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Abstract
From natural disasters to power outages, these events, even geographically-localized
ones, often result in widespread disruptions across the air transportation network.
In order to engineer resilience and design better proactive mitigation strategies, it is
important to identify, characterize, and control the effects of such disruptions. A more
resilient and well-prepared air transportation system directly translates to mitigated
delay costs and increased service quality.

Current delay performance metrics reflect only the magnitude of incurred flight
delays at airports. In the first half of the thesis, we show that it is also important to
consider the spatial distribution of delays across a network of airports. We analyze
graph-supported signals, leveraging techniques from spectral graph theory and graph
signal processing to compute analytical and simulation-driven bounds for identifying
outliers in spatial distribution. We then apply these methods to analyze US airport
delays from 2008 through 2017. We also perform an airline-specific analysis, deriving
insights into the delay dynamics of individual airline sub-networks. We highlight key
differences in delay dynamics between different types of disruptions, ranging from
nor’easters and hurricanes to airport outages. We also examine delay interactions
between airline sub-networks and the system-wide network, as well as compile an
inventory of outlier days. This inventory could guide future aviation system planning
efforts and research. We demonstrate the generalizability of this outlier identification
and characterization framework through a comparative analysis of US and Chinese
airport networks.

After establishing the framework of modeling and analyzing airport delays as
graph-supported signals, in the second half of the thesis we focus on two applications
enabled by this framework: Examining commonly-occurring disruption-recovery cy-
cles in the US airport network, and proposing an approximate network control scheme.
In regards to the first application, we study these disruption and recovery cycles
through a state-space representation that captures the severity and spatial impact of
airport delays. In particular, using US airport delay data from 2008-2017, we first
identify representative disruption and recovery cycles. These representative cycles
provide insights into the common operational patterns of disruptions and recoveries

3



in the system. We also relate these representative cycles to specific off-nominal events
such as airport outages, and elucidate the differing disruption-recovery pathways for
various off-nominal events. Finally, we explore temporal trends in terms of when and
how the system tends to be disrupted, then subsequently recovers. For the second ap-
plication, we consider the problem of designing control strategies for high-dimensional
systems that lack a detailed model. To do so, we leverage the ability of copulas to
represent dependent structures in high-dimensional data, and approximate the state
space of airport delays through inverse sampling. We demonstrate the use of the
control policies obtained from our methodology through a case study of controlling
flight delays within the US air transportation network.

We conclude this thesis with some directions for future work, an example of which
is a new hierarchical approach towards air traffic management procedures such as
airport ground holding. We also comment briefly on the applicability of the methods
developed in this thesis for other transportation and networked systems.

Thesis Supervisor: Hamsa Balakrishnan
Title: William E. Leonhard (1940) Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background and context

The aviation industry, fueled by technological, economic, and societal advances, has

irreversibly become a cornerstone of the domestic and international transportation

system. It is now not only temporally feasible, but also economically viable to con-

duct far-flung domestic and international travel. The elimination of what otherwise

would have been a daunting logistical constraint has no doubt played a critical role in

enabling everything from leisure travel microcosms to an entire macrocosm of acceler-

ating globalization [20]. Both of these paradigms – leisure versus business passenger

segments – are crucial in fueling the continued growth of the aviation industry, along

with larger, industry-specific economic and societal trends such as emerging low-cost

carriers (LCCs) and ultra low-cost carriers (ULCCs), continued deregulation through

bilateral open-sky agreements, and a rising middle class with the financial means to fly

in developing nations [23]. The socio-technical and cyber-physical infrastructures that

comprise the foundation of the aviation industry is a complex amalgamation of many

disparate components, intricately connected by the common goal of enabling safe and

efficient movement of people and goods through the skies. As such, the scope of this

thesis will be limited to addressing inefficiencies within the operational component.

Specifically, as a capacity-constrained system operating with relatively well-matched

demands, there will be times during which flight delays and flight cancellations are
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unavoidable. However, the mismanagement of demand-capacity imbalances can lead

to avoidable inefficiencies within the system: In this thesis, we propose new models

to identify, better characterize, and manage these inefficiencies.

As the demand for air travel continues to grow both nationally and internationally,

this capacity-constrained system is burdened with increasing amounts of traffic. To

provide some context regarding the current prevalence and utilization of the global

aviation system, in 2018 this system served more than 4.3 billion passengers world-

wide, representing a 6.4% increase from the previous year [121]. Even when the scope

is restricted to US airlines, more than 2.4 million passengers per day were served by

the aviation industry in 2018, along with approximately 58,000 tons of cargo. Still

restricting ourselves to the scope of US airlines, the medium of transport for these

peoples and goods, i.e., the aircraft themselves, performed more than 28,000 flights

on a daily basis in order to satisfy the travel needs of people and cargo. All of these

statistics discount the humans working at the forefront and behind-the-scenes to en-

sure the safe and efficient operation of the air transportation system: In the US alone,

the aviation industry requires over 740,000 direct employees managing every aspect

of this complex system [7].

Two important and intertwined factors that together drive such high rates of

utilization are continued increases in connectivity along with continued decreases in

airfares. Over 22,000 unique city pairs were serviced by airlines worldwide in 2018;

more importantly, this represents an increase of 1,300 city pairs from 2017 [118],

hereby providing a larger selection of personal, leisure, and business travel opportuni-

ties. However, merely increasing the choice set of destinations would not be enough in

and of itself – the second complementary ingredient resulting in increasing air travel

is that the cost for air transport, when adjusted for inflation, have dropped by more

than 50% over the past 20 years [118]. Figure 1-1 displays the upward trend of unique

city-pairs, as well as the downward trend of the real price of air transport from 1998

to 2018. What these two factors have induced, as hinted previously, is an upswell of

demand, particularly from emerging markets. For example, origin-destination (OD)

markets in China experienced 10% year-over-year growth rates, posting an additional
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50 million passengers in 2018 alone. Moreover, the two largest OD air passenger

market is China and the US, together accounting for approximately 30% of all world-

wide passengers. Given the impact and scale with regards to the sheer number of

passengers that operational factors – route networks, delays, cancellations, air traffic

control and air traffic flow management – would have within the air transportation

networks of the US and China, this is one central motivation for why many of our

completed analyses and proposed future work focus on the air transportation system

in these two countries [118].

Figure 1-1: Number of unique city-pairs connected by the global aviation system,
superimposed with the real price of air transportation, expressed in US dollars per
revenue ton kilometers (US $ per RTK), adjusted to 2018 prices [118].

1.2 System inefficiencies: Flight delays and can-

cellations

Unsurprisingly, one consequence of increased system demand is the greater prevalence

and impact of inefficiencies in the system. Such a statement holds true not just for

the aviation system, but for other networked systems and infrastructures as well.

In 2018, average system load factors (a percentage that measures how many seats
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in an average aircraft is filled by passengers) reached 82%, up from 77% in 2009

[121]. A quick, back-of-the-envelope calculation would dictate that a delayed 100-

seat airplane in 2009 resulted in 77 delayed passengers, whereas in 2018 an additional

five passengers would have been impacted. While there may be an easily agreed-to

definition for flight cancellations, i.e., a scheduled commercial flight ceases operations

on a short-term, temporary basis, the definition of flight delays are more nuanced.

For the purposes of these introductory remarks, we use measures of delay obtained

from the US Department of Transportation (US DOT) Bureau of Transportation

Statistics (BTS), wherein a particular flight is considered to be delayed if it arrived

at or departed from its gate 15 minute or more after its scheduled arrival or departure

time, respectively [35]. More specifically, the scheduled departure and arrival times

for a flight is standardized and reflected within a Computerized Reservation System,

or CRS [37].

Equipped now with standardized definitions of flight delays and cancellations, we

motivate the need to characterize, model, and better manage inefficiencies in the

system by first discussing their pervasiveness and prevalence. First, some positive

signs: Despite the dramatic increases in US air travel, the overall on-time performance

of the US aviation system has remained steady over the past decade. Specifically, in

2018, 78.9% of arriving flights and 79.7% of departing flights were on time, compared

to averages of 79.0% and 80.0% for 2010 through 2018, respectively. However, these

relatively stable on-time performance figures should be evaluated in the context of

an 11.8% growth in the number of flight operations from 2010 to 2018, or from 4.84

million to 5.42 million flight operations. Thus, 23.3% more flight operations were

delayed in 2018, compared to the 2010-2018 average. This comes as a result of steady

on-time performance, combined with continued air travel growth. A parallel story

is reflected in cancellation statistics, with a 1.8% cancellation rate in 2018 compared

to an average of 1.7% for 2010 through 2018. Overall, more than 1 million arriving

flights as well as 1 million departing flights were delayed in 2018 in the US alone.

As with any phenomenon exhibited by such a complex, networked infrastructure,

the specific set of scenarios and circumstances that caused a particular flight to be de-
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layed or canceled can vary widely. In order to standardize delay cause classifications,

BTS aggregates delay causes into the following five categories [38]:

1. Air carrier: The cause of the flight inefficiencies was due to airline-specific

operational issues, or “circumstances within the airline’s control.” This in-

cludes delays and cancellations caused by maintenance issues or crew delays

and absences, as well as disruptions during the turnaround process (i.e., delays

attributable to cleaning crews, baggage handling, refueling, etc.)

2. Extreme weather: The cause of the flight inefficiencies was due to ongoing or

forecasted meteorological disruptions that are deemed severe (tornado, blizzard,

hurricane, etc.) Note that this does not include more typical disruptions caused

by inclement (but not extreme) weather.

3. National Aviation System (NAS): This is a “catch-all” condition where the

cause of the flight inefficiencies was due to operational factors that could be

infrastructure-related (e.g., taxiway congestion, runway construction, airport

equipment outage) or inclement weather-related.

4. Late-arriving aircraft: The cause of flight inefficiencies was due to inefficiencies

affecting the inbound flight sharing the same aircraft (i.e., “sharing the same

tail”, as the specific airframe of the aircraft is uniquely identified through its

aircraft registration, or tail number). In this work, we will broadly refer to this

as tail-propagated or propagated delay.

5. Security: The cause of the flight inefficiencies was due to transit safety-related

aspects, such as airport evacuations, security breaches, issues with screening

equipment, and excessive security checkpoint queues.

We plot the distribution of flight delay and cancellation causes in Figures 1-2 and 1-

3; the former accounts for all US airports with reporting carriers, whereas the latter

accounts for a 30-airport subset designated by the Federal Aviation Administration

(FAA) as the “Core 30” airports. The Core 30 airports are the busiest airports in
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Figure 1-2: Reported cause of delay at all US airports in 2019 [36].

the US, typically measured in terms of passenger enplanements. We list the Core

30 airports, along with their designated International Civil Aviation Organization

(ICAO) and International Air Transport Association (IATA) airport codes, in Table

C.1 in the appendix. Henceforth, we will refer to any of these airports by their

three-letter IATA code. Note that for both the all-encompassing airport group as

well as the Core 30 airports, the dominant cause of delay is due to the late arrival

of an inbound aircraft, at 40% and 38% of all causes, respectively. This illustrates

the network effects at play in the system: Disruptions and inefficiencies do not stay

isolated in one region of the system, but instead behave dynamically and propagate.
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Figure 1-3: Reported cause of delay at the FAA Core 30 US airports in 2019 [36].
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We emphasize that even though late-arriving aircraft is the predominant cause of

delays, the origins of that propagated delay could have been due to any of the other

factors, including NAS-type delays, which make up the second- and third-largest

causes of delays for the Core 30 airports and all US airports, respectively. Further-

more, we note that while some delays and inefficiencies are unavoidable (e.g., the

primary delays due to extreme weather), others could have been better managed

and mitigated (e.g., reducing the impact of propagated delays through schedule ad-

justments). NAS-type delays are furthered separated into five categories by BTS,

comprising of weather, volume (or congestion), airport equipment issues, closed run-

ways, and other miscellaneous reasons that do not fall into any of the other NAS-type

or larger-scoped delay categories. In Figure 1-4 we plot the breakdown of the NAS-

type delays for both groups of airports. Here, we see that by far the largest cause of

NAS-type delays is inclement weather resulting in the issuance of Traffic Management

Initiatives (TMIs) such as Ground Delay Programs (GDPs), Airspace Flow Programs

(AFPs), and aircraft separation-based flow control mechanisms such as Miles-in-Trail

(MIT) and Minutes-in-Trail (MINIT) restrictions [78].
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Figure 1-4: Reported cause of NAS-type delays at all US airports (left) and the FAA
Core 30 airports (right) in 2019 [36].
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1.3 Impact of delays and cancellations

We end this motivational examination of inefficiencies within the aviation system with

a discussion on the quantifiable impacts of delays and cancellations with respect to two

primary stakeholders: Airlines and the passengers. In 2007, a comprehensive report

on total delay impacts conducted by NEXTOR and the Brattle Group estimated that

the total direct cost of flight delays to airlines, to passengers, as well as accounting

for lost demand, was $27.2 billion dollars, with a further $4 billion dollars-worth of

negative impact on the US Gross Domestic Product (US GDP) [15]. Given that

approximately 880,000 arriving and 1 million departing flights were delayed in 2007,

this amounts to a direct cost of $14,000 per delayed flight, as well as a negative impact

of $2,000 per delayed flight on the US GDP. On a per-passenger basis, one way to

estimate the cost of delays is through estimating a given passenger’s willingness-to-

pay (WTP) for alleviating one hour of flight delays. This approach was taken by

[149], where the authors estimated the WTP for leisure and business travelers in the

context of 2012, with further segmentation based on the income level of an individual.

Overall, as expected, the study found that business travelers were more time-sensitive,

and thus had a higher WTP than leisure travelers when it comes to flight delays. In

fact, one hour of flight delays was worth anywhere from $186 to $559 for business

travelers, whereas an equivalent hour of flight delays was worth between $107 to $340

for leisure travelers [149]. These quantifiable and nontrivial costs attributable to

flight delays further motivate the need to better understand and model the behavior

of delays within air transportation networks.

In terms of environmental impact, the additional fuel usage and resultant emis-

sions that can accompany flight delays (e.g., from aircraft waiting in taxi or runway

queues with engines on [194, 76], or airborne holding delays resulting in additional

distances flown [32]) add to the overall environmental impacts of the airline industry

[41]. In 2018, intra-North America flights accounted for approximately 136 million

metric tons of carbon dioxide (CO2) emissions, with the US ranking first in terms

of CO2 emissions by departing flights [104]. Globally, the CO2 emissions from air
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passenger transport amount to 24% of total CO2 emissions [104]; this does not be-

gin to factor in other pollutants, such as sulfur dioxide and particular matters (i.e.,

PM10 and PM2.5) [77]. Another strong motivation for better understanding aviation

delays and inefficiencies stems directly from the fact that, due to operational and

predictability reasons, short-haul flights tend to be the most susceptible to traffic

management actions [129, 175, 278]. Moreover, with short- to medium-haul routes

(i.e., routes less than 1,500 kilometers) contributing to approximately one-third of

total passenger CO2 emissions [104], any traffic management improvements can have

an out-sized impact on reducing additional environmental impacts due to operational

inefficiencies.

Finally, we have thus far ignored the cost of cancellations, even though they

constitute an important control action on the part of airlines in order to drive down

excessive delays and inject buffers into schedules at airports with demand-capacity

imbalances. Due to a wide variety of passenger compensation practices worldwide

regarding airline cancellations, we only provide cancellation cost estimates for US

carriers. The estimate of $6,000 direct cost to airlines per canceled flight in the US is

a very broad average, primarily due to different flights having different values, as well

as two broad cancellation compensation regimes: Controllable versus uncontrollable

events resulting in the flight cancellation. The canonical practice for US carriers is

to compensate for passenger accommodations such as hotels and meals only when

flight cancellations occur due to events within an airline’s control, examples of which

fall under the “air carrier” category as specified in Section 1.2. Thus, for these

airline-controllable events, the per-flight cancellation costs range from $2,700 for a

flight operated by regional carriers to $42,900 for a long-haul flight operated on a

wide-body aircraft. This is in comparison to per-flight cancellation costs of $1,000

to $13,000 for a canceled flight with similar characteristics, but in the case of an

uncontrollable event such as extreme weather [180, 94].

The remainder of this chapter will first focus on network structures, attributes,

and characteristics that appear in the air transportation system. In particular, we

discuss the complications these factors bring into any analysis of the system, and
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the accompanying explosion of data being generated and collected from the system.

We then move to an introduction and motivation of the central research questions

addressed in this thesis, and conclude with an outline of how the remainder of the

thesis is organized.

1.4 Networks and data: A double-edged sword

Along with the set of complexities that arise from network interactions, the aviation

industry and its constituent subsystems also operate under increasingly rapid rates

of innovation, particularly when it comes to the acquisition, storage, and processing

of data. The former complicate nuanced and rigorous analyses of the system, but the

latter provides the foundations for rich, data-driven models. In this section, we first

provide an overview of six complicating factors found within the air transportation

network (Section 1.4.1). Our contributions in this thesis revolve around models that

incorporate various elements of these aforementioned factors. We then reflect on the

so-called “Big Data” advancements in aviation (Section 1.4.2).

1.4.1 Network interactions and complexity in air transporta-

tion systems

Agent interactions and shared resources. Even if we were to consider a subset

of the possible agents or agents-like factors within the aviation system, there already

exists many multi-way interactions between agents. This is particularly noticeable

when agents interact in conjunction with shared, possibly constrained resources. For

example, gates at an airport can be considered as resources that are shared by agents

(aircraft), heterogeneous (different gates belong to different airlines, some gates are

owned by the airport; gates also have aircraft equipment constraints), and constrained

(there is a minimum ground turnaround time for aircraft occupying a gate) [109]. A

non-exhaustive list of other shared infrastructure resources include airspace sectors,

navigational fixes, runways, taxiways, and aprons [80]. The aircraft itself also falls
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within many of these categorizations, given the fact that one aircraft typically flies

multiple trips per day – the average departures per aircraft day across all US airlines

in 2019 is slightly under 4 departures, with certain LCCs like Southwest Airlines

(WN) operating an average of more than 5 departures per aircraft day [182].

Exogenous inputs. We could also observe the aviation system as a dynamical

system that is constantly impacted by exogenous inputs from a variety of disparate

sources. Take, for example, a relatively common scenario of convective weather re-

sulting in irregular operations (IROPs) within an air transportation network. The

convective weather impact itself can be thought of as – and often modeled as – an

exogenous input with some degree of randomness [107]. In response to the effects and

aftershocks – typically an induced mismatch between demand and capacity – of this

initial disruption, a centralized authority such as an air navigation service provider

(ANSP) may initiate TMIs in an attempt to correct demand-capacity imbalances

within the system. As we have hinted at earlier, even if such corrective actions occur

at a relatively localized scale, due to the networked nature of the system, it has the

potential to cascade and propagate throughout the system. Finally, there is another

class of exogenous inputs that act on individual sub-networks embedded within the

larger network: Airline-specific actions. These airline-specific actions could range

from the cancellation of a few flights, to requesting a ground stop for all flight op-

erations at a certain airport [128, 82]. All of these exogenous inputs mix with the

already-complex natural evolution of the aviation system state to eventually bring

the system back to some nominal condition, i.e., the recovery phase after an initial

disruption phase.

Nodal heterogeneity. One complicating feature that exists within air transporta-

tion networks, particularly in the US National Airspace System (US NAS), is the

heterogeneity at airports due to different airline operating strategies. This hetero-

geneity can already be seen superficially when looking at delay causes. For example,

in 2018, late-arriving aircraft is responsible for 9.3% more delays at BOS than at
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SFO, whereas NAS-type delays affect SFO at a rate 12.7% higher than BOS [36].

This already indicates that different nodes are impacted by propagated delay versus

TMIs at different scales. One prominent example of this airport-based, or nodal (if

airports are thought of as the nodes within the network) heterogeneity arises from the

different hub-and-spoke architecture of US network legacy carriers (NLCs), specifi-

cally American Airlines (AA), Delta Air Lines (DL), and United Airlines (UA). Some

airport nodes are weaker hubs than others, such as JFK and LGA for AA, BOS and

SEA for DL, and LAX and IAD for UA – these weak hub nodes carried the least

number of departing seats in 2017 [202]. In Chapter 5 we will show that these weak

hub nodes often behave differently within an airline’s sub-network when it comes to

airport network delay dynamics [158] .

Another interesting node-based feature is dual- and tri-hub airports, where there

is a hub presence for multiple major airlines. Examples of these include ORD for AA

and UA, JFK for AA and DL, and LAX for all three US NLCs, along with being a

focus city for WN. We already see involvement of this particular nodal heterogeneity

in some of our analyses dealing with airline sub-networks, where disruptions in one

sub-network often leave signatures in other airline sub-networks through these shared

hubs.

Sub-network heterogeneity. An air transportation network can be thought of as

a multi-layer network, with each layer comprising of a specific airline’s sub-network.

Thus, the system can be decomposed into interacting airline sub-networks that can

be analyzed individually. These sub-networks can be quite different from each other,

driven by the fact that airlines can choose to operate by focusing more on hub-

and-spoke route structures, or incorporate more point-to-point service. Even though

the trend in the US airline industry is towards further network consolidation and

hub strengthening [227, 276], as well as the emergence of alliance-based hubs and

intercontinental hub-to-hub service, there are still airlines in the US (e.g., WN and

B6) that incorporate more point-to-point flying within their sub-networks [55]. Hence,

it is crucial to study the behavior of these individual sub-networks as well.
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Temporal and spatial variance. To throw more complications into the mix, along

with the fact that so many aspects of the aviation system is intertwined (via interac-

tions), heterogeneous, and constrained in some way, all of these factors have temporal

and spatial variations as well. The most apparent of these would be short- to long-

term temporal trends. For example, the arrival and departure demand at airports

fluctuate on an hour-to-hour basis, the ebb and flow of which is exaggerated at the

larger hub airports where airlines will typically operate banks of arrivals and de-

partures in order to facilitate connecting passengers and the possibility of aircraft

swaps in the event of irregular operations [260, 23]. In terms of spatial variation, the

physical distance between airports has its own set of implications. In many of our

correlation-based analyses, we see that, e.g., the historical delay time series at many

East Coast airports in the US are typically highly positively correlated. Such cor-

relations result from a combination of geographic proximity (e.g., the same weather

system affecting BOS will probably affect LGA as well) as well as mutual traffic flows

(e.g., AA and DL shuttle flights linking many East Coast hub airports). Furthermore,

the terminal airspace surrounding collocated airports within the same city, or metro-

plexes, presents its own set of challenges in terms of airspace complexity, geometries,

and shared arrival and departure resources [162, 191].

Variance of stakeholder goals. The final complicating factor within the aviation

system that we will take into consideration in this thesis is the variety of stakehold-

ers operating within the aviation system. The goals of one stakeholder might be

orthogonal to, or even detrimental to the goals of another stakeholder. As we have

foreshadowed in the discussion regarding the diversity of exogenous inputs that in-

fluence the aviation system on a regular basis, some of the basic stakeholders include

the passengers themselves, the airlines, the airports, as well as ANSPs such as the

FAA in the US. Of course, even within one of these stakeholder groups, there are

further, “sub”-stakeholders (take, for example, the variety of airport-specific stake-

holders [234, 223, 165, 81]), but many of our analyses will target comparing results

between one stakeholder group at-large versus another. For instance, in this thesis
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we will oftentimes give airline-specific results in addition to system-wide results, then

compare and contrast between the two.

1.4.2 An abundance of data from air transportation systems

On the other hand, the air transportation system is becoming more data-driven

overall. From the microscale-level (flight-specific, passenger-specific, etc.) to the

mesoscale- (airport-specific, airline-specific, etc.) and macroscale-level (US National

Airspace, transatlantic and transpacific networks, etc.), advancements in data col-

lection, storage, and distribution capabilities dominate the current conversation in

aviation. One prominent example is the recent System Wide Information Manage-

ment (SWIM) initiative by the FAA [79]. A single day of air traffic operations within

the US National Airspace System (NAS) generates (1) 𝑂(104) reports pertaining to

arrival and departure information, boundary crossing updates, and oceanic reports,

planning positions, and actual positions; (2) 𝑂(105) records of flight management in-

formation, flight plan-specific data, aircraft specifications, and flight route data; and

(3) more than 𝑂(106) observations relating to flight tracks, airways, centers, fixes,

sectors, and waypoints [10]. In short, we argue that aviation, along with aviation re-

search, is entering an era of Big Data. This current phase of development for aviation

can be characterized by the applicability and usage of data-driven models to analyze,

control, optimize, and predict aviation processes [163].

Figure 1-5 illustrates that even in the limited example of weather-related impacts

on the NAS, the complexity of the system is evident. The forward layers in Figure 1-5

that describe various NAS airspace partitions are highly organized and structured,

while the last layer containing raw meteorological data and weather radar returns

is comparatively less structured, but with higher data dimensions and quantities.

Taking the layers described in Figure 1-5 into account with other features within

the aviation network (airports as nodes, air routes as edges, origin-destination de-

lays, ground stops, Ground Delay Programs, Airspace Flow Programs, etc.), a highly

complex and high-dimensional network begins to surface.
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Figure 1-5: The architectural layers of the NAS with respect to convective weather;
each layer provides its own set of data that are closely related to data from another
layer. Reprinted from [164].

1.4.3 Data-driven aviation research

We recently conducted a large-scale literature survey of data-driven aviation research

in [163]; two important metrics we used to explore the quality of data usage and diver-

sity in the 200 reviewed aviation research articles are (1) measuring the distribution

of articles that fall into each of 16 data categories, and (2) measuring the distribution

of data categories per article. The former provides a sense of data diversity in the

field of aviation research as a whole, whereas the latter details the amount of data

diversity contained within each article. Figures 1-6 and 1-7 give the distribution of

articles that fall into each of the 16 data categories, and data categories per article,

respectively.

In terms of data diversity, we see that all 16 data categories are represented in our

collection of 200 data-driven aviation research articles, with certain categories being

more prevalent than others. We also see high levels of data diversity on an article-

specific level – 76% of the articles (152 articles out of 200) were classified as using

aviation data sourced from two or more data categories, with 45 articles out of the

152 articles (22.5% of the original 200 articles) using four or more data categories.
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Figure 1-6: Data categories represented by the 200 reviewed aviation research articles.
Reprinted from [163].

Figure 1-7: Distribution of data categories among all 200 reviewed aviation research
articles. Reprinted from [163].
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This indicates not only a proliferation of aviation data, but also a multidisciplinary

approach to compiling and utilizing the data.

1.5 Motivating the central research problems

We have built up the aviation system as a prototypical example of a heavily-utilized

piece of networked infrastructure, and one that is steadily becoming more connected

and easier to access. We then introduced the variety of inefficiencies – with real con-

sequences that are quantifiable financially and environmentally – within the system,

as well as the complexities (interactions, heterogeneity, etc.) that complicate efforts

to analyze and improve the system. However, we note that a parallel trend of increas-

ing data acquisition, storage, and usage indicates that the field is ripe for advanced,

data-driven models. In this section, we provide a high-level summary of the thesis

contributions, organized by the different research problems that Chapter 4 through

Chapter 7 will address.

1.5.1 Spatial distribution of airspace disruptions

Intuitively, the spatial distribution of airport delays describe where in the system the

delay is located. This is distinctly different from observing the impact, or magnitude

of the delays within the network. For example, the total delay of 𝐷tot minutes within

a system of 𝑁 airports could be exactly the same, but distributed in completely

different ways: One extreme would be equal amounts of delay (𝐷tot/𝑁 minutes) at

all airports, whereas another extreme would be zero delay at all but one airport, where

that one airport has 𝐷tot minutes of delay. The metric of total delay, or total system

impact, or even aggregated delay in a small subset of airports (e.g., northeast US

airports) have been the focus of air traffic management and previous network models.

As our example with 𝑁 airports shows, this total delay metric is not sufficient in

terms of differentiating between the two extreme scenarios. Furthermore, it is clear

that traffic flow managers would handle the first extreme scenario very differently

than the second extreme scenario. Of course, even though such idealistic extremes
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may not occur in practice, scenarios that lie between the two extremes do. These

scenarios, all with the same, or approximately the same, total delay, would not be

identifiable through classical total impact-based metrics for delay.

We depict an illustrative example of the spatial variation, or spatial distribution of

airport delays in Figure 1-8. Specifically, in this illustration, both (a) and (b) scenarios

could have the same total delay, but in scenario (a), airport A1 is severely congested,

whereas in scenario (b), all airports have equal levels of moderate congestion. In

Chapter 4, we have focused significant efforts into the problem of identifying whether

or not a given spatial distribution of airport delays is unexpected. To do so, we have

defined new notions of signal outliers on graphs, as well as how to compute analytical

and empirical bounds to evaluate outlier statuses [100]. With this new framework

of outlier detection, which we formalized specifically for airport delays in [161], we

have analyzed the airport delay networks of the Core 30 US airports [157, 158],

including an airline-specific analysis [158]. These analyses have led to new insights

into the behavior of delay – spatially and temporally – in the US NAS. We have

also demonstrated the generalizability of this framework to other national airspace

by performing a comparative analysis of the US and Chinese airspace in [161], as well

as a deep dive into Chinese airline-specific sub-networks [160].

A1
A2

A3

A4

A5

A1
A2

A3

A4

A5

(a) (b)

Figure 1-8: An illustration of the spatial variance and distribution of airport delays;
note that the total delay in both (a) and (b) could be identical, but (a) has an
extremely non-uniform delay distribution, with airport A1 incurring severe delays.
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1.5.2 Airport delays and graph signal processing

Our primary focus in Chapter 4 is to develop the definitions and tools to be able to

distinguish between, e.g., Figure 1-8(a) from its counterpart in Figure 1-8(b). The

methods explicated in Chapter 4 would label the delay distribution in Figure 1-8(a)

as less smooth compared to the distribution in Figure 1-8. Visually, we see that this

is due to the large delay signal at airport A1, even though “closely related” airports

A2 and A5 (by way of edges existing between A1 and A2 as well as A1 and A5)

have comparatively smaller delay signals. However, the tools from Chapter 4 do not

identify which airport, or groups of airports, whose delays resulted in a particular

delay distribution being characterized as less smooth with respect to the underlying

graph.

This question of identifying the specific airport, or groups of airports, whose de-

lays contribute to an uneven (or less smooth) delay distribution motivates Chapter

5, which closely complements the spatial distribution outlier detection tools that

are the focus of Chapter 4. In particular, we will use methods from graph signal

processing, which are analogous to Fourier transforms, except that the domains of in-

terest upon which signals are supported are non-Euclidean manifolds, e.g., undirected

graphs. The so-called graph Fourier transforms, whose theory was developed in sem-

inal papers such as [230, 231, 232], allow for the decomposition of graph-supported

signals into linear combinations of the eigenvectors of graph shift operators such as

the combinatorial graph Laplacian matrix. In terms of airport delays supported on

nodes representing airports, with edges denoting some relation between airport delays

(e.g., the historical correlations between pairs of airports), the eigenvectors can be

viewed as “typically encountered” delay modes. For example, one such eigenvector

(“𝑣energetic”) could describe the circumstance where airports A1 and A2 have increased

delays in comparison to A3, A4, and A5, whereas another eigenvector describes the

circumstance where delays at all airports A1 through A5 are equal (“𝑣constant”). A de-

composition of Figure 1-8(a) would see increased contributions from 𝑣energetic, whereas

a decomposition of Figure 1-8(b) would see increased contributions from 𝑣constant.
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We will formalize all of these notions that we have talked loosely about (e.g., graph

Fourier transforms, eigenvector decomposition, energetic versus constant eigenvectors,

graph frequencies, etc.) in Chapter 4 and Chapter 5. The focus of Chapter 5 in

particular will be on applications to the US airspace, as well as airline-specific sub-

network decomposition analyses. We also study the airport network of China, its

delays, and compare them through these spectral lenses to the US airport network

and airspace. Finally, we make explicit the intimate links between Chapter 4 and

Chapter 5 in Section 5.6, where we tie together the outlier detection framework with

airport delay eigenvector modes.

1.5.3 Low-dimensional models for airspace disruptions and

recoveries

We now discuss and motivate two questions that we will broadly address in Chapter

6. The first relates to defining and formalizing periods of disruptions and recoveries

comprehensively. A simple way to do so may be to consider the total delay as a

measure of system disruptions, and then define any time interval in which delays

exceed some threshold as a disrupted period. However, as emphasized in Chapter

4, this approach is unable to capture spatial information regarding the geographical

extent of disruptions. Suppose only one strongly-connected airport – and no other

airport in the system – is experiencing high delays. The total delay metric may not

classify this as a disruption, even though this scenario is spatially unexpected, and

may indicate an impending propagation of delays. Similar approaches that monitor

temporal trends in delays at specific airports or origin-destination (OD) pairs are

also unable to account for network connectivity-based information. Finally, in the

context of extreme events such as hurricanes and nor’easters, the start of an event

may not always coincide with the start of the system disruption. For example, airlines

may proactively delay or cancel flights before the event, in which case the disruption

precedes the event. On the other hand, airlines may opt to continue operations

that progressively deteriorate, in which case the opposite order occurs. Hence, we
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address this question by providing a comprehensive method (i.e., the disruption-

recovery trajectory framework) in Chapter 6 to identify both disruptions and the

subsequent recovery phases, based on the magnitude and spatial distribution of delays.

The second motivation relates to understanding broader trends and patterns in

historical disruption-recovery cycles in order to improve system predictability and

resilience. As discussed earlier, a significant challenge to analyzing past disruptions

and recoveries is their inherently large variability. Thus, seemingly simple questions –

what is the typical duration of disruptions due to specific off-nominal events; do two

different events with similar delay impacts recover in different ways; is the recovery

phase longer than the disruption phase; can we predict the onset and duration of the

recovery phase; and so on – become very difficult to answer. Addressing these ques-

tions requires not only precise definitions for the onset and progression of disruptions

and recoveries, but also the identification of “typical” or “representative” patterns

that disruption-recovery cycles tend to follow.

Finally, the need to accurately define, quantify, and record a disruption within

the air transportation system also plays an crucial role when it comes to predictive

models for flight delays and disruptions. Since the training process for these predictive

models is critical to their accuracy and performance, a natural question is how to

generate the required training data. For instance, if a learning-based model seeks

to predict the length of a disruption, it first requires historical observations of such

a disruption. These are some of the central background motivating factors for the

work we pursue in Chapter 6, wherein we formalize the notion of disruption-recovery

trajectories (DRTs) for airline operations within a network of airports. These DRTs

use an intuitive representation of the network state as a trajectory between discrete

regions, capturing information regarding both the magnitude and spatial impact of

air transportation system disruptions.
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1.5.4 Towards hierarchical traffic flow management

Practical motivation: A new feedback in the air traffic flow management

process

The current structure of the air traffic management system in the US can be consid-

ered to be essentially linear, starting with strategic-level airline-specific flight plan-

ning to real-time tactical decisions between the pilots and air traffic controllers. Re-

planning given feedback from the current state of the system occurs at various gran-

ularities and timescales, but can be particularly ad hoc at the flow planning level.

During periods of low activity and/or nominal system performance, there may not be

a need to adjust flow planning at a national level. On the other hand, during periods

where capacity constraints throughout the system are constantly shifting (e.g., per-

haps due to convective activities), it may be necessary to re-plan and adjust traffic

management initiatives multiple times within a short time frame.

From a system synthesis perspective, the US National Airspace System (NAS)

could be viewed as multiple feedback systems taking inputs from one level up, e.g.,

facility-specific traffic controllers from facility-specific traffic planners, who receive

flow rates from individual traffic management units, and so on. Indeed, this model

predictive approach has been used in previous research to model individual blocks

of the air traffic flow management problem [253, 181, 45, 9]. Analogous to how the

actual air traffic management system functions with multiple feedback at multiple

granularities, these past models also work at different scopes, ranging from modeling

individual agents to entire bundles of traffic flows. This is the context within which

the work in Chapter 7 best fits: Proposing and describing a new way to model and

influence system behavior. Specifically, the hierarchical approach proceeds as follows:

Periodically observe the end product of air traffic management (i.e., the delays within

the system, or another near-real time measure of system performance), decide whether

or not there is a more desirable network performance goal (i.e., are delays becoming

increasingly worse at particular airports, and where, if given idealistic circumstances,

would you like to shift them), then leverage a model of the system plus an optimization
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routine to construct a target trajectory for your system (i.e., this is how we want our

system to perform).

Up to this point is where we depart slightly from the classical workflow of model

predictive control: We do not directly suggest control inputs for the system, as this

is unrealistic given the scope we are working with (i.e., you cannot just “suggest”

for LGA to dissipate 300 minutes worth of delays) as well as the system we are

working with (i.e., there is no direct nor easy translation between whatever control

action is proposed and an air traffic flow management decision, although ongoing

work in [49] links a high-level planner and a low-level controller together within this

exact hierarchical control framework). Instead, we accept the target trajectory as

a performance upper bound for an ideal system, suggest constraints on how much

delays can accrue at an airport, and feed this into a traffic flow management problem

(TFMP) [28] or a multi-airport ground holding problem (MAGHP) formulation [220,

8]. For the majority of Chapter 7, we do not focus on the problem of integration (i.e.,

the ongoing work in [49]), but instead on the problem of generating and characterizing

the high-level model and system trajectory.

Theoretical motivation: An approximate network control strategy

Many systems in the transportation, energy, robotics, and communication network

domains have state spaces that are extremely high-dimensional and contain intricate

dependencies. In other words, the system state exists in an 𝑁 -dimensional vector

space x ∈ R𝑁×𝑁 with 𝑁 being large, in addition to certain dependence structures be-

tween different components. Such large-scale networked systems, where 𝑁 represents

the number of nodes in the system, are naturally captured using high-dimensional

state space representations, where each element of the state vector denotes the signal

generated at a particular node.

Systems with high-dimensional state spaces have a few unique challenges asso-

ciated with them. Firstly, it is difficult to develop accurate, high-fidelity models

for such large-scale complex systems, with no well-understood physical mechanisms

governing system interactions. Furthermore, these systems typically operate under

45



noisy conditions, with temporally-dependent dynamics. Secondly, owing to the lack

of reliable models, predicting the future state of the system is challenging, and often

results in the use of non-interpretable black box models. Lastly, it may not be prac-

tically feasible to control each element of the system. System operators may only be

able to prescribe high-level requirements, or set system performance targets in some

lower-dimensional projection of the system state.

Motivated by the practical problem of designing airport network delay redistri-

bution strategies (e.g., the hierarchical framework we laid out in Section 1.5.4), we

leverage an approximate projection-based network control framework to analyze and

control a high-dimensional networked system such that performance targets in a low-

dimensional projected space are satisfied. Note that in cases where the system dy-

namics are well-known and the performance requirements are of certain parametric

forms (e.g., x⊤𝑄x quadratic costs), the problem is analytically solvable and well-

studied (e.g., through LQR and LQG controllers). However, our focus is on situa-

tions in which the lack of an accurate model is coupled with low-dimensional perfor-

mance measures. The task of prescribing control actions becomes ambiguous when

the dynamics and control costs are unclear. Furthermore, if the performance target is

ℎ(x) ∈ ℱ , where ℱ is some feasible set, then the optimization problem is significantly

more challenging, and often analytically intractable. In Chapter 7, we investigate one

way to design reasonable control strategies for a high-dimensional, heterogeneous sys-

tem in the absence of a good model, given performance metrics that are defined on a

lower-dimensional projection of the state space.

1.6 Outline of thesis structure

Chapter 2 and Chapter 3 bind the entire thesis together, collating the literature

reviews for, and contributions of, every chapter that follows. Specifically, Chapter

2 contains non-exhaustive surveys of relevant past research for Chapter 4 through

Chapter 7. With a review of pertinent previous literature in hand, we state the

contributions of Chapter 4 through Chapter 7 in Chapter 3.
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We begin in Chapter 4, where we examine graph signal outliers in the context of

spatial airport delay distributions. Chapter 4 is closely complemented by Chapter 5,

in which we address the successive question of identifying airports that contribute to

certain spatial delay distributions using graph signal processing. With the framework

of examining airport delays through the lenses of signals on graphs, we propose low-

dimensional models for disruptions and recoveries within airport networks in Chapter

6, as well as approximate network delay control models in Chapter 7. We conclude in

Chapter 8 by summarizing the work done in this thesis, and offering some directions

for future work.

We note that all proofs to theorems, propositions, as well as associated corollaries

and lemmas can be found in Appendix A. Supplementary figures and tables can be

found in Appendix B and Appendix C, respectively.
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Chapter 2

Literature Review

For each of the research areas introduced in Section 1.5, we survey a range of per-

tinent past research literature to better contextualize the work and contributions of

this thesis. Each section of this chapter is dedicated to a specific research area chap-

ter: Section 2.1 reviews literature related to spectral graph theory, signal processing

on non-Euclidean manifolds, outlier detection methods, and airport network delay

dynamics, all of which are relevant for Chapters 4 and 5. We then move to Section

2.2, wherein we summarize past work related to graph processes, identification of avi-

ation disruptions, and predictive models for air transportation on-time performance

and operations, e.g., predicting airport capacities and configurations; this literature

review sets up the work in Chapter 6. To prepare for our work on approximate

network delay control models in Chapter 7, in Section 2.3 we review past literature

on air traffic flow management models at different scopes, standard airport ground

holding models, and ways to sample representative airport delay distributions. Since

this chapter serves as the centralized literature review portion of the thesis, the focus

in Chapters 4 through 7 will be on our methods, implementation details, results, and

discussions.
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2.1 Graph signal processing, spectral analysis, and

airport network dynamics

2.1.1 Spectral graph theory, graph signal processing, and

wavelets

We provide a non-exhaustive overview of literature related to the field of discrete sig-

nal processing over graphs, or graph signal processing (GSP) for short. One founda-

tional element leveraged by GSP is the connection between graphs, signals supported

on graphs, and the matrices that characterize the graph (or more generally, so-called

graph shift operators). The graph Laplacian, along with other related matrices such

as the adjacency and the degree matrix, is an example of a matrix that represents

an underlying graph. Specifically, the study of the relationship between the structure

of a graph and the eigenvectors and eigenvalues of the graph Laplacian is known as

spectral graph theory [51]. GSP is one application of a subset of ideas and notions

stemming from spectral graph theory: A recent example of another practical applica-

tion is the use of the Szemerédi regularity lemma for separating noise from important

structural information in large graphs [88].

Central to our methods is the GSP framework [230, 244, 231, 232, 245], which

extends the notion of a Fourier decomposition to a graph setting, and provides a

toolkit to analyze signals on graphs. To demonstrate not only the applicability of

the GSP framework but also the breadth of its applications, we provide a sampling

of research literature whose methodology hinges on GSP and performing analyses

within the graph Fourier domain. GSP has proved particularly useful in the analysis

of high-dimensional medical data; GSP and graph filters have been used for analyzing

human brain imaging data [115], and to better understand networked interactions in

the brain when affected by neurodegenerative diseases [114]. Other settings include

abstracting fMRI data of brain activation as a graph, and performing wavelet-based

transforms on the fMRI graph in order to capture interacting patterns of brain activity

[21]. A similar study in [116] uses GSP and fMRI brain signal data to characterize
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task learning in humans. Finally, along the same lines of detecting outliers in airport

delay distributions on networks, [258] analyzed atrial epicardial electrograms as graph-

supported signals, and examined its temporal as well as spatial variations in the graph

Fourier domain.

One of the earliest applications of GSP was for image processing and other com-

puter vision tasks, with newer studies focusing on how GSP can shed light on machine

learning and neural networks. Specifically, a regularization of the graph Laplacian

was explored as a prior for image denoising tasks [206], and in general, GSP has been

shown to be quite effective at image compression, restoration, filtering, as well as

image segmentation [47]. GSP has also been used to derive insights into the interme-

diary stages of deep neural networks [105], often described as a “black box” model.

Given the natural occurrence of structured as well as ad hoc networks in settings

such as wireless sensor systems, power distribution systems, and smart grids, GSP

has emerged as a powerful new tool for analyses. [70] studies the usage of a GSP-

based framework for detecting anomalies in wireless sensor networks, demonstrating

advantages over traditional PCA- and clustering-based anomaly detection methods.

Similarly, anomalies within smart grid systems that might be caused by malicious

activities are analyzed by [64] using the spectrum of a graph signal. The problem of

designing energy-efficient configurations within wireless sensor networks is also given

a GSP-flavored solution in [134]. The computationally complex problem of monitor-

ing individual “smart” appliances connected to an electrical grid can also be more

efficiently tackled using GSP; specifically [111] leverages the total variation metric of

a graph signal, which we will also exploit for airport delay signal outlier detection

purposes.

The final area of past research we will survey is closely related to applications of

GSP in analyzing air transportation networks. GSP and graph wavelets have been

used in a wide range of applications within civil and environmental engineering. Air

pollution data from major metropolitan cities were analyzed in [126] using graph

signal representations and GSP. More related to transit and mobility, spectral graph

wavelets are leveraged in [62] to infer people’s mobility patterns with only privacy-
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retaining aggregate information. Spectral methods have been used to study surface

traffic congestion [57, 184] as well as air traffic flows in Air Route Traffic Control

Centers (ARTCCs) [65, 66]. In particular, [65, 66] note that spectral methods for

air traffic flow management often produce results that are not clearly interpretable;

our approach of combining GSP with an outlier detection framework overcomes this

limitation.

2.1.2 Modeling the air transportation system and aviation

delay dynamics

There has been a wide range of previous research focused on modeling and pre-

dicting delays in the air transportation network. The diversity of techniques re-

flects the complexity of the system at hand. Starting at the airport itself, aircraft

congestion on the surface resulting in taxi-in and taxi-out delays has been modeled

[246, 247, 110], along with sophisticated tools to optimize and control airport sur-

face operations [248, 136, 11]. Extending just past the surface and to the terminal

airspace surrounding a major airport, this busy airspace can be broadly divided into

the terminal departure airspace and the terminal arrival airspace. Both of these sub-

systems have been examined extensively in terms of delays and flight inefficiencies

[201, 167, 165, 271]. Zooming out to the perspective of entire air transportation net-

works – and into settings more similar to that of this thesis – several previous works

have focused on modeling the dynamics of flight delays within airport networks, using

approaches ranging from queuing theory [212, 213], network models [98, 99], discrete

event simulators [4], contagion-based susceptible-infected-susceptible (SIS) models

[277], agent-based simulations [216], and machine learning [143, 284, 289]. Staying

with the larger, system-wide perspective, another large body of previous literature

deals with modeling the underlying distribution of airport and flight delays, along

with any secondary (or reactionary) delays that are generated. A sampling of some

of these approaches include analytical econometric models that first separates primary

versus secondary delays, then tries to determine the independent variables which ini-
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tiate and perpetuates secondary, propagated delays [138, 132]. Other studies directly

attempt to faithfully recreate the probability distribution of incurred delays, either

in an aggregate sense [266, 215] or during specific operational segments, e.g., during

the en route phase of flight [22]. While the new insights developed by these prior

work help explain, for example, why one might observe certain historical correlations

between delays at different airports, they do not characterize the spatial behavior of

delay across a network in a succinct and interpretable manner.

Prior efforts have also considered grouping weather phenomena in the US National

Airspace System (NAS) [233, 103, 188], clustering similar airport arrival capacity

profiles [168, 40] and traffic management initiatives such as Ground Delay Programs

(GDPs) [147, 102, 218], identifying anomalous aircraft trajectories [241, 152, 153],

and more pertinently, clustering delay networks [217, 101] and irregular operations

scenarios [140]. A more recent line of work focuses on network topology, connectivity,

and spectral properties such as eigencentrality: A comprehensive overview of this line

of work is given in [286]. For example, [219] focuses on the connectivity of airports

in terms of non-stop flights. Studies have also analyzed the topology of various air

transportation networks to identify key nodes [67, 174, 106, 142, 268] and edges [68],

evaluate network stability [287], and characterize the role of airspace structure on

flight conflicts [288]. However, besides the aforementioned fact that these studies still

only consider the magnitude, and not the spatial distribution, of disruptions or delays,

there are two additional common limitations: Typically, these post-hoc, network and

complexity analyses do not allow for tactical, hour-by-hour insights, whereas we are

able to do so by adjusting the temporal scale of our graph signals. Secondly, these

previous studies typically examine, and provide insights into, only particular sub-

components of the system such as a specific airport, a small group of airports, or

individual flight trajectories.

