𝜀12 in the 6D strain space. The density-of-states of ionization energy 

(𝑔) at ℎ′ can then be defined by the derivative of 𝑐(𝐸I
′;  ℎ′) with respect to ℎ′: 

𝑔(𝐸I
′; ℎ′) ≡  

𝜕𝑐(𝐸I
′; ℎ′)

𝜕ℎ′
=  ∫ 𝑑6𝜺𝛿(𝐸I

′ − 𝐸I(𝜺))𝛿(ℎ′ − ℎ(𝜺)). (34) 

In general, the methods described herein can be used to effectively n-dope and/or p-dope a 

material that was previously considered to be “undopable”, such that the material defects may 

transition from a deep dopant state to a previously inaccessible shallow dopant state upon the 

application of elastic strain. The ML methods of applying an elastic strain to alter the doping 

state of a defect doped material may be applied to any of a variety of suitable compositions. 

The defect doped material may comprise defect doped silicon, Ga2O3, GaN, BN, and/or any 

other appropriate material. Additionally, appropriate dopants may include, but are not limited 

to, nitrogen, boron, phosphorus, and/or combinations thereof. Besides semiconducting devices, 

the defect doped materials may be implemented in a memory device, due to the ability to 

dynamically toggle the defect doped material between these states rapidly and/or reversibly, 

akin to an “on-off” switch.  
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Chapter 7. Thesis summary and future works 

7.1. What has been achieved in advancing deep elastic strain 

engineering 

Deep ESE explores the full 6D space of admissible nonlinear elastic strain and its effects on 

physical properties. However, the complexity of controllably engineering materials properties 

by strains necessitates first-principles computations to first screen for a desirable figure-of-

merit and then design an optimal straining pathway. In this work, to map the 6D strain space 

fully, we first combine ML and DFT/GW calculations to guide strain engineering whereby 

electronic properties could be designed. This method invokes deep NN algorithms and utilizes 

a limited amount of ab initio data for the training of a surrogate model, predicting various 

electronic properties within reasonable accuracy. On top of this, attempts have been made by 

us in developing a more versatile ML framework that adopts convolutional blocks, data fusion, 

and active learning to discover the indirect-to-direct bandgap transition and Mott transition in 

a material by scanning the entire strain space. Through this framework, we improve the state-

of-the-art set by ourselves and achieve enhanced performance in every front, including more 

accurate bandgap and band structure prediction, band extrema detection, and effective mass 

calculation. Combining this method with experimentally validated FEM simulations, we 

predicted strain pathways that would reversibly transform an ultrawide-bandgap material such 

as diamond to a metalized state. Applying the model to phonon and defect related studies, we 

also visualized the phonon stability boundaries in 6D and predicted the deep-to-shallow donor 

transition in doped diamond.  

7.2. Limitations and future works 

Despite the capabilities introduced in previous chapters, several factors are limiting the current 

ML model. Firstly, we rely on excited-state calculations (GW) to give us the “ground truth” of 

electronic properties such as bandgap, CBM location, and effective mass. The only 

experimental value we can validate our GW calculation is that of the undeformed state. 

Therefore, we are very sure with the intrinsic bandgap of 1.1 eV for silicon and of 5.6 eV for 

diamond in their equilibrium state, but since there is no experimental bandgap measurement of 

silicon stretched in <111> direction by 10%, we are only left with GW results to trust when we 

practice deep ESE in a general 6D hyperspace.  

Secondly, the current model does not consider the temperature effect. This is because the DFT 

data we collected is only for 0 K. This is another deviation from real-world finite temperature 

conditions. Thirdly, a successful deep ESE practice requires the ability to not only deforming 

the material to the uttermost, but also holding it there for an extended time period without 

relaxation of any kind. Time is also a factor that this ML model has not taken into consideration. 
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Also, strain rate is another factor neglected in the present study, and as a result, we are only at 

the extreme left side of the deformation map (see Figure 7.1). Lastly, the many other non-

idealities in real-world material behavior can further complicate the practicality of the deep ESE 

model we discussed in this thesis. These limitations are the exact reasons we call for close 

collaboration with experimental colleagues, as discussed later in this chapter.  

 
Figure 7.1 Deformation mechanism map for a particular alloy at a strain rate of 10-8 s-1. The exact material itself is 

not important. The figure is taken from FIG. 8 of Ref. [171] just to show the concept.  

7.2.1. Model extension 

We only chose two materials, namely silicon and diamond, for which deep ESE is practiced, 

primarily because there exist near-𝜺ideal experiments in these representative material systems. 

Important and versatile as they both are, there are many other semiconductors whose electronic 

properties deserve to be studied, as mentioned in Section 1.1.4. In addition, it is useful to use 

the model to learn properties that are a function of energy, such as the dielectric function 

𝜖2(𝐸;  𝜺). As a comparison, the band structure tabulates 𝐸 as a function of k. Given that the 

phonon DOS has been learned in Section 6.2.2, it is straightforward to study strain dependent 

electronic DOS. The NN and CNN models follow what is shown in Figure 7.2a-b. Lastly, it is 

also desirable to extend the model to cover more external field effects. For example, as it is 

very common for devices to function inside an electric field E (consider the working 

environment of an FET), we can add E to the strain model and fit the piezoelectric tensor e(E; 

𝜺), as shown in Figure 7.2b.  
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Figure 7.2 ML for different targets with (a) NN and (b) CNN. If the target is a function of a vector, such as a band 

structure E(k), then 3D convolution is used. On the other hand, if the target is a function of scalar, such as DOS(E), 

then the 1D convolution is used.  