2.1.3 Outlier detection methods

The identification of unexpected spatial delay distributions is related to the broader

problem of outlier detection in multivariate data sets. A common approach to outlier
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detection in such settings involves clustering, where data points that are far away

from clusters are labeled as outliers [108]. Another approach involves fitting known

distributions to the observed data, and using statistical tests to evaluate if the data

point falls at the tails of such distributions [221, 87]. Information-theoretic approaches

have also been considered to identify structural outliers [242, 69]. Previous literature

related to graph-based data have used information theory to identify structural fea-

tures [69] and spatial outliers [242]. One particular characteristic, Total Variation

(TV), a measure of the smoothness of a signal supported on a graph, has been used

as a feature vector for classification [5]. While the outlier detection problem has been

addressed in several contexts (for example, time-series data [262, 92]), it has received

little attention in the context of graph signals. One theory-oriented goal of the work

in Chapter 4 attempts to fill this gap by using TV as a metric to identify graph

signals with off-nominal or unexpected spatial distributions. The philosophy of our

approach is most similar to that explored by [70, 111, 258]; as an example, recall that

[64] leverages the spectrum of the graph signal to detect false data injection attacks

in a hypothetical smart grid power distribution environment.

Furthermore, while these outlier detection approaches have been successfully de-

ployed, their usefulness for our aviation-specific problem is limited since (1) they do

not identify outliers based on spatial distributions; (2) they cannot decouple the de-

tection of outliers based on magnitude versus spatial characteristics; and (3) there

may not be an interpretable explanation as to why a particular point was classified

as an outlier. In particular, the interpretability of our results is critical to provid-

ing implementable insights for a variety of stakeholders, ranging from air traffic flow

managers to airline flight dispatchers and network analysts.
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2.2 Low-dimensional representations of network

processes

The study of dynamical processes supported on graphs is a rich field, and we will

only scratch the surface with this literature review, as well as with the initial ideas

for the work in Chapter 7. In terms of well-known processes on graphs, these include

diffusion [90] and cascade [273] processes, with newfound applications in, e.g., graph

inference [209]. The relationship between the structure of the underlying graph and

the supported dynamical process was examined in [235], with recent extensions to

edge-based signal processing [237] and higher-order relationships by way of lifting

graph Laplacians to generalized Hodge Laplacians [236].

In Chapter 7, we are interested in projecting graph processes (in our case, airport

delays supported on nodes of an airport network graph) to some low-dimensional space

of on-time performance measures. In terms of dimensionality reduction and projec-

tions of graph processes, or more generally, data and signals supported on graphs, a

closely-related motivation is determining controllability of multi-agent systems that

can be abstracted as graphs. These often involve some sort of partitioning or cluster-

ing of the original graph abstraction, then proving controllability properties on this

reduced-order representation. This network controllability question was addressed for

the case of directed graphs with linear Laplacian dynamics of the form ẋ = −ℒx+𝐵u

in [3]. Stability results via block-diagonal Lyapunov functions for dissipative systems

were addressed in [122]. In [122], as well as related works in [229, 186, 187], a graph

clustering approach was often deployed, wherein the original graph abstraction is re-

duced by clustering nodes together based on some similarity measure. A modified

projection-based approach in [185] uses graph partitions to preserve the structure of

the original network, so that it is not lost during a dimensionality-reducing projec-

tion operation via, e.g., Petrov-Galerkin. Other dimensionality reduction approaches

leverage graph embeddings [280], with extensions to non-linear embedding types and

kernel-based PCA on graphs [243].

There is also a range of previous work that leverages graph signal processing
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for purposes of dimensionality reduction and projections onto a lower-dimensional

subspace. We were interested in surveying these works given the usage of measures

such as the total variation of graph signals and graph Fourier transforms in this thesis,

particularly in Chapter 4 and Chapter 5. In [224], the dominant eigenvector of the

graph Laplacian is used to learn a low-dimensional linear subspace; similar graph

filter-based dimensionality reductions were used in [193] to process neuroimaging

data sets, and extended to dimensionality reduction in an online setting [238]. Once

these reductions are achieved, the inverse problem of reconstructing signals that are

known to lie in some lower-dimensional subspace can be examined [267], with potential

improvements in the reconstruction process via the minimization of the total variation

of a graph signal [130].

2.2.1 Identification and analysis of aviation disruptions

Prior work has defined aviation system recovery in terms of flight delays, displaced or

delayed crews, and disrupted or delayed passengers [16, 54]. However, these recovery

definitions and strategies are airline-specific and of limited use in defining and mea-

suring system-wide characteristics. We expand on this line of work by incorporating

system-wide spatio-temporal information, allowing us to construct our comprehensive

definitions of disruptions and recoveries in Chapter 6. Analyzing disruptions and

recoveries in a networked system is a growing field of study, and is closely related

to understanding system resilience. Significant prior work has focused on developing

models for such systems, and then analyzing them theoretically or through simu-

lations [189, 127]. In [53], a system-level analysis was performed to model different

types of synthetic disruptions and recoveries for simplified network models; they found

that in simple aviation networks, there was asymmetry in the disruption and recov-

ery timescales. Our work in Chapter 6 complements this literature by developing a

framework that enables a data-driven analysis of historical disruption-recovery cycles.

Broadly, previous work related to analyzing disruptions in the air transportation

network focused on aspects such as identifying common patterns, examining the im-

pact of singular irregular operations (IROPs) events, or computing new performance
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measures. In terms of extracting common patterns or trends, clustering-based tech-

niques have been used to identify time periods with similar weather conditions and

traffic management initiatives (TMIs) [102, 239, 101]. More recently, [140] applies

𝑘-means clustering directly to segment IROPs events of similar duration and sever-

ity, but do not address the initial identification problem. On the other hand, in [1]

and [255], the authors pursue similar motivations as ours in Chapter 6 with regards

to identifying sequences of disruptions, but the sequences are either restricted to be

periodic [1], or the criteria for determining what is a disruption sequence need to set

with manual heuristics [255]. Furthermore, neither works explicitly take into account

the underlying network connectivity [222, 158]: We apply the models and results from

Chapter 4 and Chapter 5 to integrate information regarding the underlying network.

We also point out previous research that seeks to identify more macro-level precur-

sors of flight delays and disruptions, e.g., airline capacity decisions and jet fuel prices

[183], as well as micro-level issues such as specific sub-groups of “deviant” flights

[211], how flights operated by the same aircraft might proactively recover from an ear-

lier disruption [2], and individual one-off disruption events [226, 177, 205, 225, 141].

However, micro-level analyses like the one in [2] often require detailed, potentially

proprietary information such as crew and flight schedules. Furthermore, examining

individual events, or specific tactical disruption management strategies [256] after

disruptive events, provide useful case studies, but not a generalizable method for

identifying future aviation disruptions. In summary, there remains a lack of a formal

framework for defining disruptions and recoveries in networked systems, a gap that

we address in Chapter 6.

2.2.2 Predictive models in air traffic management

We focus the remainder of this literature review section on a variety of predictive

models in air transportation research. In particular, we are interested in models

that map predictors (e.g., weather, time-of-day, etc.) to various on-time performance

indicators. This non-exhaustive review of predictive models in aviation serves two

purposes: First, in surveying this wide variety of predictive models, we emphasize that
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any predictive model for on-time performance requires a baseline definition of what

a disruption and recovery within an airport network is in order to be appropriately

trained. Formalizing such a definition is a central motivation and contribution of

Chapter 6. Second, this literature review subsection provides context for ongoing and

future work related to predictive models of on-time performance and airline IROPs,

further discussed in Section 6.9.

Since imbalances between system capacity and demand drive deteriorating on-

time performance and flight delays, much attention has been given to predicting

arrival capacities at airports, i.e., Airport Arrival Rates (AARs) [270, 56, 192, 150,

291], as well as departure-side activities such as the turn-time of a flight [292]. The

flight delay and cancellation prediction problem has been studied from the demand

side as well [148]. Another prediction target for researchers has been the TMIs,

such as Ground Delay Programs (GDPs), that are activated once demand-capacity

imbalances occur [170, 74]. Finally, with the appropriate data fidelity, previous works

also examine predictions based on aircraft traffic flows [191], aircraft trajectories

within the terminal airspace or terminal maneuvering area [265, 190], individual flight

reroutes [75], as well as aircraft surface taxi times [13, 61, 112] and en route flight times

[290]. For these wide-ranging prediction tasks, it is oftentimes useful to distinguish

between time periods when the air transportation system is known to be disrupted,

versus time periods when the system is operating nominally.

In terms of some methods used to map between predictors and predicted values,

a popular approach is clustering-based techniques, combined with a variety of re-

gression models. These types of methods have been used for predicting flight delays

at an origin-destination level [217, 95], at the level of individual flights [50] or air-

ports [239], as well as on-time performance within the aviation system more generally

[261, 46, 73]. Furthermore, deep learning-based models such as deep neural networks

and deep belief networks [259, 284], autoencoder [283], long short-term memory re-

current neural networks (LSTM RNNs) [143, 265], and reinforcement learning-based

approaches [13, 112] have also been deployed, generally trading off interpretability

for improvements in predictive accuracy. However, we will discuss using more inter-
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pretable multi-dimensional kernel regression-based methods, in addition to learning-

based approaches such as LSTM RNNs, in Section 6.9 to address prediction problems

that naturally arise from our disruption-recovery trajectory (DRT) setting formal-

ized in Chapter 6. For example, these problems include predicting the trend, e.g.,

increasing versus decreasing delays, of various performance measures for an airline’s

network in the next hour, and predicting whether or not an airline’s network is about

to become disrupted.

2.3 System models and traffic flow management

2.3.1 System modeling and copula distributions

High-dimensional, potentially interconnected systems are difficult to accurately model

and control. The task of system identification examines developing system models

based on measurements of input and output signals from the system in question [249,

171]. One difficulty in applying these system identification methods to our airport

delay redistribution problem is the lack of sufficient numbers of observations for the

given level of complexity, noise, and dimensionality within the system. Alternatively,

in lieu of the entire system state, we could consider a reduced-order model, i.e., a

model for a lower-dimensional representation of the system [137, 207]. The control

of systems using such reduced-order models has been widely studied, such as in the

field of computational mechanics [24, 228], as well as aforementioned literature on the

control of graph processes in Section 2.2. Although such reduced-order models could

be used in the analysis of any high-dimensional system, part of our work in Chapter

7 focuses on using an optimization formulation to map a desired control trajectory

from a low-dimensional space to a multivariate Gaussian copula approximation for

the higher-dimensional state space.

Copula distributions can be used to represent any multivariate distribution by

de-coupling dependence from marginals [250]; they have been widely-used in finance,

particularly in risk management and option pricing (see, e.g., [72, 144]). Copula-
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based models have been leveraged recently for regression estimation and inference

[200], information retrieval [71], and generating latent space models [272]. For a

comprehensive introduction to copulas, see [199]. The use of copulas for representing

and modeling the states of systems is also a more recent line of work. Methods

to explicitly construct state spaces from copulas [145] and using inversion copulas to

model parametric state space models (e.g., linear Gaussian) [251] have been explored.

2.3.2 Traffic flow management and airport ground holding

The goal of the approximate network control model we propose in Chapter 7 is to

serve as a high-level planner for NAS delay states. This high-level planner proposes an

unconstrained reference plan for NAS delays to be given to a complementary low-level

controller such as a multi-airport ground holding problem (MAGHP) model, which

then constrains the plan against a baseline flight schedule to determine ground and

airborne delay assignments. While we defer the integration of the high-level planner

and low-level controller to ongoing work in [49], since we consider modifications to

the MAGHP that investigates the ability to redistribute delays at the airport level

while maintaining a feasible schedule, we first provide a review of past work related

to the airport ground holding problem (AGHP) and the air traffic flow management

problem (ATFMP).

A comparative analysis of various MAGHP implementations, as well as simplified

instances of the ATFMP [28], in [8] observed “smoothing” effects on the input flight

schedule, a phenomenon that we will try to purposefully induce at the airport level

via delay redistribution requirements. Additionally, previous work examines traffic

management solution sensitivities with respect to factors such as ground to airborne

delay cost ratios [42] and sector utilization costs [279].

Extensions to the MAGHP include scenario-based, stochastic implementations

[220], along with inclusion of airline scheduling behaviors such as departure and ar-

rival banks [113]. More recent work addresses the question of equitable delay distri-

butions in traffic flow management; these include restrictions on allowable delays on

a flight-by-flight basis [18] (trades off aggregation versus distribution of delay), across
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airlines [26] (trades off slot swap flexibility versus satisfaction of network connectiv-

ity constraints), as well as examining trade-offs between ration-by-schedule (RBS)

deviations versus total delay [146].

A key feature of the high-level planner in Chapter 7 examines the question of

airport delay redistribution. This perspective of explicitly focusing on delay equity

at airports stands in contrast to the flight-specific [18] or airline-specific [26] perspec-

tive. We propose implementing delay redistribution requirements in two ways: (1)

Impose upper bounds on delays at individual airports within the MAGHP; (2) en-

sure “smoothness” of airport delays with respect to an underlying network structure

[100, 158] by adding penalties for uneven airport delay distributions to the objective

function. The latter approach is similar to ongoing work in [48] in terms of penalizing

specific delay characteristics in the objective function of the baseline MAGHP.
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Chapter 3

Thesis Contributions

3.1 Contributions of Chapter 4

The collection of methods we present in Chapter 4 seeks to identify outlier NAS

days containing disruptions with unexpected airport delay dynamics. We consider

multiple delay distribution characteristics during the outlier identification process,

and ensure that outliers can be interpreted in the context of NAS operations. With

this new inventory of outlier NAS days, ANSPs will be able to diversify airspace

scenario playbooks to include these rare but operationally important events. This in

turn provides a more robust set of playbooks and procedures, hereby reducing the

need for tactical re-planning. Similar benefits specific to airline sub-networks can be

derived from our airline-specific analysis. Furthermore, the methods proposed in this

chapter may be adapted and applied to a number of networked systems, including

other transportation networks, the Internet-of-Things, power systems, communication

networks, and biological systems. The major contributions of Chapter 4 are as follows:

1. We formalize notions of, and develop tools to identify, outliers in graph signals.

We show how the total variation metric can help identify graph-supported sig-

nals with an unexpected distribution across the nodes.

2. We identify, analyze, and interpret spatial delay patterns across the NAS, with

a focus on specific types of disruptions such as nor’easters, hurricanes, airport
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outages, and thunderstorms. We characterize the differences in the impact of

various types of disruptions.

3. We further categorize days in terms of the severity of delay and cancellation

impacts, and correlate these standard notions of disruptions with new spatial

metrics, i.e., total variation.

4. We examine the spatial delay dynamics of airline sub-networks with different

routing strategies (e.g., hub-and-spoke versus point-to-point), observe their in-

teractions, and compare the impacts of disruptions on these sub-networks and

the system-wide network.

The thesis work documented in Chapter 4 has been published in part in [100, 161,

160, 158].

3.2 Contributions of Chapter 5

We identify, via eigenvector modes, specific groups of airports whose delays on a par-

ticular day are unexpectedly distributed, and correlate them with known operational

disruptions. The contributions of Chapter 5 is complementary to Chapter 4: The pro-

posed methods leverage GSP to elucidate on outlier delay signals identifiable via the

collection of methods from Chapter 4. This in turn provides interpretable explana-

tions for why certain data points are classified as outliers. To showcase applicability,

we conduct four data-driven analyses focusing on: (1) The US Core 30 airport net-

work; (2) the sub-networks of four US domestic airlines; (3) the sub-networks of four

Chinese domestic airlines; and (4) differences in operational characteristics between

the US and China networks. The main findings and contributions from this part of

Chapter 5 are as follows:

1. Identifying critical subsets of airports. We find that the delay distributions at

a small set of geographically proximate US East Coast airports are indicative

of whether the system-wide delay distribution is expected or unexpected. By
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contrast, such an equivalent set of airports in China is spread out over a large

portion of the Chinese airport network.

2. Variability in spatial delay distributions. The baseline variability in terms of

spatial distribution for delays in China is higher than in the US.

3. Scale versus spatial delay distribution outliers. We see that even though the

baseline delay magnitudes are higher in China, the US experiences more outlier

days in terms of delay magnitudes. On the other hand, China experiences

more outliers in terms of spatial delay distributions, even though it has a higher

baseline level of variability in its spatial delay distribution. In terms of temporal

trends, we find significantly more outliers in winter months for both China and

the US.

4. Framework for interpreting outliers. We provide a two-step process for inter-

preting outliers that considers both the type of outlier and the operational

implications. We demonstrate this framework by analyzing specific outlier days

in China and the US. Our analysis not only identifies the specific airport delays

contributing to the outlier classification, but also corroborates findings with

operational factors.

The thesis work documented in Chapter 5 has been published in part in [100, 161,

160, 158].

3.3 Contributions of Chapter 6

Our main contributions of Chapter 6 lie in formalizing a framework for examining

disruptions and recoveries in networks, drawing from graph signal processing and

the state-space representation of dynamical systems. Specifically, we consider dis-

ruptions and recoveries not only in terms of signal magnitudes, but also their spatial

distribution and temporal evolution. Our framework is of potential use to air traffic

managers who might be interested in characterizing and improving the resilience of air
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transportation systems. Airlines and passengers may also benefit from an improved

understanding of disruptions and subsequent recoveries. Finally, our work generates

a reference data set of disruption-recovery cycles that can be used to benchmark sys-

tem recovery. With regards to the motivation for Chapter 6 and a survey of relevant

previous work in Section 2.2, the contributions of Chapter 6 are as follows:

1. We leverage techniques from graph signal processing to comprehensively define

the start, progression, and end of flight delay disruption-recovery cycles in a

network of airports. Our method not only considers the magnitude of delays,

but also their spatial distribution, their relation to historical delay patterns,

and temporal trends.

2. We identify disruption-recovery trajectories using operational data, and develop

appropriate features in order to cluster them into representative groups. One

of our key technical contributions is the choice of incorporating spectral graph-

theoretic and temporal features to describe disruptions and recoveries in airport

networks.

3. We uncover and interpret two interesting observations related to: (1) The be-

havior of disruption and recovery during off-nominal events (e.g., airport out-

ages), and (2) the temporal trends in disruption-recovery trajectories. We also

interpret representative system behaviors, extracted via clustering disruption-

recovery trajectories.

4. We refine the disruption-recovery trajectory framework, and prove structural

properties about these objects. We also provide operational interpretations for

these structural properties of interest.

5. We extend the disruption-recovery trajectory framework to flight cancellations,

and classify the interactions between delay- and cancellation-type disruption-

recovery trajectories.

The thesis work documented in Chapter 6 has been published in part in [159], and is

part of ongoing work in [156].
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3.4 Contributions of Chapter 7

Our primary methodological contribution in Chapter 7 centers on the copula-based

approximate network control framework. Given performance targets and control

requirements that lie in some lower-dimensional space spanned by predetermined,

human-interpretable performance metrics, we construct a desired system trajectory

based on goals set within the lower-dimensional space. Then, through encoding these

goals as constraints in an optimization routine, we construct the corresponding full-

dimensional state trajectory by extracting candidate states from a copula-generated

approximate state space. With regards to this approximate network control frame-

work, our contributions are three-fold:

1. We develop a method to identify a sequence of future states and associated

control actions for difficult-to-model high-dimensional systems based on perfor-

mance targets in a lower-dimensional space.

2. We demonstrate how our approach can be used to drive the evolution of airport

delays in accordance with aggregate performance targets.

3. We describe the generalizability of our framework and its relevance to networked

systems.

We then discuss controlling NAS delays with hierarchical objectives, wherein the

approximate network control model serves as a high-level planner, which is then con-

strained by a low-level controller (e.g., an implementation of the TFMP or MAGHP).

While we defer the integration step to ongoing work in [49], we detail characteristics

of the high-level planner via a case study of disruptions focused on the three major

New York City airports.

1. We show that the high-level planner is able to successfully provide potential

delay state trajectories that follow pre-specified delay redistribution and con-

servation constraints.
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2. We detail how delay absorption costs can be quantified using this approach,

where an airport with a low absorption cost is more likely to see increases in

delays post-redistribution, and vice versa.

The thesis work documented in Chapter 7 has been published in part in [155], and is

part of ongoing work in [49].
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Chapter 4

Spatial Distribution of Airspace

Disruptions

4.1 Identification and interpretation of graph sig-

nal outliers

4.1.1 Setup, notation, and definitions

Let us consider a multidimensional real signal x ∈ R𝑁×1. The 𝑁 elements of the

signal may not be independent if they are observed at interconnected elements of a

network. We can model the networked system as a graph 𝐺 = (𝑉,𝐸), where 𝑉 is

the set of |𝑉 | = 𝑁 nodes and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. We consider x to be

supported on the nodes of 𝐺; i.e., there is a mapping 𝑓 : 𝑉 → R from node 𝑖 ∈ 𝑉

to the 𝑖th element, 𝑥𝑖 ∈ R, of x. There is a weight map 𝑤 : 𝐸 → R that assigns a

weight 𝑤𝑖𝑗 to edge (𝑖, 𝑗) ∈ 𝐸. These weights can be represented using an adjacency

matrix 𝐴 ∈ S𝑁×𝑁 , where the (𝑖, 𝑗)th element is 𝐴 is set to be the weight 𝑤𝑖𝑗, i.e.,

[𝐴]𝑖𝑗 = 𝑤𝑖𝑗. We restrict ourselves to undirected graphs, where 𝑤𝑖𝑗 = 𝑤𝑗𝑖 and 𝐴 = 𝐴⊤.

This multidimensional signal x can therefore be represented by a graph signal vector

supported on the nodes of graph 𝐺.

Suppose we are given a set of 𝑀 data points, 𝒪𝑀 = {x(1), . . . ,x(𝑘), . . . ,x(𝑀)},
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where each data point is x(𝑘) =
(︁
𝑥

(𝑘)
1 , . . . , 𝑥

(𝑘)
𝑁

)︁⊤
∈ R𝑁×1. The empirical mean of

the graph signal at node 𝑖 is given by �̂�𝑖 = 1
𝑀

∑︀𝑀
𝑘=1 𝑥

(𝑘)
𝑖 , and the sample Pearson

correlation coefficient 𝑟𝑖𝑗|𝒪𝑀
on edge (𝑖, 𝑗) with respect to 𝒪𝑀 is

𝑟𝑖𝑗|𝒪𝑀
=

∑︀𝑀
𝑘=1

(︁
𝑥

(𝑘)
𝑖 − �̂�𝑖

)︁ (︁
𝑥

(𝑘)
𝑗 − �̂�𝑗

)︁
√︂∑︀𝑀

𝑘=1

(︁
𝑥

(𝑘)
𝑖 − �̂�𝑖

)︁2
√︂∑︀𝑀

𝑘=1

(︁
𝑥

(𝑘)
𝑗 − �̂�𝑗

)︁2
. (4.1)

We will primarily examine the undirected graph where we set [𝐴]𝑖𝑗 = 𝑤𝑖𝑗
Δ=

𝑟𝑖𝑗|𝒪𝑀
. Our graph can be referred to as a correlation network, since the edge weights

correspond to the correlation computed via 4.1 between the signals at two nodes.

The signals x are assumed to be realizations of a multivariate Gaussian random

variable X = (𝑋1, . . . , 𝑋𝑁)⊤ ∈ R𝑁×1, where X i.i.d.∼ 𝒩 (𝜇,Σ) with mean vector 𝜇 =

(𝜇1, . . . , 𝜇𝑁)⊤ ∈ R𝑁×1 and positive semi-definite covariance matrix Σ ∈ R𝑁×𝑁 , Σ ⪰ 0.

The correlation matrix C = [𝜌𝑖𝑗] ∈ R𝑁×𝑁 is given by:

𝜌𝑖𝑗 = E[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)]√︁
E[(𝑋𝑖 − 𝜇𝑖)2]E[(𝑋𝑗 − 𝜇𝑗)2]

. (4.2)

While the value of C for the underlying distribution of the graph signal vectors may

not be known, it can be estimated from 𝒪𝑀 since 𝑟𝑖𝑗|𝒪𝑀
is a consistent estimator of

𝜌𝑖𝑗, meaning that lim
𝑀→∞

(︁
𝑟𝑖𝑗|𝒪𝑀

)︁
= 𝜌𝑖𝑗. Consequently, 𝐴 and C are interchangeable for

our purposes. We will now define some preliminary concepts and objects from spectral

theory that we will use for setting up the graph signal outlier detection problem.

Definition 1 (Graph Laplacian) The (combinatorial) graph Laplacian L with re-

spect to a graph with adjacency matrix 𝐴 is L = 𝐷 − 𝐴, where 𝐷 = [𝑑𝑖𝑗] ∈ R𝑁×𝑁 is

the diagonal degree matrix of the graph, with 𝑑𝑖𝑖 = ∑︀𝑁
𝑗=1 𝑤𝑖𝑗.

Throughout this thesis, the graph Laplacian will be denoted by either L or ℒ, to be

consistently defined and used for each chapter. The graph Laplacian L is a real sym-

metric matrix with a full set of orthogonal eigenvectors. The normalized eigenvectors

are denoted by 𝑣𝑖 ∈ R𝑁×1, 𝑖 ∈ {1, . . . , 𝑁}, with 𝑣⊤
𝑖 𝑣𝑗 = 𝛿𝑖𝑗, where
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𝛿𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑖 = 𝑗

0, otherwise
. (4.3)

All of the eigenvalues by definition satisfy L𝑣𝑖 = 𝜆𝑖𝑣𝑖, and we will sometimes refer

to a specific eigenvalue-eigenvector pair (𝜆𝑖, 𝑣𝑖) , 𝑖 ∈ {1, . . . , 𝑁}. We sort the eigen-

values such that 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑁 . Since the graph Laplacian has row sums

of 0 (Definition 1 gives L⊤
𝑖 1 = (𝐷𝑖 − 𝐴𝑖)⊤ 1 = 𝐷⊤

𝑖 1 − 𝐴⊤
𝑖 1 = 𝑑𝑖𝑖 −

∑︀𝑁
𝑗=1 𝑤𝑖𝑗 = 0,

where L𝑖, 𝐷𝑖, and 𝐴𝑖 denote the 𝑖th row of L, 𝐷, and 𝐴, respectively), 𝑣1 = 1 is

the constant eigenvector corresponding to the eigenvalue 𝜆1 = 0. Furthermore, the

algebraic multiplicity of eigenvalues equal to 0 is the number of connected compo-

nents in the underlying graph. Thus, if the correlation network is fully connected,

then 0 = 𝜆1 < 𝜆2 ≤ · · · ≤ 𝜆𝑁 , and span ({𝑣1, . . . , 𝑣𝑁}) ∼= R𝑁×1. The set of eigen-

vectors of L forms an orthogonal basis for R𝑁×1. Thus, any vector x ∈ R𝑁×1 can be

written as a linear combination of {𝑣1, . . . , 𝑣𝑁}; i.e., there exist scalars 𝛼𝑖 such that

x = ∑︀𝑁
𝑖=1 𝛼𝑖𝑣𝑖. We can draw loose connections back to airport delay signals: Suppose

x contains delay signals for airports 𝑖 = 1, . . . , 𝑁 and {𝑣1, . . . , 𝑣𝑁} can be thought

of as a set of informative, “common” delay modes. Then, given an observation x of

delays across a network of airports, we can decompose x into modes {𝑣1, . . . , 𝑣𝑁} by

x = ∑︀𝑁
𝑖=1 𝛼𝑖𝑣𝑖, where 𝛼𝑖 can be interpreted as the “contribution” of mode 𝑣𝑖. This

begins to formalize some of the notions first mentioned in Sections 1.5.1 and 1.5.2.

We now explicate on the set of scalars {𝛼1, . . . , 𝛼𝑁} as they play a crucial role in

graph signal processing and the graph Fourier transform:

Definition 2 (Graph Fourier Transform (GFT)) The Graph Fourier Transform

(GFT) of a graph signal vector x is the set of scalars {𝛼1, . . . , 𝛼𝑁} where 𝛼𝑖 = 𝑣⊤
𝑖 x.

Recall that for Fourier transforms, a time domain signal can be decomposed into

linear combinations of sinusoidal signals. For the GFT, the eigenvectors of the graph

Laplacian are analogous to the sinusoidal signals, but supported on the nodes of a

graph. For each eigenvector-eigenvalue pair, the “graph frequency” associated with

the eigenvector is given by its eigenvalue. The contribution of each eigenvector in the
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linear combination which comprises the original graph signal is encoded via scalars

𝛼𝑖 ∈ {𝛼1, . . . , 𝛼𝑁}. Similar to how sinusoidal signals with higher frequencies are

considered to be more energetic, we can interpret an analogous notion of spectral

energies for the GFT:

Definition 3 (Spectral and total energy) The spectral energy of a graph signal

x corresponding to the 𝑖th eigenvector is 𝛼2
𝑖 , and the total energy of x is given by

‖x‖2
2 = ∑︀𝑁

𝑖=1 𝛼
2
𝑖 .

If we collect the scalars {𝛼1, . . . , 𝛼𝑁} from Definition 2 into a vector according to

their indices 𝛼𝛼𝛼 = (𝛼1, . . . , 𝛼𝑁)⊤, and collect the set of normalized Laplacian eigenvec-

tors column-wise to form the 𝑁 ×𝑁 matrix

V =

⎡⎢⎢⎢⎢⎢⎣
| |

𝑣1 · · · 𝑣𝑁

| |

⎤⎥⎥⎥⎥⎥⎦ ,

since the set of normalized Laplacian eigenvectors forms an orthonormal basis for

R𝑁×1, we have that V is Hermitian, and VV⊤ = 𝐼𝑁 , where 𝐼𝑁 is the 𝑁 ×𝑁 identity

matrix. Now, the graph Fourier transform can be written compactly as 𝛼𝛼𝛼 = V⊤x,

and an inverse graph Fourier transform x = ∑︀𝑁
𝑖=1 𝛼𝑖𝑣𝑖 can be written as x = V𝛼𝛼𝛼,

since V𝛼𝛼𝛼 = VV⊤x = 𝐼𝑁x = x. Similarly, the energy conservation claim in Definition

3 follows directly as well: With the newly defined vector 𝛼𝛼𝛼, we note that ∑︀𝑁
𝑖=1 𝛼

2
𝑖 =

‖𝛼𝛼𝛼‖2
2 = 𝛼𝛼𝛼⊤𝛼𝛼𝛼 =

(︁
V⊤x

)︁⊤
V⊤x = x⊤VV⊤x = x⊤𝐼𝑁x = ‖x‖2

2.

The graph Laplacian can also be used to compute a measure of the “smoothness”

of a graph signal x, which can be interpreted as how much x varies with respect to

the connectivity and weights in the underlying graph. Specifically, this measure is a

quadratic form in x and L called the total variation.

Definition 4 (Total variation (TV)) The total variation (TV) of a graph signal

x supported on a graph with graph Laplacian L is defined as:

TV(L,x) = 1
2
∑︁
𝑖 ̸=𝑗

𝑤𝑖𝑗 (𝑥𝑖 − 𝑥𝑗)2 = x⊤Lx. (4.4)
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For brevity, we write TV(x), dropping the reference to the graph Laplacian L. When

the TV is computed with respect to the random vector X, we denote it as TV(X).

The total variation provides a metric map TV : R𝑁×𝑁 × R𝑁×1 → R that measures

the smoothness of a graph signal. A low value of TV corresponds to a graph signal

that is said to be smooth relative to a graph signal with a higher TV, assuming

that the TV of both graph signals are with respect to the same graph Laplacian

L. This notion of smoothness is related to how much the graph signal varies across

adjacent nodes, modulated by the edge weight connecting adjacent nodes. When the

difference in nodal signal values is large across a given, strongly-weighted edge, then

its contribution to the TV is larger. The following proposition helps to interpret the

GFT in terms of the TV and signal smoothness:

Proposition 1 Suppose we have a data point represented as a graph signal vector

x(𝑘) ∈ 𝒪𝑀 , and its GFT {𝛼(𝑘)
1 , . . . , 𝛼

(𝑘)
𝑁 }. Then, the following two statements are

equivalent:

(i) TV
(︁
x(𝑘)

)︁
=
(︁
x(𝑘)

)︁⊤
Lx(𝑘),

(ii) TV
(︁
x(𝑘)

)︁
= ∑︀𝑁

𝑖=1

(︁
𝛼

(𝑘)
𝑖

)︁2
𝜆𝑖,

where 𝜆1, . . . , 𝜆𝑁 are the eigenvalues of the graph Laplacian L.

Proof. See Appendix A.1. �

We see from Proposition 1 that the total variation measure of a graph signal x(𝑘),

in addition to being written as a quadratic form on x(𝑘) and the graph Laplacian,

can also be written as a weighted sum of each eigenvalue 𝜆𝑖 of the graph Laplacian,

weighted by the spectral energy of the associated 𝑖th eigenvector 𝑣𝑖. This ties together

notions of graph signal smoothness (i.e., the TV) and spectral energies: In particular,

the more a high-energy (i.e., higher graph frequency 𝜆𝑖) eigenvector 𝑣𝑖 contributes to

the signal, the graph signal’s TV will be higher as well. This is why we pre-sort the

eigenvector-eigenvalue pairs in increasing order, with respect to index 𝑖 ∈ {1, . . . , 𝑁},

so that we can conveniently compare via indices 𝑖 in lieu of eigenvalues.
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For the remainder of Chapter 4, we focus on using TV to define graph signal

outliers, with applications to airport delays in networks. With regards to the graph

Fourier transform and decomposing airport delays into common delay modes, this

will be the focus of Chapter 5.

4.1.2 Graph signal outliers

Recall that the edge weights of the correlation matrix are given by 𝑟𝑖𝑗|𝒪𝑀
. For a pair

of nodes 𝑖, 𝑗 ∈ 𝑉 connected by an edge with weight 𝑟𝑖𝑗|𝒪𝑀
, the contribution to the

TV is the term 𝑟𝑖𝑗|𝒪𝑀
(𝑥𝑖 − 𝑥𝑗)2. We consider the following possible scenarios of the

correlation value and the contribution of the specific term 𝑟𝑖𝑗|𝒪𝑀
(𝑥𝑖 − 𝑥𝑗)2 to the TV:

Case 1: If the graph signals from 𝑖 and 𝑗 are highly correlated (i.e., 𝑟𝑖𝑗|𝒪𝑀
→ 1),

one would then expect that the graph signal magnitudes change in a similar

manner. In other words, one would expect both 𝑥𝑖 and 𝑥𝑗 to be large, or both

to be small (i.e., 𝑥𝑖 ≈ 𝑥𝑗). However, a new observation may, or may not,

conform to the expected behavior.

Case 1a: When the observed data point is as expected (i.e., it is consistent

with historical trends), its contribution to the TV is small, since the second

term in 𝑟𝑖𝑗|𝒪𝑀
(𝑥𝑖 − 𝑥𝑗)2 is small.

Case 1b: When the observed data point differs significantly from what is

expected, its contribution to the TV is not small, since the second term in

𝑟𝑖𝑗|𝒪𝑀
(𝑥𝑖 − 𝑥𝑗)2 is large.

Case 2: If the graph signals from 𝑖 and 𝑗 are uncorrelated (i.e., 𝑟𝑖𝑗|𝒪𝑀
→

0), then based on historical observations, we do not expect specific trends in

the graph signal magnitudes. In this case, regardless of any realized signal

magnitudes 𝑥𝑖 and 𝑥𝑗, the contribution to the TV is small, since the first term

of 𝑟𝑖𝑗|𝒪𝑀
(𝑥𝑖 − 𝑥𝑗)2 is small.

We note that the interpretations we provide in Case 1 and Case 2 hold true if we

consider the absolute magnitude of TV, i.e., |TV (x)|, along with having 𝑟𝑖𝑗|𝒪𝑀
≥ 0
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or 𝑟𝑖𝑗|𝒪𝑀
≤ 0, for all pairs 𝑖 and 𝑗. We note that these interpretations are still

valid even if a small percentage of correlations 𝑟𝑖𝑗|𝒪𝑀
have a different sign compared

to all other correlation coefficients, as we could perform an affine transformation

max
(︁
𝑟𝑖𝑗|𝒪𝑀

, 0
)︁

or min
(︁
𝑟𝑖𝑗|𝒪𝑀

, 0
)︁
, depending on the sign of the other majority of

correlation coefficients. We will explicate on this point in Section 4.1.7. An interesting

question for future research may be to ascertain a maximal proportion 𝜉⋆ of correlation

coefficients that differ in sign before the above interpretations no longer hold true:

Formally, we have that

𝜉⋆ = argmax
𝜉∈[0,1]

⎧⎨⎩𝜉 =
(1/2)1(𝑖,𝑗),(𝑘,𝑙)∈𝐸

(︁
sign

(︁
𝑟𝑖𝑗|𝒪𝑀

)︁
̸= sign

(︁
𝑟𝑘𝑙|𝒪𝑀

)︁)︁
|𝐸|

⎫⎬⎭ ,
before the magnitude |TV (x)| no longer provides consistent interpretations. We

denote by 1 (𝒜) the indicator function for event 𝒜.

Cases 1 and 2 motivate the use of TV as a metric for outlier detection in terms of

a graph signal’s spatial distribution. Since Case 1b is the only case where a high TV

may occur, such an occurrence is deemed to be unexpected given historic observations.

The TV metric yields an aggregate representation of the behavior of x across the entire

graph. We now define the notion of a weak outlier in distribution.

Definition 5 An observation x is considered a weak distribution outlier of level 𝑘

or a weak outlier in distribution of level 𝑘 if

TV(x) /∈
[︂
E [TV(X)]− 𝑘

√︁
Var [TV(X)], E [TV(X)] + 𝑘

√︁
Var [TV(X)]

]︂
, (4.5)

for some 𝑘 ≥ 0. In other words, an observation is considered to be a weak outlier in

distribution if its TV does not lie within 𝑘 standard deviations of its expected value.

Note that since X is a random vector, the quantity TV(X) is a derived random

variable with mean E [TV(X)] and variance Var [TV(X)]. Although the definition of

a weak outlier in distribution captures variations with respect to historical trends,

it does not account for TV scaling quadratically with the graph signal’s magnitude.
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Note that if the graph Laplacian is simply the identity, we would have that TV (x) =

x⊤x = ‖x‖2
2. An observation should not be labeled an outlier in distribution if it has

a higher TV simply due to having a larger magnitude. We therefore designate it a

weak outlier in distribution, and propose an alternative metric that captures outliers

in magnitude, or scale. This metric corresponds to a classic definition of outliers in

multidimensional data: Observations with ‖x‖ differing significantly from E[‖x‖].

Definition 6 An observation x is considered to be a scale outlier of level 𝑘 or an

outlier in scale of level 𝑘 if

‖x‖ /∈
[︂
E[‖X‖]− 𝑘

√︁
Var[‖X‖], E[‖X‖] + 𝑘

√︁
Var[‖X‖]

]︂
,

for some 𝑘 ≥ 0. In other words, an observation is considered to be an outlier in scale

of level 𝑘 if its norm does not lie within 𝑘 standard deviations of its expected value.

Here, for a graph signal x, the definition of outliers in scale examines the magni-

tude ‖x‖ of the graph signal, which is distinct from that of Definition 5, i.e., examining

the spatial distribution of x. However, since TV(x) is directly related to ‖x‖, we need

a richer definition for outliers in spatial distribution that isolate the impact of ‖x‖ on

the total variation. Thus, we modify Definition 6 by replacing the expectation and

variance of the total variation with conditional versions, where the conditioning is on

the realized norm ‖X‖ = ‖x‖ of the graph signal.

Definition 7 An observation x is considered to be a strong distribution outlier of

level 𝑘 or a strong outlier in distribution of level 𝑘 if TV(x) /∈ [𝒜,ℬ], where

𝒜 = E [TV(X) | ‖X‖ = ‖x‖]− 𝑘
√︁

Var [TV(X) | ‖X‖ = ‖x‖]

ℬ = E [TV(X) | ‖X‖ = ‖x‖] + 𝑘
√︁

Var [TV(X) | ‖X‖ = ‖x‖],

for some 𝑘 ≥ 0. In other words, an observation is considered to be a strong outlier in

distribution if its TV does not lie within 𝑘 standard deviations of its expected value,

conditioned on the realized norm ‖X‖ = ‖x‖.
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For analytical tractability we consider only the 1-norm for all graph signal vec-

tors, i.e., ‖x‖ = ∑︀𝑁
𝑖=1 |𝑥𝑖| unless otherwise specified. Furthermore, we assume that all

graph signals are non-negative, so the 1-norm for these graph signal vectors becomes

equivalent to ‖x‖ = ∑︀𝑁
𝑖=1 𝑥𝑖. We justify this particular assumption as many rele-

vant physical parameters such as airport delays are non-negative signals supported

on nodes. To summarize our various definitions of outliers, Figure 4-1 presents a

graphical description of these definitions. Our goal is now to derive analytical bounds

for both outliers in scale and weak outlier in distribution. Deriving analytical bounds

for strong outliers in distribution remains an open problem since the conditioning on

the realized norm complicates constructing analytical bounds. We therefore develop

an algorithm for computing empirical bounds for strong outliers in distribution via

simulation.

TV #

#

$ TV %

$ TV % + ' Var TV %

$ TV % − ' Var TV %

$ %
$ % − ' Var % $ % + ' Var %

$ TV % | % = #

$ TV % | % = # + ' Var TV % | % = #

$ TV % | % = # − ' Var TV % | % = #

Figure 4-1: Notional representation of bounds that we will derive analytically (outliers
in scale and weak outliers in distribution) and empirically via simulation (strong
outliers in distribution). Reprinted from [158].

We emphasize that although the mean and variance for ‖X‖ and TV(X) can

be approximated empirically from 𝒪𝑀 , our contribution lies in deriving analytical

closed-form expressions for ‖X‖ and TV(X), as well as for outliers in scale and weak

outliers in distribution. These analytical expressions offer two critical advantages

over simulations: First, they allow for a parametric study (e.g., with respect to the
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mean and covariance parameters) to understand how outlier bounds behave with re-

spect to the underlying probability distribution. Second, there may be an insufficient

number of data observations in 𝒪𝑀 to reliably estimate the bounds. With these mo-

tivations in mind, we present the bounds for outliers in scale (Section 4.1.3), followed

by the bounds for weak outliers in distribution (Section 4.1.4). Finally, we propose

an algorithm for computing empirical bounds for strong outliers in distribution via

simulation (Section 4.1.6). We present a related discussion in Section 4.1.7 regarding

the practical scenario in which only partial information about the correlation coeffi-

cients (i.e., the weights associated with the edges of the graphs) is known, and derive

analytical bounds for outliers in such a setting.

4.1.3 Bounds for outliers in scale

Our simplification of the 1-norm due to the consideration of only non-negative signals

gives ‖X‖ = ∑︀𝑁
𝑖=1 𝑋𝑖. The expectation and variance of ‖X‖ are:

E [‖X‖] = E
[︃
𝑁∑︁
𝑖=1

𝑋𝑖

]︃
=

𝑁∑︁
𝑖=1

E [𝑋𝑖] =
𝑁∑︁
𝑖=1

𝜇𝑖,

Var [‖X‖] = Var
[︃
𝑁∑︁
𝑖=1

𝑋𝑖

]︃
=

𝑁∑︁
𝑖=1

Var [𝑋𝑖] +
∑︁
𝑖 ̸=𝑗

𝜌𝑖𝑗𝜎𝑖𝜎𝑗,

(4.6)

where 𝜎𝑖 and 𝜎𝑗 are the standard deviations of 𝑋𝑖 and 𝑋𝑗, respectively. If the corre-

lations between the nodal signals 𝑋𝑖 and 𝑋𝑗 are known precisely, then the first term

can be rewritten as the sum of all elements in the known covariance matrix Σ, i.e.,∑︀𝑁
𝑖=1 Var [𝑋𝑖] = 1⊤Σ1.

4.1.4 Bounds for weak outliers in distribution

Since the TV is a random variable that is a function of X, we can write the expression

for its unconditional mean explicitly as:
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E[TV(X)] = E

⎡⎣1
2
∑︁
𝑖 ̸=𝑗

{︁
𝜌𝑖𝑗(𝑋𝑖 −𝑋𝑗)2

}︁⎤⎦
= 1

2
∑︁
𝑖 ̸=𝑗

{︁
𝜌𝑖𝑗
(︁
E
[︁
𝑋2
𝑖

]︁
+ E

[︁
𝑋2
𝑗

]︁
− 2E [𝑋𝑖𝑋𝑗]

)︁}︁
.

(4.7)

From (4.2), we have that 𝜌𝑖𝑗 = E [(𝑋𝑖 − 𝜇𝑖) (𝑋𝑗 − 𝜇𝑗)] / (𝜎𝑖𝜎𝑗), which gives E [𝑋𝑖𝑋𝑗] =

𝜇𝑖𝜇𝑗 + 𝜌𝑖𝑗𝜎𝑖𝜎𝑗 since E [(𝑋𝑖 − 𝜇𝑖) (𝑋𝑗 − 𝜇𝑗)] = Cov [𝑋𝑖, 𝑋𝑗] = E [𝑋𝑖𝑋𝑗] − 𝜇𝑖𝜇𝑗. Fur-

thermore, it follows that E [𝑋2
𝑖 ] = 𝜇2

𝑖 + 𝜎2
𝑖 . Now, (4.7) simplifies to

E[TV(X)] = 1
2
∑︁
𝑖 ̸=𝑗

{︁
𝜌𝑖𝑗
[︁
(𝜇𝑖 − 𝜇𝑗)2 + (𝜎2

𝑖 + 𝜎2
𝑗 − 2𝜌𝑖𝑗𝜎𝑖𝜎𝑗)

]︁}︁
. (4.8)

We can examine a few special cases for the parameters in (4.8):

1. If the signals are not correlated, i.e., 𝜌𝑖𝑗 = 0,∀𝑖, 𝑗 ∈ 𝑉 , then the TV is zero.

2. If the signals are perfectly correlated, i.e., 𝜌𝑖𝑗 = 1,∀𝑖, 𝑗 ∈ 𝑉 , the expecta-

tion of the TV is determined by possible differences in the mean and variance

of graph signals at adjacent nodes. Specifically, we have that E[TV(x)] =
1
2
∑︀
𝑖 ̸=𝑗 {(𝜇𝑖 − 𝜇𝑗)2 + (𝜎𝑖 − 𝜎𝑗)2}.

3. If the mean for all nodal signals are identical, i.e., 𝜇𝑖 = 𝜇𝑗,∀𝑖, 𝑗 ∈ 𝑉 , the expec-

tation of the TV is quadratic in the differences of the variances. Specifically,

we have that E[TV(X)] = 1
2
∑︀
𝑖 ̸=𝑗

{︁
𝜌𝑖𝑗
[︁
𝜎2
𝑖 + 𝜎2

𝑗 − 2𝜌𝑖𝑗𝜎𝑖𝜎𝑗
]︁}︁

.

4. If the mean, variance, and pairwise correlation coefficient for all nodal signals

are identical, i.e., 𝜇𝑖 = 𝜇𝑗, 𝜎𝑖 = 𝜎𝑗 = 𝜎, and 𝜌𝑖𝑗 = 𝜌, ∀𝑖, 𝑗 ∈ 𝑉 , then the

expectation of the TV is quadratic in the number of nodes 𝑁 , the correlation

coefficient 𝜌, and the variance 𝜎. Specifically, we have that

E[TV(X)] =
∑︁
𝑖 ̸=𝑗

{︁
𝜌𝜎2(1− 𝜌)

}︁
= 𝑁(𝑁 − 1)𝜌𝜎2(1− 𝜌). (4.9)

We now detail the process for computing the variance of the TV for a random

graph signal vector X. Although we explicitly derive an analytical expression for
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Var [TV(X)], we only symbolically evaluate it when needed since the number of terms

is extremely large. We rewrite Var [TV(X)] as:

Var [TV(X)] = E
[︁
TV(X)2

]︁
− E [TV(X)]2 . (4.10)

We have already derived the expression for the second term, since from (4.8) we can

square the entire expression, and we have that

E [TV(X)]2 = 1
4

⎛⎝∑︁
𝑖 ̸=𝑗

{︁
𝜌𝑖𝑗
[︁
(𝜇𝑖 − 𝜇𝑗)2 + (𝜎2

𝑖 + 𝜎2
𝑗 − 2𝜌𝑖𝑗𝜎𝑖𝜎𝑗)

]︁}︁⎞⎠2

.

The first term in the right-hand side of (4.10) representing the expectation of the

square of the TV can be expanded and rewritten as:

E
[︁
TV(X)2

]︁
= 1

4 E

⎡⎢⎣
⎛⎝∑︁
𝑖 ̸=𝑗

{︁
𝜌𝑖𝑗(𝑋𝑖 −𝑋𝑗)2

}︁⎞⎠2
⎤⎥⎦ . (4.11)

If we take X to be a multivariate Gaussian random variable, expanding (4.11) further

will produce terms that depend on products of dependent Gaussian random variables.

Specifically, we have that the expansion will introduce terms of the form E [𝑋4
𝑖 ],

E [𝑋3
𝑖𝑋𝑗], E

[︁
𝑋2
𝑖𝑋

2
𝑗

]︁
, E [𝑋3

𝑖𝑋𝑗𝑋𝑙] and E [𝑋𝑖𝑋𝑗𝑋𝑙𝑋𝑚] for nodes 𝑖, 𝑗, 𝑙,𝑚 ∈ 𝑉 . While

the expression for E [𝑋4
𝑖 ] = 𝜇4

𝑖 + 6𝜇2
𝑖𝜎

2
𝑖 + 3𝜎4

𝑖 is easy to construct, generic analytical

expressions for products of dependent Gaussian random variables have been derived

in [123] and [133]:

Proposition 2 (Isserlis (1918) and Kan (2008)) Suppose X = (𝑋1, . . . , 𝑋𝑁)⊤ ∼

𝒩 (𝜇,Σ), where Σ is an 𝑁 ×𝑁 positive semi-definite matrix. For non-negative inte-

gers 𝑠1 to 𝑠𝑁 , we have

E
[︃
𝑁∏︁
𝑖=1

𝑋𝑠𝑖
𝑖

]︃
=

𝑠1∑︁
𝜈1=0
· · ·

𝑠𝑁∑︁
𝜈𝑁 =0

[𝑠/2]∑︁
𝑟=0

(︃
𝑠1

𝜈1

)︃
· · ·

(︃
𝑠𝑁
𝜈𝑁

)︃
×

⎧⎪⎨⎪⎩
(︁

ℎ⊤Σℎ
2

)︁𝑟 (︁
ℎ⊤𝜇

)︁𝑠−2𝑟

𝑟!(𝑠− 2𝑟)!

⎫⎪⎬⎪⎭ , (4.12)

where 𝑠 = 𝑠1 + · · ·+ 𝑠𝑁 and ℎ =
(︁
𝑠1
2 − 𝜈1, . . . ,

𝑠𝑁

2 − 𝜈𝑁
)︁⊤

.

Proof. See [133]. �
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As we have previously mentioned, due to the large number of terms present in the full

expansion of (4.11), we do not attempt to analytically simplify it further, but empha-

size that it can be symbolically evaluated using Proposition 2. On the other hand,

for our subsequent analyses, we can numerically evaluate Var [TV(X)] precisely using

the analytical expression in (4.12). There are also expressions for the unconditional

expectation and variance of TV, with Gaussian assumptions on x, based on the trace

of the graph Laplacian and covariance matrix; see (4.17) for these expressions, which

stem from Theorem 3.2b.2 of [178].

Since we do not have a simplified analytical form for the variance of the TV, it

is challenging to make qualitative comments on how the variance of the TV changes

with parameters like Σ and 𝜇. Even with, e.g., (4.17), we see that the dependence of

the variance on various parameters is complicated. However, one sufficient condition

for the TV to be equal to zero is as follows:

Proposition 3 If E[TV(X)] = 0 and 𝜌𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 (or 𝜌𝑖𝑗 ≤ 0, ∀𝑖, 𝑗), then

Var[TV(X)] = 0.

Proof. See Appendix A.2. �

Note that E[TV(X)] = 0 is not a necessary condition for the variance of the TV to be

0. This can be seen from the following counterexample: Suppose 𝜌𝑖𝑗 = 1, 𝜇𝑖 ̸= 𝜇𝑗, and

𝜎𝑖 = 𝜎𝑗,∀𝑖, 𝑗 ∈ 𝑉 . Then, we have that in general E[TV(X)] = 1
2
∑︀
𝑖 ̸=𝑗(𝜇𝑖 − 𝜇𝑗)2 ̸= 0,

which follows from Case 2 of (4.8). However, since we have perfect correlation with

differing means, 𝑋𝑖−𝑋𝑗 will always be constant ∀𝑖, 𝑗 ∈ 𝑉 , and thus Var[TV(X)] = 0.

4.1.5 Gaussian quadratic forms and saddlepoint approxima-

tions

Quadratic forms appear in many engineering applications, and random quadratic

forms are rich in terms of their applications as well as analyses. In addition to the

fact that, if we take the airport delay vector x to be random, TV(x) is a random

quadratic form, to motivate our exploration of these objects, we provide an example

from stochastic control, with that of a stochastic linear-quadratic regulator:
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Example 1 (Linear quadratic stochastic control) Suppose we have the follow-

ing finite horizon, discrete-time linear dynamical system, with dynamics

x(𝑡+ 1) = 𝐴x(𝑡) +𝐵u(𝑡) + w(𝑡), 𝑡 = 0, . . . , 𝑇 − 1, (4.13)

where the initial condition x(0) is drawn from 𝒩 (0,Σx), and the system is perturbed

by additive noise w(𝑡) i.i.d.∼ 𝒩 (0,Σw). The system matrix 𝐴 may also be random,

along with the matrix 𝐵 modulating control inputs u(𝑡), which are assumed to be

deterministic. For stability, we set max𝑖 |𝜆𝑖(𝐴)| = 1.

The objective is to obtain a state-feedback controller u(𝑡) Δ= 𝜓𝑡 (x(𝑡)) for all time

steps, where 𝜓𝑡 is the control policy at time 𝑡. We do this by solving the linear

quadratic stochastic control problem, which seeks to minimize the cost, given by

𝒥 = E
[︃
x⊤(𝑇 )𝑄𝑓x(𝑇 ) +

𝑇−1∑︁
𝑡=0

x⊤(𝑡)𝑄x(𝑡) + u⊤(𝑡)𝑅u(𝑡)
]︃
. (4.14)

This problem can be solved via dynamic programming, and the optimal policies 𝜓⋆𝑡 (x(𝑡))

will have the form

𝜓⋆𝑡 (x(𝑡)) = arg min
v

{︃
v⊤𝑅v + E

[︃
min

𝜓𝑡+1,...,𝜓𝑇 −1
𝒥
]︃}︃

. (4.15)

These random quadratic forms appear in the cost function (4.14) for the linear

quadratic stochastic control problem. The value functions that dictate the optimal

policy are also quadratic forms of the state (random vector) and a symmetric (ran-

dom) matrix that is a function of 𝐴,𝐵,𝑄, and 𝑅 (specifically, in the case of Example 1,

this matrix takes the form 𝑃𝑡 = 𝐴⊤𝑃𝑡+1𝐴−𝐴⊤𝑃𝑡+1𝐵
(︁
𝐵⊤𝑃𝑡+1𝐵 +𝑅

)︁−1
𝐵⊤𝑃𝑡+1𝐴+𝑄,

and is known as the discrete-time algebraic Riccati equation). We first survey some

results for the moments of Gaussian quadratic forms, and observe that the densi-

ties for general Gaussian quadratic forms tend to be “messy,” in the sense that they

can only be written as infinite expansions of other unwieldy densities. We then ex-

plore using saddlepoint approximations to obtain a closed-form density for Gaussian
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quadratic forms in a limited setting.

Recall from Section 4.1.4 that we were interested in constructing bounds that

could be used to detect outlying values of TV with respect to its mean. In order

to construct these bounds, or leverage any concentration inequalities that might be

useful, we require expressions for the moments of these Gaussian quadratic forms.

The following theorem from [178] gives a way to evaluate the 𝑟th moment of the

Gaussian quadratic form:

Theorem 1 For x ∼ 𝒩 (𝜇,Σ) with valid 𝑚 × 𝑚 covariance matrix Σ, denote by

𝑄 = x⊤𝐴x where 𝐴 is a 𝑚 × 𝑚 symmetric, real matrix. The 𝑟th moment of 𝑄 is

given by

E [𝑄𝑟] =
𝑟−1∑︁
𝑟1=0

(︃
𝑟 − 1
𝑟1

)︃
𝑔 (𝑟 − 1− 𝑟1)

𝑟1−1∑︁
𝑟2=0

(︃
𝑟1 − 1
𝑟2

)︃
𝑔 (𝑟1 − 1− 𝑟2) · · · (4.16)

where 𝑔(𝑘) = 2𝑘𝑘!
(︁
tr(𝐴Σ)𝑘+1 + (𝑘 + 1)𝜇⊤(𝐴Σ)𝑘𝐴𝜇

)︁
for 𝑘 ∈ N≥0.

Proof. Theorem 3.2b.2 of [178]. �

From Theorem 1, the interesting moments of 𝑄 = x⊤𝐴x for our purposes, i.e., the

mean and the variance, can be written explicitly:

E [𝑄] = tr(𝐴Σ) + 𝜇⊤𝐴𝜇,

Var [𝑄] = 2 tr(𝐴Σ)2 + 4𝜇⊤𝐴Σ𝐴𝜇.
(4.17)

Unfortunately, unlike for the moments of 𝑄 = x⊤𝐴x, no convenient, closed-form

expression exists for a general Gaussian quadratic form when there are no assumptions

on centrality and identity covariance. In particular, [178] provides several convergent

expressions of the density 𝑓𝑄(𝑞) for 𝑄 as infinite series expansions. These expansions

can be written in terms of power series expansions, Laguerre series expansions, expan-

sions in central 𝜒2 densities, confluent Hypergeometric functions, zonal polynomials,

and densities of Gamma variates. As an example, we will detail the Laguerre series

expansion.

Let x ∈ R𝑚×1 be a multivariate Gaussian random vector drawn from𝒩 (𝜇,Σ) with
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possibly non-zero mean 𝜇 ∈ R𝑚×1 and positive definite covariance matrix Σ ∈ S𝑚×𝑚
≻0 .

We are interested in the distribution of the derived random variable 𝑄 = x⊤𝐴x,

where 𝐴 is a 𝑚 × 𝑚 symmetric, real, and positive semi-definite matrix. We will

refer to 𝑄 = x⊤𝐴x as a Gaussian quadratic form. From [178], the density of 𝑄 is

surprisingly complicated, and can be written in terms of a series expansion using

generalized Laguerre polynomials 𝐿(𝛼)
𝑘 (𝑥), expressed via the Rodrigues formula as

𝐿
(𝛼)
𝑘 (𝑥) = 1

𝑥!𝑒
𝑥𝑥−𝛼

[︃
𝑑𝑘

𝑑𝑥𝑘

(︁
𝑒−𝑥𝑥𝑘+𝛼

)︁]︃
, 𝛼 > −1, 𝑘 = 0, 1, . . . . (4.18)

Specifically, by way of Theorem 4.2c.1 from [178], the density of 𝑄 using the Laguerre

series expansion is

𝑓𝑄 (𝜆; b; 𝑞) =
∞∑︁
𝑘=0

𝑐𝑘
𝑘!

2𝛽Γ
(︁
𝑚
2 + 𝑘

)︁ (︃ 𝑞

2𝛽

)︃𝑚
2 −1

𝑒− 𝑞
2𝛽𝐿

(𝑚
2 −1)

𝑘

(︃
𝑞

2𝛽

)︃
, (4.19)

for 𝑞 ∈ (0,∞), where 𝛽 is an arbitrary positive constant, 𝑐𝑘 are power series expansion

coefficients with 𝑐0 = 1 and are dependent on 𝜆 = (𝜆1, . . . , 𝜆𝑚) and b = (𝑏1, . . . , 𝑏𝑚).

The eigenvalues in 𝜆 belong to Σ1/2𝐴Σ1/2 diagonalized by an orthogonal 𝑚×𝑚 matrix

𝑃 , i.e., 𝑃⊤
(︁
Σ1/2𝐴Σ1/2

)︁
𝑃 = diag(𝜆). The vector b is dependent on the mean and

covariance of x, and is computed as b⊤ = 𝑃⊤Σ−1/2𝜇.

Numerical experiments: Saddlepoint approximations

Saddlepoint approximation provides an accurate, closed-form expression of an un-

known probability density (mass) function for a continuous (discrete) random vari-

able, given that the mass generating function and cumulant generating function for

the random variable are known [58, 39]. Compared to the three popular alternatives

of approximations – enumerating exact probabilities, approximation via Gaussian

densities, and brute force simulation with kernel density estimators – saddlepoint ap-

proximation oftentimes can overcome issues related to intractability, inaccuracy, and
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convergence.

Let 𝑋 be an univariate, continuous random variable supported on 𝒳 ⊆ R with

an unknown probability density function 𝑓𝑋(𝑥) that is non-zero on 𝒳 . Let 𝑀𝑋(𝑠) =

E
[︁
𝑒𝑠𝑋

]︁
be the moment generating function of 𝑋, and 𝐾𝑋(𝑠) = ln𝑀𝑋(𝑠) be the

cumulant generating function of 𝑋. The saddlepoint approximation ̂︀𝑓𝑋(𝑥) to 𝑓𝑋(𝑥)

is given by

̂︀𝑓𝑋(𝑥) =
(︃

2𝜋 𝑑
2

𝑑𝑠2𝐾𝑋(𝑠)
)︃−1/2

exp (𝐾(𝑠)− 𝑠𝑥) . (4.20)

̂︀𝑓𝑋(𝑥) is known as the saddlepoint equation, and 𝑠 Δ= 𝑠(𝑥) is the saddlepoint associated

with 𝑥, where 𝑠(𝑥) is the solution to the following differential equation in the cumulant

generating function:

𝑑

𝑑𝑠
𝐾(𝑠) = 𝑥. (4.21)

We note that the saddlepoint equation serves as a meaningful approximation for

𝑓𝑋(𝑥) only for 𝑥 ∈ 𝒳 , and that in general, the saddlepoint equation is not a true

density, as in general we have that
∫︀

𝒳
̂︀𝑓𝑋(𝑥) 𝑑𝑥 ̸= 1. However, if we set a normalizing

constant 𝑐 =
∫︀

𝒳
̂︀𝑓𝑋(𝑥) 𝑑𝑥, then ̃︀𝑓𝑋(𝑥) Δ= 𝑐−1 ̂︀𝑓(𝑥) is a valid density over the support 𝒳 .

Finally, the discrete version of the saddlepoint approximation mirrors the continuous

version, with the additional caveat that the (discrete) saddlepoint equation ̂︀𝑝𝑋(𝑥) is

meaningful as an approximation to some probability mass function 𝑝𝑋(𝑥) only on

integer-valued arguments.

To construct the saddlepoint approximation, we refer to the following theorem

from [178] that provides the moment generating function for Gaussian quadratic forms

that we are interested in.

Theorem 2 Let 𝐴 be a real, symmetric 𝑚 × 𝑚 matrix, and x ∈ R𝑚×1 with x ∼

𝒩 (𝜇,Σ). Then, the moment generating function 𝑀𝑄(𝑠) of 𝑄 = x⊤𝐴x is

𝑀𝑄(𝑠) = det (𝐼 − 2𝑠𝐴Σ)−1/2 exp
(︂
−1

2𝜇⊤
(︁
𝐼 − (𝐼 − 2𝑠𝐴Σ)−1

)︁
Σ−1𝜇

)︂
, (4.22)
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where 𝐼 is the 𝑚×𝑚 identity. In the central case where 𝜇 = 0, the moment generating

function reduces to

𝑀𝑄(𝑠) = det (𝐼 − 2𝑠𝐴Σ)−1/2 . (4.23)

Furthermore, 𝑀𝑄(𝑠) can be written in a scalar form involving the eigenvalues of

Σ1/2𝐴Σ1/2 and constants that depend on the mean 𝜇 and precision matrix Σ−1. Specif-

ically, let 𝜆1, . . . , 𝜆𝑚 be eigenvalues of Σ1/2𝐴Σ1/2, and define the vector of constants

b = (𝑏1, . . . , 𝑏𝑚)⊤ Δ= 𝑃⊤Σ−1/2𝜇, where 𝑃 is any 𝑚×𝑚 orthogonal matrix that diag-

onalizes Σ1/2𝐴Σ1/2. Then, 𝑀𝑄(𝑠) can be rewritten as follows:

𝑀𝑄(𝑠) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
exp

⎛⎝𝑠 𝑚∑︁
𝑗=1

𝑏2
𝑗𝜆𝑗

1− 2𝑠𝜆𝑗

⎞⎠ 𝑚∏︁
𝑗=1

(1− 2𝑠𝜆𝑗)− 1
2 , if 𝜇 ̸= 0,

𝑚∏︁
𝑗=1

(1− 2𝑠𝜆𝑗)− 1
2 , if 𝜇 = 0.

(4.24)

Proof. Theorems 3.2a.1, 3.2a.2, and Corollary 3.2a.1 of [178]. �

We note here that for Theorem 2, the 𝐴 matrix is only required to be real and

symmetric, e.g., the graph Laplacian. In order to deploy saddlepoint approximation,

we first compute the cumulant generating function, as well as its first and second

derivatives with respect to 𝑠. Starting with the simpler case of 𝜇 = 0, we have that

𝐾𝑄(𝑠) = ln
⎛⎝ 𝑚∏︁
𝑗=1

(1− 2𝑠𝜆𝑗)− 1
2

⎞⎠ =
𝑚∑︁
𝑗=1

ln
(︁
(1− 2𝑠𝜆𝑗)− 1

2
)︁
,

𝑑

𝑑𝑠
𝐾𝑄(𝑠) =

𝑚∑︁
𝑗=1

𝜆𝑗
1− 2𝑠𝜆𝑗

,

𝑑2

𝑑𝑠2𝐾𝑄(𝑠) =
𝑚∑︁
𝑗=1

2𝜆2
𝑗

(1− 2𝑠𝜆𝑗)2 .

(4.25)

For the non-central case where 𝜇 ̸= 0, the cumulant generating function and its first

two 𝑠 derivatives are
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𝐾𝑄(𝑠) =
𝑚∑︁
𝑗=1

(︃
𝑏2
𝑗𝜆𝑗𝑠

1− 2𝑠𝜆𝑗
+ ln

(︁
(1− 2𝑠𝜆𝑗)− 1

2
)︁)︃

,

𝑑

𝑑𝑠
𝐾𝑄(𝑠) =

𝑚∑︁
𝑗=1

𝜆𝑗
(︁
1 + 𝑏2

𝑗 − 2𝑠𝜆𝑗
)︁

(1− 2𝑠𝜆𝑗)2 ,

𝑑2

𝑑𝑠2𝐾𝑄(𝑠) = 2
𝑚∑︁
𝑗=1

𝜆2
𝑗

(︁
−1− 2𝑏2

𝑗 + 2𝑠𝜆𝑗
)︁

(−1 + 2𝑠𝜆𝑗)3 .

(4.26)

The difficulty with saddlepoint approximations arises from the fact that solving

for the saddlepoint requires one to solve successively higher-degree polynomials. For

the central case, the saddlepoint for the case of 𝑚 = 1 is

𝑠 = 1
2

(︂ 1
𝜆1
− 1
𝑥

)︂
, (4.27)

and for 𝑚 = 2, we have the saddlepoints given by:

𝑠 = 1
4𝜆1𝜆2𝑥

(︂
±
√︁
𝜆2

1𝑥
2 − 2𝜆1𝜆2𝑥2 + 𝜆2

2 (4𝜆2
1 + 𝑥2) + 𝜆2𝑥+ 𝜆1 (𝑥− 2𝜆2)

)︂
. (4.28)

For the central case with 𝑚 = 3, a “solution” is technically obtainable (e.g., via the

Reduce function in Mathematica specifying solutions to cubic polynomials), but it is

not convenient for computation. For the non-central case, the one-node (i.e., 𝑚 = 1)

case has saddlepoints given by

𝑠 =
±
√︁

4𝑏2
1𝜆

3
1𝑥+ 𝜆4

1 − 𝜆2
1 + 2𝜆1𝑥

4𝜆2
1𝑥

, (4.29)

with larger values of 𝑚 being analogously difficult to obtain.

We plot in Figure 4-2 the saddlepoint approximation of the Gaussian quadratic

form 𝑄 = x⊤𝐴x for a 2-node graph in the central case, and observe that the (non-

normalize) saddlepoint approximation seems to follow the distribution of 𝑄 quite

well. The approximation is close for both an identity covariance matrix, as well as for

any arbitrary valid covariance matrix. We also explored a randomized version of this

approximation by repeatedly sampling covariance matrices (e.g., via a Wishart distri-
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bution), and fitting a single saddle approximation using the average of the eigenvalues

of all sampled covariance matrices. This fit can be seen in Figure 4-3.

Figure 4-2: Saddlepoint approximation to 𝑄 in the central case for 𝑚 = 2.

4.1.6 Empirical bounds for strong outliers in distribution

The final bounds that we evaluate involve outliers in distribution conditioned on the

magnitude of the observed graph signal vector. This mitigates the interdependence

between ‖x‖ and TV(x) by conditioning the expectation and variance of TV(X)

on the magnitude. While we would like to analytically evaluate the full conditional

expectation and variance of TV(x) as utilized in Definition 7, a closed-form expres-

sion for the probability density function of the conditional derived random variable

E [TV(X) | ‖X‖ = ‖x‖] and Var [TV(X) | ‖X‖ = ‖x‖] for all ‖X‖ = ‖x‖ remains

elusive. From Section 4.1.5, we see that in general TV(x) is a very complicated

distribution, even with Gaussian assumptions on x. Instead, we propose the follow-

ing simulation-based method (Algorithm 1) that uses an interval-based estimation

scheme to empirically evaluate the two conditional random variables over only 𝛿 <∞
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Figure 4-3: Saddlepoint approximation to 𝑄 in the central case for 𝑚 = 2, with
randomized covariance matrices.

pre-specified disjoint covers ⋃̇︀𝛿ℓ=1𝒰ℓ ≡ [min {‖x‖} ,max {‖x‖}] ⊂ R≥0. Figure 4-4 pro-

vides an illustration of the empirical bound computation process used in Algorithm

1.

TV #

#

$% TV & | & = # ∈ *+

*, *- *.⋯

⋯

$% TV & | & = # ∈ *+ − 1 2Var TV & | & = # ∈ *+

$% TV & | & = # ∈ *+ + 1 2Var TV & | & = # ∈ *+

Figure 4-4: Empirical strong outliers in distribution bound generating process given
simulated observations (‖x‖ ,TV(x)) generated from

{︁
�̂�, Σ̂,C

}︁
𝒪𝑀

partitioned via⋃̇︀𝛿
ℓ=1𝒰ℓ ≡ [min {‖x‖} ,max {‖x‖}] ⊂ R≥0. This approximates the magenta bounds

shown in Figure 4-1. Reprinted from [158].

It is important to note that we can use any type of distribution in Algorithm 1,
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Algorithm 1 Computing empirical bounds for strong outliers in distribution.
Input: Observations 𝒪𝑀 ; Number of intervals 𝛿; Number of trials 𝑇
Output: 𝒰ℓ, ∀ℓ ∈ {1, . . . , 𝛿}; ̂︀E [TV(X) | ‖X‖ = ‖x‖ ∈ 𝒰ℓ] and̂︂Var [TV(X) | ‖X‖ = ‖x‖ ∈ 𝒰ℓ] , ∀ 𝒰ℓ

1 Estimate �̂�, Σ̂,C from 𝒪𝑀
2 𝐴← C; L← 𝐷 − 𝐴
3 for Trial 𝑖 of 1:𝑇 do
4 x← X i.i.d.∼ 𝒩

(︁
�̂�, Σ̂

)︁
5 x← max {x,0}
6 𝒱‖x‖,𝑖 ←

∑︀𝑁
𝑗=1 𝑥𝑗; 𝒱TV(x),𝑖 ← x⊤Lx

7 end
8 ̃︀Δ← 𝛿−1

(︁
max

{︁
𝒱‖x‖

}︁
−min

{︁
𝒱‖x‖

}︁)︁
9 𝒰ℓ =

[︁
min

{︁
𝒱‖x‖

}︁
+ (ℓ− 1) ̃︀Δ,min

{︁
𝒱‖x‖

}︁
+ ℓ ̃︀Δ]︁ , ∀ℓ ∈ {1, . . . , 𝛿}

for Interval ℓ of 1:𝛿 do
10 ̂︀E [TV(X) | ‖X‖ = ‖x‖ ∈ 𝒰ℓ]← Mean

{︁
𝒱TV(x),𝑖 | 𝑖 s.t. 𝒱‖x‖,𝑖 ∈ 𝒰ℓ

}︁
11 ̂︂Var [TV(X) | ‖X‖ = ‖x‖ ∈ 𝒰ℓ]← Var

{︁
𝒱TV(x),𝑖 | 𝑖 s.t. 𝒱‖x‖,𝑖 ∈ 𝒰ℓ

}︁
12 end

as long as there are sufficient observations in 𝒪𝑀 to estimate �̂�, Σ̂, and C reliably.

We now give a definition for empirical strong outliers in distribution:

Definition 8 (Empirical version of Definition 7) An observation x is consid-

ered to be an empirical strong outlier in distribution of level 𝑘 if TV(x) /∈
[︁̂︁𝒜ℓ,̂︁ℬℓ]︁,

where:

̂︁𝒜ℓ = ̂︀E [TV(X) | ‖X‖ = ‖x‖ ∈ 𝒰ℓ]− 𝑘
√︁̂︂Var [TV(X) | ‖X‖ = ‖x‖ ∈ 𝒰ℓ]

̂︁ℬℓ = ̂︀E [TV(X) | ‖X‖ = ‖x‖ ∈ 𝒰ℓ] + 𝑘
√︁̂︂Var [TV(X) | ‖X‖ = ‖x‖ ∈ 𝒰ℓ],

for some 𝑘 ≥ 0 and empirical bound interval 𝒰ℓ computed via Algorithm 1.

4.1.7 Bounds for weak outliers in distribution: Partial infor-

mation case

In Section 4.1.4, we analyzed the expectation and variance of the TV of a graph signal

x assuming that we had perfect information regarding the strength of the nodal signal

correlations 𝜌𝑖𝑗. However, in reality, it is possible that we do not know the exact value
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of 𝜌𝑖𝑗, but we do know bounds 𝜈𝑖𝑗 and 𝜖𝑖𝑗 such that 0 ≤ 𝜈𝑖𝑗 < 𝜌𝑖𝑗 < 𝜖𝑖𝑗 ≤ 1, for all

nodes 𝑖, 𝑗 ∈ 𝑉 . This partial information case regarding correlations can happen in

a variety of scenarios; we will discuss two such scenarios. In the first example, due

to privacy concerns, nodes in many physical systems act as independent agents that

withhold information from other agents. Thus, each node may only report the mean

and variance of its own signal. In this case, the inter-dependencies and correlations

can only be partially estimated. Another example of the partial information case

occurs when we do not know the underlying Gaussian distribution of the signal,

implying that 𝜌𝑖𝑗 is an unknown parameter. Similar to the first example, statistical

testing may only provide confidence intervals or bounds on pairwise correlation values.

For the rest of this derivation, we assume that the observations are drawn from a

multivariate Gaussian distribution with a fixed mean vector 𝜇 ∈ R𝑁×1 and covariance

matrix Σ ∈ R𝑁×𝑁
⪰0 (or equivalently the correlation matrix C), but the precise values

of 𝜌𝑖𝑗 are unknown. Due to the uncertainty in 𝜌𝑖𝑗, we can only provide bounds on

the values of E[TV(X)] and Var[TV(X)]. One could propose that given bounds on

the correlation coefficients 𝜌𝑖𝑗 ∈ (𝜈𝑖𝑗, 𝜖𝑖𝑗) ⊆ [0, 1], we could use simulation to estimatê︀E[TV(X)] and ̂︂Var[TV(X)]. However, we note that such an approach is computa-

tionally intractable in general for the two reasons: First, the number of intervals

over which we would need to simulate and evaluate the TV is exponentially large.

Specifically, discretizing 𝜌𝑖𝑗 ∈ (𝜈𝑖𝑗, 𝜖𝑖𝑗) ⊆ [0, 1] into 𝑁𝜌 intervals for each edge leads

to 𝑁𝑁2−𝑁
𝜌 evaluations of E[TV(X)] and Var[TV(X)]. A counterpoint may be that a

more coarse discretization scheme might suffice, or a gradient-based optimization may

be able to guide the exploration of this complex space. This brings us to our second

point: The non-monotonic behavior of E[TV(X)] and Var[TV(X)] as a function of

𝜌𝑖𝑗 ∈ (𝜈𝑖𝑗, 𝜖𝑖𝑗) ⊆ [0, 1]. We provide a small-scale example in Figure 4-5 that highlights

the non-monotonicity in 𝜌𝑖𝑗 of E[TV(X)] and Var[TV(X)]. This behavior is apparent

even in a relatively simple graph with 5 nodes, which is the setting for Figure 4-5.

Given the various difficulties with evaluating E[TV(X)] and Var[TV(X)] in the

case of partial information regarding 𝜌𝑖𝑗, the tight analytical bounds we present in

Propositions 4 and 5 for E[TV(X)] and Var[TV(X)], respectively, offer an alternative
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! = 0 ! = 0.1

! = 1.5! = 0.25

Figure 4-5: Empirically-derived curves for the expectation and variance of TV as a
function of correlation, parameterized by 𝜇 via 𝜂. We draw 𝑀 = 5× 104 data points
from a multivariate Gaussian distribution with 𝑁 = 5, 𝜎𝑖 = 10, ∀𝑖, and 𝜌𝑖𝑗 = 𝜌, ∀𝑖, 𝑗.
We set 𝜂 ∈ {0, 0.1, 0.25, 1.5} and 𝜇𝑖 i.i.d.∼ 100(1−𝜂)+200𝜂𝑋𝑈 , where 𝑋𝑈

i.i.d.∼ Unif(0, 1).
Higher 𝜂 indicates that signals have higher baseline difference in terms of magnitudes
across a pair of nodes. Reprinted from [100]. c○ 2019 IEEE
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to the computationally prohibitive exploration of the search space 𝜌𝑖𝑗 ∈ (𝜈𝑖𝑗, 𝜖𝑖𝑗) ⊆

[0, 1]. Furthermore, there is no reliance on estimation intervals and discretizations.

Specifically, our two propositions quantify the change in E[TV(X)] (Proposition 4)

and Var[TV(X)] (5) due to the uncertainty in 𝜌𝑖𝑗.

For the propositions we construct and prove in this section, we require all the

correlation coefficients to have the same sign, i.e., all 𝜌𝑖𝑗 ≥ 0 or all 𝜌𝑖𝑗 ≤ 0, ∀𝑖, 𝑗 ∈

𝑉 . We consider the former, and introduce the following projections of the correla-

tion coefficients into the non-negative half-plane: 𝜌+
𝑖𝑗 = max {0, 𝜌𝑖𝑗} and 𝑟+

𝑖𝑗|𝒪𝑀
=

max
{︁
0, 𝑟𝑖𝑗|𝒪𝑀

}︁
. A similar projection can be defined for non-positive correlations,

and all results follow analogously.

In accordance with the above projection operations, we will assign a projected

weight 𝑟+
𝑖𝑗|𝒪𝑀

for every edge (𝑖, 𝑗). We note that the projected correlation coefficient

𝑟+
𝑖𝑗|𝒪𝑀

turns out to be a consistent estimator of the underlying 𝜌+
𝑖𝑗, due to the fact that

the projection operation above (non-negative half-plane projection) can be rewritten

in terms of piece-wise affine transformations [240]. One caveat is that we must take

into account an offset, since this estimator will be biased: The offset derived in [240]

can be written as

E[𝑟𝑖𝑗|𝒪𝑀
] = 𝜌𝑖𝑗

(︃
1−

1− 𝜌2
𝑖𝑗

2𝑀 +𝑂
(︂ 1
𝑀2

)︂)︃
. (4.30)

We note that the expectation on 𝑟𝑖𝑗|𝒪𝑀
is not constant, as 𝑟𝑖𝑗|𝒪𝑀

is itself a random

variable [89, 203]. However, the density of 𝑟𝑖𝑗|𝒪𝑀
is only dependent on 𝑀 . We will

make use of this observation in the following proofs for propositions related to this

case of partial information of correlations.

Given the above discussion regarding projections of correlation coefficients and

consistent estimators, we can examine the definition of total variation for an unob-

served graph signal vector X ∼ 𝒩 (𝜇,Σ). In particular, the total variation will be

taken with respect to graph Laplacian L ∈ S𝑁×𝑁 corresponding to the correlation

network estimated from 𝒪𝑀 . Now, we have that the total variation TV(X) is a

derived random variable. Specifically,
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TV(X) = 1
2
∑︁
𝑖 ̸=𝑗

{︁
𝑟+
𝑖𝑗|𝒪𝑀

(𝑋𝑖 −𝑋𝑗)2
}︁
. (4.31)

However, in the case where the correlations are only known within some interval, i.e.,

0 ≤ 𝜈𝑖𝑗 < 𝜌𝑖𝑗 < 𝜖𝑖𝑗 ≤ 1, we have that:

𝑁∑︁
𝑖=1

𝜎2
𝑖 +

∑︁
𝑖 ̸=𝑗

𝜈𝑖𝑗𝜎𝑖𝜎𝑗 < Var [‖X‖] = Var
[︃
𝑁∑︁
𝑖=1

𝑋𝑖

]︃
<

𝑁∑︁
𝑖=1

𝜎2
𝑖 +

∑︁
𝑖 ̸=𝑗

𝜖𝑖𝑗𝜎𝑖𝜎𝑗. (4.32)

With these analytical expressions for E [‖X‖] and Var [‖X‖], or analytical bounds for

Var [‖X‖] in the case of partially-known correlations, we can substitute E [‖X‖] =∑︀𝑁
𝑖=1 𝜇𝑖 along with either Var [‖X‖] = 1⊤Σ1 +∑︀

𝑖 ̸=𝑗 𝜌𝑖𝑗𝜎𝑖𝜎𝑗 or

Var [‖X‖] ∈
⎛⎝ 𝑁∑︁
𝑖=1

𝜎2
𝑖 +

∑︁
𝑖 ̸=𝑗

𝜈𝑖𝑗𝜎𝑖𝜎𝑗,
𝑁∑︁
𝑖=1

𝜎2
𝑖 +

∑︁
𝑖 ̸=𝑗

𝜖𝑖𝑗𝜎𝑖𝜎𝑗

⎞⎠
into Definition 6, transforming this definition to one that can be used to detect outliers

in scale.

Proposition 4 Suppose that 0 ≤ 𝜈𝑖𝑗 < 𝜌+
𝑖𝑗 < 𝜀𝑖𝑗 ≤ 1 for all unique pairs of nodes

𝑖, 𝑗 ∈ 𝑉 . Then, we can evaluate scalars 𝛿1 and 𝛿2, with 𝛿2 ≥ 0, such that max {0, 𝛿1} ≤

E[TV(X)] < 𝛿2.

Proof. See Appendix A.3. �

Proposition 5 Suppose 0 ≤ 𝜈𝑖𝑗 < 𝜌+
𝑖𝑗 < 𝜀𝑖𝑗 ≤ 1 for all unique pairs of nodes 𝑖, 𝑗 ∈

𝑉 . Then, we can evaluate scalars 𝛿3 and 𝛿4, with 𝛿4 ≥ 0, such that max {0, 𝛿3} ≤

Var[TV(X)] < 𝛿4.

Proof. See Appendix A.4. �

Using these two propositions, we can modify Definition 5 for weak outliers in

distribution of level 𝑘 to include these more conservative bounds:

Definition 9 (Partial information case of Definition 5) An observation x con-

taining bounded partial information regarding all pairwise correlations, i.e., 𝜌𝑖𝑗 ∈
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(𝜈𝑖𝑗, 𝜖𝑖𝑗) ⊆ [0, 1],∀𝑖, 𝑗 ∈ 𝑉 , is considered a weak distribution outlier of level 𝑘 or a

weak outlier in distribution of level 𝑘 if

TV(x) /∈
[︂
max

{︂
0, 𝛿1 − 𝑘

√︁
𝛿4

}︂
, 𝛿2 + 𝑘

√︁
𝛿4

]︂
, for some 𝑘 ≥ 0. (4.33)

The modified Definition 9 of weak outliers in distribution also shows how such bounds

can be implemented in practice to detect weak outliers in distribution. We make some

final remarks related to a well-known spectral bound (Rayleigh quotient) as well as

the generalizability of our bounds to other underlying distributions. Let us denote by

𝜆max the largest eigenvalue of L. Then, we have the following bound via the Rayleigh

quotient:

TV(x) = x⊤Lx ≤ 𝜆max ‖x‖2
2 ≤ 𝜆max ‖x‖2

1 . (4.34)

The second inequality comes from the standard fact that ‖x‖2 ≤ ‖x‖1, and that 𝜆max

is non-negative in our settings. While the Rayleigh quotient is indeed a valid upper

bound for the TV of all data observations in 𝒪𝑀 , it is loose and does not provide

further refinements on the various bounds we propose. Finally, these bounds only

require the underlying distribution to have a finite expectation and variance; there is

no explicit dependence on the underlying distribution being Gaussian.

4.2 Strong and weak bounds on TV in simulated

networks

We now compute the bounds on strong distribution outliers using simulations, and

compare them against the theoretically-derived weak distribution outlier bounds. We

observe that the difference between these two bounds depends on the underlying 𝜇

and Σ of the data, and we show two examples to highlight that dependency.

Using two simulations, we examine the performance gap between bounds on strong

outliers in distribution versus bounds on weak outliers in distribution. We also demon-
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strate the utility of distinguishing outliers using TV rather than the underlying dis-

tribution, as the former can provide much more useful interpretations, particularly

in a networked setting. The idea for both simulations is to assume a fixed mean

vector 𝜇 and covariance matrix Σ, then generate 𝑀 normally-distributed observa-

tions. We fix the number of generated observations to be 𝑀 = 1 × 106, a large

value. The data points are plotted on a TV(x) versus ‖x‖ plot, and the quan-

tities Ê [TV(X) | ‖X‖ = ‖x‖] and ̂︂Var [TV(X) | ‖X‖ = ‖x‖] required for obtaining

the bounds on strong outliers in distribution are computed empirically by binning ‖x‖

and conditioning on each bin. The theoretically-derived bounds for weak distribution

outliers and scale outliers are also plotted. Additionally, we color each observation by

the density obtained from evaluating the probability density function (multivariate

Gaussian) at the value of the realized x. Note that if only the underlying distribution

was used for outlier detection, all black-colored trials could be considered as outliers.

This stands in contrast to the bounds provided by our derivations.

For parameters, we select 𝑁 = 2, 𝜎1 = 𝜎2 = 1, 𝜌12 = 0.5, and mean vector

𝜇 = (545.34, 582.13)⊤ to use in the first simulation. We plot the trials and bounds

in terms of (‖x‖ ,TV(x)) in Figure 4-6. If we examine the weak and strong outlier

in distribution bounds, we see that they are quite well-aligned. In this simple 2-node

setting, it may be the case that the weak outliers in distribution bounds are all that

is needed, and serve as reasonable approximations for strong outlier in distribution

bounds.

In the next simulation, we will show that the weak and strong bounds for outliers

in distribution can deviate significantly in more complicated settings. To motivate

the second simulation, we will increase the number of nodes from 𝑁 = 2 to 𝑁 = 30,

and examine the US airport correlation network which we detail in Section 4.4.1.

In lieu of selecting artificial parameters, we estimate the sample covariance matrix

Σ from a set of historical airport delay data, and we also estimate a sample mean

vector 𝜇. We refer readers to Section 4.4.1 for a detailed description of the data set.

We again plot the trials and bounds in terms of (‖x‖ ,TV(x)) for this airport delay

network setting in Figure 4-7.
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Figure 4-6: TV versus 1-norm of the graph signal for a generic bi-vertex graph,
with scale outlier, weak outlier in distribution, and empirically-derived strong outlier
bounds. Each observation (‖x‖ ,TV(x)) is colored by its probability density 𝑓X.
Reprinted from [100]. c○ 2019 IEEE
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From the simulation results shown in Figure 4-7, unlike the 2-node case in the

previous simulation, the weak and strong bounds do not agree. In fact, the nature

of the disagreement between the two bounds changes depending on the value of ‖x‖.

Specifically, for smaller values of ‖x‖, we see that the weak bounds are higher than the

strong bounds, indicating that the strong bounds are tighter, and the weak bounds

are overly-liberal. As the magnitude of the signal ‖x‖ increases, as expected, the weak

bounds do not capture the natural increase in TV as ‖x‖ increases. Thus, the weak

bounds are now overly-conservative, and would mis-classify graph signal observations

as outliers. The strong bounds, conditioning on ‖x‖, adjust for the increase in ‖x‖.

Figure 4-7: TV versus 1-norm of simulated graph signals within a 30-vertex graph;
data set from the US air transportation network. Reprinted from [100]. c○ 2019
IEEE

4.3 Non-parametric identification of graph signal

outliers

In Section 4.1, we typically assume that the graph signals are generated from a para-

metric underlying distribution with a well-defined mean and variance. In particular,
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we assume that the underlying distribution is a multivariate Gaussian distribution

with mean vector 𝜇𝜇𝜇 and covariance matrix Σ. In lieu of parametric approaches, we

will use the interquartile range (IQR) of the data to define desired outlier bounds in

a non-parametric manner. Furthermore, we note that our previous assumptions of a

Gaussian distribution implicitly assume also that our TD and TV distributions are

symmetric: However, given that both TD and TV are non-negative quantities in our

airport delay network applications, this symmetry assumption may be too specific.

Thus, we will also explicitly take into consideration skewness in our non-parametric

bound generation process by adjusting the resultant bounds based on the medcouple

statistic, as proposed in [33, 117].

Suppose that we are given a univariate sample set {𝑦1, 𝑦2, . . . , 𝑦𝐾}. We denote by

𝑄1 the value of the first quartile of {𝑦1, 𝑦2, . . . , 𝑦𝐾}. Similarly, we denote by 𝑄3 the

value of the third quartile of {𝑦1, 𝑦2, . . . , 𝑦𝐾}. The median of {𝑦1, 𝑦2, . . . , 𝑦𝐾} we will

denote by 𝑄2. The IQR for this data set is given by 𝐼𝑄𝑅 = 𝑄3 −𝑄1. We now have

all of the summary statistics required to define the medcouple statistic:

𝑀𝐶 = med
𝑦𝑖≤𝑄2≤𝑦𝑗

ℎ(𝑦𝑖, 𝑦𝑗). (4.35)

Observe that for the medcouple statistic, it takes a median conditioned on 𝑦𝑖 ≤ 𝑄2 ≤

𝑦𝑗, and for all well-ordered 𝑦𝑖 ̸= 𝑦𝑗, the kernel function ℎ(·, ·) is given explicitly by:

ℎ(𝑦𝑖, 𝑦𝑗) = (𝑦𝑗 −𝑄2)− (𝑄2 − 𝑦𝑖)
𝑦𝑗 − 𝑦𝑖

. (4.36)

This medcouple statistic, as proposed by [33, 117], is a robust measure of the

skewness exhibited by a univariate data set {𝑦1, 𝑦2, . . . , 𝑦𝐾}. We will leverage the

medcouple statistic to adjust the IQR, with the goal of constructing outlier bounds

that are better suited for asymmetric, skewed distributions. We note in our analysis

that all TD and TV distributions are right-skewed, i.e., we have that 𝑀𝐶 > 0. This

is the expected direction of the skew, since TD and TV are non-negative quantities

for our airport delay network application. Since the adjusted box-plot formulas from

[117] differ for 𝑀𝐶 > 0 and 𝑀𝐶 < 0, we use only the adjusted box-plot formulas
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for the right-skewed case 𝑀𝐶 > 0. We refer readers to [117] for the left-skewed case.

As with before, we restrict ourselves to the 1-norm of graph signals when we talk

about the TD at an airport. Furthermore, we assume non-negative signals at each

node, which is reasonable since airport delays are always a non-negative quantity.

Thus, we again have that ‖x‖ = ‖x‖1 = ∑︀
𝑖 𝑥𝑖. We now re-define the various outlier

definitions (i.e., in-scale, in-distribution, both weak and strong versions) with respect

to the skew-adjusted IQR. Figure 4-8 summarizes the three different non-parametric

skew-adjusted outlier bounds from Definitions 10, 11, and 12.

Definition 10 A data point x is classified as an outlier in scale (OIS) if

‖x‖ /∈
[︁
Ω, Ω

]︁
,

where the lower bound Ω := 𝑄1 − 1.5𝑒−4×𝑀𝐶𝐼𝑄𝑅, the upper bound Ω := 𝑄3 +

1.5𝑒3×𝑀𝐶𝐼𝑄𝑅, and the 𝐼𝑄𝑅 and 𝑀𝐶 ≥ 0 are defined on the set of 1-norms 𝒱‖x‖,

where

𝒱‖x‖ =
{︁
𝒱‖x‖,1 =

⃦⃦⃦
x(1)

⃦⃦⃦
, . . . ,𝒱‖x‖,𝑀 =

⃦⃦⃦
x(𝑀)

⃦⃦⃦}︁
. (4.37)

Definition 11 A data point x is classified as a weak outlier in distribution (weak

OID) if

TV(x) /∈
[︁
Γ, Γ

]︁
where the lower bound Γ := 𝑄1 − 1.5𝑒−4×𝑀𝐶𝐼𝑄𝑅, the upper bound Γ := 𝑄3 +

1.5𝑒3×𝑀𝐶𝐼𝑄𝑅, and the 𝐼𝑄𝑅 and 𝑀𝐶 ≥ 0 are defined on the set 𝒱TV(x), where

𝒱TV(x) =
{︁
𝒱TV(x),1 = x(1)⊤ℒx(1), . . . ,𝒱TV(x),𝑀 = x(𝑀)⊤ℒx(𝑀)

}︁
. (4.38)
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Definition 12 A data point x is classified as a strong outlier in distribution (strong

OID) if

TV(x) /∈
[︁
Θ, Θ

]︁
where the lower bound Θ := 𝑄1 − 1.5𝑒−4×𝑀𝐶𝐼𝑄𝑅, the upper bound Θ := 𝑄3 +

1.5𝑒3×𝑀𝐶𝐼𝑄𝑅, and the 𝐼𝑄𝑅 and 𝑀𝐶 ≥ 0 are defined on the (sub)set 𝒱TV(x)|‖x‖ ⊆

𝒱TV(x).