7.2.2. Device-level design and simulation 

Sections 5.3 introduce our work on coupling strain mapping using FEM with bandgap 

distribution mapping using ML. In Section 5.4 we further came up with a loading design that 

looks more friendly for device designers and engineers. However, in a metal-oxide-

semiconductor field-effect transistor (MOSFET), people measure I-V characteristics and study 

macroscopic electronic properties or FoMs such as the subthreshold swing, largest current 

driven by the transistor, dynamic power factor, and intrinsic delay time [172]. These as well as 

many other properties are suggested in the International Technology Roadmap for 

Semiconductors [173]. 

Thus, it is a natural next step to go beyond fundamental electronic properties such as bandgap 

and try to incorporate the strain model into Technology Computer Aided Design (TCAD) 

simulations to understand the I-V curves of a device undergoing deep ESE. This integration 

would be a meaningful contribution to the academic field of device simulation where models 

exist only for moderately strained channel materials [174–178]. It is noted that in real 
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semiconductor devices, there are other issues to be dealt with, including the contact resistance 

and imperfections aforementioned, and experimental verification is eventually needed. 

7.2.3. Experimental works and collaborations 

Carrying out in-situ NEMS loading experiments inside a TEM with built-in electron energy 

loss spectroscopy (EELS) is another obvious next step to show the impact of the strategies 

introduced in this thesis to improve functional properties through deep ESE of semiconductors. 

It is known [179–181] that EELS is reliable for assessing the bandgap value (including surface 

plasmon mapping) as well as indirect-to-direct bandgap transition in diamond. We have started 

the experiments with our collaborators (Figure 7.3a-b), and we plan to conduct line scans across 

the tensile to the compressive sides of a bent diamond needle to map bandgap changes, as 

demonstrated in the red arrow in Figure 7.3b. In addition, a colleague from the author’s group 

designed an in-situ mechanical loader actuated by heat (see Figure 7.3c for its SEM micrograph). 

It can offer ultralarge uniaxial tension and compression to free-standing semiconductor samples 

and perform in-situ electrical measurement (Figure 7.3d-e), making possible experimental 

verification of future TCAD simulation results that are obtained from Section 7.2.2.  

 

Figure 7.3 Deep ESE experiments. (a) An undeformed <111> nanoneedle. (b) Bent diamond nanoneedle ready to 

be scanned in-situ by EELS. The yellow marks in (a) and (b) indicate the same place on the nanoneedle. TEM 
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images of (a) and (b) are credited to the author’s colleagues from Zhejiang University and Nanyang Technological 

University. (c) An in-situ thermo-mechanical loading device. (d-e) A microchannel of Si|Ge subject to tension by 

the thermo-mechanical loader. Images in (c-d) are used with the permission of Dr. Baoming Wang.  

Indentation and anviling (compression under extreme pressures) coupled with in-situ 

photoluminescence [182–184] or cathodoluminescence [16] spectroscopy as well as electrical 

resistivity measurement [185] further add to the toolbox for characterization of mechanically-

induced properties in semiconductors. In Section 6.3, the author predicted defect ionization 

energy change under ultrahigh strains, and an associated high-pressure physics experiment 

(Figure 7.4) is currently underway to confirm the theoretical findings.  

 
Figure 7.4 Diamond anvil cell (DAC) experiment. (a) SEM micrograph of N-doped diamond micro-particles and 

energy-dispersive X-ray (EDX) spectroscopy analysis of carbon and nitrogen element. (b) From left to right: Mao-

type DAC used in the experiment, schematic of the diamond compressors, and the optical micrograph of a 

compressed N-doped diamond particle which is ready to be measured by in-situ photoluminescence spectroscopy. 

The red arrow indicates the diamond particle of concern and a ruby next to it is used for pressure calibration.  

These and other experiments are still undergoing. As the reader has noticed, such experiments 

are beyond the scope of the present work, and they are being pursued at this time in 

collaboration with several different research teams.  
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Figure 7.5 The development roadmap for the introduction of deep elastic strains in experimental devices.  

As a closing remark, side-by-side simulation and experimental efforts outlined in Figure 7.5 are 

needed for achieving deep ESE in devices. In Level 1, with ML framework developed for 

predicting electronic properties of experimentally feasible loading geometries, the research 

goals are then redefined towards the development of sustainable and up-scalable deep ESE 

options and apply the as-developed ML model to evaluate materials electronic behavior under 

deformation. In Level 2, device simulations together with direct electrical measurement (such 

as retrieving the I-V curves) would be carried out. Non-contact spectroscopy is also involved 

in this phase to study the deformation mechanism and evaluate the selected loading option. 

Knowledge acquired from this stage will be helpful in experimental device demonstration in 

Level 3. Also, the concept of inverse design can be brought into the simulation works at this 

level. Specifically, given that 𝜺 dictates the material property and that many loading options 

become accessible, one may first articulate a needed property or FoM (a given bandgap, donor 

level, Baliga’s FoM, etc.), and then adaptively look for a loading geometry through topological 

optimization that yields the desirable 𝜺 corresponding to this particular FoM. Deep ESE can 

only be successful if all the device challenges listed in Figure 7.5 are properly resolved. 

However, in the near term, devices with embedded deep elastic strains will be mainly for simple 

electronic and optical applications whose material and integration requirements are less 

stringent compared to the needs for CMOS, for example. The route to practicing deep ESE in 

future devices is via sustained research and development to meet the requirements of 

semiconductor device commercialization. 
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