TV 𝐱

𝐱

$Θ

Θ
&Γ

Γ

$ΩΩ OIS bounds

Strong OID 
bounds

Weak OID 
bounds

Figure 4-8: Depiction of the non-parametric, skew-adjusted IQR-based outlier detec-
tion bounds. Reprinted from [161]. c○ 2020 IEEE

In practice, due to a finite number of data points in 𝒪𝑀 , it is not possible to

condition exactly on ‖x‖. Analogous to Section 4.1, we compute a relaxed, discretized

bound instead. Algorithm 2 describes the steps required to compute the discretized

non-parametric bounds
{︂̂︀Θ, ̂︀Θ}︂ for strong outliers in distribution. The idea behind

Algorithm 2 is to condition the TV on a discrete interval around ‖x‖, rather than a

particular value for the 1-norm. To obtain robust estimates, we dynamically vary the

interval widths to ensure an equal number of data points 𝑛 in each interval, with the

possible exception of the last bin. The TV of each data observation within the (sub)set

that falls into a particular interval is used to compute the 𝐼𝑄𝑅 and 𝑀𝐶, and then

the outlier bounds for that particular interval. Finally, the output from Algorithm

2 is linearly interpolated for points between the discrete bins, and extrapolated at

99



Algorithm 2 Computing non-parametric strong OID bounds (IQR).
Input: Minimum bin size 𝑛; TD set 𝒱‖x‖; TV set 𝒱TV(x)
Output: Outlier bound bins ̃︂LB‖x‖; Upper outlier bound Θ; Lower outlier bound Θ

13 ̃︀𝒱‖x‖ ← Sort 𝒱‖x‖ s.t. 𝒱‖x‖,𝑖 ≤ 𝒱‖x‖,𝑗 , ∀𝑖 < 𝑗 and 𝑖, 𝑗 ∈ {1, . . . , 𝑀} × {1, . . . , 𝑀}
14 LB‖x‖ ←

{︁̃︀𝒱‖x‖,𝑖
⃒⃒
𝑖 ∈

{︁
1, . . . , min

{︁
𝑀, 1 +

⌊︁
𝑀
𝑛

⌋︁
+ 𝑛

}︁}︁}︁
15 Δmax ← max𝑖

{︁̃︀𝒱‖x‖,𝑖+1 − ̃︀𝒱‖x‖,𝑖
}︁

16 for Lower bound index 𝑖LB = 1 :
⃒⃒
LB‖x‖

⃒⃒
do

17 if 𝑖LB <
⃒⃒
LB‖x‖

⃒⃒
then

18 ℓ𝑏 ← LB‖x‖,𝑖LB ; ℓ𝑢 ← LB‖x‖,𝑖LB+1

19 𝒱 𝑖LB
TV(x) ←

{︁
𝒱TV(x),𝑖

⃒⃒
ℓ𝑏 ≤ 𝒱TV(x),𝑖 < ℓ𝑢

}︁
20 ̃︂LB‖x‖,𝑖LB ←

1
2

(︁
LB‖x‖,𝑖LB + LB‖x‖,𝑖LB+1

)︁
21 else
22 ℓ𝑏 ← LB‖x‖,𝑖LB

23 𝒱 𝑖LB
TV(x) ←

{︁
𝒱TV(x),𝑖

⃒⃒
ℓ𝑏 ≤ 𝒱TV(x),𝑖

}︁
24 ̃︂LB‖x‖,𝑖LB ←

1
2

(︁
LB‖x‖,𝑖LB + max

{︁
𝒱‖x‖

}︁)︁
25 end
26

{︁
𝑄𝑖LB

1 , 𝑄𝑖LB
3

}︁
←
{︁

𝑄1 of 𝒱 𝑖LB
TV(x), 𝑄3 of 𝒱 𝑖LB

TV(x)

}︁
27 𝐼𝑄𝑅𝑖LB ← 𝑄𝑖LB

3 −𝑄𝑖LB
1

28 𝑀𝐶𝑖LB ← compute medcouple for 𝒱 𝑖LB
TV(x)

29 if 𝑀𝐶𝑖LB ≥ 0 then
30 𝜃

𝑖LB ← 𝑄𝑖LB
3 + 1.5

(︀
𝐼𝑄𝑅𝑖LB

)︀
exp

(︀
3×𝑀𝐶𝑖LB

)︀
31 𝜃𝑖LB ← 𝑄𝑖LB

1 − 1.5
(︀
𝐼𝑄𝑅𝑖LB

)︀
exp

(︀
−4×𝑀𝐶𝑖LB

)︀
32 else
33 𝜃

𝑖LB ← 𝑄𝑖LB
3 + 1.5

(︀
𝐼𝑄𝑅𝑖LB

)︀
exp

(︀
4×𝑀𝐶𝑖LB

)︀
34 𝜃𝑖LB ← 𝑄𝑖LB

1 − 1.5
(︀
𝐼𝑄𝑅𝑖LB

)︀
exp

(︀
−3×𝑀𝐶𝑖LB

)︀
35 end
36 end

37 ̃︂LB‖x‖ ←
{︂̃︂LB‖x‖,1, . . . , ̃︂LB

‖x‖,
⃒⃒
LB‖x‖

⃒⃒}︂
38 ̂︀Θ← {︂

𝜃
1
, . . . , 𝜃

⃒⃒
LB‖x‖

⃒⃒}︂
; ̂︀Θ← {︂

𝜃1, . . . , 𝜃

⃒⃒
LB‖x‖

⃒⃒}︂
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the edges up to the boundary data points. This process is illustrated in Figure 4-9,

where the strong OID bounds
{︂̃︂LB‖x‖,

{︂̂︀Θ, ̂︀Θ}︂}︂ are retrieved from Algorithm 2. The

discretized estimates of the strong OID bounds converge to the actual bounds as the

number of data points increases and the maximum bin width Δmax (see Algorithm 2)

decreases, i.e.,

lim
|𝒪𝑀 |→∞
Δmax→0

{︂̂︀Θ, ̂︀Θ}︂ =
{︁
Θ,Θ

}︁
.

TV 𝐱

𝐱
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Figure 4-9: Illustration of the end-point interpolation scheme used to extend the
non-parametric strong OID bounds

{︂̃︂LB‖x‖,
{︂̂︀Θ, ̂︀Θ}︂}︂ retrieved from Algorithm 2.

Reprinted from [161]. c○ 2020 IEEE

We emphasize that the bounds in this section does not assume any underlying

distributions for the graph signals, the TV, or the conditional distribution of the TV.

In addition, we also explicitly consider the skew of these empirical distributions, and

the practical challenges associated with estimating robust bounds from a possibly

101



small, finite data set 𝒪𝑀 .

4.4 US NAS system-wide analysis

In this section, we present our graph signal outlier analysis of the US NAS system-

wide network, aggregated over all airlines. We detail the data setup and processing

in Section 4.4.1 In Section 4.4.2, we discuss the projection of airport delays into a

2-dimensional subspace of total delay (TD) and total variation (TV), and discuss our

results in Section 4.4.4.

4.4.1 Data setup and processing

We retrieve airport delay data from FAA ASPM, with the time frame of interest

starting at January 1, 2008, through December 31, 2017 [85]. We restrict analysis to

the 30 busiest airports in the US, collectively known as the FAA Core 30. Using the

ASPM delay data, we generate the node-supported signals, i.e., the total delay at each

of the Core 30 airports. We generate one graph signal vector per day, where a day is

defined as 0000Z to 2359Z. We define the total delay at an airport to be the sum of

arrival and departure delays; specifically, we compute the average hourly arrival and

departure delays, and then sum across 24 hours. Given our time frame of interest,

we generate 3,653 graph signal vectors (one graph signal vector per day), where each

vector is of size 30× 1. We then generate the airport correlation network, where we

assign the edge weights of the graph to be the sample Pearson correlation coefficient

(4.1), computed from the 10-year set of airport delay data from ASPM. We observe

that all sample correlations are strictly positive: Thus, we do not need to perform a

half-plane projection, such as the one discussed in Section 4.1. The resultant airport

correlation network is a graph containing 30 nodes (one per airport). The graph is

also complete and undirected, with
(︁

30
2

)︁
= 435 edges.

Figure 4-10 depicts the resultant correlation matrix as a heat map (Figure 4-10(a))

and as a geographical map (Figure 4-10(b)). Two distinct sub-networks demarcat-

ing major East Coast and West Coast airports can be seen, in addition to a smaller
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sub-network for the Midwest airports (MSP, ORD, MDW, and DTW) as well. Many

airport pairs on the East Coast are connected by edges with high correlation coeffi-

cients. In other words, when the delay at one East Coast airport (e.g., IAD) is high,

then it is likely that the delays at other East Coast airports (e.g., DCA, BWI, PHL,

etc.) will also be high. These relationships are due to heavy traffic connectivity,

geographic proximity, and a higher likelihood that these airports will be impacted by

the same disruptions and traffic management initiatives (TMIs). By contrast, the two

Chicago-area airports – O’Hare (ORD) and Midway (MDW) – are less than 20 miles

apart with no commercial air traffic operating between them, and yet have highly

correlated delays due to similar weather and TMI impacts. The correlations between

delays are determined by a combination of geographical proximity, airline operations,

scheduling practices, and traffic flows.

4.4.2 Evaluation of outliers using total variation and total

delay

Recall from Section 4.1 that TV and TD provide a low-dimensional projection for

analyzing multivariate graph signals. Figure 4-12 plots the TV and TD for the airport

delay graph signals for each day in the 2008-2017 data set (3,653 days). The bounds

for outliers in scale as well as the weak and strong outliers in distribution are also

computed and plotted. 𝑘 = 4 was chosen as the threshold level for outlier detection.

The choice of the level 𝑘 is important for this outlier detection method: As with

any outlier detection method (e.g., interquartile range-based box-and-whiskers plots,

etc.), there is a parameter that one must set to determine how to delineate outliers

versus non-outliers. The important question is the robustness of this parameter, i.e.,

the parameter should be chosen such that small perturbations in the chosen parameter

do not impact the outlier detection sensitivity significantly. In this application, our

choice of 𝑘 should be robust enough such that choosing 𝑘 ± 𝜀 with 𝜀 being some

small perturbation should not affect the outlier classification to a large extent. We

can verify this through Figure 4-11, where we plot the percentage of system-wide

103



(a)

1.00
0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25
0.00

!"# | %& !"# | %&

(b)

(a)

1.00
0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25
0.00

!"# | %& !"# | %&

(b)

(a)

1.00
0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25
0.00

!"# | %& !"# | %&

(b)

Figure 4-10: (a) Heat map displaying the delay correlation between the top 30 air-
ports; (b) Correlations shown with geographical context. Higher correlations are also
emphasized with wider lines in (b). Note that HNL is not shown in (b) for simplicity.
Reprinted from [158].
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days classified as a strong distribution outlier against the parameter 𝑘. Note that at

around 𝑘 = 3, the outlier detection stabilizes. Our choice of 𝑘 = 4 is robust in the

sense that choosing 𝑘 ∈ [4− 𝜀, 4 + 𝜀] for some 𝜀 > 0 does not significantly alter the

percentage of outliers. This would not be true if, for example, a selection of 𝑘 = 2

was made. The behavior seen in Figure 4-11 can be explained by the fact that our

data set in the TV-TD plots has a dense core region, where many low TV and TD

days are observed, with increasing sparsity as we move away from the core region.

Figure 4-11: Percentage of system-wide days classified as strong outliers in distribu-
tion as a function of 𝑘.

In Figure 4-12, the lower bound for weak outliers in distribution lie below the

horizontal axis, rendering it a vacuous lower bound as TV is a non-negative quantity

in our settings (since all correlation coefficients are non-negative). We do not plot

this vacuous lower bound: This re-emphasizes the need for the strong outliers in

distribution bounds. The bounds for weak outliers in distribution are not able to

dynamically adjust to different values of TD, resulting in it being unable to capture

the increasing mean value and variance in TV(x) as TD increases.

Using the bounds shown in Figure 4-12, we can count the number of observations,

i.e., number of days, that were classified as various types of outliers. Out of 3,653

total days, we have that 167 days (4.6 % of all days) were classified as strong outliers

in distribution, and 221 days (6.0% of all days) were classified as weak outliers in

distribution only. For this data set, no days were classified exclusively as outliers
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in scale. Finally, we found that 14 days (0.4% of all days) were classified as both

outliers in scale as well as weak outliers in distribution. Another observation from

Figure 4-12 is that the TV typically increases with an increase in TD, since the TV

is related to individual airport delays via a non-negative quadratic relationship. For

all subsequent discussions and results in this section, we only examine strong outliers

in distribution, as it is the tightest in terms of its bounds.

Figure 4-12: TV versus TD for all days in 2008-2017 with level 𝑘 = 4 weak and strong
outlier bounds demarcated. Reprinted from [158].

4.4.3 Identifying disruptions for further analysis

A central motivation for our usage of GSP is to characterize differing delay patterns

that result from aviation disruptions. To this end, we would like to analyze the

subset of days (data points) in Figure 4-12 that experiences a particular type of

disruption. Such an analysis would help determine if certain types of disruptions

are correlated with an unusually large number of outliers. We use two independent

systems of categorizing disruption days and creating subsets for further analysis. The

first categorization is based on external disruptions, whereas the second categorization

is based on delays and cancellations.

In the first categorization of days, we identified four specific disruptions: Thun-
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derstorms, nor’easters, hurricanes, and airport or airline outages. A total of 178 days

out of the 10-year period was labeled with one of the four types of disruptions (see

Table C.2 in the appendix for a list of these dates). The metrics and criteria used for

identifying these disruption days are as follows:

Nor’easters: Nor’easters are large convective systems that typically impact the

East Coast and are associated with heavy rain or snowfall. These disruptions typically

occur between September and April. Nor’easters are reasonably well-predicted a few

days in advance, and usually result in severe airport and airspace capacity reductions.

We use the Regional Snowfall Index (RSI) metric [252], along with an estimate of

financial damage to identify 60 days in our data set which are affected by nor’easters

[198].

Hurricanes: We consider only Atlantic hurricanes that primarily impact the south-

ern and southeastern coastal regions of the US, as well as the East Coast in rare cir-

cumstances. We considered three factors when selecting our list of 34 hurricane-type

days: (1) The Saffir-Simpson hurricane wind scale [196], (2) the geographic region

of impact must include the contiguous US [195], and (3) the resultant financial costs

[274]. Similar to nor’easters, hurricanes are typically well-predicted storm systems,

and impact air traffic operations for several consecutive days.

Airline and airport outages: Airline-specific and airport-specific outages typi-

cally occur due to equipment failure. Another less common reason is due to security

and safety-related events. Some examples of root causes include power outages that

affect an airport, computer or hardware malfunctions affecting the flight dispatch

system of one airline, and outages that affect third-party global distribution systems

(GDS) and computer reservation systems (CRS). These outages are typically local-

ized to one specific airline or airport, or possibly a group of airlines using the same

service provider. We used online news sources to identify 49 outage-type days [282].
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Thunderstorms: Unlike the other three types of disruptions, thunderstorms are

quite common in comparison, occur over very localized regions (on the order of a

few hundred miles), are rapidly evolving, last only for a couple of hours, and can be

very difficult to predict. Since there is no standardized way of locating significant

thunderstorm days, we use Ground Delay Programs (GDPs), which is a procedure

used to reduce the demand at affected airports, as a proxy of thunderstorm activities.

Severe thunderstorm activity days in summer months are identified using a clustering

procedure described in [97], then cross-referenced with weather radar maps to confirm

the presence of convective activity [197]. Subsequently, 35 days with severe system-

wide disruptions due to thunderstorms are identified. We emphasize that this set of

35 days for our time frame is obviously not exhaustive.

In terms of operational performance measures, the amount of flight delay as well

as cancellations are crucial metrics used by airport managers, airlines, as well as

ANSPs. This forms the basis for the second categorization of days. To this end,

we use the delay and cancellation clusters from [97, 101] to assign a label indicating

the delay and cancellation levels on a day-by-day basis. The clustering methodology

and subsequent mapping into low or high delay and cancellation levels is discussed

in [97]. The four labels that any day can be assigned to, generated from possible

delay-cancellation status combinations, are:

∙ Low delay; Low cancellation (DLCL): This is the most common type of day

(74.7% occurrence) with relatively normal operations throughout the system.

∙ Low delay; High cancellation (DLCH): These days (3.9% occurrence) are

typically indicative of proactive cancellations by airlines in anticipation of severe

disruptions (e.g., a nor’easter). The large reduction in flight volumes provides

ample schedule buffer and results in low delays.

∙ High delay; Low cancellation (DHCL): Such days (12.2% occurrence) may

be indicative of an unplanned disruption such as pop-up thunderstorms, giving

airlines little chance to proactively cancel.
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∙ High delay; High cancellation (DHCH): The most severe unplanned dis-

ruptions typically lead to significant delays and cancellations. These are the

days (9.3% occurrence) with the worst system impact.

Figure 4-13 depicts the 178 days classified as nor’easters, hurricanes, thunder-

storms or airport outages. Note that we use the same bounds for outliers in scale,

as well as the weak and strong outliers in distribution as Figure 4-12, since we are

still searching for outliers in the context of the entire system across the 10-year span.

Figure 4-14 presents all of the days from January 1, 2014 through October 31, 2017

partitioned into one of the four delay-cancellation groups. Because of the limited

availability of the complete cancellation data set used for clustering in [97, 101], we

are restricted to a shorter time span instead of the whole time frame of 2008 through

2017. The coordinates of the centroid for each of the subset of the days are also

plotted to provide a high-level overview. The counts for outliers in all of these cases,

as well as a discussion and interpretation of the results are presented in the next

subsection.

4.4.4 The role of disruption in spatial delay distributions

We present the strong outliers in distribution statistics for the four types of disruptions

(hurricanes, thunderstorms, nor’easters, and airline- or aiport-specific outages) in

Table 4.1, and for the delay-cancellation subsets (low delay with low cancellation, low

delay with high cancellation, high delay with low cancellation, and high delay with

high cancellation) in Table 4.3.

Category Outlier counts %
Hurricane 1 out of 34 2.9%

Thunderstorm 5 out of 35 14.3%
Nor’easter 17 out of 60 28.3%

Outage 2 out of 49 4.1%

Table 4.1: Outliers for the four types of disruptions. Reprinted from [158].

We see a clear distinction in the occurrence of strong distribution outlier days
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(b)

Figure 4-13: TV versus TD plot for a subset of days in 2008-2017 with four disrup-
tions. The average value (centroids) for each category is also shown. Reprinted from
[158].

for the four disruption categories (Table 4.1). Taken together, the hurricanes and

outages-type days only result in 3 days out of 83 being strong distribution outliers

(3.6%). On the other hand, the system-wide impacts of thunderstorms and nor’easters

were higher in terms of unexpected spatial distribution of delays, and a total of 22

days out of 95, or 23.2% were classified as outliers. This is significantly higher than

the outlier counts for hurricane- and outage-type disruptions. Thunderstorms and

nor’easters are thus correlated with higher TV, higher TD, and more outliers, while

airport outages and hurricanes are correlated with a lower occurrence of outliers.

The low TD and low TV characteristics of hurricane days are interesting and sur-

prising, since hurricanes are extremely disruptive to the air transportation system.

These results indicate that not only are hurricanes correlated with lower delays, but

these delays are also distributed spatially in an expected manner. This is in direct

contrast with nor’easters, which are also very disruptive but result in higher delays,

higher TV, and result in more unexpected distributions of delays. One could argue
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(a)

Figure 4-14: TV versus TD plot for a subset of days in 2014-2017 with four system-
wide delay and cancellation conditions. The average value (centroids) for each cate-
gory is also shown. Reprinted from [158].
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that cancellations [36], which are not accounted for in our analysis, may offer an

explanation. However, this is not the case: In Table 4.2, we list the average cancel-

lation percentages across all days belonging to each of the four disruption categories,

including the 10-year average, for the entire system as well as for the four major

airlines, which are the subjects of analysis in Section 4.5. We see that hurricanes and

nor’easter have comparable system-wide cancellation percentages, but nor’easters still

result in higher delays and TV.

This difference in outlier occurrences may reflect differing operational philoso-

phies when dealing with IROPs stemming from each of the four disruption types.

Specifically, hurricanes tend to be well-predicted in terms of its projected trajectory,

giving airlines time to proactively cancel. Hence, we see hurricane-type days not

only with low delay, but also expected spatial distributions of delay. On the other

hand, nor’easters may not be associated with airlines canceling strategically and ef-

ficiently re-positioning aircraft to enable swift recovery, even though nor’easters may

be well-predicted. This results in higher delays, higher TV, and unexpected spatial

distribution of delays. It is also possible that the regions typically affected by these

nor’easter-type storms contain highly congested airports (e.g., New York City-area

airports) which are already operating at their capacity limits, further exacerbating

the problem. Our data-driven analysis highlights the current challenges faced by air-

lines regarding proactive management of these nor’easters, and motivates the need to

develop more advanced tools for disruption recovery and management.

The more spontaneous nature of airport outages do not give airlines the luxury to

proactively cancel, resulting in outage days having higher incurred airport delays than

hurricane days. However, since outages tend to be isolated to one particular airport

or airline, its overall impact within the entire system is limited, potentially resulting

in low levels of TV. Lastly, thunderstorms are geographically local and temporary

phenomenon. These characteristics do not afford airlines a long prediction and plan-

ning horizon; thus, airlines typically try to operate through thunderstorms, preferring

to incur moderate delays while avoiding cancellations. This explains the higher TD

values associated with thunderstorms. However, since these events typically affect

112



only a small fraction of the traffic at any instant, they do not lead to large-scale

changes in the delay distribution, and hence are correlated with lower occurrences of

outliers in spatial distribution.

Interestingly, while it seems that nor’easters result in the largest impacts when it

comes to the spatial distribution of airport delays at a system-wide level in comparison

to airport outages or thunderstorms, we will see that this conclusion does not hold in

the airline-specific analysis (Section 4.5).

Category System-wide AA DL UA WN
Hurricane 7.8% 7.3% 5.7% 9.6% 6.9%
Thunderstorm 2.9% 3.1% 2.0% 1.9% 1.4%
Nor’easter 7.9% 8.1% 8.0% 8.2% 5.1%
Outage 2.3% 3.1% 2.5% 1.4% 2.2%
10-year average 1.6% 1.8% 1.0% 1.4% 1.1%

Table 4.2: Percentage of flights canceled across the entire system as well as for each
of the four airlines under different disruption categories. Reprinted from [158].

We also observe an insightful relationship that links flight cancellations with strong

outliers in distribution from Table 4.3. We note that high levels of cancellation,

irrespective of whether it is associated with high or low delays, is correlated with

higher outlier counts. Out of the 1,214 days with low flight cancellation levels, only

1.5% were outliers. However, when the number of cancellations are high, almost 22%

of the days are outliers. A possible explanation is that when flights are not canceled,

they typically propagate delays based on their route structure and connectivity, and

spread the delays across the system, akin to diffusion processes on a graph [90].

While this increases the system-wide delay, it is more spatially homogeneous, and

hence decreases the TV. On the other hand, cancellations isolate parts of the network

and prevent the propagation of delays. This can result in significantly lower delays

downstream in the schedule, since the canceled aircraft cannot complete those routes.

Although we caution that further work is required to ascertain the causal direction

of this relationship between cancellations and high TV, this motivates the usage of

flight cancellations as a control action to guide system-wide recovery towards more

expected spatial delay distributions, if such a state is desired.
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Category Outlier counts %
Low delay, low cancellation (DLCL) 12 out of 1044 1.2%
Low delay, high cancellation (DLCH) 12 out of 54 22.2%
High delay, low cancellation (DHCL) 6 out of 170 3.5%
High delay, high cancellation (DHCH) 33 out of 130 25.4%

Table 4.3: Outliers for the delay-cancellation categories. Reprinted from [158].

In Section 4.5, we present the spectral analysis, outlier identification, and dis-

ruption impact assessment individually for four major US carriers. Extending into

Chapter 5, we will also analyze the complex relationship between the system as a

whole in comparison to the individual sub-networks of these carriers.

4.5 US airline-specific analysis

Several results from the previous section, as well as later on in Chapter 5, hint at the

necessity to zoom in at an airline-specific level. First, some of the eigenvector modes

that we will examine in Chapter 5 focus on hub airports for specific airlines, indicating

the presence of airline-specific effects. Second, disruptions such as thunderstorms or

nor’easters tend to affect specific geographies, consequently impacting some airlines

more than others. Finally, even though airlines may be affected individually, the

system-wide view “smooths out” these variations and does not capture the subtleties

and nuances of airline operations. We detail the data setup in Section 4.5.1 and the

identification of outliers using TV versus TD plots in Section 4.5.2. As mentioned

previously, we will defer the analysis of the spectral modes (Section 5.2) and the

comparisons between system-wide versus airline-specific results (Section 5.3) to the

complementary Chapter 5.

4.5.1 Data setup and processing

Since ASPM does not provide airline-specific breakdowns of airport delays, we use

publicly available on-time performance data retrieved from the Bureau of Transporta-

tion Statistics (BTS) for the time frame of January 1, 2008 through December 31,
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2017 [36]. The data pre-processing involves filtering for flights arriving at or depart-

ing from our Core 30 airport list, aggregating delays over each specific day, adjusting

for multiple time zones, and eliminating canceled and diverted flights. Finally, we

restrict our study to four airlines that all together account for approximately 79%

of departed seats for all domestic US traffic [34]. Specifically, these four airlines are

American Airlines (AA), Delta Air Lines (DL), United Airlines (UA), and Southwest

Airlines (WN).

For each of the four airlines, we have a corresponding unique non-negative cor-

relation matrix that serve as airline-specific adjacency matrices. For brevity, airline-

specific correlation heat maps are presented in Figures B-1 and B-2 in Appendix B.

Some of these four airlines do not serve all 30 airports during the time frame of our

analysis: Hence, the graphs for WN had 24 nodes (no operations in ORD, MIA, JFK,

DFW, IAH, and HNL), AA and UA have 29 nodes each (both do not have opera-

tions at MDW), while DL services all 30 airports. Thus, in our ordered indices 𝑖 for

eigenvector modes 𝑣𝑖 and eigenvalues 𝜆𝑖, we have that the highest 𝑖 for AA, DL, UA,

and WN will be 29, 30, 29, and 24, respectively.

We briefly discuss some interesting correlation patterns for each of the four air-

lines. In AA’s network, we see a fairly uniform distribution of strong correlations

mostly focused on their East Coast hubs (e.g., CLT, DCA, LGA) as well as their

largest hub at DFW. In contrast, the DL network reflects a much stronger presence

of airport delay correlations in the East Coast, and is more similar to the correla-

tion network for the system-wide case. UA’s network highlights correlations in the

West Coast and the Midwest, centered around SFO, DEN, and ORD. There are also

noticeable airport pairs that have zero correlations, indicating little or non-existent

UA operations between that specific airport pair (e.g., ATL and JFK). Finally, WN

has a few airport pairs with high correlations (e.g., TPA-MCO, DCA-ATL), and no

airports with a significant number of high correlation edges incident on them. This

emphasizes the intrinsically different network structures, routing strategies, and tail

assignments used by WN compared to the three other network legacy carriers.

We will now analyze delay signals and graph Laplacians that are airline-specific
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to highlight the differences between delay dynamics, spatial delay distributions, and

response to disruptions by individual airlines. Specifically, we identify the airline-

specific outlier counts for each disruption (Section 4.5.2), and interpret the relation-

ships between the airline-specific versus system-wide analyses (Section 5.3). In terms

of specific disruptions, we consider the same set of 178 days from Section 4.4.2 in

which each day was labeled as one of the four disruption categories.

4.5.2 Discussion of airline-specific outliers

We first compute airline-specific strong distribution outlier bounds; the TV versus

TD plots with these bounds for each of the four airlines can be found in Figures B-3

(AA), B-4 (DL), B-5 (UA), and B-6 (WN) in Appendix B. The empirical strong

outlier bounds for AA, UA, and WN are similar, with DL exhibiting significantly

wider bounds. We consistently see that airline- or airport-specific outages and thun-

derstorms have greater effects on the spatial delay distribution within airline sub-

networks, compared to the system-wide network. Furthermore, while nor’easters had

the greatest effect on system-wide spatial delay distributions, their impact at the

airline sub-network level is diminished. While AA, UA, and WN disruption cen-

troids all remained within the empirical strong outlier bounds, the DL centroids for

thunderstorms and outages are outside of the bounds. This indicates that even an

“average” thunderstorm or outage event typically results in unexpected spatial delay

distributions in DL’s sub-network.

Airline-specific outlier statistics are compiled in Table 4.4, along with correspond-

ing system-wide outlier statistics. We observe that disruptions affect airline sub-

networks quite differently compared to the system-wide network. For example, an

average of 39% of thunderstorm-type days were strong outliers in distribution for the

three network legacy carriers, with DL having over half (51.4%) of its thunderstorm-

type days classified as outliers, whereas only 14.3% of thunderstorm-type disruption

days were classified as outliers in the system-wide analysis. The strong hub-and-spoke

nature of these airline operations, along with their routing strategies, may contribute

to the significant operational impact of transient disruptions such as pop-up thunder-
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storms. On the other hand, the more point-to-point nature of WN may explain why

only 8.6% of their thunderstorm-type days are classified as outliers in distribution.

Category
(System-wide outlier %) Airline Outlier counts %

AA 0 out of 34 0.0%
DL 1 out of 34 2.9%
UA 0 out of 34 0.0%

Hurricane
(2.9%)

WN 2 out of 34 5.9%
AA 10 out of 35 28.6%
DL 18 out of 35 51.4%
UA 13 out of 35 37.1%

Thunderstorm
(14.3%)

WN 3 out of 35 8.6%
AA 7 out of 60 11.7%
DL 9 out of 60 15.0%
UA 10 out of 60 16.7%

Nor’easter
(28.3%)

WN 8 out of 60 13.3%
AA 5 out of 49 10.2%
DL 9 out of 49 18.4%
UA 10 out of 49 20.4%

Outage
(4.1%)

WN 7 out of 49 14.3%
AA 292 out of 3,653 8.0%
DL 301 out of 3,653 8.2%
UA 288 out of 3,653 7.9%

10-year span
(4.6%)

WN 355 out of 3,653 9.7%

Table 4.4: Outlier counts and percentages for each type of disruption, split by airline.
Reprinted from [158].

Finally, airline- and airport-specific outages result in lower system-wide outlier

occurrences (4.1%) in comparison to airline-specific outliers (average of 15.8%). This

is because outage events typically involve only one specific airport or airline that

experiences most of the disruptions, with little diffusion to the system-wide network.

In general, spatial delay distributions within airline sub-networks are more easily

perturbed than system-wide spatial delay distributions: This can be seen in the 10-

year span outlier statistics, where 4.6% of all 3,653 days were outliers in the system-

wide analysis, but outlier percentages varied between 7.9% for UA and 9.7% for

WN when analyzing individual airlines. Note that the airline-specific TV-TD plots,

restricted to the 178 disruption days, can be found in Figures B-7 (AA), B-8 (DL),
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B-9 (UA), and B-10 (WN) in Appendix B.

4.6 Chinese airspace delay analysis: Spatial and

magnitude characteristics

We shift now to applying the outlier detection methods from earlier in this chapter

to the Chinese airport network. For context, China is the second-largest aviation

market in the world, with approximately 560 million passengers transported in 2017

[119]. This number is comparable in magnitude to the US, which is the largest

commercial aviation market serving almost 890 million passengers. With a projected

growth rate of 5.3% per year for the next 20 years, the growth rate for Chinese

aviation is significantly higher than the global average of 3.8% [119]. To give a sense

of scale, China contributed to the largest increase in domestic air traffic among all

parts of the world, with an increase of 48.8 million passenger journeys in 2018 [120].

Such unprecedented growth, along with the massive scale of the system, motivates

our analysis of inefficiencies such as flight delays in the Chinese aviation system.

Currently, the average arrival delay for flights at the top 10 airports (based on traffic

volumes) in China is 26 minutes [204]. Note that this is a substantial amount of arrival

delays compared to other mature markets such as the US, which has an average arrival

delay of 17 minutes per flight among US top 10 airports [264]. Faced with increasing

traffic levels, the problem of excessive flight delays is also expected to grow in China.

Two main factors result in the Chinese air transportation system to be more

vulnerable to delays: First, the limited availability of airspace resources creates a

capacity-side constraint. Secondly, high-traffic routes are concentrated in a relatively

small geographical region. To expand upon the first constraint, we note that in China,

a vast majority of the airspace is blocked for military usage, resulting in only about

25% of the airspace available for civilian use. As a consequence, commercial flights

do not have the flexibility to follow optimal routes, and create congestion at airway

choke points in order to navigate around restricted airspace [219].
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Expanding upon the second point of concentrated traffic densities, most of the

traffic are distributed in the eastern part of China, resulting in collocated regions of

congested airspace. Among the top 15 domestic passenger traffic origin-destination

pairs, six of them belong to China (Beijing-Capital and Shanghai-Hongqiao; Chengdu

and Beijing-Capital; Beijing-Capital and Shenzhen; Shanghai-Hongqiao and Shen-

zhen; Guangzhou and Shanghai-Hongqiao; Guangzhou and Beijing-Capital) [263].

We note that all of these are routes are in the eastern part of China. Thus, systemic

high traffic volumes in the eastern part of China, combined with adverse meteoro-

logical phenomena that typically affect the same region, result in large disruptions of

airline and airport operations. Additionally, we also note that certain social events

such as the Golden Week of national holidays have been shown to significantly increase

demand as well as delays and cancellations [161].

In this section, we focus our analysis on four major air carriers in China. These

air carriers of interest are Air China (CA), China Southern Airlines (CZ), Hainan

Airlines (HU), and China Eastern Airlines (MU). Together, these four full-service

carriers represent nearly 70% of the market share in China. Of these four, China

Southern Airlines is the largest air carrier, comprising of almost a quarter of the

market share in China. We provide a high-level summary of these four airlines in

Table 4.5. An important point worth noting is that all four of these carriers operate

a hub-based network structure, with Beijing Capital International Airport (PEK)

being a hub for three out of four airlines. While each of the four carriers have on-time

performance metrics that could be improved upon, our work highlights the differences

among these four airlines in terms of the temporal and spatial extent of delays they

experience. Several of our results also provide comparisons between airlines in terms

of temporal trends (i.e., when outlying disruption days occur), as well as which group

of airports are typically affected in such cases.
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Air China
(CA)

China Southern
(CZ)

Hainan Airlines
(HU)

China Eastern
(MU)

Passengers
(2019, Mil.) 115 152 82 130

Fleet size 429 619 223 567
Primary hubs
(IATA code) PEK, PVG, CTU CAN, PEK PEK, HAK, XIY,

SZX PVG, SHA, KMG

Carrier type Full service Full service Full service Full service
Market share
(2017) 18% 23% 14% 17%

Average canc.
(2017) 4.2% 5.2% 4.6% 5.4%

Table 4.5: Overview of network and operating characteristics for the four Chinese
airlines we consider in this analysis. Please refer to Table C.6 in Appendix C for a
list of the IATA codes and full airport names. Reprinted from [160].

4.6.1 Previous research on airline networks and flight delays

in China

We will now provide a brief overview of some existing literature related to data-driven

characterizations of Chinese airline networks. [287] investigates the evolution of the

Chinese airport network (CAN), including its topology and traffic: The authors found

that the traffic grows at an exponential rate with seasonal fluctuations, while the net-

work topology does not change significantly. A 𝑘-core decomposition method was

used in [67] to divide the CAN into multiple layers. The core layer contained 17.7%

of airports within the CAN, most of which were located in economically developed

cities. Furthermore, this core layer was found to be a densely connected network, sus-

taining most of the traffic flows. Comparisons between the Chinese air transportation

network and its US counterpart have also been made [219, 161], albeit at different

granularities: [219] focused on using flight-specific trajectory data to characterize

air traffic networks, whereas [161] analyzed differences in airport-level delay distri-

butions. From these comparative studies, some notable conclusions include the fact

that compared with the US network, China has more restricted airspace availability

for commercial flights and faces a greater risk of en route congestion [219]. At the

level of all airlines, the airports responsible for unusual spatial delay distributions in

China were found to be much less geographically clustered than similar airports in
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the US [161]. A key extension that we pursue in this work is deriving airline-specific

insights at the level of airport delay distributions for the CAN.

The use of graphs as a helpful abstraction for network analysis has been studied

in the context of the CAN and the Chinese aviation system: [43] conducts community

detection on Chinese airport delay correlation networks in which edges are built using

correlations of the delay time series between two airports to reveal implicit delay

propagation relationships. [269] found that inter-country (US and China) differences

in how scheduled block times (SBTs) are set can account for large differences in on-

time performance between the two countries. The authors of [269] indicate that there

are restrictions on SBTs for flights passing through congested airways in peak hours,

due to concerns that longer SBTs will lead to excessive airspace occupancy. Finally,

[268] developed a number of operational resilience measures, and used them to assess

how different scales and intensities of disruptions at a given airport affect aviation

operations throughout the network.

4.6.2 Data processing

We obtain airport delay data, conditioned on the four Chinese airlines from Table 4.5,

for the 30 Chinese airports considered in our analysis (see Table C.6 for a list of these

airports and their IATA codes, as well as Figure B-11 for a geographic plot of these

airports) from the Operations Monitoring Center of the Civil Aviation Administration

of China (CAAC). The time frame of the airline-specific airport delay data spans

January 1, 2012 through December 31, 2015. The data granularity is one observation

per day, equaling 𝑁 = 2, 192 observations per airline, or 8, 768 daily airport delay

observations in total. We can abstract each daily delay observation for an airline as a

non-negative multidimensional vector x(𝑡) ∈ R30×1
≥0 , where the 𝑖th component 𝑥𝑖 gives

the delay (in minutes) at airport 𝑖 for day 𝑡.

We will need to build out the graph abstraction in order to perform the spatial

delay distribution analysis in Section 4.6.3, i.e., we need to construct how the de-

pendencies within our airport network 𝐺 are modeled. As described earlier in this

chapter, we use the sample Pearson correlation coefficient as a measure of dependence
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between pairs of airports in 𝑉 . Specifically, this gives us a first-order measurement of

linear dependencies between airport delays. One way to represent this is through an

adjacency matrix 𝐴 that describes the 30 × 30 dependencies within the airport net-

work 𝐺. This adjacency matrix 𝐴 will have 30 rows and columns, with each element

𝑎𝑖𝑗 of 𝐴 being the sample Pearson correlation coefficient between airports 𝑖 and 𝑗.

Note that since Pearson correlations are symmetric quantities, we have that 𝑎𝑖𝑗 = 𝑎𝑗𝑖.

Note also that we will have four different correlation networks, each corresponding

to one of the four airlines we analyze. After computing all 𝑎𝑖𝑗’s, we can plot them

geographically in Figure 4-15 to get a sense of high and low correlation areas within

each airline’s graph.
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Figure 4-15: Correlation networks superimposed on a geographical map of China for
the four Chinese airlines we analyze. Note that higher correlation values are also
emphasized with wider lines. Reprinted from [160].
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4.6.3 Spatial delay distribution analysis

We now analyze the spatial distribution of airport delays in the Chinese airport net-

work, with a focus on unexpected spatial delay distributions. We identify individual

outlier days in terms of their spatial delay distribution and examine monthly dis-

tributions of days that are considered spatial delay distribution outliers. We will

contrast this with the monthly distribution of airport delay magnitudes: In particu-

lar, we will highlight the differences in monthly distributions when airport delays are

observed from a magnitude versus spatial distribution standpoint, and comment on

its operational implications.

To examine the day-by-day occurrences of unexpected spatial delay distributions

for each airline’s sub-network, we utilize the skewed interquartile range-based non-

parametric outlier bounds detailed in Section 4.3 to classify the three different types

of outliers summarized in Section 4.1.2. These outlier definitions include outliers in

scale (OIS), weak outliers in distribution (weak OID), and strong outliers in distri-

bution (strong OID). Recall that OIS describe days where the magnitude of delay –

now taking into account network effects – is higher (or lower) than normal, whereas

both weak and strong OID measure the spatial distribution of airport delays across

an airline’s sub-network, with the latter being a magnitude-independent measure of

spatial variation. We plot the total delay and total variation for each of the 2,192

days between 2012-2017, for each airline, in Figure 4-16. We also plot the bounds

demarcating whether or not a day is OIS, weak OID, or strong OID. Note that these

outlier classifications are not mutually exclusive: For example, a day could be both an

OIS as well as a strong OID, indicating that an extremely severe disruption occurred

in that airline’s sub-network, affecting not only the magnitude but also the spatial

distribution of delays.

Based off of how many data observations (each observation represents a day in

an airline’s network) lie outside of the various outlier bounds from Figure 4-16, we

record the number of OIS, weak OID, and strong OID days for each of the four Chinese

airlines, and report the outlier statistics in Table 4.6. Note that the figures quoted
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in Table 4.6 are in number of days, with percentages given by dividing the number

of days by 2,192 total days, i.e., the total number of observations between 2012-2017.

We see that HU has the highest number of OIS days and weak OID days, as well

as the second-highest number of strong OID days. If we focus solely on the spatial

distribution of delays independent from its magnitude, then CZ claims the highest

number of strong OID days, with approximately 5% of all days between 2012-2017

being classified as a strong OID. Referring back to Figure 4-15, we note that CZ

has several edges with high correlations, concentrated in the southeastern region of

China. Recall that since “less smooth” distributions of delays can only occur across

edges with high correlation (i.e., two highly correlated airports where one airport has

low delays and the other has high delays, or vice versa), this indicates that CZ often

experiences uneven delay distributions across highly correlated airports, leading to

a high number of strong OID days. Since we are examining strong OID days, this

observation holds true for CZ independent of how high the delays were, i.e., the

magnitude of the delays.

CA CZ

HU MU

(a)

(c)

(b)

(d)

Figure 4-16: TV versus TD for all days in 2012-2017 for (a) Air China (CA), (b) China
Southern Airlines (CZ), (c) Hainan Airlines (HU), and (d) China Eastern Airlines
(MU). Reprinted from [160].
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Outlier Type Air China
(CA)

China Southern
(CZ)

Hainan Airlines
(HU)

China Eastern
(MU)

OIS 17 (0.8%) 44 (2.0%) 52 (2.4%) 13 (0.6%)
Weak OID 37 (1.7%) 24 (1.1%) 61 (2.8%) 32 (1.5%)
Strong OID 47 (2.1%) 116 (5.3%) 76 (3.5%) 54 (2.5%)

Table 4.6: Airline-specific outlier statistics; the number of outlier days as well as the
percentage out of 2,192 days (2012-2017) are provided. Reprinted from [160].

We can also assess the temporal trends of unexpected spatial delay distributions

occurring in the sub-networks of the four Chinese airlines we analyze. Specifically, we

will examine the number of strong OID days by months, and contrast this with the

average delay magnitudes by month, as shown in Figure 4-17. Note that we will only

consider the strong OID counts in this analysis, because we want to focus solely on the

effects of spatial variance, and explicitly exclude the effects of delay magnitudes. For

the delay magnitudes in Figure 4-17, we see a distribution with peak average delays

in the summer months. In particular, for the 2012-2017 time period, the month of

July saw peak average delays across the four airline sub-networks. Interestingly, this

is not the case with strong OID counts, as shown in Figure 4-18. This contrasting

observation suggests that characterizing delays according to their magnitude versus

their spatial variance can result in highly orthogonal measurements of two different

kinds of network performance: For the Chinese airline sub-networks, the periods of

high delay magnitudes do not seem to coincide with periods of unexpected spatial

delay distributions. In other words, whereas delays are typically high during sum-

mer months, they are spatially located at “expected” airports throughout each of the

airlines’ network. On the other hand, during fall and winter months, and especially

in October, even if the magnitude of delays are lower compared to the peak summer

months, the spatial location of these delays within each airline’s network is increas-

ingly unexpected, resulting in delay distributions with higher variations across the

correlation networks for each airline. One potential operational factor is that in the

summer months, heavy convective activity cause severe levels of disruptions, but the

resultant airport delays diffuse throughout the network, and were distributed within

the network in an expected manner. On the other hand, unusual demand profiles in
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months such as October (e.g., due to societal-scale holidays) could coincide with less

severe disruptions, but result in delays that appear in unexpected locations through-

out each airline’s network. An example of such an unusual demand profile could

be during the Golden Week holidays in October, where the Chinese aviation system

typically experiences large surges in travelers [281, 161].

Figure 4-17: Monthly distribution of average daily delays for all four Chinese airlines.
Reprinted from [160].

4.7 Future work

4.7.1 Control of graph signals and processes

There is wide range of previous research that deals with the controllability of net-

works [172, 169, 285] and optimal control of graph signals and processes, particularly

within the framework of graph signal processing. We review some research advance-

ments that may be particularly relevant to our problem of achieving magnitude- and

spectral-based control of airport delay signals on top of our correlation network. In

[19], the classical linear quadratic optimal controller (LQR) is re-cast as a graph filter

through the GFT, acting on time-varying (in the auto-regressive sense, i.e., the state
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Figure 4-18: Monthly distribution of strong OID days for all four Chinese airlines.
Reprinted from [160].

of the nodal signal in time 𝑡 + 1 depends linearly on neighboring nodal signals from

the previous instant 𝑡) graph-frequency components. Specifically, the temporal state

evolution equation is:

x𝑡+1 = Lx𝑡 + 𝑏u𝑡 + w𝑡, (4.39)

where 𝑏 is constant, with zero-mean Gaussian noise w𝑡 ∼ 𝒩 (𝜇,Σ) and control input

u𝑡 ∈ 𝒰 ⊆ R𝑁×𝑁 . Here, [19] takes the state evolution matrix to be some diagonalizable

graph shift operator (the graph Laplacian L = VΛV−1 is one example, where Λ

stores the eigenvalues 𝜆𝑖 and V stores the eigenvector modes 𝑣𝑖, for 𝑖 = 1, . . . , 𝑁).

This may be a drawback for us, since the evolution of airport delays cannot fully

be represented solely by the weights of the correlation network. However, we could

use, e.g., the Markov Jump Linear System model from [96], wherein the state matrix

directly influences the evolution of airport delays. Recall from Definition 2 that the

GFT of x can be written as x̂ = V⊤x; hence, the graph frequency representation of

(4.39) can be written as:
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x̂𝑡+1 = Λx̂𝑡 + 𝑏û𝑡 + ŵ𝑡, (4.40)

and since Λ = diag (𝜆1, . . . , 𝜆𝑁), we can de-couple the graph frequency state evolution

at each node 𝑖 = 𝐾 as:

�̂�𝑡+1,𝐾 = 𝜆𝐾 �̂�𝑡,𝐾 + 𝑏�̂�𝑡,𝐾 + �̂�𝑡,𝐾 . (4.41)

The LQR controller attempts to find some optimal policy u*
𝑡 that minimizes the

expected cost (optimal in expectation due to w𝑡) across a finite time horizon 𝑡 =

0, . . . , 𝑇 as well as a terminal cost at 𝑡 = 𝑇 , constrained by the system evolution

(4.39). In other words, we want to solve:

min
{u𝑡}𝑇 −1

𝑡=0

E
[︃
𝑇−1∑︁
𝑡=0

(︁
x⊤
𝑡 Lx𝑡 + u⊤

𝑡 𝑅u𝑡
)︁

+ x⊤
𝑇Lx𝑇

]︃

s. t. x𝑡+1 = Lx𝑡 + 𝑏u𝑡 + w𝑡, 𝑡 = 0, . . . , 𝑇 − 1.
(4.42)

A main contribution of [19] is showing that the optimization problem to be solved

in order to retrieve the optimal LQR controller (4.42) can be re-written in the graph

frequency domain via the GFT. To do so, the system evolution matrix L and control

cost matrix 𝑅 must be chosen such that:

L = V−𝐻𝐷𝑄V−1,

𝑅 = V−𝐻𝐷𝑅V−1,
(4.43)

where 𝐷𝑄 = diag (𝑞(𝜆1), . . . , 𝑞(𝜆𝑁)) and 𝐷𝑅 = diag (𝑟(𝜆1), . . . , 𝑟(𝜆𝑁)). The functions

𝑞 and 𝑟 are positive cost functions that assign a cost to each eigenvector 𝜆𝑖; note that

since we assume the system evolution matrix to be the graph Laplacian itself (i.e.,

the cost directly penalizes the TV x⊤
𝑡 Lx𝑡 at each time instance 𝑡), then 𝑞 (𝜆𝑖) = 𝜆𝑖.

The graph frequency-version of (4.42), written node-wise at node 𝑖 = 𝐾, is:

min
{�̂�𝑡,𝐾}𝑇 −1

𝑡=0

E
[︃
𝑇∑︁
𝑡=0

𝜆𝐾 |�̂�𝑡,𝐾 |2 +
𝑇−1∑︁
𝑡=0

𝑟 (𝜆𝐾) |�̂�𝑡,𝐾 |2
]︃

s. t. �̂�𝑡+1,𝐾 = 𝜆𝐾 �̂�𝑡,𝐾 + 𝑏�̂�𝑡,𝐾 + �̂�𝑡,𝐾 , 𝑡 = 0, . . . , 𝑇.

(4.44)
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(4.44) can now be solved for each node 𝑖 = 1, . . . , 𝑁 within the graph frequency

component, since at each node 𝑖 = 𝐾, we have that 𝜆𝐾 > 0 and 𝑟 (𝜆𝐾) > 0 are

positive scalars, and (4.44) becomes the standard linear-quadratic dynamic program

which admits a solution through backward induction [25]. The optimal controller is

given in [19] by the following proposition:

Proposition 6 (Proposition 1 from [19]) Let u*
𝑡 = 𝑢*

𝑡 (x𝑡) denote the optimal

policy in (4.42) and û*
𝑡 = V−1u*

𝑡 its GFT with graph frequency components �̂�*
𝑡,𝐾

at node 𝑖 = 𝐾. Then,

�̂�*
𝑡,𝐾 = − 𝑏𝜆𝐾𝛾𝑡 (𝜆𝐾)

𝑏2𝛾𝑡 (𝜆𝐾) + 𝑟 (𝜆𝐾) �̂�𝑡,𝐾 (4.45)

for all 𝐾 such that 𝜆𝐾 > 0, and �̂�*
𝑡,𝐾 = 0 otherwise. The function 𝛾𝑡 (𝜆𝐾) in (4.45)

is defined by the Riccati backwards recursion starting at 𝛾𝑇 (𝜆𝐾) = 𝜆𝐾:

𝛾𝑡 (𝜆𝐾) = |𝜆𝐾 |2
(︃

𝑟 (𝜆𝐾) 𝛾𝑡+1 (𝜆𝐾)
𝑏2𝛾𝑡+1 (𝜆𝐾) + 𝑟 (𝜆𝐾)

)︃
+ 𝜆𝐾 ≥ 0. (4.46)

The foundation laid out by [19] is a good starting point for formulating any kind

of optimal control problem for the airport delay signals case, since [19] focused in-

depth on controlling the graph frequency (i.e., the spatial variation) at the level of an

individual node (i.e., airport). One drawback of the scheme proposed by [19] is the

assumption that all nodes can be used to control the system, whereas in reality, this

may not be the case. For example, we might only be able to influence the airport

delays at a limited subset of airports within our system through active TMIs. This

limited-controllable node setting is studied in the context of bandlimited graph signals

[17, 124], i.e., the graph signal x can be expressed by 𝑀 < 𝑁 number of eigenvector

modes. Specifically, [44, 131] all examine ways of constructing a bandlimited prior in

order to pick the appropriate set of driving nodes, and a further study [93] examines

the more nuanced case of controlling bandlimited graph processes (i.e., graph signals

with temporal dynamics) supported on top of a random, time-varying graph topol-

ogy. The latter aspect of [93] is particularly interesting, since most other works that
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examine the problem of controlling graph signals assume time-invariant graph topolo-

gies, even though in reality, the actual node and edge set might vary randomly with

time. For example, airport nodes could go offline according to ground stop TMIs,

and various edges could be removed in the sense of OD-specific cancellations.

In particular, in [93], given a discrete-time diffusion process x𝑡 = (𝐼𝑁×𝑁 − 𝜖L) x𝑡−1

where 𝐼𝑁×𝑁 is the identity matrix, L is the graph Laplacian, and 𝜖 is the system

stability parameter that guarantees stability if 0 < 𝜖 ≤ 1/ ‖L‖2, we have the following

𝑁 -state linear system:

x𝑡 = (𝐼𝑁×𝑁 − 𝜖L) x𝑡−1 +𝐵u𝑡−1, (4.47)

Since this is the limited driving node case, the control input u𝑡 ∈ R𝑀×1 acts on

𝑀 < 𝑁 nodes, and 𝐵 ∈ R𝑁×𝑀 is the corresponding control input matrix. Setting

𝐴 = 𝐼𝑁×𝑁 − 𝜖L, we can write (4.47) in the graph frequency domain as:

x̂
𝑡, ̃︀𝑀 = 𝐴 ̃︀𝑀 x̂

𝑡−1, ̃︀𝑀 + V𝐻̃︀𝑀𝐶⊤u𝑡−1, (4.48)

where ̃︁𝑀 now represent the discrete number of eigenvector modes (i.e., bandlimited

bandwidth) that we restrict our graph signals to, V ̃︀𝑀 is the set of eigenvector modes,

restricted to ̃︁𝑀 , and 𝐶 is a combinatorial, binary matrix that picks the appropriate

driving nodes. An interesting contribution of [93] is given in the following proposition,

which provides a necessary condition on the minimum number of driving nodes needed

in order to control the system in (4.47) in the graph frequency domain within a finite

time interval 𝑇 :

Proposition 7 (Proposition 1 from [93]) Consider the linear system (4.48) de-

scribing a process over a deterministic graph 𝒢. A necessary condition to control

the system in a finite time 𝑇 towards a target frequency content x̂*̃︀𝑀 over the ̃︁𝑀
frequencies of interest is to select 𝑀 ≥ ⌈̃︁𝑀/𝑇 ⌉ driving nodes.

Additional propositions dealing with the case of random, time-varying graphs are also

provided in [93].
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4.7.2 Graph sparsification and estimating better airport de-

lay networks

We would also like to improve upon the actual choice of airport delay correlation net-

works that we use in our various analyses, specifically from the viewpoint of sparsity.

In our various analyses, we always used a fully-connected, complete network, where

for every unique pair of airports 𝑖 and 𝑗, we always compute and retain the sample

Pearson correlation coefficient between the delays at airport 𝑖 and 𝑗. However, this

may inadvertently introduce and retain spurious correlations. Another line of future

work involves investigating and applying rigorous sparsification methods to introduce

sparsity in the sample correlation (or equivalently, the sample covariance) matrix of

airport delays. Along this line of thought, we present two relevant methods to exam-

ine: Thresholding and regularization of the sample covariance matrix [29, 30], and

using graphical LASSO [91, 179].

Thresholding and regularization of the sample covariance matrix

Suppose that, similar to how we retrieve the sample covariance and correlation matri-

ces from airport delay data, we observe 𝑛 i.i.d. 𝑝-dimensional observations X1, . . . ,X𝑛

distributed according to a Gaussian distribution 𝐹 , where without loss of generality,

𝐹 is zero-centered and with covariance Σ. Define the sample covariance matrix as

Σ̂ = 1
𝑛

𝑛∑︁
𝑘=1

(︁
X𝑘 −X

)︁ (︁
X𝑘 −X

)︁⊤
, (4.49)

and denote individual covariance between X𝑖 and X𝑗 to be Σ̂ = [�̂�𝑖𝑗]. One simple way

to introduce sparsity into Σ̂, and thus removing an edge between nodes 𝑖 and 𝑗 in the

corresponding correlation network, is to set a threshold 𝑠 ∈
[︂

min
1≤𝑖≤𝑗≤𝑝

{�̂�} , max
1≤𝑖≤𝑗≤𝑝

{�̂�}
]︂

and remove all sample covariance matrix entries below that threshold. We briefly go

over some results from [29] along with their related work in [30] that give guarantees

on the consistency of such a thresholding approach. Furthermore, more relevant to

our desired application, [29, 30] also proposes a method for constructing a threshold

in a rigorous way.
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We introduce some brief notation used in [29] to introduce one of their main re-

sults: A theorem that, loosely speaking, informs you that thresholding in a manner

similar to what is described above will produce a sparser sample covariance matrix

that is still “close” to the original sample covariance matrix, with useful preserva-

tion of characteristics such as label permutations and positive (semi-)definiteness of

the sample covariance matrix. In particular, given a matrix 𝑀 = [𝑚𝑖𝑗] ∈ R𝑁×𝑁 ,

denote the smallest and the largest eigenvalues by 𝜆min(𝑀) and 𝜆max(𝑀), respec-

tively. Define a thresholding operator 𝑇𝑠 : R𝑁×𝑁 → R𝑁×𝑁 that maps 𝑀 ↦→ 𝑇𝑠(𝑀) =

[𝑚𝑖𝑗 × 1 (|𝑚𝑖𝑗| ≥ 𝑠)]. To guarantee that the sparser matrix 𝑇𝑠(𝑀) is still positive

definite, construct the thresholding operator such that

max
1≤𝑗≤𝑁

|𝜆𝑗 (𝑇𝑠 −𝑀)| ≤ 𝜀 < 𝜆min(𝑀).

Finally, let ‖𝑀‖2
𝐹 = tr

(︁
𝑀𝑀⊤

)︁
denote the Frobenius matrix norm of 𝑀 . Ignoring

some mathematical technicalities regarding the uniformity of the covariance matrix

Σ, a main result from [29] is the following:

Theorem 1 (Theorem 1 from [29]) For sufficiently large 𝑀 ′, if

𝑡𝑛 = 𝑀 ′

√︃
log 𝑝
𝑛

(4.50)

and log 𝑝/𝑛 = 𝑜(1), then the operator norm difference between thresholding Σ̂ at 𝑡𝑛
and Σ is bounded in probability, i.e.,

⃦⃦⃦
𝑇𝑡𝑛

(︁
Σ̂
)︁
− Σ

⃦⃦⃦
= max

1≤𝑗≤𝑝

⃒⃒⃒
𝜆𝑗
(︁
𝑇𝑡𝑛

(︁
Σ̂
)︁
− Σ

)︁⃒⃒⃒
= 𝑂𝑃

⎛⎝𝑐𝑜(𝑝)
(︃

log 𝑝
𝑛

)︃(1−𝑞)/2
⎞⎠ , (4.51)

where 𝑐0(𝑝) and 𝑞 are parameters on the uniformity class of Σ.

What is more readily applicable for our line of work is a data-driven method

proposed by [29, 30] that constructs the thresholding value 𝑠 for the 𝑇𝑠 thresholding

operator, with attractive boundedness in probabilty properties with respect to the
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Frobenius norm. This proposed method is as follows: Split the sample set into two

pieces of size 𝑛1 and 𝑛2 (one suggestion of sizing is 𝑛1 = 𝑛 (1− 1/ log 𝑛) and 𝑛2 =

𝑛/ log 𝑛), and repeat this splitting process 𝐾 times. Define the empirical covariance

matrices Σ̂1,𝑘 and Σ̂2,𝑘 for the subset of size 𝑛1 and 𝑛2, respectively, at the 𝑘th split

out of 𝐾. Then, pick 𝑠* where:

𝑠* = arg min
𝑠≥𝜀𝑛→0
𝜀𝑛≍log 𝑝/𝑛

{︃
1
𝐾

𝐾∑︁
𝑘=1

⃦⃦⃦
𝑇𝑠
(︁
Σ̂1,𝑘

)︁
− Σ̂2,𝑘

⃦⃦⃦2

𝐹

}︃
. (4.52)

Another advantage of the method in (4.52) is that interpretability is retained in the

sense that you know exactly the threshold value 𝑠 for your threshold operator 𝑇𝑠,

and there are no surprises regarding the values within the sparser sample covariance

matrix 𝑇𝑠
(︁
Σ̂
)︁
. This is an advantage that the next method, graphical LASSO, lacks.

Graphical LASSO

Graphical LASSO is a convex optimization-based way to estimate a sparse underlying

undirected graphical model by penalizing the estimation of the precision matrix Σ−1

in a ℓ1 sense [91, 179]. Suppose as per usual that we observe 𝑛 i.i.d. 𝑝-dimensional

observations X1, . . . ,X𝑛 distributed according to a Gaussian distribution 𝒩 (𝜇,Σ).

Let us denote the precision matrix as Θ = Σ−1, and the empirical covariance matrix

by 𝑆 = Σ̂. Graphical LASSO attempts to maximize the Gaussian log-likelihood over

all positive (semi-)definite matrices Θ ∈ S𝑝⪰0. As we have mentioned previously, there

is a sparsity parameter 𝛾 that tunes the ℓ1 penalty in the log-likelihood maximization

problem:

Θ⋆ = arg max
Θ∈S𝑝

⪰0

{log det Θ− tr (𝑆Θ)− 𝛾 ‖Θ‖1} . (4.53)

We could also think about using graphical LASSO as a way to achieve a sparser

airport delay correlation network, with the hope that with enough observations of

the delay signal, we could hope to estimate the true set of non-zero elements within

Σ−1, i.e., retain the important edges between airports in our correlation network. For
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our application, there is a number of implementations that carry out the optimization

problem in (4.53), such as the glasso package in R.
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Chapter 5

Airport delays and graph signal

processing

The focus of Chapter 4 was on establishing definitions of graph-supported outliers, and

interpreting outlier results for various instances of delays in airport networks. While

this allows us to categorize a specific day (or hour, or some other time discretization)

as being an outlier or not, a natural question is which airport, or group of airports,

had delays contributing to the overall delay distribution being categorized as spatially

unexpected. This is the focus of Chapter 5, where we use graph signal processing

and decomposition via Laplacian eigenvectors to identify the aforementioned groups

of airports. The mental picture for the reader is illustrated in Figure 5-1: Given

an observation of delays across an airport network, we can decompose this airport

delay graph signal vector as linear combinations of Laplacian eigenvectors. These

eigenvectors can be thought of as commonly-occurring “ingredients” that constitute

any given airport network delay distribution. In particular, the ingredient components

consist of relative delay differences between airports. We note that, unless otherwise

stated, we follow the setup, conventions, and notations adopted in Chapter 4.
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Decomposition

Reconstruction

Airport delays

Nodes are airports

Edges are correlations

Figure 5-1: Notional representation of our graph setup (left), and the decomposition
to Laplacian eigenvectors (right). Reprinted from [160].

5.1 US network-wide spectral analysis

We compute the graph Laplacian matrix L from the adjacency matrix as per Def-

inition 1, and retrieve its eigenvalues (𝜆1 < · · · ≤ 𝜆30) and eigenvector modes

(𝑣1, . . . , 𝑣30). Recall from Chapter 4 that these eigenvector modes are a basis for the

space of airport delay signals. Note that since we order the eigenvalue-eigenvector

pairs with increasing indices 𝑖 in accordance to the eigenvalue magnitude, eigenvector

modes 𝑣𝑖 with larger indices 𝑖 are said to be more energetic and have a higher TV

(Section 4.1).

We retrieve these eigenvector modes for the US network-wide correlation net-

work described in Section 4.4.1. Table 5.1 presents a qualitative description of all 30

eigenvector modes and their corresponding eigenvalues, while Figure 5-2 provides a

visualization of the first and last three eigenvector modes, with respect to index 𝑖.

The key feature of interest in the modes is the sign of eigenvector mode component at

an airport. For a given eigenvector mode, airports with the same sign contribute in a

similar way to the total delay signal. Airports with a positive component within the

eigenvector mode move in the opposite way to airports with negative components in

the eigenvector modes. For example, the 𝑣2 mode encodes the delay dynamics where

SFO delays are moving opposite to delays at DFW, IAH, ATL, PHL, and MIA. In
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other words, if the delay at SFO is high, then the delays at the latter group of airports

is low, and vice versa. Note that the most energetic eigenvector modes, i.e., the most

unexpected modes, all involve East Coast airports with differing delay trends. As

another example, consider the eigenvector mode 𝑣29. It captures very energetic and

unexpected delay dynamics where EWR delays are trending opposite to other New

York-area airports (JFK, LGA), as well as other major East Coast airports (BOS,

PHL, and IAD). A qualitative, operational interpretation is that eigenvector modes

such as 𝑣1, 𝑣2, and 𝑣3 are delay dynamics that are more expected, whereas 𝑣28, 𝑣29,

and 𝑣30 are rarer, more unexpected delay dynamics.
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Figure 5-2: Most (𝑣30, 𝑣29, 𝑣28) and least (𝑣1, 𝑣2, 𝑣3) energetic eigenvector modes of the
system-wide graph Laplacian. Reprinted from [158].

Recall that an airport delay graph signal vector for any day can be decomposed

into linear combinations of graph Laplacian eigenvectors 𝑣1 through 𝑣30. Furthermore,

from Definition 3, we can relate graph signal smoothness (i.e., TV) with notions such

as the spectral energy of the graph signal. We compute the contribution 𝛼2
𝑖 to the

total spectral energy from eigenvector mode 𝑣𝑖, across all 30 eigenvector modes. We

calculate this mode-specific spectral energy contribution for each day in 2008-2017.

We then plot in Figure 5-3 the contribution for each eigenvector mode 𝑣𝑖, averaged

across the 10-year time period. As we noted in Chapter 4, there is a constant mode

corresponding to the lowest eigenvalue: This constant mode 𝑣1 accounts for approxi-

mately 80% of the total spectral energy on average, but is not operationally interest-
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𝑣𝑖 𝜆𝑖 Trend 1 Trend 2
𝑣1 𝜆1 = 0 Constant Constant
𝑣2 𝜆2 = 5.04 ATL, MIA, PHL, DFW, IAH SFO
𝑣3 𝜆3 = 5.42 HNL DFW, IAH, SFO

𝑣4 𝜆4 = 5.67

ATL, BOS, BWI, CLT,
DCA, DTW, EWR, FLL,
IAD, JFK, LGA, MCO,

MIA, PHL, TPA

DFW, IAH, HNL

𝑣5 𝜆5 = 6.29 IAH DFW
𝑣6 𝜆6 = 6.91 DEN, SLC, LAX, PDX, SEA ATL, FLL, MIA, SFO, HNL
𝑣7 𝜆7 = 7.65 MIA, LAX, PDX, SEA MSP, DEN
𝑣8 𝜆8 = 7.87 ATL, DTW, MDW, MSP, ORD MIA, DEN, LAX
𝑣9 𝜆9 = 7.97 PHX, LAS, LAX, SAN MIA, DEN, SEA
𝑣10 𝜆10 = 8.27 ATL, CLT, DEN, LAX, SEA MIA, MDW, MSP, ORD

𝑣11 𝜆11 = 8.48 ATL, MIA, MSP, SLC, PDX BOS, BWI, DCA, EWR,
IAD, JFK, LGA, PHL, SEA

𝑣12 𝜆12 = 8.71 SLC, LAS, PDX, SAN MSP, DEN, LAX, SEA
𝑣13 𝜆13 = 8.91 MDW, ORD, LAS, SAN MSP, LAX, PDX
𝑣14 𝜆14 = 8.95 MDW, ORD, LAX, PDX LGA, MSP, SLC, LAS, SAN, SEA
𝑣15 𝜆15 = 9.03 LAS, PDX, SAN SLC, LAX
𝑣16 𝜆16 = 9.20 PHX, LAS ORD, SLC, SAN
𝑣17 𝜆17 = 9.84 PHX BOS, ORD, SLC, LAS, LAX, SAN
𝑣18 𝜆18 = 9.89 PHX, ORD MDW

𝑣19 𝜆19 = 10.20 FLL, MCO, TPA BOS, DCA, EWR, IAD,
JFK, LGA, MIA, PHL

𝑣20 𝜆20 = 10.33 ATL, BOS, DTW, FLL, JFK, LGA CLT
𝑣21 𝜆21 = 10.83 BOS, CLT, FLL, LGA, MDW, ORD DTW, MCO, TPA
𝑣22 𝜆22 = 10.85 DCA, LGA, MCO, TPA BOS, CLT, DTW, FLL
𝑣23 𝜆23 = 11.01 BWI, DCA, FLL, IAD, LGA, PHL BOS, MCO, TPA
𝑣24 𝜆24 = 11.30 BWI, DCA, IAD, MCO, PHL CLT, DTW, LGA, TPA
𝑣25 𝜆25 = 11.35 DCA, IAD, PHL, TPA LGA, MCO
𝑣26 𝜆26 = 11.57 JFK, EWR, PHL DCA, BOS, BWI, IAD, LGA
𝑣27 𝜆27 = 11.71 PHL, MCO DCA, IAD, JFK
𝑣28 𝜆28 = 12.03 DCA, JFK, PHL IAD
𝑣29 𝜆29 = 12.27 EWR BOS, IAD, JFK, LGA, PHL
𝑣30 𝜆30 = 12.67 BWI DCA, EWR, IAD, MCO, PHL

Table 5.1: Description of eigenvector modes, delay trends (trends 1 and 2 move in
opposite directions), and the airports involved. Reprinted from [158].
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ing. In order to highlight the differences in the other eigenvector modes, we restrict

Figure 5-3 to eigenvector modes 𝑣2 through 𝑣30. Recall that if the spectral energy of

a particular eigenvector mode comprises a higher percentage of the total energy, then

the particular delay pattern corresponding to the eigenvector mode contributes more

to the overall delay dynamics. Since the result in Figure 5-3 is aggregated across

2008-2017, this removes any day-to-day variability in spectral energy contributions.

DEN, SLC, LAX, 
PDX, SEA
ATL, FLL, MIA,
SFO, HNL

FLL, MCO, TPA
BOS, DCA, EWR,
IAD, JFK, LGA,
MIA, PHL

JFK, EWR, PHL
DCA, BOS, BWI,
IAD, LGA

Figure 5-3: Average spectral energy across each system-wide eigenvector mode; eigen-
vector modes 𝑣2 through 𝑣30 are shown, with the constant mode 𝑣1 removed for fair
comparisons. Reprinted from [158].

We interpret four eigenvector modes with relatively high spectral energy contribu-

tions based on Figure 5-3. Eigenvector mode 𝑣26 (contributing approximately 1.2% of

the spectral energy) indicates unexpected delay dynamics when the two major New

York City airports (JFK and EWR) along with the close-by PHL have significantly

higher (or lower) delay magnitudes as compared to the remaining New York airport

(LGA) and other major East Coast hubs (DCA, BWI, IAD, and BOS). This dis-

agreement in terms of airport delays not only occurs within a very localized level

(LGA differing from EWR and JFK), but also at a regional level (New York City and

Philadelphia differing from Boston and the DC area). Another mode that accounts

for just over 1.3% of the average spectral energy is 𝑣19. This mode describes a similar

pattern as 𝑣26, where there are local as well as region-wide disagreements in delay

139



trends. Here, Florida airports (FLL, MCO, and TPA) have different delay magni-

tudes in comparison to several major East Coast airports, as well as MIA, which is

geographically close to FLL, MCO, and TPA.

Two other eigenvector modes that contribute around 1.2% of the average spectral

energy are 𝑣14 and 𝑣11. These modes highlight the need to perform an airline-specific

analysis (in addition to the system-wide analysis discussed currently), since these two

modes strongly suggest delay dynamics involving major Delta Air Lines (DL) hubs.

Specifically, we see DL hubs such as LGA, MSP, SLC, and SEA grouped together in

𝑣14, whereas 𝑣11 indicate delay dynamics where delays at ATL, MSP, and SLC trend

opposite to delays at BOS, JFK, LGA, and SEA.

5.2 US airline sub-network spectral analysis

We now shift our attention to the correlation networks for the four US airlines we

introduced in Section 4.5. We plot geographically the most energetic and the second-

most energetic eigenvector modes for each airline in Figure 5-4. Note that comparing

eigenvalues across airlines is not meaningful as they originate from different graphs

Laplacians, but within a particular airline, the eigenvalues retain the same interpre-

tation of graph “frequencies” as discussed in Section 4.1.
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Figure 5-4: Most (𝜆max) and second-most (𝜆max−1) energetic eigenvector modes for
AA, DL, UA and WN. Reprinted from [158].

At the airline-specific level, we see interesting patterns emerge within the top two
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highest-energy eigenvector modes that are not captured at the system-wide scale. For

AA, DL, and UA, the most energetic eigenvector mode depicts a spatial distribution

of delay where delays at the corresponding airline’s largest hub (see Table C.3 in

Appendix C for an annotated table of US airline hubs) are not in-sync with delays at

other major hubs for that airline’s sub-network. Additionally, while the eigenvectors

for AA, UA, and WN target their hubs or focus cities, the two most energetic modes

for DL involve only ATL and other geographically proximate Florida airports. This

highlights the significant density of hub operations at ATL by DL, and the relatively

small network presence of other DL hubs in comparison to ATL.

Connecting back to Chapter 4 in regards to examining specific disruption cate-

gories, there are also differences in the spatial delay patterns caused by nor’easters

at a system-wide level versus an airline-specific level. On an airline-specific level, we

see that an average of 14% of nor’easter-type days are classified as outliers, compared

to over 28% for the system-wide analysis. At the system-wide level, nor’easters often

cause unexpected spatial delay distributions owing to their propensity to impact the

highly correlated East Coast and Mid-Atlantic regions. However, unlike the system-

wide case, the eigenvector modes with the highest spectral energies for airlines (Figure

5-4) tend to be more geographically diverse. In particular, rather than concentrating

on the East Coast, these energetic eigenvector modes tend to correspond to AA, DL,

and UA’s largest hubs, which are geographically spread out. Furthermore, as we will

discuss in Figure 5-5, these high energy eigenvector modes also tend to be frequently

triggered.

We plot in Figure 5-5 the distribution of spectral energy across each airline’s

eigenvector modes. Similar to the system-wide case, the first, constant eigenvector

mode accounts for a large portion of the average spectral energy (61.1%, 59.4%, 58.1%,

and 66.1% for AA, DL, UA, and WN, respectively). Hence, for a fair comparison of

the other eigenvector modes, we do not show this constant mode in order to highlight

the subtleties of the other modes. The network legacy carriers (AA, DL, and UA)

are similar to each other in the sense that their top eigenvector mode contributes

significantly to the spectral energy. In other words, for these carriers, delays at their
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largest hubs move opposite to other airports sufficiently frequently such that 𝑣max

contributes to a high percentage of the spectral energy. This is in contrast to WN,

which appears to loosely follow a power law decay in energy across higher modes, and

has higher contributions from less-energetic modes such as 𝑣2, 𝑣3, 𝑣4, and 𝑣5.

SEA
CLT, IAD, PDX

SLC, IAH
JFK, MCO, FLL, BOS
LGA, PHL, PHX

FLL, LGA, PHX, SEA
MIA, MCO, ORD, TPA

DFW
DCA, DEN, LAX,
PHX, SAN, TPA

BOS, EWR, IAH, JFK,
LGA, PHL
DFW, IAD, PDX

BWI, FLL, JFK,
LGA, PHL
EWR, SAN, PHX

ATL
MCO, MIA, TPA

LGA, PHL
LAS, PDX, PHX,
SAN, SEA, SFO

DFW, DCA, IAD,
LAX
ORD

SFO
ATL, BOS, CLT, DCA, EWR, LGA

PHL, LAS, DTW
DCA, SFO, CLT

EWR, LGA
DCA, IAD

PHL, DCA
CLT, MSP, PDX, ATL

AA DL

UA WN

Figure 5-5: Average spectral energy across each eigenvector mode for all four airlines.
𝑣1 is removed for all airlines. Reprinted from [158].

For the three network legacy carriers, there are also some lower-energy modes

that contain a high percentage of spectral energy. In particular, these include 𝑣6 for

AA, 𝑣8 for DL, and 𝑣11 for UA. For these three eigenvector modes, they typically

involve one or two airports that are hubs for that specific airline, but also many other

airports that tend to be hubs for other network legacy carriers. We will see in Section

5.3 that these lower-energy modes play a dominant role on days when some airline

sub-networks are outliers, but others are not.
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5.3 Connecting outliers and eigenvector modes:

System-wide versus airline-specific

In this discussion, we connect the system-wide outlier results from Section 4.4.2 with

airline-specific outlier results. For each day in the 10-year data set, we assign five

labels that indicate whether or not the system-wide network and each airline’s sub-

network was classified as a strong distribution outlier. For instance, that information

can be represented in the form of a tuple (System-wide, AA, DL, UA, WN), where

each entry flags a “×” if the corresponding network is an outlier. As an example,

the tuple (×, , , , ) represents a day where the system-wide network was a

strong outlier, but no airline-specific sub-networks were outliers. In our 10-year time

frame, all 25 = 32 possible combinations contain at least four distinct days, ranging

from the most common combination of ( , , , , ) with 2,817 occurrences, to

(×, ,×,×,×) with 4 occurrences. We list the tuple statistics in Table 5.2.

We now remark on some of the day-types from Table 5.2 that have interesting

operational implications. The first day-type of interest denotes the case where only

one airline’s sub-network experiences unexpected spatial delay distributions, but no

other airline’s sub-network or the system-wide network is exhibiting unexpected spa-

tial delay distributions. We see a total of 164 such days for WN, 131 for DL, 103 for

AA, and 84 for UA, totaling 482 days out of 3,653 (13.2%). This particular subset

of days may be of interest for airlines, as they represent spatial delay distributions

that remain confined to their own sub-network. Another day-type of interest is when

exactly one airline’s sub-network is exhibiting unexpected spatial delay distributions,

and the entire system is an outlier in distribution as well. Analyzing these days have

system resiliency implications, since the unexpected delay distributions were not con-

fined to the sub-network of one airline. On the other hand, days where the system is

not an outlier, but only one particular airline is, are also worth analyzing.

As mentioned in Section 5.2, there is a pattern of certain low-energy eigenvector

modes being triggered for non-outlier airlines during days when other airlines might

be exhibiting unexpected spatial delay distributions. This is highlighted in Figure 5-6,
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System AA DL UA WN Outlier
Counts %

2817 77.1%
× 164 4.5%

× 131 3.6%
× 103 2.8%

× 84 2.3%
× × 37 1.0%

× × 29 0.8%
× 23 0.6%

× × 19 0.5%
× × 16 0.4%
× × 15 0.4%

× × 15 0.4%
× × × × × 15 0.4%

× × × 14 0.4%
× × × 14 0.4%

× × 13 0.4%
× × × × 13 0.4%
× × × × 13 0.4%

× × × 12 0.3%
× × 11 0.3%
× × × 10 0.3%
× × 10 0.3%
× × × 10 0.3%

× × × 9 0.3%
× × × × 9 0.3%

× × × 9 0.3%
× × × 8 0.2%
× × × × 8 0.2%
× × 7 0.2%
× × × 6 0.2%
× × × 5 0.1%
× × × × 4 0.1%

Table 5.2: Counts of the number of days belonging to each of the 32 tuple types.
Reprinted from [158].
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where we plot the average spectral energy distribution for days when the system is an

outlier and exactly one of the four airlines is an outlier. We note that when AA, DL,

and UA are not outliers, there is a noticeable increase in the occurrence of eigenvector

modes 𝑣6 for AA, 𝑣8 for DL, and 𝑣11 for UA. Furthermore, all three aforementioned

modes for AA, DL, and UA are triggered when WN is an outlier. The patterns of

low-energy eigenvector mode activation may indicate that when unexpected spatial

delay distributions arise in an isolated airline’s sub-network, the flights operated by

unaffected airlines at shared hubs with the affected airline are impacted in an expected

manner in terms of spatial delay distributions.

We discuss a few case studies to illustrate the utility of our spectral analysis.

Consider June 2, 2017, a day which was an outlier for AA and the entire system.

A slow-moving thunderstorm over DFW impacted operations out of the airport and

caused delays. Since DFW is a major and influential AA hub, it is expected that

delays at DFW would result in delays at other AA hubs. However, on this day, in

spite of high delays and cancellations at DFW for AA, it did not spread to other

airports. Thus, it was classified as an outlier for both AA and the system, but not

for other airlines. Another example is September 11, 2017, where DL and the entire

system were outliers. On this day, Hurricane Irma made landfall in the US southeast,

resulting in the closure of all Florida airports as well as heavy flight delays and

cancellations out of ATL. This resulted in a situation where ATL had high delays,

but the Florida airports (MIA, MCO, TPA) had no delays due to airport closures.

Given the historically strong correlations between ATL and the Florida airports, this

was an extremely unusual distribution of delay, and thus classified as an outlier for

DL. To add to the unusual quality of this day, delays did not spread to other DL hubs

such as MSP.

We emphasize the need to examine sub-network interactions, as we showed in

Table 5.2 that the system-wide network is not simply a sum of the four airline sub-

networks. This is further evident from the observation that there are 9 days in which

the system is not an outlier, but each of the four major carriers are, as well as 23

days in which the system is an outlier but none of the airlines are. This observation
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Figure 5-6: Spectral energy averaged across days when only the system and one spe-
cific airline (AA, DL, UA, or WN in (a) through (d), respectively) has airport delays
that are strong outliers in distribution (gray bars). The airline-specific average spec-
tral energy across the 10-year time frame is shown for benchmarking purposes (ma-
genta bars). Mode 𝑣1 is not plotted in order to highlight the other modes. Reprinted
from [158].
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motivates future analysis to understand sub-network interactions and their emergent

properties. Finally, the inventory of days belonging to each of the 32 tuple types from

Table 5.2 can be found in Tables C.4 and C.5 in Appendix C.

5.3.1 Summary of US NAS system-wide and airline-specific

analysis

In Chapter 4 and continuing thus far into Chapter 5, we applied our graph signal

outlier detection techniques to study airport delays in the US. Specifically, outlier

detection and spectral analysis were used to characterize and compare airport delays

at a system-wide and airline-specific level in the US NAS. Our methods enable the

automatic identification of outliers, providing airlines and ANSPs with an inventory

of days where the delay distributions were unexpected, either spatially, in magnitude,

or both, for further performance analyses. Such an inventory is essential for devel-

oping playbooks that will mitigate the element of surprise for controllers and flow

managers due to unexpected delay distributions. For the remainder of Chapter 5, we

carry out an eigenvector decomposition analysis for the Chinese airspace, as well as

a comparison between the US and Chinese airspace from the perspective of eigenvec-

tor modes. We conclude by integrating Chapter 4 and Chapter 5, emphasizing the

contextual interpretability of outliers via the eigenvector modes. Our work herein

provides the first network-wide spectral analysis of air traffic delays, outlier detection

based on the spatial distribution of delays, and a quantification of the impacts of

various disruptions on the system and airlines.

5.4 China airspace spectral analysis

We now shift our focus onto the Chinese airspace, using the same data set as described

in Section 4.6.2. We will identify and examine sub-groups of Chinese airports that are

commonly implicated in unexpected spatial distributions of delays, providing insights

into which airports to strategically monitor the delays at. Specifically, when it comes
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to delay magnitudes, one could monitor the total delay in the system in comparison

to some threshold to determine whether or not the system is in a high-delay state.

Alternatively, an individual airline could monitor its subset of hubs and focus city

airports. The selection of airports is less obvious when it comes to the question of

monitoring for unexpected spatial distribution of airports. We now characterize the

airline-specific eigenvector modes corresponding to each airlines’ correlation network

to get a sense of airline-specific airport subsets whose delays are often implicated in

unexpected spatial delay distributions. W

We are interested in the higher energy eigenvector modes, which we plot in Figure

5-7 for each of the four Chinese airlines. These modes describe how the delays at

particular airports are behaving with respect to delays at other airports. We provide

an example of how to interpret eigenvector modes through examining Figure 5-7(a),

i.e., the highest-energy mode for Air China (CA). The two airports highlighted in

Figure 5-7(a) are PEK and HGH, the former is CA’s main hub, whereas the latter

is a focus city for CA. While it is not surprising that hubs and focus cities would

be implicated in any sort of CA-specific disruptive event, what the eigenvector mode

analysis tells us is that an extremely unusual spatial delay distribution in CA’s airline

network consists of delays at PEK trending opposite to delays at HGH. Specifically,

it is an unusual situation when delays at PEK are increasing, but the delays at HGH

are decreasing, or vice versa. Hence, for CA, monitoring changes in the relative

difference between delays at PEK versus HGH is an indicator for whether or not the

delays are becoming more (or less) unusually distributed across CA’s network. The

second-most energetic mode for CA is the situation where PEK and HGH delays are

trending opposite to CKG, another focus city for CA.

Note that besides CA, all high-energy modes for the other three airlines are con-

centrated in the southern and southeastern region of China. This is reflective of

the network and hub structures of China Southern (CZ), Hainan (HU), and China

Eastern (MU). One interesting observation is that HGH appears in every high-energy

mode depicted in Figure 5-7, regardless of the airline. This indicates that regardless

of the airline sub-network in consideration, it is likely that delays at HGH are either
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Figure 5-7: Most (a)-(d) and second-most (e)-(h) energetic eigenvector modes for
each of the four Chinese airlines. Reprinted from [160].

unusually high or unusually low if the network is in a state of having unexpected

spatial delay distributions. This might be important at a central traffic management

level, particularly since the importance of HGH seems to not be airline-specific. We

note that HGH is a rare case where it is a focus city for all four airlines we consider

in this study: It is possible that this attribute of being a commonly-shared resource

is being reflected in the eigenvector mode analysis. Finally, the airport subsets for

HU and MU’s high-energy modes are quite closely collocated, whereas some of CZ’s

airports are quite distributed throughout the southern regions of China.

5.5 US and Chinese airspace analysis

Our work in this section characterizes and compares the spatial delay patterns in the

US and mainland China airport networks. There are several factors that motivate

our choice of these two regions. In terms of similarities, both networks cover vast

geographical extents; for example, the longest intra-region flight for both networks

is around 6 hours. Both networks carry a significant volume of passenger and cargo

(777 million passengers in the US [34] and 126 million passengers in China during

2018), experience severe delays (20.6% of flights are delayed in the US [36] and 19.9%
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of flights are delayed in China during 2018 [52]), and have limited strategic measures

such as airport slot controls that mitigate long term demand-capacity imbalances.

There are also significant differences in the rate of growth (passenger growth of 4.9%

in the US [118] and 10.2% in China [204]), maturity of the infrastructure, seasonal

effects and weather patterns, and air traffic management procedures. For example,

China has a limited number of fixed airways that are regularly restricted due to

military activities [219, 63]. These similarities and differences provide an interesting

opportunity for comparisons, in particular using data-driven methods to study the

impact of these factors on operational performance.

5.5.1 Delay data and pre-processing

Airport delay data is obtained for the US from the Aviation System Performance

Metrics (ASPM) database maintained by the Federal Aviation Administration (FAA),

and for China from the Operations Monitoring Center of the Civil Aviation Admin-

istration of China (CAAC). We analyze data from 2012-17, and restrict the airport

network to 30 airports in both cases. The US airports are chosen based on the FAA

Core 30 list, and for China based on the traffic volume (see Table C.6 and Figure

B-11 in the appendix for a list and map of all 30 airports for both networks). We

eliminate canceled and diverted flights from both data sets and construct a graph

signal of airport delays for each day in the 5-year period for both countries. The

graph signal at each airport is equal to the total delay at that airport. The total

delay for an airport is defined as the sum of the mean inbound and outbound delays

in minutes, sampled at at every hourly interval for the day, where a day is defined as

a 24-hour period. After the data pre-processing, we obtain 𝑀 = 2, 192 graph signals

x ∈ R30×1
≥0 for both networks. The edge weights 𝑎𝑖𝑗 in both graphs are computed as

the correlation coefficient between the delay signals at airports via (4.1). We note

that all the correlations are strictly positive, and the graph has only one connected

component. Hence, the graph Laplacian will have only one zero eigenvalue, and all

of the other eigenvectors and eigenvalues will be real.

We now analyze the US and China airport delay correlation networks, the eigende-
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composition of their graph Laplacians, and the average spectral energy distributions.

We will highlight how the eigenvectors of the graph Laplacian complement common

operational knowledge about airport delay patterns in the US and China. Further-

more, the associated eigenvalues and spectral energies enable a comparison between

the spatial variance of delays observed in the Chinese airport network versus the US.

5.5.2 US and China correlation networks

We plot in Figures 5-8 (heatmap) and 5-9 (geographical map) the correlation coef-

ficients for our network of 30 Chinese and US airports, computed from the 5-year

data described in Section 5.5.1. The resultant correlation network for China shows a

much larger subset of airports exhibiting high pairwise correlations in terms of their

total delay time series. This is in contrast with the US, where there are two distinct

airport subsets with correlation coefficients higher than the rest of the network: East

Coast airports, and to a lesser extent, West Coast airports. Typically, these high cor-

relations are due to geographic proximity, which leads to common weather impacts,

combined with operational factors such as traffic flow and airline hub characteristics.

For example, airport pairs such as ORD-MDW (US) and SZX-CAN (China) do not

have any traffic flows, but are collocated at the same city, thus resulting in high corre-

lations. On the other hand, the delay correlations at airport pairs such as SHA-SZX

and BOS-LGA are influenced more by the high volume of shared traffic flows, along

with potential geographic factors.

These correlation networks indicate that, compared to the US, the Chinese net-

work has a larger and more geographically diverse set of airports whose delays are

closely coupled. We explore this further in the next subsection by interpreting the

eigendecomposition of the graph Laplacians corresponding to these correlation net-

works. The resultant eigenvector modes help us in identifying specific groups of air-

ports which contribute to unexpected delay distributions.
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Figure 5-8: Airport delay correlations shown in heatmap format for the (a) Chinese
and (b) US airspace.
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Figure 5-9: Airport delay correlations shown with geographical context for the (a)
Chinese and (b) US airspace. Higher correlations are also emphasized with wider lines.
Note that HNL is not shown in (b) for simplicity. Reprinted from [161]. c○ 2020 IEEE
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5.5.3 US and China eigenvector modes

Recall that the eigenvector modes allows for the decomposition of any airport delay

signal vector into linear combinations of these modes, where higher-indexed modes

(corresponding to larger eigenvalues) are more “energetic” and result in higher TV.

We order the set of 30 eigenvalues for China and the US airport network in ascending

order according to their magnitude. Thus, Figure 5-10 provides a geographic depiction

of the top 5 most energetic eigenvector modes for both networks.

Eigenvector modes have interesting operational interpretations based on the sign

of each of the 30 components in 𝑣𝑖. In Figure 5-10 we represent positive components

in blue and negative components in red; the important characteristic is the difference

in signs between two or more airports, not so much the sign of an airport itself, since

any scalar multiple of the eigenvector is also an eigenvector. For example, in mode

𝑣27 for China, the signs on NKG and TYN are the opposite of TAO and FOC. This

mode portrays a scenario where airport delays at NKG and TYN are decreasing, and

airport delays at TAO and FOC are increasing, or vice versa. This point regarding

comparing different signs, and not the sign of one particular airport, is crucial to keep

in mind when analyzing these eigenvector modes.
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Figure 5-10: Top 5 most energetic eigenvector modes (i.e., 𝑣26 through 𝑣30) of the
graph Laplacian for China (a)-(e) and the US (f )-(j). Reprinted from [161]. c○ 2020
IEEE

Visually, the most energetic eigenvector modes for China are significantly different

from those of the US (see the top and bottom rows in Figure 5-10) in terms of the

geographic concentration of the highlighted airports. Most of the airports in China
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are widely distributed across the eastern part of the country. With the exception of

PEK in mode 𝑣29 and SXZ in 𝑣30, none of the airports in these high-energy modes are

ranked in the top five Chinese airports in terms of traffic volumes. Furthermore, there

is only one high energy (and thus, high TV) mode in China (𝑣28) where geographically

proximate airports (XMN and FOC) are experiencing opposite delay trends, whereas

this scenario occurs for all US eigenvector modes (i.e., East Coast and Mid-Atlantic

airports).

It is interesting that our data-driven delay analysis identifies the same airports

from another study that identified critical airports for system resilience [268]. Note

that such a list of airports is different from those arising out of studies on operational

dynamics or traditional network measures such as degree and betweenness centrality.

In particular, FOC has low traffic volumes (ranked 27th in 2018), and is not considered

to be a central airport in terms of its connectivity. However, it is determined to be

critical in a simulation-based study [268] that quantify the resilience of the system.

Analogously, our GSP analysis based on empirical data also identified FOC in four of

the five high-energy modes as a crucial airport in determining whether the system-

wide delay distribution is spatially expected or not.

Furthermore, the high-energy US modes involve airports within the same multi-

airport system having opposing delay trends: For example, LGA and JFK in New

York City have opposing delay trends in 𝑣26. This is not the case in China. As an

illustrative example, the two Shanghai airports (PVG and SHA) never have opposing

delay trends in the high-energy modes. For the US, we see that the most energetic

eigenvector modes correspond to cliques of East Coast airports with delays trending

opposite to each other. These include airports serving the same metropolitan area

having opposing delay trends; examples of this include modes 𝑣27 (IAD versus DCA),

𝑣29 (JFK and LGA versus EWR), and 𝑣30 (IAD versus BWI). Even if one of these

modes has a high spectral energy on a given day, we expect a higher TV for that

day due to the relatively larger eigenvalues associated with these modes (Proposition

1). Going one step further, we note that for the US, checking whether the delay

distribution of the system is spatially expected is approximately equivalent to checking
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if the delay distributions in the East Coast are spatially expected. Similarly, it is likely

that the system is an outlier in distribution if the East Coast airports experience an

unexpected spatial distribution of delays.

While it may be sufficient to primarily monitor a geographically localized subset of

airports in the US to analyze spatial delay distributions, the same cannot be said for

the China airport network. We see a lack of geographic consistency in the airports

highlighted by the five most energetic eigenvector modes for China. In particular,

for China, we see airports as far north as TYN and PEK appearing in some of the

modes, along with airports in the southeast such as XMN and FOC. Although this is

expected given the correlation networks for the two countries (Figures 5-8 and 5-9),

the eigenvector modes provide specific cliques of airports that cannot be identified

through a simple ranking of correlation coefficients, since these are inherently limited

to pairwise interactions.

5.5.4 US and China spectral energies

Recall from Chapter 4 that the eigenvalue corresponding to an eigenvector mode is a

measure of the “graph frequency” of this mode, whereas its spectral energy – specif-

ically, the percent contribution of its spectral energy to the spectrum for an average

day, averaged over the entire 10-year data set – is a measure of its contribution, or

impact within the network. We plot these two quantities in Figure 5-11 for both the

US as well as the Chinese network. We observe a clear distinction in the magnitude

of the eigenvalues between the two countries. The average magnitude of US eigen-

values is 9.17, and they are lower than all but one eigenvalue from the China airport

network. The average magnitude for the Chinese eigenvalues is 16.93, indicating that

the average TV of delay signals in China is significantly higher than the US.

The differences in terms of the spectral energy distribution is less pronounced

between China and the US. More than 80% of the average spectral energy is contained

in the constant mode for both countries (80.92% for the US and 87.87% for China) due

to the fact that typical days in both networks do not experience significant disruptions

or unexpected spatial distributions of delay. Hence, we remove this constant mode for
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a nuanced comparison between the more operationally interesting modes 𝑣2 through

𝑣30 in Figure 5-11. We also note that in the China airport network, there appears

to be a couple of modes that dominate the average eigendecomposition, whereas the

distribution is more even in the US.

Figure 5-11: Percentage of spectral energy per eigenvector mode versus associated
eigenvalue for the airport delay graph of the US and China (CN). Reprinted from
[161]. c○ 2020 IEEE

5.5.5 Identifying outliers in US and China

For each day with an associated airport delay graph signal x, we can compute the TD

and TV, and visualize it as a point (‖x‖ ,TV(x)) on a TV versus TD plot. Using the

skew-adjusted IQR method for detecting outliers detailed in Section 4.3, we compute

the outlier in scale (OIS), weak outlier in distribution (OID), and strong OID bounds

for the China and US airport networks. We present the TV-TD plots for China and

the US in Figure 5-12, with OIS, weak OID, and strong OID bounds demarcated.

Note that the observed delay within the China airport network is higher than the

US, resulting in a significantly higher TV for China due to the quadratic-dominated

relationship between TD and TV. However, since the outlier bounds are trained with

respect to each country’s data, the outlier statistics can be compared across the two

countries. We summarize the outlier statistics in Table 5.3. We observe that in terms

of the TD, which is the simplest measure of the severity of a disruption, the number
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of OIS in the US is higher than in China. This indicates that even though the TD

may be higher on average for China compared to the US, there are more days in the

US where the TD was unexpectedly high or low. The statistics for OID highlight the

importance of using the strong OID in lieu of the weak OID definition. While the

US has more weak OID than China, the reverse is true when the strong OID bounds

are used, which takes into account the fact that TV grows quadratically with TD.

The weak OID bounds, even though they are easier to compute and use, is not a

very consistent metric to identify spatial distribution outliers, since its conclusions

may even be contrary to ones obtained from the strong OID definition. We conclude

that the Chinese airspace not only incurs more severe delays than the US, but the

delays also tend to be spatially distributed at unexpected sets of airports. Given

the lack of geographic consistency in the higher-energy eigenvector modes for China,

this indicates that the unexpected spatial delay distributions are also likely to be

geographically dispersed throughout the airport network of China.

Outlier Type China US
OIS 19 34

Weak OID 16 30
OIS & Weak OID 5 8

Strong OID 103 73

Table 5.3: Number of outlier days out of 2,192 days (2012-2017) for China and the
US, categorized by outlier type. Reprinted from [161]. c○ 2020 IEEE

5.5.6 Monthly distribution of outliers in US and China

We plot the total number of strong OID days in each month for China and the

US in Figure 5-13 to analyze seasonal and temporal patterns. While one might

presume that there are more unexpected spatial delay distributions in the summer

months due to disruptions such as thunderstorms, we found that May, June, and

July actually contain the least number of strong OID days for both countries. The

temporal distribution of outliers from Figure 5-13 suggests that unexpected spatial

delay distributions are much more common in the winter, at least from a system-wide
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(a)

(b)

Figure 5-12: TV versus TD for all days in 2012-2017 for China (a) and the US (b),
with outlier in scale (OIS) and distribution (OID) bounds marked. Reprinted from
[161]. c○ 2020 IEEE
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perspective for both countries.

Nor’easter snowstorms and significant cancellations during the months of Decem-

ber through March contribute to a higher occurrence of strong OID days in the winter

for the US. Similarly, for China, meteorological factors such as fog and snowstorms

lead to significant unexpected delay distributions in the winter months. Additionally,

trends in consumer preference also appear to play a major role. The large number of

outliers in October are particularly clustered around the first week, which is a week-

long national holiday in China (Golden Week). A surge in aviation demand during

this travel season may be a contributing factor for the occurrence of a large number

of strong OID days. Finally, we would like to point out that seasonal effects are

more pronounced in China than the US, indicating more volatile, unpredictable, and

weather-sensitive operations in China. This may be a consequence of the high-growth

phase of the Chinese aviation market. Our analysis would help policymakers and sys-

tem managers to identify these specific instances of unexpected delay patterns, and

direct their efforts towards mitigating their operational impacts.

Figure 5-13: Comparison between the number of strong OID days in the US and
China (CN) across all months. Reprinted from [161]. c○ 2020 IEEE
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5.6 Unified framework of outlier detection

We emphasized that one advantage of our methods is the ability to provide inter-

pretations at multiple stages of the outlier classification process. In this section, we

present a framework for outlier interpretability, and then illustrate its applicability

by providing interpretations for why a particular set of days were classified as strong

OID in the China airspace analysis.

Our interpretation framework can be thought of as a workflow: We visualize this

workflow in Figure 5-14. Note the dual layer of interpretations available through this

framework: The first layer of interpretability distinguishes between different types

of outliers, i.e., strong OID versus OIS. We do not interpret weak OID days, as we

previously demonstrated the tighter performance of strong OID bounds. The second

layer of interpretability allows for operational insights to be derived from the GFT

and spectral modes. In particular, if the input day x ∈ R𝑁×1
≥0 is determined to be a

strong OID via the appropriate bounds, then we can compute the spectrum of the

signal {𝛼2
1, . . . , 𝛼

2
𝑁}. Using the spectral energy percentage contained in each eigen-

vector mode, we can retrieve the dominant eigenvector modes by selecting those with

significant energy contributions. We can then identify subsets of airports implicated

in a particular strong OID day, and use those airports as the basis for an in-depth

operational analysis.

5.6.1 Outlier interpretation examples for China

We apply our framework to interpret some strong OID days within our data set and il-

lustrate the operational insights that can be gained from this process. Specifically, we

identify disruptive events that occurred during a particular day by focusing our atten-

tion on prominent airports within activated eigenvector modes and cross-referencing

with factors ranging from meteorological events, airport outage, consumer behavior,

and airline operational practices.

We select 6 strong OID days from the China airport network and present them in

Table 5.4 along with their TD, TV, and the fraction of spectral energy 𝛼2
max/

∑︀
𝑖 𝛼

2
𝑖
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Figure 5-14: Flowchart depiction of our framework for the two-step process of in-
terpreting strong OID days in an air transportation setting. Reprinted from [161].
c○ 2020 IEEE

contributed by the dominant eigenvector mode 𝑣max. We plot the relevant modes in

Figure 5-15.
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Figure 5-15: Dominant eigenvector modes observed during the six strong OID days
in the Chinese airspace. Reprinted from [161]. c○ 2020 IEEE

∙ 6/10/2017 and 9/25/2017: The dominant eigenvector mode 𝑣8 shown in Figure

5-15(c) indicates that these two days were classified as outliers because the

two Shanghai airports (SHA and PVG) had significantly higher delays than

airports in the north, specifically HET, SHE, and CGO. This is operationally

interpretable as heavy rain and thunderstorms affected operations on both days

in the Shanghai area. In particular, September 25 involved more than 100
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Date TD TV EV Mode
(×104 min) (×108 min2) % spec. energy

9/25/2017 5.70 8.12 8 (12%)
1/28/2012 5.88 6.94 3 (23%)
12/29/2012 7.64 11.00 23 (10%)
6/10/2017 7.79 14.00 8 (15%)
1/18/2012 7.95 15.10 24 (18%)
6/21/2012 8.03 11.10 6 (10%)

Table 5.4: The six strong OID days in the Chinese network with the highest TD. The
date is given in month/date/year format. Reprinted from [161]. c○ 2020 IEEE

cancellations at PVG, and deteriorating conditions on June 10 resulted in a

50% capacity reduction at SHA and PVG.

∙ 12/29/2012: The dominant mode 𝑣23 indicates that this day was classified as an

outlier because of two geographically proximate airports (TAO and TNA) hav-

ing substantially different delay magnitudes. Heavy snowfall at TAO (resulting

in 145 canceled flights) with relatively no noticeable impact at TNA provides

an operational interpretation for this unexpected delay distribution.

∙ 1/18/2012: The eigenvector mode 𝑣24 highlights unexpected spatial delay dis-

tributions where delays at TAO and CKG move in opposite directions to XIY.

Severe ice accumulation and fog at XIY forced a major airline, China Eastern,

to cancel 186 flights. Interestingly, the delays were contained at XIY and did

not spread to the other China Eastern focus city of TAO. This is operationally

unexpected, as delays typically propagate within an airline’s sub-network during

disruptions at a major hub.

∙ 6/21/2012: Eigenvector mode 𝑣6 indicates that airports in the north – HET,

HRB, SHE, DLC – had delay magnitudes opposite to airports in the south

(KMG, CAN, SZX). This resulted in an unexpected delay distribution at-

tributable to geographically-localized disruptions. Specifically, adverse weather

south of the Yangtze river resulted in flood emergencies, disrupting airport

and airspace operations for all of the southern airports. The northern airports
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remained largely unaffected, and experienced low delays. Again, this is unex-

pected given the typical tendency of delays to propagate and spread.

∙ 1/28/2012: The activation of eigenvector mode 𝑣3 indicates that the delays at

HAK were significantly higher (or lower) than other airports in China, resulting

in the classification of this day as a strong OID. Upon closer inspection, we

identify two operational factors that may have contributed to such a delay

pattern. First, January 28, 2012 was the last day of the Spring Festival holidays

in China, resulting in higher-than-normal scheduled flights at HAK (61,698

passengers on January 28 versus 36,142 on January 22). Second, heavy fog on

January 28 exacerbated the already-strained demand-capacity imbalance and

led to severe flight delays at HAK.

5.7 Summary of US and China graph signal anal-

ysis

In this comparative analysis of the US and Chinese airspace, we (1) identified critical

subsets of airports in the US and Chinese airport networks that should be monitored

for unexpected spatial delay distributions; (2) observed higher baseline variability

in spatial delay distributions in China as compared to the US; (3) compared OIS,

weak OID, and strong OID outlier statistics between China and the US, as well as

examined temporal trends; and (4) demonstrated the theoretical as well as opera-

tional interpretability of our outlier identification results. In particular, the outlier

interpretability framework unifies the outlier definitions from Chapter 4 with the

eigenvector mode analyses in Chapter 5.
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Chapter 6

Low-Dimensional Models for

Airspace Disruptions and

Recoveries

Recall from, for example, Section 4.4.4, the large variety of disruptive events (weather,

equipment outage, or congestion, etc.) that conspire to create an imbalance between

system capacity and demand, leading to flight delays and cancellations. These cycles

of disruptions and subsequent recoveries can be viewed from a dynamical systems

perspective: Exogenous inputs disrupt the system, inducing delays and inefficiencies

from which the system eventually recovers. In Chapter 6, we study these disruption

and recovery cycles through a state-space representation that captures the severity

and spatial impact of airport delays. We also explore cancellations as a performance

metric, which we have thus far overlooked in Chapter 4 and Chapter 5.

6.1 Clustering analysis of disruption-recovery tra-

jectories (DRTs)

Disruptions and subsequent recoveries in the air transportation system vary in their

geographical extent (number of airports affected), intensity (severity of resultant de-
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lays and cancellations), and duration (ranging from hours to days). The inherent

variability of factors such as weather in the operating environment, along with the

complex interconnectivity of the system, make it difficult to extract actionable in-

sights from past events. The work in Chapter 6 focuses on formalizing and analyzing

disruptions and recoveries in the air transportation system by leveraging the spectral

and graph signal processing techniques from Chapter 4.

In particular, using US airport delay data from 2008-2017, we first identify repre-

sentative disruption and recovery cycles. These representative cycles provide insights

into the common operational patterns of disruptions and recoveries in the system.

We also relate these representative cycles to specific off-nominal events such as air-

port outages, and elucidate the differing disruption-recovery pathways for various

off-nominal events. Finally, we explore temporal trends in terms of when and how

the system tends to be disrupted, along with the subsequent recovery.

6.2 Defining and clustering disruption-recovery

trajectories: Data and methodology

6.2.1 Data sources and processing

We use hourly airport delay data for the years 2008 to 2017 from the FAA ASPM

database for our analysis, focusing on the US Core 30 airports (see Figure B-11(b)

in Appendix B for a geographical overview), which were responsible for 72% of all

US enplanements in 2017 [85]. For each hour in this data set, we construct a graph

with the airports as nodes, and the signal at each node representing the total average

arrival and departure delay experienced by all scheduled flights in that hour at that

specific airport. The adjacency matrix for these graphs are the resultant hourly

30 × 30 correlation matrices evaluated by considering the hour-by-hour subsets of

the 10-year airport delay data set. Thus, there are 24 unique adjacency matrices,

corresponding to each hour of the day. For each graph, the graph Laplacian is the

difference between the degree and the adjacency matrix (Definition 1). With the
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hourly graph Laplacian, we can compute the total variation (TV) for each hour.

The graph signal vector x(𝑡) = [𝑥𝑖,𝑡] ∈ R30×1 represents the delay 𝑥𝑖,𝑡 at time 𝑡 for

airport 𝑖. The total delay (TD) is the 1-norm of x(𝑡), and the total variation is

given by the quadratic form TV (x(𝑡)) = x(𝑡)⊤ℒx(𝑡), where ℒ is the Laplacian for

the hour-of-day of time 𝑡. Formally, each hour 𝑡 is indexed by hours {1, . . . , 24}, and

we use the corresponding graph Laplacian {ℒ1, . . . ,ℒ24} in the TV computation. For

brevity of notation, we drop the hour index on the graph Laplacian when the context

is clear. These spectral graph-theoretic notions follow directly from their usage in

Chapter 4. Recall our intuition built up from Chapter 4 that the TV is a measure

of signal smoothness with respect to the underlying graph. In the case where airport

delays are node-supported signals and correlation coefficients are the edge weights,

a high TV value indicates an imbalance between delays at airports with historically

highly-correlated delays.

6.2.2 Formal definition of disruption-recovery trajectories

We represent disruptions and the subsequent recoveries as disruption-recovery trajec-

tories (DRTs) in the TV-TD state space. We define a DRT T𝑡* to be a chronologically

ordered set of TD and TV values, capturing the evolution of the magnitude (TD) and

spatial distribution (TV) of airport delays. DRTs project the state of the system in

a qualitatively interpretable manner. For example, we can assess how the system

evolves in terms of airport delays from 𝑡1 to 𝑡2 by looking at the progression of the

TV-TD state space trajectory (‖x(𝑡1)‖ ,TV (x(𝑡1))) → (‖x(𝑡2)‖ ,TV (x(𝑡2))). We

also note that, unlike Chapter 4 where we used day-by-day time intervals, we use

hour-by-hour time intervals in this DRT analysis. The day-by-day view is not gran-

ular enough to describe the delay dynamics at the resolution we are interested in for

Chapter 6.

We further divide the TV-TD space into regions according to regimes that are

operationally interesting. We illustrate one potential (disjoint) partition that we

utilize for our analysis in Figure 6-1(a). This partition distinguishes a nominal region

(i.e., nominal TD and TV levels), a high-TD region (i.e., delay magnitudes are high),
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and an unexpected TV region (i.e., the spatial distribution of delays is unexpected).

As we derived in Chapter 4, we know that unexpected spatial distributions correspond

to regions with very high or very low TV. In particular, given an observation x(𝑡)

belonging to a certain hour, we can compute the bounds on the TV for identifying

delay distributions that are spatially perturbed at time 𝑡, denoted as
[︂ ̂︀Θ, ̂︀Θ]︂

hour(𝑡)
,

using the methods proposed in Chapter 4. Recall from Chapter 4 that there are

several different bounds we can define, use, and construct from data: Bounds for

outliers in scale (OIS) distinguish outliers by the delay magnitude (i.e., the TD),

whereas bounds for outliers in distribution (OID) use spatial characteristics of the

delay graph signal as measured by the TV. We also re-emphasize that OID bounds

can be further refined into weak and strong OID bounds, where the latter takes

into account the realized delay magnitude. To complete the partition we use in this

analysis, we also compute a delay threshold 𝑓
hour(𝑡)
TD ∈ R≥0 for each hour to identify

delay distributions that have a very high magnitude of TD. The regions in Figure

6-1(a) are defined as follows:

Definition 1 ( 𝒩 Region (nominal)) The 𝒩 region is characterized by

TV (x(𝑡)) ∈
[︂ ̂︀Θ, ̂︀Θ]︂

hour(𝑡)
(i.e., spatial distribution is nominal), and ‖x(𝑡)‖ is less than

𝑓
hour(𝑡)
TD (i.e., the magnitude of delay is not abnormally high).

Definition 2 ( 𝒮 Region (scale)) The 𝒮 region is characterized by TV (x(𝑡)) ∈[︂ ̂︀Θ, ̂︀Θ]︂
hour(𝑡)

(i.e., the spatial distribution is nominal), but ‖x(𝑡)‖ is greater than

𝑓
hour(𝑡)
TD (i.e., the magnitude of delay is currently elevated).

Definition 3 ( 𝒟 Region (distribution)) The 𝒟 region is characterized by

TV (x(𝑡)) /∈
[︂ ̂︀Θ, ̂︀Θ]︂

hour(𝑡)
(i.e., the spatial distribution of delays is unexpected).

Algorithm 3 describes a method for constructing an operationally-significant DRT

T𝑡* , given the 3-region partition from Figure 6-1(a). Specifically, it anchors a DRT

at a particular time index 𝑡* such that (‖x(𝑡*)‖ ,TV (x(𝑡*))) ∈ 𝒟 . Algorithm 3 is

𝑂(𝑇 ), where 𝑇 is the total number of hours, and it constructs 𝑡*-anchored DRTs

forward in time. This algorithm identifies minimal-length trajectories that have at
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Figure 6-1: (a) A disjoint partition of the TV-TD state space into three regions;
(b) Schematic representation of a disruption-recovery trajectory T𝑡* constructed via
Algorithm 3 anchored in time at 𝑡*. Reprinted from [159].

least one state in the region with unexpected spatial delay distributions, i.e., region

𝒟 , as well as having start and end states in region 𝒩 .

Algorithm 3 Constructing DRTs given a 3-region disjoint decomposition of the TV-
TD state space.
Input: Labeled states indexed by time 𝑡 ∈ [0 : Δ𝑡 : 𝑇 ], where Δ𝑡 = 1 hour; Region labels ℛ(𝑡) ∈{︁

𝒩 , 𝒮 , 𝒟
}︁

Output: Set of DRTs T𝑡* ∈ T

39 𝑡𝑠 ← ∅; T← ∅; 1DRT ← FALSE
40 for 𝑡 ∈ [0 : Δ𝑡 : 𝑇 ] do
41 if ℛ(𝑡) = 𝒩 then
42 𝑡𝑠 ← 𝑡
43 end
44 if ℛ(𝑡) = 𝒟 ∧ 𝑡𝑠 ̸= ∅ then
45 1DRT ← TRUE
46 𝑡* ← 𝑡

47 end
48 if ℛ(𝑡) = 𝒩 ∧ 1DRT = TRUE then
49 T𝑡* := {(‖x(𝜏)‖ , TV (x(𝜏))) | 𝜏 ∈ [𝑡𝑠, 𝑡]}
50 𝑡𝑠 ← 𝑡
51 1DRT ← FALSE
52 end
53 end
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6.2.3 DRT nomenclature

Given the many moving pieces within the DRT object itself, we will take some time

to establish a common nomenclature for referring to and working with DRTs. For the

remainder of Chapter 6, we will adhere to this nomenclature.

The state at time 𝑡 is the TD and TV of the system, i.e., the non-negative tuple

(‖x(𝑡)‖ ,TV (x(𝑡))). We refer to a sequence of consecutive states as a trajectory, and

a trajectory of length 2 (i.e., consisting of two consecutive states) as a maneuver. A

DRT of length 𝑁 consists of 𝑁 − 1 maneuvers between 𝑁 consecutive states. The

TV-TD state space is partitioned into regions 𝒩 , 𝒮 , and 𝒟 . Hence, every point on

the TV-TD space (i.e., every state) belongs to one of three regions. A transition is a

maneuver where the two consecutive states are in different regions. Note that a DRT

is the minimal trajectory (shortest-length trajectory) that starts and ends in region

𝒩 and contains at least one state in region 𝒟 . We further classify each maneuver

into two categories, depicted in Figure 6-2: A symbiotic maneuver is one in which both

TD and TV are increasing, or that both are decreasing. On the other hand, a trade-off

maneuver is one in which the TV and TD change in opposite directions. Symbiotic

maneuvers indicate pure disruptions or recoveries, in the sense that both measures

are increasing, or both are decreasing. Trade-off maneuvers are more nuanced, as

one quantity is recovering at the detriment of the other. For example, a trade-off

maneuver could indicate that although the system delay is decreasing, its spatial

variability is increasing.

6.2.4 Formalizing disruptions and recoveries segments

In order to define disruptions and recoveries, we take into account the maneuver type

(i.e., symbiotic versus trade-off) and whether or not a transition has occurred. For a

DRT of length 𝑁 , we define the start of a disruption to be a transition out of 𝒩 , and

the end of a recovery to be a transition into 𝒩 . Among the remaining maneuvers,

symbiotic maneuvers with increasing TV and TD are defined as a disruption seg-

ment, and symbiotic maneuvers with decreasing TV and TD are defined as a recovery
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Figure 6-2: Symbiotic and trade-off maneuvers in TV-TD space. The star at the
center indicates the current state. Reprinted from [159].

segment. Trade-off maneuvers inherit disruption or recovery classifications from the

previous maneuver. The four possible trade-off maneuvers are defined as follows:

i. Disruption-in-TV segment: Increasing TV and decreasing TD following a dis-

ruption.

ii. Disruption-in-TD segment: Increasing TD and decreasing TV following a dis-

ruption.

iii. Recovery-in-TD segment: Increasing TV and decreasing TD following a recov-

ery.

iv. Recovery-in-TV segment: Increasing TD and decreasing TV following a recov-

ery.

Trade-off maneuvers are, by definition, a recovery along one axis and a disruption

along the other. Our convention therefore assumes that a trade-off maneuver pre-

dominantly follows the trend of the preceding maneuver.
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6.2.5 DRT clustering features

We cluster DRTs using twelve features that capture various operational characteris-

tics:

DRT length: This feature, denoted by |T𝑡*|, captures the duration of a DRT. Note

that since our time discretization is in hours, accordingly |T𝑡*| will have units of hours.

The minimum DRT length is 3 hours, since the shortest DRT is given by 𝒩 → 𝒟 →

𝒩 .

Duration in 𝒮 and 𝒟 regions: These features represent the number of hours

in a DRT during which the system is either experiencing high delays (region 𝒮 ) or

unexpected spatial delay distributions (region 𝒟 ). Note that by construction, the

minimum number of states in region 𝒟 is 1.

Average TD and TV intensity: For each DRT, we calculate the average TV and

TD, and normalize them by their respective maximum values. The resultant features

reflect the intensity in terms of the magnitude or spatial distribution of delay. A DRT

where every hour attains a TD and/or TV value close to the maximum is considered

to be more intense, with TD and/or TV intensity values close to 1. Explicitly, we

have that the average TD intensity 𝜉TD (T𝑡*) and average TV intensity 𝜉TV (T𝑡*) are

given by:

𝜉TD (T𝑡*) =
1

|T𝑡* |
∑︀|T𝑡* |
𝑖=1 ‖x (𝑡𝑖)‖

max𝑖=1,...,|T𝑡* | ‖x (𝑡𝑖)‖
, 𝜉TV (T𝑡*) =

1
|T𝑡* |

∑︀|T𝑡* |
𝑖=1 x (𝑡𝑖)⊤ ℒx (𝑡𝑖)

max𝑖=1,...,|T𝑡* | x (𝑡𝑖)⊤ ℒx (𝑡𝑖)
.

Signed enclosed area: Figure 6-4 illustrates how in some DRTs, the disruption

phase is characterized by higher spatial variability in delays, whereas in others, the

spatial variability is higher during recovery. We use the signed enclosed area of a

DRT as a feature:

1
2

|T𝑡* |−1∑︁
𝑖=1

(‖x(𝑡𝑖+1)‖ − ‖x(𝑡𝑖)‖) (TV (x(𝑡𝑖+1)) + TV (x(𝑡𝑖))) ,

where the summation is over all maneuvers in the DRT. This computation is shown
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notionally in Figure 6-3. If the total summed area is negative, then more unexpected

spatial delay distributions are associated with decreasing TD, whereas if the area is

positive, these unexpected spatial delay distributions are associated with increasing

TD. Note that this is an aggregate measure over an entire DRT.
To

ta
l V

ar
ia

tio
n

Total Delay

To
ta

l V
ar

ia
tio

n

Total Delay
(a) (b)

Figure 6-3: A notional DRT where higher TV is associated with recovery (left), and
a DRT where higher TV is associated with disruption (right). Reprinted from [159].

Maximum TD and TV values: These features are the maximum observed TD

values max𝑖=1,...,|T𝑡* | ‖x (𝑡𝑖)‖ and TV values max𝑖=1,...,|T𝑡* | x (𝑡𝑖)⊤ ℒx (𝑡𝑖) for each DRT.

Unlike the intensity, these features incorporate the actual scale of the disruption.

Number of symbiotic and trade-off maneuvers: These features are the counts

of each type of maneuver in a DRT. Recall from Section 6.2.4 the characteristics of

symbiotic versus trade-off maneuvers.

Length of symbiotic and trade-off maneuvers: The length of a maneuver is

defined as the Euclidean norm of the maneuver in R2. We use the total length of the

symbiotic and trade-off maneuvers as features that indicate the dominance of each

maneuver type. For example, given a maneuver from (1, 1) to (10, 10) and a maneuver

from (1, 1) to (100, 100), both are symbiotic maneuvers, but the latter is a more

pronounced, dominant evolution within the TV-TD state space. Explicitly, let us take

the positive horizontal axis to be 𝜃 = 0, and denote by ] (v (𝑡𝑖) ,v (𝑡𝑖+1)) ∈ [0, 2𝜋)

the angle of the 2-dimensional maneuver (represented as a vector in R2) with respect

to the positive horizontal axis, where v (𝑡𝑖) = [‖x (𝑡𝑖)‖ , TV (x (𝑡𝑖))]⊤ ∈ R2. Then,

the length of symbiotic maneuvers 𝑙sym (T𝑡*) and the length of trade-off maneuvers

𝑙to (T𝑡*) are computed as
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𝑙sym (T𝑡*) =
T𝑡* −1∑︁
𝑖=1
{‖v (𝑡𝑖+1)− v (𝑡𝑖)‖2 · 1 (] (v (𝑡𝑖) ,v (𝑡𝑖+1)) ∈ [0, 𝜋/2) ∪ [𝜋, 3𝜋/2))} ,

𝑙to (T𝑡*) =
T𝑡* −1∑︁
𝑖=1
{‖v (𝑡𝑖+1)− v (𝑡𝑖)‖2 · 1 (] (v (𝑡𝑖) ,v (𝑡𝑖+1)) ∈ [𝜋/2, 𝜋) ∪ [3𝜋/2, 2𝜋))} ,

where 1 (𝒜) is the indicator function for event 𝒜.

1700Z, 5/22/2014
1800Z, 5/22/2014

0000Z, 5/23/2014

0400Z, 5/23/2014

Figure 6-4: A 12-hour long DRT transitions out of the nominal region at 1700Z.
Arrows denote maneuvers, and their colors denote the succeeding region (see Figure
6-1). Select DRT features from Section 6.2.5 such as signed enclosed area and trade-
off maneuvers (brown dashed indicators) are annotated. Note that each state is a one
hour interval. Reprinted from [159].

6.3 Average DRT characteristics

We first examine average DRT characteristics across the entire set of generated DRTs.

Algorithm 3 yields 2,322 DRTs composed of 12,350 hours (approximately 14% of all

hours) within the 10-year span contained in our data set. The average length of a

DRT, i.e., the average time between the system state leaving and returning to the

nominal 𝒩 region, is 5.3 hours. Hence, the average duration during which the system

is either in the disruption or recovery phase is 3.3 hours (subtracting the start and
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end nominal hours). On average, two of these hours are in the high-delay region 𝒮 ,

and one hour is in the unexpected distribution region 𝒟 . In other words, although

most of the duration of a typical DRT involves only high magnitudes of delay (the

conventional measure of a disruption), one-third of the duration is associated with

unusual spatial distributions of delay, independent from its magnitude. Note that

this independence comes from the fact that we use strong OID bounds from Chapter

4 when computing
[︂ ̂︀Θ, ̂︀Θ]︂

hour(𝑡)
.

Recall that the TD and TV intensities measure how the values for each hour

within a DRT compare to the maximum TD or TV values for that DRT. If the average

intensity is close to 1, this indicates that a majority of the DRT was spent close to the

maximum TD and/or TV value. Operationally, a higher intensity indicates that both

the disruption as well as the recovery of the system happened in a shorter time span,

or in other words, most of the hours were spent close to the peak disruption state.

Figure 6-5 shows the histograms of the average TD and TV intensities for each DRT.

The distribution of ‖x‖ (i.e., the TD) is left-skewed with a mean of 0.83, whereas the

distribution of TV values is more symmetric with a mean of 0.57. The figure implies

that when disruptions (and subsequently, recoveries) occur, the TD increases (and

decreases) rapidly in time, but the effect on the spatial distribution of delay is more

variable and evolves slowly. In other words, DRTs display faster changes along the

horizontal (TD) axis than the vertical (TV) axis.

Recall that the signed enclosed area of a DRT reflects whether the TV was higher

during increasing delays (positive area) or decreasing delays (negative area), aggre-

gated across the entire DRT. A DRT with positive area indicates that when the delay

in the system is increasing (i.e., during the disruption phase), this is also when the

spatial variance is higher relative to the rest of the DRT. On the other hand, a DRT

with negative area indicates that the spatial variance of delays was higher when total

system delay is decreasing (i.e., during recovery). The average signed area is posi-

tive (6.72 × 106 min3), indicating that the spatial distribution of delays tends to be

more varied and unexpected during the disruption phase as compared to the recovery

phase.
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Figure 6-5: Distribution of TD and TV intensity values. Reprinted from [159].

The last feature that we discuss in an average sense across all 2,322 DRTs is the

number of symbiotic and trade-off maneuvers. Since the average length of a DRT is

approximately 5 hours, the average number of maneuvers in the TV-TD state space

is 5 − 1 = 4. Out of these, the average number of symbiotic maneuvers is 3, with

1 maneuver being a trade-off between TD and TV. Although the system prefers to

evolve such that both TD and TV are increasing or decreasing, 25% of the times

the system state exhibits a decrease in TD and an increase in TV, or vice versa.

Since TV(x) = x⊤ℒx, there is a positive quadratic relationship between TV and TD,

indicating that the system typically will evolve symbiotically. The 25% of times when

the system state exhibits trade-off maneuvers form an interesting set of airport delay

behaviors, possibly reflecting the influence of external inputs (Traffic Management

Initiatives or TMIs, airline recovery actions, etc.) in the disruption-recovery process.

Future work could focus on examining this set of trade-off maneuvers, and correlate

these time intervals with known external interventions.
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6.4 Clustering DRTs

We used 𝑘-means clustering with the 12 features from Section 6.2.5 in order to de-

termine representative DRTs from the set of 2,322 DRTs. The distance metric we

used for 𝑘-means is the standard squared Euclidean distance. While other clustering

methods such as DBSCAN could be used, we chose 𝑘-means clustering for its inter-

pretable parameter choice (i.e., number of clusters representing number of common

DRT patterns) and simplicity. Prior to clustering, we standardize all feature obser-

vations by the feature mean and standard deviation. We select 𝑘 = 7 clusters, taking

into account the within cluster sum-of-square (WCSS) error, the cluster populations,

and cluster interpretability. We plot the WCSS error as a function of 𝑘 in Figure 6-6.

Each cluster centroid provides an average representation of the DRTs that belong to

that cluster. We list the centroids, along with pertinent DRT features, descriptive

labels, and cluster population in Table 6.1.

Figure 6-6: Within cluster sum-of-square (WCSS) error versus the number of clusters.
Reprinted from [159].
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DRT name |T𝑡* |
(hours)

Region 𝒮
(hours)

Region 𝒟
(hours)

Avg. TD
intensity

Avg. TV
intensity

Area
(min3)

Max. TD
(min)

Short_Dis 3 0 1 0.91 0.70 1.04×106 6.50×102

Short_Rec 4 1 1 0.76 0.47 -1.11×106 6.65×102

Med 6 2 2 0.76 0.43 -5.74×106 1.19×103

OpsDay_Dis 15 11 2 0.62 0.26 5.43×108 2.21×103

OpsDay_Rec 18 15 1 0.68 0.35 -4.98×106 1.68×103

MultiDay 55 49 4 0.59 0.22 2.20×108 2.28×103

Dec08Event 229 221 6 0.57 0.23 8.46×108 3.09×103

Table 6.1: The seven representative DRTs and their features. Note that clusters are
sorted in increasing order by the average DRT duration, i.e., |T𝑡*|. Due to spacing,
the table continues column-wise in Table 6.2. Reprinted from [159].

DRT name Max. TV
(min2) Symbiotic Trade-off Pop.

(%)

Short_Dis 4.66×104 1 1 1163
(50%)

Short_Rec 1.05×105 2 1 777
(33%)

Med 5.50×105 4 1 196
(8%)

OpsDay_Dis 2.19×106 12 2 21
(1%)

OpsDay_Rec 5.02×105 13 4 142
(6%)

MultiDay 1.07×106 40 14 22
(1%)

Dec08Event 1.21×106 173 55 1

Table 6.2: The seven representative DRTs and their features. Note that clusters are
sorted in increasing order by the average DRT duration, i.e., |T𝑡*|. Due to spacing,
the table continues column-wise in Table 6.1. Reprinted from [159].

6.5 Analyzing representative DRTs (i.e., the iden-

tified DRT clusters)

For each representative DRT listed in Table 6.1, we discuss the operational char-

acteristics that describe the disruption and subsequent recovery. Furthermore, these

representative DRTs help identify when a disruption begins, when the recovery begins,

and when the event ends, using historical data.

We now list the representative DRTs, along with a shortened tag that we will use

to refer to them:

Short DRTs with spatially-perturbed disruption segments (Short_Dis): This

type of DRT is the most prevalent (50% of all DRTs), and is a short-duration (3 hours)

event. Short_Dis DRTs indicate brief disruptions: For example, a transient pop-up
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thunderstorm around the vicinity of a major airport. In comparison to the other short

representative DRT (Short_Rec), the average area for Short_Dis is positive, indicat-

ing that the airport delays were spatially distributed in a more unexpected manner

during disruption than recovery. Furthermore, the maximum TV value observed for

Short_Dis is significantly higher than Short_Rec, even though their maximum TD

values are comparable.

Short DRTs with spatially-perturbed recovery segments (Short_Rec): This

DRT type accounts for 33% of all DRTs. Similar to Short_Dis, these DRTs represent

transient off-nominal conditions, with an average length of 4 hours. The average

TD and TV intensity values for Short_Rec are smaller than those of Short_Dis,

indicating that the system state does not typically attain the maximum TD and TV

values. Furthermore, the area is negative, but of the same magnitude as Short_Dis,

meaning that the spatial distribution of airport delays was more unexpected during

recovery segments than disruption segments.

Medium-length DRTs (Med): These DRTs have an average length of around 6

hours, indicating that these disruptions and subsequent recoveries account for signif-

icant portions of an operational day in the US airspace system. The relative rarity of

these longer-duration events are reflected in its cluster population: Only 196 out of

2,322 DRTs (about 8%) are classified as Med. We also note that, similar to Short_Rec,

the airport delays were spatially distributed in a more unexpected manner during re-

covery segments than disruption segments.

Operational day-long DRTs with spatially-perturbed disruption segments

(OpsDay_Dis): With average DRT lengths of approximately 15 hours, these disrup-

tions and subsequent recoveries account for a major portion of an operational day. For

example, a DRT in OpsDay_Dis beginning in the morning would not recover back into

the nominal 𝒩 region until well into the evening. Similar to the difference between

Short_Dis and Short_Rec DRTs, OpsDay_Dis and OpsDay_Rec DRTs differ by the

signed enclosed area. The spatial distribution of airport delays was more unexpected

during disruption segments for OpsDay_Dis DRTs. This DRT type accounts for less

than 1% of all DRTs.
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Operational day-long DRTs with spatially-perturbed recovery segments

(OpsDay_Rec): The temporal persistence of these DRTs is similar to OpsDay_Dis,

with an average length of 18 hours. As we have noted in OpsDay_Dis, the spa-

tial delay distribution for OpsDay_Rec is more unexpected during recovery segments.

Furthermore, the maximum TV value is significantly lower than OpsDay_Dis. Both

OpsDay_Rec and MultiDay DRTs tend to occur in winter months, as we will discuss

further in Section 6.6 when we combine information regarding specific off-nominal

events (nor’easters, hurricanes, etc.) and month-of-occurrence.

Multi-day DRTs (MultiDay): This cluster of DRTs represents a prolonged disrup-

tion and subsequent recovery event, with average lengths of over 2 days (55 hours).

The maximum observed TD and TV values are also some of the highest among all

clusters, indicating that these lengthy DRTs impact the system severely in terms of

both magnitude and spatial distribution of delays. We also note that the spatial

distribution of delays tend to be more unexpected during disruption segments for

MultiDay DRTs, as signified by the positive average area. The unique characteristic

of these MultiDay DRTs is that there was no recovery back to a nominal 𝒩 region

even during the overnight hours, when the system typically has low traffic and enough

slack to reset the disruption.

We refer to the last cluster in Table 6.1 as Dec08Event; the fact that one unique

DRT was placed in a cluster by itself indicates that it differs significantly from the

other representative DRTs. Since it is a singular, extreme disruption-recovery event

spanning almost 10 days (229 hours) in December 2008, we analyze it separately and

present it as a case study.

In Section 6.3, we saw that the average DRT was composed of 75% symbiotic

maneuvers and 25% trade-off maneuvers. Even though there is no reason by con-

struction that this average needs to hold within each representative DRT cluster, the

ratio of symbiotic to trade-off maneuvers appears to be robust to variations in the

actual length of the DRT, assuming that it is long enough to observe such behavior.

This indicates that even during prolonged disruption-recovery events, the preferred

evolution of the system state is still in symbiotic directions, with maneuvers occur-
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ring in the trade-off direction at a frequency of only 20-25%. A more theory-oriented

direction for future work is to evaluate standard graph processes (diffusion, cascade,

etc.) from the perspective of symbiotic and trade-off maneuvers, to see if there are

general conditions under which the system dynamics evolve in one way or another.

6.6 Evaluating off-nominal events and temporal

trends with regards to DRT clusters

6.6.1 Mapping off-nominal events to DRTs

We use the same set of 178 days from Section 4.4.3, along with the same off-nominal

event types of nor’easters, hurricanes, thunderstorms, and airline- or airport-specific

outages, and cross-reference these days with the set of DRTs. This allows us to

examine what type of DRTs are common during each of these events. Figure 6-7

shows a normalized bar plot depicting the DRT type breakdown for each of the four

off-nominal events.

Figure 6-7: Frequency of representative DRTs, given the occurrence of an off-nominal
event. The extreme Dec08Event cluster is not shown. Reprinted from [159].

Long-lasting DRTs (i.e., OpsDay_Rec, OpsDay_Dis, and MultiDay) are present

in over 70% of nor’easter- and thunderstorm-type days, but only around 37% of

days with an airline- or airport-specific outage. In particular, 37% of DRTs dur-
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ing nor’easters are of type OpsDay_Rec, and 44% of DRTs during thunderstorms are

MultiDay. The spatial distribution of airport delays during nor’easter days, particu-

larly during recovery segments, tends to be more unexpected than during disruption

segments. This could be indicative of airline-specific recovery efforts that result in

airport delays at unusual combinations of airports. Examining the average represen-

tative DRT lengths, the time it takes for the system to be disrupted and recover from

nor’easter-type days tends to be shorter than for thunderstorm-type days, which are

dominated by MultiDay DRTs. This may be explained by the more volatile and dis-

ruptive nature of thunderstorm squall lines compared to large winter storms, resulting

in more unpredictable DRTs. We note that an immediate line of future work will be

to extend this DRT analysis to an airline-specific setting.

63% of DRTs are Med-length or shorter on outage-type days, indicating that the

disruption and recovery of the system during these events are short-lived. Similar

to nor’easters, the spatial distribution of airport delays is higher during recovery

segments, with 68% of DRTs having a negative area. Finally, we note that for many

hurricane-type days, due to pre-emptive cancellations and airport closures, both TD

and TV values are suppressed. Hence, most DRTs (84%) during hurricane-type days

are short-term disruptions and recoveries.

6.6.2 Monthly distribution of DRTs

In order to observe temporal trends in DRT occurrences, we plot the frequency of

occurrence of representative DRT types in Figure 6-8, splitting the data set into

a 2008-2016 subset, and a 2017 subset. The reason for this split is that certain

representative DRTs in the year 2017 behaved differently than in the preceding 9

years. Specifically, MultiDay DRTs primarily appeared only in the winter months

prior to 2017. By contrast, 42%, 30% and 23% of all DRTs in April, July, and

August of 2017 were MultiDay DRTs. Furthermore, MultiDay DRTs in April and

July 2017 are predominantly thunderstorm-type off-nominal days. This indicates

an increased vulnerability of the system to thunderstorms in the summer of 2017.

Further investigation outside of the scope of the work in this section would be needed
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to determine what specific initiatives and policies might have caused this shift in

disruption-recovery dynamics in 2017.

(a)

(b)

Figure 6-8: Occurrence counts of DRT hours for each month, split by representative
DRT clusters; counts (a) averaged across 2008-2016 and (b) for 2017. Reprinted from
[159].

6.6.3 December 2008 DRT: Case study

Dec08Event was an extremely long DRT (229 hours) with a sequence of disruptions

and subsequent partial recoveries, occurring between December 15 and December 25,

2008. To better understand this DRT, we superimpose FAA-issued advisories related

to Airspace Flow Programs (AFP), Ground Stops (GS), and Ground Delay Programs

(GDP) for the duration of the Dec08Event DRT (Figure 6-9). The combined number

of GS- and GDP-related advisories, a measure of airport capacity reductions and traf-

fic flow management actions, remained at, or above, 29 for most of the Dec08Event

DRT. There was a brief drop in the number of GS- and GDP-related advisories on De-

cember 22, but the continuity in the Dec08Event DRT indicates that the system was
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unable to return to a nominal TV-TD state before undergoing another disruption-

recovery event between December 23 to December 25. The system returned to a

nominal state for about 48 hours, before entering into a OpsDay_Rec-type DRT be-

tween December 27 and 28.
Dec08Event OpsDay_Rec Short_Dis

Figure 6-9: Plot of AFP-, GS-, and GDP-related advisories issued by the FAA during
the primary December 2008 DRT and subsequent shorter DRTs. Reprinted from
[159].

The Dec08Event DRT captures a series of disruptions caused by winter weather.

This series of disruptions began with widespread ice storms throughout the US on

December 11-12, and was followed by a separate, larger weather system that resulted

in heavy rain in the West Coast, before transforming into a disruptive winter storm

over the Midwest. The inability of the system state to return to the nominal 𝒩 re-

gion, even during late evening and early morning periods when the system typically

resets, was extremely pronounced during this event.

6.7 Defining and clustering DRTs: Summarizing

remarks

Thus far in Chapter 6, we defined disruptions and subsequent recoveries using the

delay magnitude (TD) and the spatial distribution (TV) of the delays, in conjunction
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with a low-dimensional state-space trajectory representation. We presented a parti-

tion of the TV-TD state space into various regions, representing nominal conditions,

high-delay conditions, and conditions with unexpected spatial distributions of delay.

We then focused on the problem of finding representative DRTs, which we did by

clustering DRTs. The seven representative DRT clusters identified had interpretable

characteristics in terms of lengths (i.e., the duration of disruptions and subsequent

recovery), intensities, and delay behavior during the disruption or recovery segments.

With a formal framework of DRTs in hand, we build upon this foundation through

a number of succeeding analyses: We will now seek to examine each of the individual

DRTs at a more microscopic level, with a focus on time periods involving trade-off

maneuvers. Doing so will help reveal whether these trade-off maneuvers correspond to

the implementation of certain TMIs, driving the TD and TV values in a direction not

normally traversed by them. Another direction for expanded analysis is to leverage

the representative DRTs as features for predicting future system behavior, both at

the system-wide and airline-specific levels. For instance, if we observe an ongoing

disruption and can map it to some representative DRT, we may be able to better

predict the future recovery segments for this ongoing disruption. This prediction

problem would also be interesting, and potentially more applicable, if we restrict

ourselves to specific airline sub-networks.

6.8 Refining the framework of DRTs

For the remainder of Chapter 6, we will refine the DRT framework introduced in

Section 6.2, with two motivating goals: Provide consistent definitions of disruptions

within airline sub-networks, and set the stage for predicting the evolution of disrup-

tions and recoveries using DRTs. The refinements we make consist of two major com-

ponents: A more operationally-revealing partition of the TV-TD state space, shown

in Figure 6-10, and proving structural properties of DRTs along with discussing their

interpretations in Section 6.8.3. Throughout the remainder of Chapter 6 dedicated to

refining the DRT framework, we use the same nomenclature and conventions adopted
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earlier in Section 6.2.3.
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Figure 6-10: The refined partition of the TV-TD state space that we use from Section
6.8 onward.

Figure 6-10 depicts a 4-state partition of the TV-TD state space. We will demon-

strate what it means for a particular airport delay observation to belong in one of

the four regions { 1 , 2 , 3 , 4 } through a real-world example with hourly delay

states from the AA sub-network. We plot these four AA hourly examples in Figure

6-11. For delay states belonging in 1 , this region is characterized by low total delay,

along with relative smooth delay distributions across the graph, given that the TV

is within some bounds
[︁
Θ,Θ

]︁
, where the bounds can be derived through any of the

methods from Chapter 4. Correspondingly, in the top-left panel of Figure 6-11, we

have that AA airport delays were classified as belonging to region 1 in hour 1700Z

on January 19, 2015: We see that delays at all Core 30 airports have close to zero

delays within the AA sub-network, reinforcing its classification to region 1 .

If we shift to the right on the TD axis such that we cross some delay threshold

𝑓TD, but remain within
[︁
Θ,Θ

]︁
, we are now in region 2 . In the top-right panel of

Figure 6-11, we show an example from the AA sub-network of hourly delays that

were classified as belonging to region 2 . During 0000Z on April 17, 2013, we see

high delays at almost all Core 30 airports for the AA sub-network. In particular, we

note relatively similar delay impacts at airports that are historically highly-correlated,
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e.g., East Coast airports such as those in Washington, DC and New York City. Thus,

this delay state observation has high total delay, but distributed smoothly across the

network.

21

3 4

Low total delay
Normal spatial variance

High total delay
Normal spatial variance

Low total delay
Abnormal spatial variance

High total delay
Abnormal spatial variance

Figure 6-11: AA network delay signals observed at 1700Z on January 19, 2015 (region
1), 0000Z on April 17, 2013 (region 2), 0100Z on April 4, 2010 (region 3), and 2300Z
on April 16, 2013 (region 4). Size and color of the circles indicate airport delays; note
the different color scale magnitudes between the four sub-figures.

For regions 3 and 4 , we leave the regime of smooth signal distributions, sig-

nified by leaving the
[︁
Θ,Θ

]︁
bounds in the TV-TD state space. In region 3 , we see

low total delays, but the spatial distribution of delays are no longer expected given

historical correlations. In the bottom-left panel of Figure 6-11, we see that, with the

exception of DC area airports, the AA sub-network during 0100Z on April 4, 2010

had very little airport delays. However, the severe delays affecting DCA is spatially
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unexpected, as other East Coast airports do not show similar levels of flight delays.

Finally, in the bottom-right panel of Figure 6-11, the AA sub-network at 2300Z on

April 16, 2013 incurred not only high delays spread throughout the Core 30 airports,

but also experienced severely impacted operations at SEA.

6.8.1 State timelines and trajectory regimes

With this concrete motivation for the new 4-state partition drawn from hourly delays

observed by the AA sub-network, we proceed to establishing some definitions that

will be useful in proving structural characteristics regarding DRTs:

Definition 4 (State timeline) Given the disjoint partition of the TV-TD state

space as illustrated in Figure 6-10, a state timeline ℋ is a list that describes an

ordered sequence of countable, possibly infinite number of states drawn from the set

{ 1 , 2 , 3 , 4 }.

With the language of an all-encompassing state timeline ℋ, we now define three

DRT trajectory regimes, each describing different evolution patterns within the 4-

state partitioned TV-TD state space:

Definition 5 (Trajectory regimes) We define three trajectory regimes 𝒮(ℋ), 𝒟(ℋ),

and ℐ(ℋ) with respect to state timeline ℋ as follows:

(i) Trajectory regime 𝒮(ℋ) consists of minimal-length trajectories with terminal

states in regions { 1 , 3 } and at least one anchor state in regions { 2 , 4 }.

(ii) Trajectory regime 𝒟(ℋ) consists of minimal-length trajectories with terminal

states in regions { 1 , 2 } and at least one anchor state in regions { 3 , 4 }.

(iii) Trajectory regime ℐ(ℋ) consists of minimal-length trajectories with terminal

states in region { 1 } and at least one anchor state in regions { 2 , 3 , 4 }.

To simplify notation, when it is clear that the regimes are defined with respect to the

same state timeline ℋ, we omit the ℋ and simply write 𝒮,𝒟, and ℐ. See Figure 6-12

for a visualization of these trajectory regimes.
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Figure 6-12: Schematic representation of the three different trajectory regimes 𝒮,𝒟,
and ℐ.

Given some state timeline realizationℋ′, we note that regimes 𝒮 (ℋ′) ,𝒟 (ℋ′), and

ℐ (ℋ′) are supersets of individual trajectories 𝜏 , whereas 𝜏 is an ordered sub-list of

ℋ′. We denote the sub-list relationship by 𝜏 ⊆△ ℋ′. Similarly, any other analogous

set-theoretic operations extendable to list relationships are denoted by their usual

set-theoretic relational symbols, with an additional △ subscript. When we refer to

𝒮,𝒟, and ℐ without reference to a timeline ℋ, we are referring to a generic supserset

of trajectories that all satisfy the above definitions. On the other hand, 𝒮(ℋ),𝒟(ℋ),

and ℐ(ℋ) indicate that, for example, a trajectory 𝜏 ∈ 𝒮(ℋ) satisfies both Definition

5(i) and that 𝜏 ⊆△ ℋ.

6.8.2 Structural properties of DRTs

For the following theorems, lemmas, corollaries, and their associated proofs, we will

use the following rules regarding notation when describing a trajectory 𝜏 : Possible

states that could occupy a single position are surrounded by {·}, whereas an ordered,

non-empty permutation of possible states is denoted by 𝒫(·). To emphasize that
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order must be respected, we use → to connect states. For example, a trajectory 𝜏

given by

𝜏 : { 1 } → 𝒫
(︁

3 , 4
)︁
→ { 1 , 2 } (6.1)

could be realized in the following (non-exhaustive) ways:

{ 1 } → { 3 } → { 1 },

{ 1 } → { 4 } → { 2 },

or { 1 } → { 4 } → { 4 } → { 3 } → { 2 }.

In other words, for our example 𝜏 in (6.1), the left terminal state must be 1 , and

the right terminal state must be either 1 or 2 . Between the left and right terminal

states, there must be at least one of either state 3 or 4 , with possibly countably

infinite numbers of states 3 or 4 with no fixed order.

We first want to show that DRTs based solely on the magnitude of delay (i.e.,

𝒮-DRTs) can always be extended to an integrated definition of a DRT, i.e., ℐ-DRTs.

We prove this in Theorem 3, with the help of the following definition formalizing the

extension of a trajectory:

Definition 6 (Trajectory extension) For any trajectory 𝜏 , denote an extension

of 𝜏 by 𝜏 ⊆△ Ext(𝜏) ⊆△ ℋ. Furthermore, an empty extension is the only case where

sub-list equality holds, i.e., 𝜏 ̸=△ Ext(𝜏)⇔ 𝜏 ⊂△ Ext(𝜏).

Theorem 3 (Extension from 𝒮 to ℐ) Any regime 𝒮 trajectory can be extended to

a regime ℐ trajectory, with the possibility of an empty extension.

Proof. The approach is to split an arbitrary regime 𝒮 trajectory into different cases

depending on the left- and right-terminal states, then construct the appropriate ex-

tensions based on the terminal states. For the full proof, please refer to Appendix

A.5. �

Corollary 1 (Extension from 𝒟 to ℐ) Any regime 𝒟 trajectory can be extended

to a regime ℐ trajectory, with the possibility of an empty extension.
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Proof. The proof follows identically from the proof of Theorem 3 in Appendix A.5 by

relabeling 2 ↦→ 3 and 3 ↦→ 2 . �

Analogous to the extensions of 𝒮- and 𝒟-DRTs to ℐ-DRTs, we will now show that

there is a natural decomposition from ℐ-DRTs back to 𝒮- and 𝒟-DRTs.

Theorem 4 (Decomposition from ℐ to 𝒮) Any trajectory 𝜏 ∈ ℐ(ℋ) can be de-

composed into |𝒮(𝜏)| = 𝑘+1−𝑚 disjoint trajectories in 𝒮(ℋ), where 𝑘 is the number

of 3 states in 𝜏 , 𝑚 is the number of occurrences of pairs

{ 1 } → { 3 },

{ 3 } → { 1 },

and { 3 } → { 3 }

in 𝜏 , and |·| denotes the cardinality, i.e., number of trajectories in the superset of

decomposed trajectories 𝒮(𝜏) ⊆ 𝒮(ℋ).

Proof. The main idea for the proof is to keep track of the number of terminal states,

as well as the number of pairs of valid terminal states for 𝒮 that do not terminate a

trajectory in regime ℐ. For the full proof, please refer to Appendix A.6 �

Corollary 2 (Decomposition from ℐ to 𝒟) Any trajectory 𝜏 ∈ ℐ(ℋ) can be de-

composed into |𝒟(𝜏)| = 𝑘+1−𝑚 disjoint trajectories in 𝒟(ℋ), where 𝑘 is the number

of 2 states in 𝜏 and 𝑚 is the number of occurrences of pairs

{ 1 } → { 2 },

{ 2 } → { 1 },

and { 2 } → { 2 }

in 𝜏 .

Proof. The proof follows identically from the proof of Theorem 4 in Appendix A.6 by

relabeling 2 ↦→ 3 and 3 ↦→ 2 . �

190



Remark 1 (Regime ℐ containment) By way of Theorem 4 (or Corollary 2), note

that since both left and right terminal states of 𝜏 ∈ ℐ(ℋ) are also terminal states

for 𝒮(ℋ) (or 𝒟(ℋ)), any decomposition of 𝜏 into regime 𝒮 trajectories by way of

Theorem 4 (or into regime 𝒟 by way of Corollary 2) is entirely contained within 𝜏 ,

i.e., 𝜏𝒮 ⊆△ 𝜏, ∀𝜏𝒮 ∈ 𝒮(𝜏), and similarly 𝜏𝒟 ⊆△ 𝜏, ∀𝜏𝒟 ∈ 𝒟(𝜏).

Finally, given the extension and decomposition properties, it follows that there

are relationships between the number of trajectories belonging to the three trajectory

regimes, given a fixed state timeline. Analogously, there is also a relationship between

the number of states within a specific trajectory. We state and prove both of these

assertions in Theorems 5 and 6, respectively.

Theorem 5 (Regime cardinalities) Given the decomposition relationship proved

in Theorem 4, we have that

|ℐ(ℋ)| ≤ |𝒮(ℋ)|+ |𝒟(ℋ)| , (6.2)

where |·| indicates the cardinality of the regime set, i.e., the number of trajectories

belonging to that regime.

Proof. This proof first requires an additional lemma that shows the existence of at

least one decomposition. Then, the proof follows by examining different decomposi-

tion cases. For the full proof, please refer to Appendix A.7. �

Theorem 6 (Trajectory cardinalities) The relation in (6.2) from Theorem 5 holds

at the level of trajectories as well:

∑︁
𝜏∈ℐ(ℋ)

|𝜏 |△ ≤
∑︁

𝜏∈𝒮(ℋ)∪𝒟(ℋ)
|𝜏 |△ , (6.3)

where |·|△ indicates the cardinality of the trajectory, i.e., the length or number of

states belonging to that trajectory.
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Proof. This proof is similar to the proof for Theorem 5, except that we first work

at the level of one individual trajectory, then aggregate appropriately. For the full

proof, please refer to Appendix A.8. �

6.8.3 Operational interpretations

The three trajectory regimes given in Definition 5 reflect different ways of demarcating

disruptions and recoveries within an air transportation network, Specifically, regime

𝒮 delineates disruptions and recoveries solely based off of the magnitude of delays, as

a disruption begins by leaving low-delay regions 1 or 3 , and recoveries end after

returning to 1 or 3 . On the other hand, trajectories in regime 𝒟 only considers

the spatial distribution of delays within the network, since disruptions begin when

the TV is aberrant (i.e., exits 1 or 2 ) and recoveries end when the TV returns to

normal (i.e., re-enters 1 or 2 ). We then introduce an integrated regime ℐ, which

delineates air transportation network disruptions by considering both deviations in

delay magnitudes and spatial distribution.

Since it is clear that regime 𝒮 could be considered as a canonical measure of

inefficiencies and IROPs within the air transportation network (it simply measures

disruptions and recoveries based on the magnitude of airport delays), we want to en-

sure that the integrated regime ℐ remains consistent with the usual ways of measuring

disruptions. For example, if 𝜏𝒮 is a DRT under regime 𝒮, a prototypical inconsistent

behavior would be the failure of 𝜏𝒮 to also be a DRT under regime ℐ – in other

words, our new disruption definitions should never nullify previous DRTs identified

using canonical disruption measures. The theorems, propositions, and corollaries from

the previous subsection precisely demonstrate these consistency guarantees between

regimes 𝒮,𝒟, and ℐ.

In particular, we first note that any DRT identified with respect to regimes 𝒮 or 𝒟

can be thought of as the “beginning” of a DRT in both delay magnitude and spatial

distribution, i.e., in the regime ℐ sense (Theorem 3 and Corollary 1). Combining this

with the fact that any DRT from regime ℐ can be separated into shorter disruptions

as measured by its delay or spatial distribution (Theorem 4), we have the following,
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somewhat intuitive guarantee: Using delay thresholds or the spatial variance of delays

as a measure of disruptions is a strict subset of integrating the two performance

measures. Along with the last guarantee that an integrated DRT can never contain

an incomplete portion of a magnitude- or spatial distribution-based DRT (Remark 1),

our three regime definitions are indeed self-consistent. Finally, we note that each of

the theoretical results can be empirically verified during the construction of integrated

DRTs in 𝑂(𝑁) time, where 𝑁 is the total number of hours in the original data

set. We can use the previously-stated Algorithm 3, with a new region partition

ℛ(𝑡) ∈
{︁

1 , 2 , 3 , 4
}︁
, to construct these refined DRTs.

Time (hours)

DRT
(canc.)

DRT
(    )

DRT
(    )

DRT
(    )

Figure 6-13: Notional representation of DRTs and their interactions.

6.8.4 Delay and cancellation DRTs

Previously in this section, we construct and prove properties of DRTs, which can

be seen as encoding disruptions into discrete, ordered sequences of states. With this

framework in mind, we focus on integrated delay DRTs, i.e., DRTs in trajectory regime

ℐ(ℋ), which we will refer to as ℐ-DRTs for brevity. As we have seen via Theorem

4, an ℐ-DRT incorporates disruptions and recoveries both in terms of the magnitude

as well as the spatial distribution of airport delay. The goal in this subsection is to

examine the interaction between airport delays and cancellations within an airline

network, taking advantage of the rigid structure of DRTs. Specifically, we define

interactions between delays and cancellations as the overlap or inclusion between
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ℐ-DRTs (e.g., the dark-blue segment within the barcode representation in Figure 6-

13) and cancellation DRTs (e.g., the red segment in Figure 6-13). We focus on four

categories of ℐ-DRT and cancellation DRT overlap or inclusion:

(i) Cancellations lead delays: In the middle of a cancellation DRT, an ℐ-DRT

begins, and the cancellation DRT ends strictly earlier than the ℐ-DRT.

(ii) Delays lead cancellations: In the middle of an ℐ-DRT, a cancellation DRT

begins, and the ℐ-DRT ends strictly earlier than the cancellation DRT.

(iii) Cancellations include delays: The entirety of an ℐ-DRT coincides with the

entirety of, or some portion of, a cancellation DRT.

(iv) Delays include cancellations: The entirety of a cancellation DRT coincides

with the entirety of, or some portion of, an ℐ-DRT.

These four categories can be visualized in Figure 6-14.

The structure provided by DRTs allows us to easily measure when ℐ-DRTs and

cancellation DRTs begin (i.e., left-terminates, as shown in Figure 6-12) and end (i.e.,

right-terminates, as shown in Figure 6-12). With this in mind, delay-cancellation

interactions in categories (i) and (ii) describe the scenarios where flight cancellations

due to disruptions and demand-capacity imbalances precede delays, or vice versa,

respectively. For example, suppose that an airline proactively cancels a subset of

flights in anticipation of a certain level of capacity reductions; however, the realized

capacity reductions are more severe than anticipated by previous forecasts, resulting

in the non-cancelled flights experiencing significant delays. Such a scenario would fall

under category (i), where cancellations precede delays. On the other hand, reactive

flight cancellations in response to worsening delays would fall under category (ii). The

other categories (iii) and (iv) encapsulate scenarios where there is no clear order of

precedence between ℐ-DRTs and cancellation DRTs: Instead, they describe scenarios

where flight cancellations happen completely within the time span of a high-delay

period, or vice versa. We can describe categories (iii) and (iv) in similar interpretative

flavors as (i) and (ii), with the caveat that the leading indicator of disruptions (i.e.,
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either delays or cancellations) persist even after the appearance and resolution of the

other indicator.
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Figure 6-14: Search criterion for the delay-cancellation interaction categories (i)-(iv).

For each airline, we are interested in obtaining the counts of each interaction

category, given that we have already constructed the set of cancellation and ℐ-DRTs

from airline’s state timeline ℋ. For categories (i) and (ii) where there is an order of

precedence between flight delays and cancellation, we require a buffer of at least 1

hour (i.e., one state within ℋ) between the beginnings and endings of the cancellation

and ℐ-DRT. We depict this pictorially in Figures 6-14(i) and 6-14(ii). The other two

categories, represented in Figures 6-14(iii) and 6-14(iv), have less stringent buffer

requirements, as we allow for the possibility of cancellation and ℐ-DRTs starting

and/or ending at the same time. We provide the pseudo-code for the algorithm to

count each category type in Algorithm 4.

We run Algorithm 4 on four separate state timelines for AA, DL, UA, and WN,

and provide the counts of interaction categories per airline in Table 6.3. We see that

interaction categories where cancellations lead delay (e.g., proactive cancellations)

and delays lead cancellations (e.g., severe delays necessitate flight cancellations) are

actually less frequently observed than inclusion-type scenarios (iii) and (iv), regardless
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of the specific airline we examine. Furthermore, we note that while interactions

(i) and (ii) seem “symmetric” in some sense, i.e., the number of occurrences are

approximately the same for all four airlines, there is much more asymmetry between

(iii) and (iv), in that interactions where cancellations DRTs being strict subsets of

delay DRTs are much more prevalent than the other way around. This imbalance

is particularly noticeable for UA, where there were just under 1,000 additional (iv)

interaction scenarios compared to (iii) scenarios. For the purposes of benchmarking

airline on-time and flight completion performance, it may be of interest to understand

the disruptions that precipitate into a (iv) scenario versus a (i) or (ii) scenario. For

example, ideally, a cancellation DRT would not be succeeded by a delay DRT, nor

be included within a delay DRT, indicating successful mitigation of demand-capacity

imbalances post-flight cancellations.

Category AA DL UA WN

(i) Cancellations lead delays 1048 850 1082 871

(ii) Delays lead cancellations 1059 845 1113 880

(iii) Cancellations include delays 1250 994 1300 1148

(iv) Delays include cancellations 1809 1540 2268 1820

Table 6.3: Counts for each of the delay-cancellation interaction categories, split by

airlines.
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Algorithm 4 Counting delay-cancellation interactions
Input: State timeline ℋ; Set of ℐ-DRTs ℐ(ℋ); Set of cancellation DRTs canc(ℋ);

Delay-cancellation interaction category CAT ∈ {(i), (ii), (iii), (iv)}

Output: Number of interactions 𝑛CAT ∈ N≥0

54 Initialize 𝑛CAT ← 0; 1CAT ← FALSE

55 for Each ordered state indexed 𝑖 = 1 : (|ℋ| − 1) of ℋ do

56 if CAT start condition at 𝑖 ∧ 1CAT = FALSE then

57 if CAT active condition at 𝑖+ 1 ∨ CAT end condition at 𝑖+ 1 then

58 1CAT ← TRUE

59 else if CAT end condition at 𝑖 ∧ 1CAT = TRUE then

60 𝑛CAT ← 𝑛CAT + 1; 1CAT ← FALSE

61 end

6.9 Future work: DRT-based prediction models

The DRT framework leverages a representation of airport network delays as a tra-

jectory object, transitioning between discrete states. The total delay and normalized

total variation
(︁
‖x‖1 ,

√︁
TV(x)

)︁
capture information regarding both the magnitude

and spatial impact of air transportation system disruptions. Thus far in Chapter 6, we

had focused on an application of clustering DRTs, where representative DRT clusters

can be examined for attributes such as their durations and intensity. We also intro-

duced refinements to the DRT framework, where we prove structural characteristics

of, e.g., 𝒮-, 𝒟-, and ℐ-DRTs.

We now briefly discuss some predictive applications that builds off of the DRT

framework. In particular, we focus on two types of questions: Can we predict the

trend of the airport delays, and can we predict whether or not a DRT will begin

(or end), given conditions at the current time. The setting is as follows: Suppose

that at the current time 𝑡, the entire vector of airport delays x𝑡 is observable, i.e.,

we have access to the delays 𝑥𝑖,𝑡 at airport 𝑖 during current time 𝑡, as well as non-

schedule-related information (e.g., weather, airport capacities, etc.) Furthermore, we
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assume that we have an analogous set of information for the past hours as well. The

trend prediction problem addresses whether the total delay will increase or decrease,

and similarly for total variation. This can be viewed as a sign classification problem,

where we are trying to predict sign (‖x𝑡‖1 − ‖x𝑡+1‖1) and sign (TV (x𝑡)− TV (x𝑡+1)).

The second prediction question, termed the “nominal zone prediction” problem for

convenience, needs to be framed within the context of a DRT type. For consistency, we

will use ℐ-DRTs, which left- or right-terminates in { 1 } and anchors in { 2 , 3 , 4 }.

If x𝑡 currently belongs to { 1 }, then we are interested in predicting whether or not

a DRT will begin, by predicting if x𝑡+1 will belong to { 2 , 3 , 4 }. On the other

hand, if x𝑡 currently belongs to { 2 , 3 , 4 }, we would be interested in predicting

if, at the next hour, the system recovers, i.e., if x𝑡+1 will be in { 1 }. To conclude

Chapter 6, we will briefly describe a kernel density estimation-based approach for the

trend prediction problem, and a time series prediction-based approach, via recurrent

neural networks (RNNs), for the nominal zone prediction problem. These prediction

problems are part of ongoing work in [156].

6.9.1 Kernel density estimation approaches

The approach we take towards trend predict hinges on constructing a probability

density function of the tuple
(︁
‖x‖1 ,

√︁
TV(x)

)︁
at the next time step, then integrating

this density function across the appropriate half-plane to predict the desired quantities

sign (‖x𝑡‖1 − ‖x𝑡+1‖1) and sign (TV (x𝑡)− TV (x𝑡+1)). To construct the probability

density function, we can use a bivariate kernel density estimator with a bivariate

Gaussian kernel 𝒦 and some 2 × 2 bandwidth matrix H, where the data for the

kernel density estimator comes from the transition behaviors of nearest neighbors in

the space of tuples
(︁
‖x‖1 ,

√︁
TV(x)

)︁
for our current delay vector x𝑡. Figure 6-15

shows a depiction of this procedure applied to predicting the trend of total delay.

In the case depicted by Figure 6-15, the predicted sign of ‖x𝑡‖1 − ‖x𝑡+1‖1 would be

negative, indicating an increase in total delay.
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Figure 6-15: Workflow for the kernel density estimation approach for trend prediction
on DRTs: (a) Retrieve nearest neighbors; (b) Inversely scale neighbor influence based
on distance; (c) Construct density through kernel density estimation; (d) Numerically
integrate appropriate regions of the density.
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6.9.2 Deep learning approaches via LSTM RNN

For the nominal zone prediction problem, our first attempt was to use the same esti-

mated density from Section 6.9.1, and numerically integrate over region(s) of interest.

Note that depending on the prediction direction (e.g., stepping out of or into { 1 }),

the region or regions of interest will be either { 1 } or { 2 , 3 , 4 }. However, this

approach did not yield an acceptable prediction accuracy, and was computationally

intensive. Instead, we will approach this prediction problem through deep learning,

specifically using a long short-term memory (LSTM) RNN architecture to predict the

tuple
(︁
‖x𝑡+1‖1 ,

√︁
TV (x𝑡+1)

)︁
, given previous time steps along the time series contain-

ing sequences of
(︁
‖x‖1 ,

√︁
TV(x)

)︁
values. The LSTM RNN is trained to minimize the

usual squared ℓ2 loss between the predicted tuple and the actual tuple, and then this

predicted tuple is mapped to the regions { 1 , 2 , 3 , 4 } independent of the LSTM

RNN. In doing so, we actually have two performance metrics to consider: The first

is the ℓ2 loss, which assesses the performance of the LSTM RNN in its prediction of

the specific
(︁
‖x‖1 ,

√︁
TV(x)

)︁
tuple. The second performance metric is the accuracy

of classifying the predicted
(︁
‖x‖1 ,

√︁
TV(x)

)︁
tuple into the correct region.
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Chapter 7

Towards Hierarchical Traffic Flow

Management

7.1 The delay redistribution problem

The key idea formalized in Chapter 4 is the notion that airport delays can be viewed as

signals supported on the nodes of a graph, and that adding a perspective of the spatial

distribution of these signals is interesting both theoretically (e.g., Section 4.1) as well

as operationally in the context of examining disruptions in the air transportation

network (e.g., Section 4.5). However, thus far, most of the work presented comes

from a post hoc analysis standpoint. In Chapter 7, we ask the question of modeling

and targeting “desirable” distributions of delays across a network of airports. We will

admittedly overload the term distribution by way of representing both geographic or

spatial distributions of signals across the network, as well as an actual multivariate

probability distribution generating networked delays. Specifically, the ability to now

characterize the spatial distribution of graph signals provides a new objective through

which a network control problem could be formulated: Is there a better way to

redistribute delays across my network, given that you cannot arbitrarily remove delay

from the system?

We recognize that the notion of delay redistribution may be counterintuitive: Un-

like some tangible, physical asset (e.g., packages, containers, etc.), you cannot simply
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take the delays experienced by one airport and place it at another airport. However,

we argue instead for the following perspective: The network-level redistribution of

airport delays reflects an aggregation of microscopic, tactical actions under airport

capacity constraints. Examples of such tactical actions include internal airline sched-

ule adjustments or changes in traffic management initiative scopes. Thus, with this

new perspective, in Chapter 7 we investigate the problem of designing delay redis-

tribution control policies for an air transportation network under delay-conserving

constraints. These constraints reflect the fact that incurred delays cannot be easily

dissipated in the absence of mechanisms such as flight cancellations. Future work

could focus on incorporating flight cancellation mechanisms by way of relaxing the

delay conservation constraint.

Our framework offers advantages in terms of its formulation by explicitly handling

heterogeneous marginal delay distributions at airports and dependence structures be-

tween airport delay distributions arising from network effects. Another advantage

is that we provide a flexible and interpretable cost structure for encouraging delay

absorption or dissipation at pre-selected airports. The resultant approximate con-

trol policy dictates required delay reductions or increases at specific airports. We

demonstrate our framework on hourly sequences of US air transportation network

disruptions between 2008 and 2017 (i.e., the DRTs from Chapter 6), and compare the

optimal selective redistribution policies against actual operations. We also provide an

estimate of the redistribution cost in delay minutes, resulting in a disruption-specific

ranking of least- to most-costly delay-absorbing airports. Our control policies could

be used as input constraints into the standard air traffic flow management problem

(ATFMP) or multi-airport ground holding problem (MAGHP), ensuring that its so-

lution conforms to network-level redistribution requirements. In turn, the low-level

problems (i.e., the ATFMP or MAGHP) play crucial roles of constraining the high-

level planner (i.e., the model we will propose in Chapter 7) to a feasible flight schedule.

This hierarchical check-and-balance system is precisely the focus of ongoing work in

[49], which builds on the results in Chapter 7.
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7.1.1 Copula representations for network-wide airport delay

distributions

The high-dimensional, model-less setting, along with a sparse set of metrics that

are critical to monitor in order to ensure nominal system performance, is precisely

found in our aviation setting. Consider the air transportation system, where airports

are considered to be nodes in the network, and whose delays we wish to model and

control. Interdependencies between different airports due to flight-propagated delays,

weather correlations, passenger connectivity, and myriad other factors are complex

to model. Consequently, it is difficult to develop an accurate and robust model for

delays across all airports within the network. Furthermore, for system operators,

key performance requirements are aggregate measures, and may not be defined at

specific airports. Examples of such performance targets include the total delay (i.e.,

the sum of all airport delays), the spatial distribution of delays across the network,

and the variance of airport delays. When the system is disrupted, the system operator

may want to drive the system to some desired configuration that satisfy aggregate

performance targets, with secondary considerations of delays at individual airports.

In addition, there may be specific time intervals within which any intervention must

occur.

Our goal is to formalize the notion of coming up with ways of redistributing airport

delays that is realistic given historical observations of delays in the system. Hence,

a crucial factor is the ability to generate realistic network delay state observations.

The way we chose to do so is by drawing samples from some underlying probability

distribution that describes the delay at each airport within the network. Two factors

complicate this task: The marginal delay distribution at each airport may differ, and

there could be a variety of dependence relations (linear, non-linear, time-varying,

etc.) between the delays at different airports. The former encapsulates the fact that

different airports have significantly different operating characteristics (e.g., runway

capacity, airspace structure, typical weather patterns, etc.), whereas the latter is the

result of the networked nature of the system (e.g., tail-propagated delays, shared
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airspace constraints, traffic management initiatives, etc.).

To motivate our usage of a particular statistical construct known as a copula,

we first demonstrate that simply drawing from a simple joint distribution with a

simple dependence structure does not sufficiently represent the operational realities

of airport delays. The straightforward process of fitting network-wide airport delays

to a multivariate Gaussian distribution with some (sample) Pearson correlation-based

dependence structure is not representative, given the observation that the marginal

distributions for airport arrival and departure delays appear to follow a log-normal

or Gamma distribution [12]. This is not entirely surprising, given that sub-process

time durations, such as taxi times and terminal area transit times, are not Gaussian

either [154, 11]. Furthermore, even in terms of distributional properties, Gaussian

distributions are real-valued and symmetric, whereas operationally-relevant airport

delay distributions are non-negative, and positive- or right-skewed (e.g., [161] and

related work done in Section 5.5).

To simultaneously overcome both of these obstacles, we would like a new way to

structure probability distributions that allows us to isolate the dependence structure

of a general multivariate probability distribution from the individual marginal distri-

butions. This separation would then allow for separate estimations of the marginal

distributions and the dependence structure. This is precisely the advantage of using

copulas [199]:

Definition 13 (𝑁-dimensional copula) An 𝑁-dimensional copula, denoted by 𝐶 :

[0, 1]𝑁 → [0, 1], is a cumulative distribution function 𝐶(u) = 𝐶 (𝑢1, . . . , 𝑢𝑁) describ-

ing a random variable U in a 𝑁-dimensional unit hypercube [0, 1]𝑁 . 𝐶(u) is a copula

if, and only if, it satisfies the following properties:

(i) 𝐶(u) is non-decreasing in each component 𝑢𝑖.

(ii) The 𝑖th marginal distribution of 𝐶(u), obtained by setting 𝑢𝑗 = 1,∀𝑗 ̸= 𝑖, is equal

to the cumulative distribution function corresponding to a standard uniform

random variable.
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(iii) For scalars 𝑎𝑖 ≤ 𝑏𝑖, we have that

P
(︃
𝑁⋂︁
𝑖=1

𝑎𝑖 ≤ 𝑈𝑖 ≤ 𝑏𝑖

)︃
= 𝐶(𝑏1, . . . , 𝑏𝑁)− 𝐶(𝑎1, . . . , 𝑎𝑁).

Copulas disentangle the dependence structure from individual marginals by repre-

senting the dependence completely via the form of the copula function 𝐶, whereas

individual marginals are represented separately as standard univariates 𝑢1 through 𝑢𝑁
via a probability integral transform. Furthermore, any multivariate cumulative distri-

bution function can be represented by a copula, and this representation is unique as

long as the multivariate distribution is continuous. This is given by Sklar’s Theorem:

Theorem 2 (Sklar’s Theorem [250]) Consider a 𝑁-dimensional cumulative dis-

tribution function 𝐹X with marginals 𝐹𝑋1 , . . . , 𝐹𝑋𝑁
. Then, there exists a copula 𝐶

such that

𝐹X(𝑥1, . . . , 𝑥𝑁) = 𝐶 (𝐹𝑋1(𝑥1), . . . , 𝐹𝑋𝑁
(𝑥𝑁)) ,

for all 𝑥𝑖 ∈ R ∪ {−∞,∞} and 𝑖 = 1, . . . , 𝑁 . Furthermore, if 𝐹𝑋𝑖
is continuous for

all 𝑖 = 1, . . . , 𝑁 , then the copula 𝐶 is unique.

Sklar’s Theorem allows us to first estimate the marginal distributions, and then at-

tempt to fit dependence structures based on the choice of the copula family. We

exploit this property by estimating empirical cumulative distribution functions for

each airport based on historical data, and then separately fitting a copula-based de-

pendence structure via maximum likelihood estimation. We assume that the marginal

distributions and the copula cumulative distribution function are continuous.

In other words, we can now estimate individual marginal airport delay distri-

butions (either parametrically or non-parametrically, although we chose the non-

parametric route since misspecification of marginals can lead to unstable results [139]),

then separately estimate the copula 𝐶 through maximum likelihood-type routines

[31]. Finally, it is important to note that a copula contains no temporal informa-

tion, whereas airport delay distributions are by nature highly non-stationary [125].
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While there are time-varying copula processes that could be used to model such sys-

tems [176], we make a deterministic assumption of periodicity and simply estimate a

different copula model corresponding to different hours of the day.

7.2 An overview of our approach

Our approximate projection-based control approach for networks is generalizable,

and not specific to the air transportation use case. Specifically, our proposed general

solution consists of two main components:

(1) Generate a set of feasible high-dimensional states; and

(2) Map a desired trajectory satisfying performance targets in a lower-dimensional

projection back to the high-dimensional state space.

Figure 7-1 presents a flowchart depicting our methodological framework. The first

step uses a limited number of observations and draws from a fitted multivariate

Gaussian copula to represent the set of feasible high-dimensional system states. As

mentioned previously, given a complicated multivariate distribution with intertwined

dependence structures, copulas provide a way of relating the multivariate joint dis-

tributions to univariate marginal distributions. The second step of our framework

enforces conformance to lower-dimensional performance targets, and maps them back

to the full system state via an optimization subroutine that identifies a corresponding

high-dimensional state from the feasible set generated in the first step.

Our framework can accommodate any reasonable lower-dimensional projection

space for the desired performance metric. Our approach is also flexible in terms

of the objective function and cost structure for the optimization subroutine, which

identifies a high-dimensional state that satisfies low-dimensional performance targets.

7.2.1 Elaborating on our approach to delay redistribution

We elaborate on the notion of delay redistribution that we first introduced at the

beginning of Section 7.1. As we pointed out previously, while notions of redistributing
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Figure 7-1: Flowchart of the proposed approach. Reprinted from [155]. c○ 2020
IEEE

quantities across a network are not uncommon, in the context of airport delays, it

may be counterintuitive given the fact that delays are accrued quantities based on

differences in scheduled versus actual arrival (or departure) times. This stands in

contrast to physical quantities that can be easily thought of as “redistributable.” We

emphasize that when we talk loosely about redistributing airport delays at a network-

level, it really is an aggregation of microscopic, tactical actions made by airlines or

air navigation service providers in response to some demand-capacity imbalance. The

notion of redistribution is more natural in the context of network-supported signals:

We will make this perspective concrete with the following toy example:

Example: Let 𝑓𝐴→𝐶 and 𝑓𝐵→𝐶 be two same-duration flights from airports 𝐴 and 𝐵,

respectively, to destination airport 𝐶. Both 𝑓𝐴→𝐶 and 𝑓𝐵→𝐶 are scheduled to depart

at 1600Z, and arrive at 𝐶 at 1800Z. Suppose airport 𝐶 has a capacity constraint

of one arriving aircraft at 1800Z. In one scenario, flight 𝑓𝐴→𝐶 may be assigned an

Expected Departure Clearance Time (EDCT) of 1630Z, and arrive at 𝐶 at 1830Z

(we assume no time was made up en route); in another scenario, flight 𝑓𝐵→𝐶 may

be assigned an EDCT of 1630Z, and arrive at 1830Z. Whether one scenario happens
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over another scenario depends on various microscopic factors such as airline schedule

adjustments and/or traffic management initiative scopes. However, when observing

the time series of delays at airports 𝐴, 𝐵, and 𝐶, the two scenarios look identical,

modulo a redistribution of delay between airports 𝐴 and 𝐵 at 1600Z. We note that

one could alternatively separate the accounting of arrival versus departure delays at

an airport, and use a “multi-layered network” approach. Furthermore, this setup

assumes that delays are recorded at the scheduled arrival and departure times, which

is indeed the standardization used in the ASPM database maintained by the FAA

[85]. This example is illustrated in Figure 7-2.
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Figure 7-2: A simple delay redistribution scenario, based on whether flight 𝑓𝐴→𝐶 (a)
or 𝑓𝐵→𝐶 (b) was assigned a new, later EDCT.

At the level of airport delay distributions, the observed delay signals reflect the

operational inefficiencies incurred after carrying out a specific set of schedules (i.e.,

the demand-side) against constraints such as traffic management initiatives (i.e., the

capacity-side). The classic traffic flow management problem (TFMP), regardless of

whether it is implemented at the level of individual flights (Lagrangian approach,

e.g., [27, 14]) or aggregate traffic flows (Eulerian approach, e.g., [181, 254, 257]), is
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controlling traffic at a microscopic scope, whereas the macroscopic view sets desired

performances at the “terminus” point where all delays are accounted for: At the

airport. We note that one motivation for focusing on airports within the US NAS

stems from the fact that airport capacity is a critical bottleneck in the US NAS [173].

How such a macroscopic perspective can fit into the overall air traffic management

structure is by providing a closed feedback loop between the observed delay state and

future schedule adjustments. This idea is illustrated in Figure 7-3: Currently, flow

planning takes into account a lagged perspective of the system state via historical

traffic data (e.g., through the Traffic Flow Management System, or TFMS). Given

that state-of-the-art flight-level TFMP implementations can be quite fast, even for

large numbers of traffic [14], one could consider a near-real time feedback between

the current system delay state with desired delay redistribution requirements, and

re-running the TFMP. The airport-level delay constraints fed back to the TFMP can

be thought of as upper bound on delay management performance, as the magnitude

of delay dissipation and absorption shown in Section 7.7 is most likely unattainable

given operational constraints.

Even though it is unreasonable to assume that any TFMP can find a feasible

solution that achieves the upper bound on delay redistribution actions, this feedback

is still viable in the sense that small adjustments and changes in scheduling can have

significant impact in terms of on-time performance [125, 214]. This raises an inter-

esting question: If large, airport-level delay dissipation and absorption constraints

are added to standard TFMP solutions, how close can the solution get to the upper

bound without losing feasibility. In other words, previous research has shown one

direction of influence (i.e., small schedule perturbations result in large changes in

delays), does this imply that high-level delay redistribution policies at the level of

airports are potentially easy to translate to microscopic schedule changes, displace-

ments, and adjustments. While the work described in Chapter 7 does not explicitly

implement the feedback cycle depicted in Figure 7-3 (a brief discussion regarding how

these airport delay constraints could fit into a TFMP model is given in Section 7.8.3),

it provides the mechanism that generates the performance upper bounds to be fed
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Figure 7-3: Model predictive control-like feedback cycle for incorporating high-level
airport delay redistribution targets into the standard air traffic management pro-
cess. In Chapter 7, we build up to the Conservative Selective Redistribution Problem
(CSRP) formulation, the model, and constructing a target redistribution trajectory.
Future work (e.g., [49]) will focus on implementing delay constraints into standard
TFMP or multi-airport ground holding formulations, as well as the trajectory predic-
tion component.
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back as constraints in a TFMP formulation.

7.3 State space description and copula estimation

Given some (networked) system (e.g., a network of airports), we abstract the 𝑁 signal-

generating members (e.g., the airports with airport delays) of the system as vertices

𝑖 ∈ 𝑉 , and encode relationships between members 𝑖 and 𝑗 as undirected, possibly

weighted, edges (𝑖, 𝑗) = (𝑗, 𝑖) ∈ 𝐸 ⊆ 𝑉 × 𝑉 . We collect the vertices and edges into

a graph 𝐺 = (𝑉,𝐸), and denote a vertex 𝑖-supported signal by 𝑥𝑖 ∈ R. We denote

observation 𝑙 of the vector of signals generated from this system, i.e., the state of the

system, by x(𝑙) ∈ R𝑁×1, with x(𝑙) =
(︁
𝑥

(𝑙)
1 , . . . , 𝑥

(𝑙)
𝑁

)︁⊤
. If x(𝑙) was observed historically,

then x(𝑙) ∈ 𝒳 ⊆ R𝑁 . We will call 𝒳 as the state space of the system. We assume we

have no other information on 𝒳 , apart from the historical observations.

We can use a kernel density estimator to construct continuous marginal distri-

butions, then transform them to standard univariates via the probability integral

transform. We can find the copula density 𝑐(u) by taking the appropriate partial

derivatives of 𝐶(u):

𝑐(𝑢1, . . . , 𝑢𝑁) = 𝜕𝑁

𝜕𝑢1 · · · 𝜕𝑢𝑁
𝐶(𝑢1, . . . , 𝑢𝑁). (7.1)

Then, from Sklar’s Theorem, we can rewrite the unknown probability density function

𝑓X as a product of the copula density in (7.1) and the marginal density functions 𝑓𝑋𝑖
,

as shown in (7.2). We then estimate 𝑓X written via the copula density through

maximum likelihood estimation using the set of historical 𝑀 historical observations

O𝑀 =
{︁
x(𝑙)

}︁𝑙=𝑀
𝑙=1
⊂ 𝒳 .
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𝑓X(x) = 𝜕𝑁

𝜕𝑥1 · · · 𝜕𝑥𝑁
𝐹X(𝑥1, . . . , 𝑥𝑁)

= 𝜕𝑁

𝜕𝑢1 · · · 𝜕𝑢𝑁
𝐶

⎛⎜⎝𝐹𝑋1(𝑥1)⏟  ⏞  
𝑢1

, . . . , 𝐹𝑋𝑁
(𝑥𝑁)⏟  ⏞  
𝑢𝑁

⎞⎟⎠× 𝜕𝐹𝑋1(𝑥1)
𝜕𝑥1

· · · 𝜕𝐹𝑋𝑁
(𝑥𝑁)

𝜕𝑥𝑁

= 𝑐(u)
𝑁∏︁
𝑖=1

𝑓𝑋𝑖
(𝑥𝑖). (7.2)

Let ℓ (Θ;O𝑀) denote the log-likelihood of (7.2) with respect to the copula pa-

rameter, Θ, and historical state observations, O𝑀 . We have that

ℓ (Θ;O𝑀) =
𝑀∑︁
𝑘=1

ln 𝑐
(︁
𝐹𝑋1

(︁
𝑥

(𝑘)
1

)︁
, . . . , 𝐹𝑋𝑁

(︁
𝑥

(𝑘)
𝑁

)︁
; Θ
)︁

+
𝑀∑︁
𝑘=1

𝑁∑︁
𝑖=1

ln 𝑓𝑋𝑖

(︁
𝑥

(𝑘)
𝑖

)︁
. (7.3)

Note that the log-likelihood is only over the copula parameter Θ. Since we have no

information regarding parameterizations of marginal densities or cumulative distribu-

tion functions, we utilize the canonical maximum likelihood (CML), where empirical

marginal distributions are first estimated based on O𝑀 , and these empirical marginal

distributions are used to transform observations in O𝑀 to uniform variates via the

probability integral transform. Under CML estimation, (7.3) reduces to

̂︁Θ = argmax
Θ∈ℳ

𝑀∑︁
𝑘=1

ln 𝑐
(︁̂︁𝑢1

(𝑘), . . . ,̂︂𝑢𝑁 (𝑘); Θ
)︁
, (7.4)

whereℳ is the space of copula parameters, and ̂︁𝑢𝑖(𝑘) = ̂︀𝐹𝑋𝑖

(︁
𝑥

(𝑘)
𝑖

)︁
is computed as the

probability integral transform with an empirical estimate ̂︀𝐹𝑋𝑖
of 𝐹𝑋𝑖

at each vertex

𝑖, given by the kernel density estimator in (7.5) with bandwidth ℎ and the standard

normal density function 𝜑(𝑡) as the smoothing kernel. Therefore, we have that

̂︀𝐹𝑋𝑖
(𝑥𝑖) = 1

𝑀

𝑀∑︁
𝑘=1

⎧⎪⎨⎪⎩
∫︁ 𝑥𝑖−𝑥

(𝑘)
𝑖

ℎ

−∞
𝜑(𝑡) 𝑑𝑡

⎫⎪⎬⎪⎭ . (7.5)

Now that we are able to consider a wide range of empirical marginal distributions,
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we impose a dependence structure by choosing a family of copulas over which we can

carry out the CML estimation in (7.4). There are a variety of parametric copula fam-

ilies for bivariate distributions [199]; for multivariate distributions, the most flexible

is the multivariate Gaussian copula, along with other possibilities such as 𝑡-copulas

and vine copulas [145]. We use CML to fit a multivariate Gaussian copula 𝐶 (u; 𝜌)

with the cumulative distribution function and density 𝑐 (u; 𝜌):

𝐶 (u; 𝜌) = Φ𝜌

(︁
Φ−1 (𝑢1) , . . . ,Φ−1 (𝑢𝑁)

)︁
, (7.6)

𝑐 (u; 𝜌) = det (𝜌)− 1
2 exp

(︂
−1

2Ξ⊤
(︁
𝜌−1 − 𝐼𝑁×𝑁

)︁
Ξ
)︂

(7.7)

where Φ𝜌 is a standardized multivariate normal distribution with correlation matrix

𝜌 ∈ S𝑁×𝑁
⪰0 having unit diagonals, Φ−1 is the inverse cumulative distribution function

for a standard normal distribution, Ξ = (Φ−1 (𝑢1) , . . . ,Φ−1 (𝑢𝑁))⊤, and 𝐼𝑁×𝑁 is the

𝑁 × 𝑁 identity matrix. Given our choice of the multivariate Gaussian copula, we

have that Θ Δ= 𝜌 andℳ Δ= S𝑁×𝑁
⪰0 , and the CML estimation problem in (7.4) becomes

̂︀𝜌 = argmax
𝜌∈S𝑁×𝑁

⪰0

{︃
−𝑀2 ln det (𝜌)− 1

2

𝑀∑︁
𝑘=1

̂︀Ξ(𝑘)⊤ ̃︀𝜌 ̂︀Ξ(𝑘)
}︃
, (7.8)

over valid correlation matrices, with ̃︀𝜌 = 𝜌−1 − 𝐼𝑁×𝑁 and

̂︀Ξ(𝑘) =
(︁
Φ−1

(︁̂︁𝑢1
(𝑘)
)︁
, . . . ,Φ−1

(︁̂︂𝑢𝑁 (𝑘)
)︁)︁⊤

.

After obtaining ̂︀𝜌 from (7.8), we draw ̃︁𝑀 samples residing in [0, 1]𝑁 from 𝐶 (u; ̂︀𝜌),

where ̃︁𝑀 ≫ 𝑀 . We will refer to these samples
{︁
u(1), . . . ,u( ̃︀𝑀)

}︁
as simulated obser-

vations drawn from the fitted multivariate Gaussian copula 𝐶 (u; ̂︀𝜌). We transform

these simulated observations back into conformance with the original scale of O𝑀

(e.g., airport delay-minutes for our application) via the inverse probability integral

transform, through the inverse of the empirical marginal distributions found via (7.5).

With a slight overload on notation, we denote these transformed simulated observa-

tions as copula-simulated state observations, and define the set ̂︁𝒳 :=
{︁
x(1), . . . ,x( ̃︀𝑀)

}︁
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as the approximate space of feasible states. To avoid confusion, we will denote the 𝑙th

historical state observations in O𝑀 as x(𝑙)
O𝑀

, in contrast to x(𝑙), the 𝑙th copula-simulated

state observation from ̂︁𝒳 .

7.4 Projection-based approximate control

Recall that the intuition behind our projection-based control is to drive the system sig-

nals from some currently observed state x(0)
O𝑀
∈ 𝒳 to a (sequence) of desired state(s),

dictating only performance targets in some lower-dimensional space that captures

key, aggregate, system characteristics. For our choice of the lower-dimensional space

of metrics, we chose a R2-projection of 𝒳 ∪ ̂︁𝒳 parameterized by the 1-norm of the

state vector ‖x‖1 and its total variation (TV) with respect to the graphical system

abstraction 𝐺 (e.g., 𝐺 is the graph with airports as nodes and some measure of de-

pendence as weighted edges). We use the same definition for TV as we did in Chapter

4; specifically, Definition 4 based off of the combinatorial graph Laplacian.

The choice of ‖x‖1 is motivated by the fact that in positive signal-generating

systems, this metric captures the total magnitude of signals across the entire system

(e.g., the total number of bikes in a bike-share network, or total delay in an airport

network). The choice of TV(x) = x⊤ℒx reflects the fact that TV can be interpreted

as a measure of signal smoothness, and can be used for outlier detection in graph

signals (Chapter 4). It is worth noting that our projection-based control framework

is agnostic to the specific choice of metrics: Any reasonable set of low-dimensional

metrics that captures the important system performance characteristics may be used.

We define the projection projR2 : R𝑁×1 → R2×1 that maps x ∈ 𝒳 ∪ ̂︁𝒳 to(︁
‖x‖1 ,

√︁
TV(x)

)︁
. Note that the square root on TV ensures comparable dimensions

between the 1-norm and TV, which is a quadratic form in x. This transformation

is permissible, as TV is a positive quantity in our setting, and the square root is

one-to-one on the non-negative half-plane. The use of
√︁

TV(x) simplifies the task of

defining geometric constraints in im
(︁
projR2 𝒳 ∪ ̂︁𝒳)︁. Let x(0)

O𝑀
be the initial state of

the system that has been observed, i.e., we have full knowledge of all signals 𝑥(0)
𝑖 . We
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can compute its projection in our low-dimensional space as

projR2

(︁
x(0)
O𝑀

)︁
=
(︃⃦⃦⃦

x(0)
O𝑀

⃦⃦⃦
1
,

√︂
TV

(︁
x(0)
O𝑀

)︁)︃
. (7.9)

Recall that our goal is to drive the system from x(0)
O𝑀

to some unknown terminal

state x(𝑇 ) via unknown intermediate states x(𝑡) in discrete time steps 𝑡 = 1, . . . , 𝑇 −1,

by only constraining the R2-projected system metrics projR2

(︁
x(1)

)︁
, . . . , projR2

(︁
x(𝑇 )

)︁
to preset performance targets. In other words, we do not specify any entries 𝑥(𝑡)

𝑖 in

x(𝑡),∀𝑡 = 1, . . . , 𝑇 , and instead consider all candidate copula-simulated state observa-

tions x(𝑡)
candidate ∈ ̂︁𝒳 that satisfy some performance target in the R2-projected space,

i.e., some constraint on projR2

(︁
x(𝑡)

candidate

)︁
and projR2

(︁
x(𝑡)

)︁
.

Let us consider an example of a geometric constraint on im
(︁
projR2 𝒳 ∪ ̂︁𝒳)︁ that

could be used to ensure a type of conformance to performance targets in the R2-

projected space. We first select performance target anchors a(𝑡) ∈ im
(︁
projR2

̂︁𝒳)︁ ,∀𝑡 =

1, . . . , 𝑇 . We assume that, via the copula-based state space estimation described ear-

lier in Section 7.3, that the selection of the number of copula-simulated state obser-

vations ̃︁𝑀 was large enough such that im
(︁
projR2

̂︁𝒳)︁ is dense around anchors a(𝑡).

Formally, let ℬ ((𝑥1, 𝑥2); 𝜀) be a ball in R2 with radius 𝜀 centered at (𝑥1, 𝑥2). Then,

for a small positive radius 𝜀 > 0, there exists a ̃︁𝑀𝜀 =
⃒⃒⃒ ̂︁𝒳 ⃒⃒⃒ such that

ℬ (a(𝑡); 𝜀) ∩ im
(︁
projR2

̂︁𝒳)︁ ̸= {∅} . (7.10)

The anchors a(𝑡) are the prescribed system performance targets projR2

(︁
x(𝑡)

)︁
that

candidate copula-simulated states x(𝑡)
candidate ∈ ̂︁𝒳 must adhere to at each corresponding

time step 𝑡. We then solve the optimization problem in (7.11), where the geometric

constraint encodes our requirement that the candidate copula-simulated states do not

deviate more than 𝛿𝑡 > 0 in Euclidean norm from anchor a(𝑡) at time step 𝑡.
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x(𝑡)
* : argmin

x(𝑡)∈ ̂︀𝒳
⃦⃦⃦
x(𝑡) − x(𝑡−1)

*
⃦⃦⃦

2

s. t. 𝛿𝑡 ≥
⃦⃦⃦
a(𝑡)− projR2

(︁
x(𝑡)

)︁⃦⃦⃦
2

x(0)
* = x(0)

O𝑀

∀𝑡 = 1, . . . , 𝑇.

(7.11)

The objective function reflects the fact that projR2 is surjective, i.e., multiple

candidate copula-simulated states could feasibly satisfy the geometric constraint. Al-

though we do not know the underlying state dynamics from 𝑡 to 𝑡 + 1, assuming we

select a reasonable time step, we prefer small changes at each vertex signal 𝑥(𝑡)
𝑖 . These

assumptions are reasonable in real applications: Reflecting back on our bike-share net-

work example, if we assume that the duration between time steps is 15 minutes, we

should not expect a large variation in the number of bikes at a particular station. The

same assumptions can be constructed for airport delays, given an appropriate time

interval. The objective function in (7.11) retrieves the current state that requires a

minimal-energy evolution from the fully-known previous state x(𝑡−1)
* . Note that x(𝑡−1)

*

is fully known because it is either the solution to the preceding optimization, or the

known initial condition x(0)
* = x(0)

O𝑀
.

We define T* :=
{︁
x(0)

* = x(0)
O𝑀
,x(1)

* , . . . ,x(𝑇 )
*
}︁

as the extrapolated system state

trajectory starting at x(0)
* = x(0)

O𝑀
, obtained from solving (7.11) at each time step 𝑡 =

1, . . . , 𝑇 . The control policy 𝜋
(𝑡)
* at time 𝑡 = 0, . . . , 𝑇 −1 is simply 𝜋

(𝑡)
* = x(𝑡+1)

* −x(𝑡)
* ,

with the initial condition x(0)
* = x(0)

O𝑀
. We note that for the setup in (7.11), it is

possible to define a feasible set on the space of control actions by observing that

𝜋min ⪯R 𝜋(𝑡)
* ⪯R 𝜋max, (7.12)

where ⪯R denotes the element-wise inequality, 𝜋min = (𝜋min,1, . . . , 𝜋min,𝑁)⊤, and

𝜋max = (𝜋max,1, . . . , 𝜋max,𝑁)⊤ with

𝜋min,𝑖 = inf
{︁
𝑥

(𝜏)
𝑖 − 𝑥

(𝜎)
𝑖

⃒⃒⃒
𝑥

(𝜏)
𝑖 , 𝑥

(𝜎)
𝑖 ∈ 𝒳 ∪ ̂︁𝒳}︁ ,

𝜋max,𝑖 = sup
{︁
𝑥

(𝜏)
𝑖 − 𝑥

(𝜎)
𝑖

⃒⃒⃒
𝑥

(𝜏)
𝑖 , 𝑥

(𝜎)
𝑖 ∈ 𝒳 ∪ ̂︁𝒳}︁ .
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Copula model Sampling

Target?

Figure 7-4: Pictorial representation of our methodology, specifically the copula-based
state space model (Section 7.3) and the projection-based approximate control frame-
work (Section 7.4). Reprinted from [155]. c○ 2020 IEEE

7.5 Methodology discussion

7.5.1 Interpretation

Our framework provides a control policy for a dynamical system whose model is

not explicitly known. Our two-step approach of first generating an approximate

feasible state space along with the subsequent optimization mapping between low-

dimensional performance targets and high-dimensional states is a proxy for some

dynamics x(𝑡) = ℎ
(︁
x(𝑡−1)

)︁
, where ℎ is state-dependent. The optimization procedure

in (7.11) can be thought of as a pseudo-inverse projection proj−1
R2 : R2×1 → ̂︁𝒳 which

selects a unique high-dimensional system state (by way of the objective function in

(7.11) being convex; we prove this fact for an extended version of (7.11) in Section

7.6, but it is straightforward to see that (7.11) is convex given that its objective

function is an Euclidean norm, and the constraints are all convex as well) from the

copula-approximated state space that satisfy performance target constraints.
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7.5.2 Generalizability

Furthermore, many points along the workflow of this framework (see Figure 7-1) can

be modified to accommodate a range of general applications. Specifically, we highlight

five aspects of versatility provided by our framework: (1) The choice and selection

of a copula family; (2) the form of the objective function; (3) the cost structure; (4)

the constraints enforcing low-dimensional performance targets; and (5) the choice of

projection metrics. In terms of (1), although we chose to use the family of multivariate

Gaussian copulas, there have been interesting results on copula goodness-of-fit testing

[86] and avoiding copula family misspecification [151]. While copula family selection

is outside the scope of this work, our framework only requires that a copula is available

to be sampled from, regardless of its specific family.

With regards to (2)-(5), we will see that the Conservative Selective Redistribution

Problem (CSRP) for airport delays (7.13) that we formulate in Section 7.6 was directly

extended from (7.11). Suppose, instead, that we want to prescribe control actions

over a bike-share network, where certain vertices (bike stations) are rewarded for

maintaining a steady inventory of bikes during the bike redistribution process. We

could easily adapt a version of this problem from the airport delay CSRP in (7.13) by

changing the sign on the third term of the objective function. Furthermore, we could

assign priorities to different vertices by switching to a non-binary cost vector in (7.14).

Now suppose that the bike-share system operator has access to bike depots located

around the city, effectively allowing for a certain number of sink- and source-vertices in

the network. This new degree of freedom can be captured by relaxing the conservation

constraints in (7.13), i.e., by choosing a more lenient buffer 𝛿. Lastly, our choice

of projR2 was made based on our preference of two aggregate system performance

measures. The system operator could alternatively choose a modified ̃︂projR2 that

captures other aggregate performance measures. Some canonical examples would

include E
[︁
x(𝑡)

]︁
, Var

[︁
x(𝑡)

]︁
, and

⃦⃦⃦
x(𝑡)

⃦⃦⃦
∞

.
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7.5.3 Technical remarks and caveats

When choosing the low-dimensional R2-projected state trajectory that satisfies per-

formance targets, we use a greedy approach at each time step in (7.11). We could have

alternatively constructed a set of trajectory options, and then performed a breadth-

or depth-first search to select one with the lowest cost. Furthermore, even though

the projection operator projR2 we use is smooth and continuous, these conditions are

sufficient, but may not be necessary, conditions. An interesting question for future re-

search would be to characterize necessary and sufficient conditions on projR2 such that

small perturbations in the low-dimensional projection space do not translate to large

perturbations in 𝒳 ∪ ̂︁𝒳 . Specifically, one way to improve the projection-based frame-

work may be to find a projection operator that preserves distances (within bounds),

e.g., the Johnson-Lindenstrauss lemma [6, 135], between two points post-projection

while retaining useful network performance interpretations.

Theorem 3 (Johnson-Lindenstrauss (Dasgupta-Gupta)) For any 0 < 𝜖 < 1

and any integer 𝑛, let 𝑘 be a positive integer such that

𝑘 ≥ 4 ln𝑛
𝜖2/2− 𝜖3/3 .

Then for any set 𝑉 of 𝑛 points in R𝑑, there is a map 𝑓 : R𝑑 → R𝑘 such that for all

u,v ∈ 𝑉 ,

(1− 𝜖) ‖u− v‖2 ≤ ‖𝑓(u)− 𝑓(v)‖2 ≤ (1 + 𝜖) ‖u− v‖2 .

Furthermore, this map can be found in randomized polynomial time.

Proof. See [59]. �

It is important to bear in mind that copulas cannot provide more information than

what is encoded in the historical observations. Furthermore, copulas do not capture

any time-varying information; they are merely a particular form of a multivariate

probability distribution. They should not be interpreted as stochastic processes.

In our CSRP formulation and US NAS case study in Section 7.6 and 7.7, we take
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into account time-varying dependence structures by calibrating different copulas for

different hours of the day.

7.6 The Conservative Selective Redistribution

Problem (CSRP)

We now turn our attention to adapting the general framework from Sections 7.3 and

7.4 to the airport delay redistribution problem. Recall that in our projection-based

network control framework, we need to select an optimal candidate from the copula-

generated state space ̂︁𝒳 . We now provide the CSRP formulation, wherein the optimal

solution to the CSRP at each time step provides the optimal candidate. We solve the

CSRP sequentially, starting at 𝑡 = 1 and with the initial condition anchored at the

first state in trajectory T. The formulation of the CSRP is as follows:

arg min
x(𝑡)∈ ̂︀𝒳

{︁⃦⃦⃦
x(𝑡) − x(𝑡−1)

*
⃦⃦⃦

2
+ 𝜆1

⊤c
𝑁

⃦⃦⃦
x(𝑡) − x(𝑡)

O𝑀

⃦⃦⃦
2

+ (1− 𝜆)c⊤
(︁
x(𝑡) − x(𝑡)

O𝑀

)︁}︁
s. t.

⃦⃦⃦
x(𝑡)

⃦⃦⃦
1
≥
⃦⃦⃦
x(𝑡)
O𝑀

⃦⃦⃦
1
− 𝛿,⃦⃦⃦

x(𝑡)
⃦⃦⃦

1
≤
⃦⃦⃦
x(𝑡)
O𝑀

⃦⃦⃦
1

+ 𝛿,

x(0)
* = x(0)

O𝑀
,

𝜆 ∈ [0, 1],

∀𝑡 = 1, . . . , 𝑇.
(7.13)

There are three penalty terms in the objective function in (7.13), with the first

term
⃦⃦⃦
x(𝑡) − x(𝑡−1)

*
⃦⃦⃦

2
assigning a base cost that enforces smooth transitions from one

state to another. In reality, for a sensibly chosen time interval, the delays at a

particular airport should not vary drastically: The first term in the objective function

penalizes large changes in the optimal candidate state compared to the previous

optimal solution at time step 𝑡− 1. We refer to this first term as a base cost because

it is always incurred; however, it may be possible to multiply this term by some

discount factor 𝛾𝑡 where 𝛾 ∈ (0, 1], since the assumption of smooth transitions may
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be less important given uncertainty about time steps in the far future.

We will refer to 𝜆 as a redistribution workload parameter, as it controls the im-

portance between adherence to historically-observed airport delay states (given by

the second term) versus redistributing delays away from select airports (given by the

third term). In one extreme regime, if 𝜆 = 1, then no effort is made to redistribute

delays, and the CSRP attempts to match T. On the other hand, if 𝜆 = 0, then full

effort is made to redistribute delays, with no penalty on not adhering to historically

observed airport delay states. Note that since 𝜆 ∈ [0, 1], we must ensure that the

second and the third term are of comparable scales, given that they both have units

of delay minutes. The magnitude of the second term is generally larger than the third

term, assuming that the cost vector c is unit and sparse. We ensure this by using the

following form for the cost vector c: Let 𝑆 ⊂ 𝑉 be the set of airports at which delay

dissipation is encouraged, and ensure that |𝑆| < |𝑉 |. Then, construct c such that:

c = [𝑐𝑖] =

⎧⎪⎨⎪⎩
1 if 𝑖 ∈ 𝑆 ⊂ 𝑉 ,

0 otherwise.
(7.14)

We add a constant re-scaling factor to the second term of the form 1
⊤c𝑁−1 ∈ [0, 1] to

account for the fact that the third term is only evaluated over certain airports, whereas

the second term is evaluated over the entire state vector. Note that if |𝑆| < |𝑉 |, we

must have that 1⊤c𝑁−1 ∈ [0, 1).

The delay conservation constraints in the CSRP formulation is straightforward,

requiring that all optimal state candidates have total delays that lie within a small

𝛿-band of the historically-observed total delay. When running our case studies in

Section 7.7, we pick a small-enough 𝛿-tolerance such that the CSRP remains feasible

(i.e., there is a non-empty set of candidate states) while ensuring that the delay

conservation constraints are enforced in essence (i.e., pick 𝛿 such that the total delay

at an airport factoring in the 𝛿-tolerance does not vary significantly from the actual

total delay, across timescale 𝑡). The CSRP formulation will provide a global optimal

solution, given that it is convex:
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Proposition 8 (CSR problem convexity) The CSRP given in (7.13) is a convex

optimization problem.

Proof. See Appendix A.9. �

7.6.1 Calculating delay absorption costs

One question that could be answered through a minor adjustment of the CSRP for-

mulation in (7.13) relates to the cost associated with delay absorption at a particular

airport within the network. While there are many ways of measuring this cost, we

will work with a mechanistic definition of cost as given in Definition 14:

Definition 14 (Delay absorption cost at airport 𝑖) Set 𝜆 = 0 to encourage max-

imum redistribution, and re-formulate the cost vector c in the CSRP (7.13) to the

absorption cost vector cabsp as follows:

cabsp = [𝑐𝑗] =

⎧⎪⎨⎪⎩
−1 if 𝑗 = 𝑖,

0 otherwise.

Then, the delay absorption cost at airport 𝑖 specific to some trajectory T is defined as

the sum of the costs associated with each solution of the modified CSRP with cabsp, at

each time step 𝑡 = 1, . . . , 𝑇 across T.

By way of the new absorption cost vector as redefined in Definition 14, it provokes the

CSRP into attempting to redistribute delays to airport 𝑖 at each time step across T.

This is because the objective value is reduced by a solution where the proposed delay

is higher at airport 𝑖 during time 𝑡 compared to its historical value. The airport with

the minimized delay absorption cost is the “easiest” airport to redistribute delays

to, given the network structure (i.e., the marginal delay distributions at each airport

and the dependence structure linking them together). Note that the units on this

cost measure is in delay minutes, and the cost measure can be negative. By cycling

through all airports 𝑖 individually and computing their delay absorption cost using

the modified CSRP with the absorption cost vector from Definition 14, we obtain a
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ranked list of least- to most-costly delay-absorbing airports, specific to a disruption

sequence (i.e., trajectory, or DRT) T. In Section 7.7, we compute this cost measure

across all 30 US airports specific to a particular disruption, as well as an average delay

absorption costs across clusters (i.e., the DRT clusters from Section 6.4) of disruption

sequences.

7.7 Deploying the CSRP: US NAS case study

7.7.1 Data description and processing

We use hourly airport delay data obtained from FAA ASPM [85], and train the

hour-specific copula models on airport delay data from 2008-2017. We represent our

network via a complete, undirected graph 𝐺 = (𝑉,𝐸). In terms of the airport net-

work we construct, we pick the |𝑉 | = 30 busiest US airports in terms of passenger

enplanements in 2017. The undirected edges are weighted using the sample Pearson

correlation coefficient based on the 2008-2017 airport delay data. Note that this can

be taken to be a non-negative system, as the hourly delays at any airport for the

entire duration of the 10-year data set are non-negative. Finally, since 3,653 data ob-

servations were used to construct the hour-specific copula models (one hour-specific

observation per day, across 2008-2017), we select a much larger number of samples

𝑁 ̂︀𝒳 = 100, 000 to construct ̂︁𝒳 . Recall that the need for hour-specific copulas is due

to the fact that an individual copula contains no temporal information: Since air-

port delays are strongly dependent on the hour-of-day (e.g., because of heavy traffic

during the morning and afternoon periods), we construct 24 different approximate

state spaces ̂︁𝒳0, . . . , ̂︁𝒳𝜏 , . . . , ̂︁𝒳23, each from a copula model based on historical obser-

vations of x(𝑡) belonging to hour 𝜏 . Similarly, we have 24 different graph Laplacians

ℒ0, . . . ,ℒ𝜏 , . . . ,ℒ23, corresponding to the different hourly airport delay correlation

networks.
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7.7.2 New York City redistribution example

We demonstrate our redistribution framework on a particular DRT spanning 11 hours,

from 1 pm EDT on May 22, 2014 through midnight on May 23, 2014. Recall from Sec-

tion 6.1 that a DRT is a chronologically-ordered set of network performance metric,

specifically, total delay and total variation, that captures the evolution of the magni-

tude and spatial distribution of airport delays. Intuitively, DRTs project the state of

the system in a qualitatively interpretable manner, via a “phase portrait” representa-

tion. This particular 11-hour DRT was extremely disruptive to the US NAS, due to

convective weather moving off-shore in the ZBW ARTCC, along with emerging pop-

up thunderstorms and convective activity near the ZOB and ZNY ARTCC border.

Along with various airspace flow programs (AFPs) around ZNY, there were a total of

63 ground stop (GS)-related advisories and 19 ground delay program (GDP)-related

advisories issued on May 22, 2014 [84].

Starting with the airport delay state at 1 p.m. EDT, we solve the CSRP in (7.13)

for 𝑡 = 1 (2 p.m. EDT) through 𝑡 = 11 (midnight EDT), taking care to use the

correct hour-specific copula model. On a technical note, for the delay conservation

constraint buffer 𝛿 in (7.13), we select a 𝛿-tolerance small enough so that we have

a non-empty set of candidate solutions, while still enforcing the delay conservation

constraints in practice. Specifically, we set 𝛿 such that

𝛿 = 0.01×max
{︁⃦⃦⃦

x(𝑡)
T◇

⃦⃦⃦
1

⃒⃒⃒
x(𝑡)
T◇ ∈ T◇

}︁
. (7.15)

By selecting 𝛿 according to (7.15), we set the tolerance to 1% of the maximum total

delay observed across any time step within a given DRT T◇. This also means that

the buffer will dynamically adjust with respect to the DRT that the CSRP in being

deployed on. In practice, for this CSRP deployment example, we have that 𝛿 ≈ 19.6

minutes: This is a very small amount of delay relative to the total delay at any hour,

and indicates that the delay conservation constraints in the CSRP will be enforced.

We configure our cost vector c in accordance with (7.14) using
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𝑆 = {EWR, JFK, LGA} ⊂ 𝑉.

In other words, we configure the third term in (7.13) to reward control policies that

shift delay away from the three New York City (NYC) airports. Finally, we repeat the

entire sequence of optimizations (i.e., re-run the CSRP) for differing 𝜆 = {0, 0.5, 1} .

Recall that 𝜆 = 0 represents maximal efforts to shift delay away from the NYC air-

ports with no penalties on not adhering to the original DRT, whereas 𝜆 = 1 represents

maximal adherence to the DRT T◇ with no preference on redistributing delay away

from the NYC airports. Decreasing 𝜆 is a proxy for increasing the workload of air

traffic flow managers, since it requires greater efforts towards delay redistribution.

We plot the original delay signals at EWR, LGA, and JFK, along with the CSRP

solutions for various redistribution workload parameters in Figure 7-5. We see that

for the purple-colored delay signals (𝜆 = 0), there is a significant dissipation of delays

across all three NYC airports for the duration of the DRT. On the other hand, for

the orange-colored delay signals (𝜆 = 1), the delay signals track the baseline (i.e.,

historic) delay signals quite closely. This verifies the role of the 𝜆 redistribution

workload parameter, and shows that the solution to the sequentially-applied CSRP

across the DRT successfully dissipates delays at the select subset consisting of NYC

airports.

Since the delay conservation constraints are upheld, the natural question is to ask

where the dissipated delays are reabsorbed in the system. To this end, we leverage

the definition of the delay absorption cost (Definition 14), and compute the airport-

specific delay absorption costs across this specific DRT. These delay absorption costs

can be seen in Figure 7-6. We see that ATL, DFW, and IAH are the least-costly

airports to absorb the additional delays incurred from dissipation at NYC, and this

is further confirmed in Figure 7-7 where we plot the delay signals at ATL, DFW,

and IAH. Interestingly, there seems to be some temporal differences in terms of when

the absorption occurs, with ATL and DFW having significant peaks at slightly offset

times, whereas IAH maintains a more modest, but longer-duration absorption. This
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Figure 7-5: Delay state signals at EWR, LGA, and JFK across three separate solutions
of the CSRP for static redistribution workload parameter 𝜆 values.
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potentially has implications when one considers the possibility of dynamic redistribu-

tion workload parameters, specifically in terms of redistribution equity. We discuss

the issue of distribution equity in more detail in Section 7.8.

Figure 7-6: Delay absorption costs associated with each airport in the network for
the NYC case study DRT.

While common least-costly delay absorption airports are highly connected hubs

in more central or US East Coast locations, we see that airports on the West Coast

and HNL are particularly difficult (i.e., costly) to redistribute delays to. This is

likely due to the fact that, in terms of correlation-based dependence, there are two

significant cliques of high correlations among the US Core 30 airports: East Coast

versus West Coast (see Figure 4-10 and accompanying discussions in Chapter 4). In

other words, the US NAS is somewhat decoupled between the two coasts, which most

likely reflects the operational realities of transcontinental flights being less likely to be

impacted by scope-based traffic management initiatives. Thus, while redistribution

within one clique might be easy, redistributing across cliques is much more costly.

Figure 7-8 reflects this: In all CSRP solutions, regardless of 𝜆, the delay signals at

these expensive (in terms of absorbing delays) airports do not vary much from baseline

values.
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Figure 7-7: Delay state signals at the three most-absorbent airports (i.e., airports
with the least expensive delay absorption cost) in terms of delays (ATL, DFW, IAH),
specific to the NYC case study DRT, across three separate solutions of the CSRP for
static redistribution workload parameter 𝜆 values.
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Figure 7-8: Delay state signals at the three least-absorbent airports (i.e., airports
with the most expensive delay absorption cost) in terms of delays (HNL, LAX, PDX),
specific to the NYC case study DRT, across three separate solutions of the CSRP for
static redistribution workload parameter 𝜆 values.
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7.7.3 Average delay absorption costs across DRT clusters

The delay absorption costs in Figure 7-6 are specific to the NYC DRT case study;

here, we examine average delay absorption costs across specific DRT clusters from

Section 6.1. Recall that these DRT clusters were retrieved based off of features

related to operational and DRT-specific geometric characteristics, and was a major

focus in Chapter 6. In particular, we examine the average delay absorption costs

for three clusters of DRTs: (1) Operational day-long DRTs with spatially perturbed

disruptions (OpsDay_Dis-type DRTs), (2) operational day-long DRTs with spatially

perturbed recoveries (OpsDay_Rec-type DRTs), and (3) DRTs that span multiple days

(MultiDay-type DRTs). The first and second types describe DRTs that last for a

significant portion of an operational day within the NAS – specifically, the duration

of these DRTs average between 15 to 18 hours. The difference between the first and

second group is that the former is characterized by spatial delay distributions that

are unexpected during the disruption phase, whereas the latter is characterized by

unexpected spatial delay distributions during the recovery phase. The average costs

across these two types of DRTs are shown in Figures 7-9 and 7-10, respectively.

Figure 7-9: Average delay absorption costs associated with each airport in the network
for all OpsDay_Dis-type DRTs.
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Figure 7-10: Average delay absorption costs associated with each airport in the net-
work for all OpsDay_Rec-type DRTs.

We see an interesting juxtaposition in terms of the absorption costs: In Figure 7-9,

most airports have positive values for absorption costs, and in Figure 7-10 most have

negative values. This indicates that, across these two DRT types, spatially perturbed

disruptions translate to the CSRP finding higher-cost redistribution control policies

compared to spatially perturbed recoveries. In other words, it is more difficult to

find redistribution policies when the spatial variance in delay signals is higher during

the disruption phase than during recovery phases. Moving forward, this has the

implication that if an ongoing DRT in its disruption phase has lower spatial variance,

it may be worthwhile to implement redistribution policies immediately rather than

waiting to act during the eventual recovery. On the other hand, if the spatial variance

is already high during the ongoing disruption phase, it may be more worthwhile to

wait for the recovery phase.

If we look now at the third cluster of DRTs whose average delay absorption costs

are given in Figure 7-11, we first note that the duration of these DRTs spans multiple

days: These DRTs represent prolonged disruption and recovery events, indicating

that the system did not recover even during overnight hours, when there is typically
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enough slack in the system to absorb any excess delay. Overall, we note that the

costs for MultiDay-type DRTs are more similar to spatially perturbed recoveries than

spatially perturbed disruptions.

Figure 7-11: Average delay absorption costs associated with each airport in the net-
work for all MultiDay-type DRTs.

We do point out the caveat that the standard deviations on these average absorp-

tion costs can be quite high, indicating that even within clusters of similar DRTs,

the variance in terms of disruptions and recoveries can be quite large. An interesting

point of further analysis would be to relate disruption categories back to absorp-

tion costs. We know from Section 6.6 that different disruption categories as well

as seasonal trends (i.e., month-of-year) are composed of differing fractions of DRT

types. Integrating this observation with absorption costs could lead to better strate-

gies in terms of issuing traffic management initiatives during certain disruption events

or commonly-occurring, seasonally-entrenched weather patterns. Specifically, these

traffic management initiatives would seek to redistribute delay, if the first priority of

total dissipation from the system is not immediately achievable (e.g., without massive

cancellations).
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7.8 Discussion: US NAS delay redistribution re-

sults

7.8.1 Delay redistribution mechanisms

Recall that network-level observations of delay redistribution scenarios result from

aggregations of multiple scenarios similar to the example described in Section 7.2

happening simultaneously or near-simultaneously across the NAS. Ultimately, airline

schedule adjustments are responses to initiations, adjustments, and cancellations of

traffic management initiatives set by the FAA during the Collaborative Decision Mak-

ing (CDM) process. This implies that one of the main mechanisms to induce certain

redistribution patterns may be through adjustments of traffic management initiatives

such as ground delay programs (GDPs). Taking GDPs as the prototypical control

mechanism, one parameter with far-reaching consequences is the scope of the GDP,

indicating what airports (generally at an ARTCC level) are impacted by a specific

GDP [83]. In fact, other initiatives such as ground stops can even be issued by air-

lines themselves, directed towards their own fleet, with additional nuances such as

differentiating between mainline versus regional carrier ground stops.

In terms of redistribution, if we examine the most-absorbent airports from the

NYC case study (ATL, DFW, and IAH), any redistribution mechanism result in

increased delays at ATL, DFW, and IAH while simultaneously reducing delays at

the three NYC airports. Besides changing the impact scope of traffic management

initiatives, one could also view airline cancellations as a control action, counting it

as a departure delay penalty at the origin airport. In this way, the redistribution

action would prioritize NYC-bound flights at ATL, DFW, and IAH for proactive

cancellation in order to reduce arrival delays accrued at NYC airports. This might

be particularly relevant for network legacy carriers with strong hub presences, but

would also raises an interesting case for airlines that practice more point-to-point

or circuit-based routings. For the latter class of airline network structures, suppose

that an airline (e.g., Southwest Airlines) schedules the same tail to perform LAX-
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ATL, followed by ATL-LGA. In this case, redistribution would be straightforwardly

assessed at the LAX-ATL leg, resulting in a shift of delays away from LGA and onto

LAX and ATL instead.

7.8.2 Redistribution equity

Even though the least-costly subset of airports in terms of delay absorption costs will

differ between each DRT (indeed, the order will differ even at each time step 𝑡 within

one run of the CSRP), it is clear from Section 7.7 that certain airports seem to be less

costly on average across a wide range of disruptions. While one could argue that since

these airports (ATL, DFW, IAH, MDW, and ORD) are serviced by a large range of

network legacy carriers, low cost carriers, and ultra low cost carriers, there is, in some

sense, an equitable share of delay absorption burdens across airlines. In other words,

if the solution to the CSRP typically prefers to redistribute delays to this subset of

airports, it may be equitable in that most carriers would be affected, and no single

carrier would be impacted more severely than others.

However, this may not hold true if the redistribution workload parameter 𝜆 was

allowed to dynamically vary throughout the course of a disruption, something that

might be allowed in a more realistic implementation of the CSRP. For example, it

may not be worth attempting to drastically redistribute delays at the beginning of a

disruption, but rather redistribute strategically when the recovery phase is predicted

to begin soon (such predictions could follow from the ongoing work in Chapter 6 in

terms of predictions on DRTs). These temporally-varying strategies have been hinted

at by the fact that different DRT clusters exhibit different average redistribution

costs (Section 7.7). In this case, it may no longer be true that delay absorption costs

are inflicted equally among all airports, and by extension, carriers. One possible

solution is to add a penalty term that scales with the total variation to the CSRP,

encouraging solutions that exhibit a “smoothing” of delays across the network, rather

than an accumulation at a particular, low-absorption cost airport. Such a term could

be written as 𝐾 (c, 𝑁)
√

x(𝑡)⊤ℒx(𝑡) and added directly into the objective function.

Specifically,
√

x(𝑡)⊤ℒx(𝑡) penalizes the total variation, with a square root to match
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the units of delay minutes of the objective value, and 𝐾 (c, 𝑁) is some scaling constant

similar to 1
⊤c𝑁 that ensures comparability between all objective function terms. In

summary, such an equity-encouraging CSRP formulation could resemble (7.16):

arg min
x(𝑡)∈ ̂︀𝒳

{︁⃦⃦⃦
x(𝑡) − x(𝑡−1)

*
⃦⃦⃦

2
+ c⊤

(︁
x(𝑡) − x(𝑡)

O𝑀

)︁
+𝐾(c, 𝑁)

√
x(𝑡)⊤ℒx(𝑡)

}︁
s. t.

⃦⃦⃦
x(𝑡)

⃦⃦⃦
1
≥
⃦⃦⃦
x(𝑡)
O𝑀

⃦⃦⃦
1
− 𝛿,⃦⃦⃦

x(𝑡)
⃦⃦⃦

1
≤
⃦⃦⃦
x(𝑡)
O𝑀

⃦⃦⃦
1

+ 𝛿,⃦⃦⃦
x(𝑡) − x(𝑡)

O𝑀

⃦⃦⃦
2
≤ 𝜅(𝑡),

x(0)
* = x(0)

O𝑀
,

∀𝑡 = 1, . . . , 𝑇.

(7.16)

In particular, to reduce overloading the objective function, one could pull the histor-

ical adherence term out as a constraint
⃦⃦⃦
x(𝑡) − x(𝑡)

O𝑀

⃦⃦⃦
2
≤ 𝜅(𝑡), where small values of

𝜅(𝑡) > 0 indicate less flexibility for redistribution at time 𝑡, and setting 𝜅(𝑡) = 𝑀

for some large positive 𝑀 indicate complete redistribution freedom at time 𝑡. Note

that 𝜅(𝑡) takes the place of the redistribution workload parameter 𝜆 in this case. An

analogous version of a temporally-varying 𝜆 could be formulated as well.

7.8.3 Potential microscopic implementation

To complete the feedback cycle depicted in Figure 7-3, the desired delay dissipation

and absorption will have to be incorporated as linear constraints on total airport

delays within whatever TFMP implementation is used for setting and possibly ad-

justing traffic management initiatives. If we consider the deterministic or stochastic

TFMP framework from [14], the decision regarding whether or not to run a partic-

ularly flight is made based on some aggregate “utility” of running that flight. Part

of the utility calculation includes a penalty on the arrival delay, which is assessed

at the destination airport for a particular flight. Using notation from [14], where

Δ(𝑓, 𝑡) denotes the total delay cost of flight 𝑓 arriving at its destination at time 𝑡, let

Δmax(𝑎, 𝑡) denote the maximum allowable delay at airport 𝑎 at time 𝑡 according to
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the solution of the CSRP x(𝑡)
* ∈ ̂︁𝒳 at time 𝑡. Specifically, since [14] specifies delays as

an incurred cost directly related to the duration of the delay, there will be some scalar

conversion between the value at airport 𝑎 in x(𝑡)
* to match the units on Δ(𝑓, 𝑡). Let

ℱ𝑎 be the set of flights arriving at airport 𝑎 at time 𝑡; then, the following airport-level

delay constraint could be inserted into the Integer Master Program in [14], for each

redistribution-controlled airport 𝑎 in the network:

∑︁
𝑓∈ℱ𝑎

Δ(𝑓, 𝑡) ≤ Δmax(𝑎, 𝑡), ∀𝑡. (7.17)

There will have to be adjustments in terms of the time windows 𝑡, as the CSRP

currently is implemented hourly. Note that the constraint in (7.17) will only need

to be over airports 𝑎 that the CSRP explicitly tries to dissipate delays at, i.e., the

subset of pre-selected airports, embodied by non-zero terms in the cost vector c of

the CSRP. The TFMP (e.g., [14]) implicitly assesses any additional delay penalties

on flights that need to be incurred in order to satisfy (7.17). Given the selective

nature of the CSRP, we would not need to modify the TFMP at every airport in the

network. Another consideration might be to explicitly encourage delay absorption at

particularly airports in the TFMP formulation, potentially guided by the disruption-

specific results from Section 7.7.

As a part of ongoing work in [49], in lieu of the TFMP, we examine integrating the

CSRP together with the multi-airport ground holding problem, or MAGHP. In [49],

we propose a two-stage hierarchical control strategy for rescheduling aircraft (i.e.,

assigning delays) after network disruptions. In particular, we propose a high-level

planner based off of a modified version of the CSRP (7.13). The high-level planner

proposes a reference plan based on user preferences encoded in the modified CSRP.

This reference plan accounts for complex objectives such as ensuring a “smooth”

redistribution of delays across airports (quantified by the total variation). The low-

level controller then solves the MAGHP, augmented to track the reference plan. The

solution to the augmented MAGHP yields a revised flight schedule with lower total

variation than the original MAGHP, while still satisfying operational constraints.
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7.9 Delay redistribution: Summarizing remarks

and lessons learned

The observed delays across a network of airports can be thought of as the end result

of imbalances in scheduled demand and system capacity. The observed delays also

reflect the effects of both strategic and tactical actions that influence both the demand

side (schedule adjustments, cancellations, etc.) as well as the capacity side (switching

airport runway configurations, traffic management initiatives, etc.). To this end, we

investigate the potential to redistribute delays at the level of airports, in order to levy

more strategic constraints on airport-side capacities (i.e., the feedback cycle depicted

in Figure 7-3). Since we are working at the level of delay distributions, we use the

approximate projection-based controls framework summarized in Sections 7.3 and 7.4

and detailed in [155].

A key component of this framework is the usage of copulas to generate more realis-

tic airport network delay distributions, as well as the ability to produce interpretable

control actions (i.e., how much delay to absorb or dissipate at each airport) and de-

lay absorption cost measures. Specifically, we demonstrated the ability of copulas

to provide an approximation for the feasible state space of a complex system that

has intricate dependence structures, as well as different distributions of sub-system

behavior. In particular, copulas provide a way to separate estimating marginal dis-

tributions and estimating dependence structures. We fit historical state observations

to the family of multivariate Gaussian copulas, and constructed an approximate state

space through copula sampling and the inverse probability integral transform. We

then proposed a control framework for large-scale networks that sets performance

targets in a lower-dimensional projection of the full state space, and provides future

system states by selecting from candidate states in the copula-approximated state

space. We demonstrated the applicability of our proposed methodology through a

case study of flight delays in the US airport network, as well as its effectiveness in

selectively redistributing airport delays away from a particular subset of airports.

In terms of future work related to Chapter 7, there are two distinct categories:
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Improvements to the model, and applications-oriented extensions. In terms of the

former, we currently use a static copula for each operational hour, whereas it may be

beneficial to use time-varying copulas and copula processes [176]. The main benefit

would be the ability to estimate some non-linear, differentiable system dynamics from

the copula process. With an actual functional estimate of the system dynamics, it

would then be possible to use setups such as discrete, finite horizon, constrained,

iterated linear quadratic regulators and provide closed-form optimal controllers for

the network redistribution problem [166, 60]. Another question of ongoing interest

relates to the sample complexity of our copula-approximated state space.

On application-side extensions, the main question of interest would be to actu-

ally feed the redistribution constraints into a standard TFMP implementation, and

characterize the impacts on the resultant TFMP solution. As we have previously

mentioned, the redistribution scenarios shown Chapter 7 could be considered as an

upper bound in terms of redistribution performance, as the various TFMP-based con-

straints would most likely prevent this upper bound from ever being reached. The

addition of “sinks” to absorb delay (i.e., cancellations) may have to be incorporated

into the CSRP in order to produce airport-level delay constraints that will not re-

sult in infeasibilities when coupled with a TFMP implementation. Finally, we hope

to model other networked systems through this redistribution framework, particu-

larly systems where redistribution of signals have more natural interpretations (e.g.,

bikeshare networks with signals being the number of bikes at a station).
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Chapter 8

Concluding Remarks

8.1 Summary of thesis work

In the first half of the thesis with Chapter 4 and Chapter 5, the central theme is casting

airport network delays as a signal processing problem. The airports are abstracted

as nodes in a graph, and the relationship between airport delays are encoded into the

edges of the graph. We want to emphasize that there are many ways to examine the

relationship between one airport and another: One could weigh the edges simply by

using the geographic distance between airports, or by the number of passengers that

flow between an origin-destination airport pair, or the number of direct flights, etc.

Since the phenomena of interest in this thesis are the on-time performance signals –

flight delays and cancellations – generated by mismatches in demand and capacity

at airports, we chose to use statistical measures such as airport delay correlations as

the edge weights. With this choice, the edge weights reflect an aggregate measure of

networked dependence between airports, driven by myriad factors such as localized

weather, shared flights, and external traffic management actions.

With this setup in mind, we first motivate the methods developed in Chapter 4 by

noting that current delay performance metrics capture only the magnitude of incurred

flight delays at airports. The graph-supported signal setup allows us to augment this

with another metric which takes into consideration a much more nuanced quantity

that is affected by the underlying network: We show that it is also important to
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consider the spatial distribution of delays across a network of airports. In Chapter 4,

we formalize notions of, and develop tools to identify, graph signal outliers. Specifi-

cally, we show how the total variation metric for graph signals can help identify signal

observations with an unexpected distribution across the nodes. Recall that total vari-

ation considers node-adjacent signals, and scales signal differences based on the edge

weights. Recall also that we distinguish between different types of graph signal out-

liers, ranging from outliers in scale (OIS) to weak and strong outliers in distribution

(OID); the former seeks to identify outliers based on the signal magnitude, whereas

the latter uses total variation to identify outliers based on the spatial distribution.

We then proceed to analyze and interpret spatial delay patterns across the US NAS,

with a focus on specific types of disruptions such as nor’easters, hurricanes, airport

outages, and thunderstorms. We characterize the differences in the impact of various

types of disruptions: For example, nor’easters tend to trigger very unexpected spatial

delay distributions at a system-wide level, but thunderstorms and airport outages

are far more spatially unexpected at the scales of airline sub-networks. We conduct

some further comparison studies between US airline sub-networks and the US system-

wide network, as well as between airport networks of different countries (e.g., US and

China).

Chapter 5 is complementary to Chapter 4, in that we attempt to identify specific

airports whose delays contribute significantly to certain unexpected spatial delay dis-

tributions. To achieve this, we use tools from graph signal processing and graph

Fourier decomposition: Given an observation of delays across an airport network, we

can decompose this network delay observation as linear combinations of commonly-

occurring delay modes. Specifically, these delay modes are quite interpretable, and

consist of relative delay differences between airports. With this approach, we are

able to find critical subsets of airports that should be monitored when it comes to

unexpected spatial delay distributions. In particular, we find that the delay distri-

butions at a small set of US East Coast airports tend to be indicative of whether

the system-wide delay distribution is expected or unexpected. In contrast, such an

equivalent set of airports in China is spread out over a large portion of the airport
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network in China. Another key contribution of Chapter 5 is a comprehensive outlier

detection and interpretation framework: This framework elucidates the close connec-

tions between Chapter 4 and Chapter 6, and ties these two chapters together. We

demonstrate this framework by analyzing specific outlier days in China and the US.

While Chapter 4 and Chapter 5 can be considered the methodological parts of

this thesis, Chapter 6 presents the first application stemming from this graph signals

perspective of airport delays. In Chapter 6, we leverage the notions developed in the

first half of the thesis to comprehensively define the start, progression, and end of dis-

ruption and recovery cycles in a network of airports. This disruption-recovery cycle

definition not only considers the magnitude of delays, but also their spatial distribu-

tion, relation to historical delay patterns, and temporal trends. We then identify a

set of disruption-recovery trajectories using operational data, and develop appropriate

features in order to cluster them into representative groups: These clusters represent

commonly-occurring disruption-recovery pathways in the air transportation network.

Through interpreting the features of these representative disruption-recovery path-

ways, we are able to extract metrics of interest such as the length of a typical dis-

ruption as well as spatial- and magnitude-related characteristics. Towards the end of

Chapter 6, we refine the disruption-recovery trajectory framework, and prove struc-

tural properties about these objects. We also provide operational interpretations for

these structural properties of interest.

Similar to Chapter 6, another application enabled by the framework developed in

the first half of the thesis is an approximate control scheme for networked signals.

We spend Chapter 7 focused on this, and develop a method to identify a sequence of

future states and associated control actions for difficult-to-model, high-dimensional

systems. The proposed control actions are based on performance targets in a lower-

dimensional space, parameterized by metrics of interest such as total delay and total

variation. We then discuss controlling NAS delays, and detail characteristics of the

network control scheme via a case study of disruptions focused on the three major

New York City airports. In doing so, we show that this control scheme is able to

successfully provide potential delay state trajectories that follow pre-specified delay

241



redistribution and conservation constraints. Finally, we show how a new measure of

delay absorption costs can be quantified using this approach. In our setup, the delay

absorption costs are readily interpretable: An airport with a low absorption cost is

more likely to see increases in delays post-redistribution of delays, and vice versa.

8.1.1 Data-driven network management and new entrants

We dedicate the remainder of this section to some remarks on how air traffic flow

management and the aviation system as a whole is moving into a new, data-rich,

and expanding environment. At its core, the air transportation system is a canonical

example of a capacity-constrained, societal-scale network. The complexity of such a

system hinders analysis, but also generates rich data primed for a range of models

that provide actionable insights. However, as discussed partially in studies such as

[163], there are key obstacles revolving around aviation research data availability and

organization that need to be overcome. In particular, using some of the results of

this thesis as examples: The inventories of outlier days, DRTs, as well as, e.g., rep-

resentative airport delay, cancellation, and GDP network clusters from [101], should

ideally be centrally cleaned and stored, then made available for analyses by any rel-

evant stakeholders (airlines, ANSPs, etc.). This will also encourage the continued

evaluation and incorporation of new performance metrics, especially in light of recent

efforts by the FAA in centralizing flight data collection and distribution, i.e., the Sys-

tem Wide Information Management (SWIM) initiative [79]. The eventual goal for

traffic and delay management in the NAS should be more flexible, data-driven, and

well-targeted control actions, while considering the burden on the human factors side

of the system. A desirable equilibrium would balance new, complex feedback-based

and data-driven traffic flow management procedures with limiting increasing work-

loads on traffic flow managers and various hierarchies (en route, terminal, tower, etc.)

of air traffic controllers.

Evolving from its core of commercial aviation, the air transportation system is

not only expanding in scale, but also preparing to welcome new entrants such as

unmanned aerial vehicles (UAVs) and to incorporate new paradigms such as urban
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air mobility (UAM) and Advanced Air Mobility (AAM). This evolution has already

begun, and there is a critical need to continue ensuring safety and efficiency. In

the future, there may be multiple new modalities involved in bringing passengers

from their home to the airport: These multiple mobility networks all generate their

own set of output signals, giving insights into the health and performance of the

system, if stored and analyzed properly. Some of the methods in this thesis could be

extended to examining such multi-modal networks, and investigate their interaction

dynamics during disruptions. Similar to the need to take into account human factors

and controller workload, there is a more policy-oriented side of the story here as

well: We need to ensure that new modes of transport enabled by UAM and AAM do

not cannibalize funding and support towards current public transportation networks.

Even though thoughtful engineering and resilience-building strategies may provide

an efficient, seamless, and robust multi-modal transportation network, it may worsen

existing issues in transportation access and equity.

8.2 Future directions of interest

We conclude Chapter 8 with some areas of interest for future work, stemming from

various portions of Chapter 4 through Chapter 7. Other future work topics may be

more tangentially related, but share common themes such as an underlying graphical

model, or investigating behaviors of signals in networks.

Outlier prediction using graph convolution filters. Previously, we discussed

the prediction problem from the perspective of the TV-TD state space, which pro-

vides a compressed representation of airport network delays, as both TD and TV are

aggregate network quantities. Specifically, supposing that we know the delays at each

airport at the current hour (i.e., we also can compute the current observed TD and

TV values, and evaluate whether or not this hour is an OIS, weak OID, or strong

OID), can we predict whether or not the system at some future point in time will

attain a TD and TV value that would result in a classification as an outlier? Along
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with the two prediction methods we briefly remarked on in the conclusion of Chapter

6 which is the subject of ongoing work in [156], it would also be interesting to explore

adaptive classification filters, as these filters naturally encode attributes such as the

graph eigenvector modes and characteristics of the graph frequency domain.

Controlling delay severity and spatial allocation. One of the most interesting

applications of the framework from Chapter 4 and Chapter 5 is the potential for com-

ing up with traffic management procedures that take into account both the severity

as well as the spatial allocation of airport delays. A natural question that such a

framework would answer would be the trade-offs between accumulating delays at one

node versus allowing delays to propagate to other nodes. As an example, an ANSP

may want to “quarantine” delays as best as it can, whereas airports and airlines might

lean towards a more equitable distribution of delays across the system. We are ad-

dressing one facet of this question as it relates to modifying the multi-airport ground

holding problem in [49].

Top-down control and management of disruptions in air transportation

systems. The observed performance signals across a mobility network (e.g., delays,

traffic velocities, canceled trips) are oftentimes the end product of some imbalance in

system capacity and demand. For example, the low-level process in air traffic flow

management (ATFM) involves solving the traffic flow management problem (TFMP)

given airline schedules and system capacity forecasts [27]. Downstream in the ATFM

process, the high-level system state is the resultant airport network delay distribu-

tion. An interesting and challenging network control question asks whether high-level

delay distribution targets could translate to control actions at the traffic assignment

(i.e., TFMP) level, potentially leading to a more optimal schedule that conforms to

an interpretable delay target. In a first step towards this top-down network con-

trol perspective, we explore generating greedy-optimal delay redistribution targets

via copula-based bootstrapping in Chapter 7. Another set of tools worth investi-

gating is the use of balanced and unbalanced optimal transport [208] to construct
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globally-optimal delay redistribution policies, as well as the integration of this high-

level redistribution policy with the low-level TFMP. Such a top-down network control

perspective may also be transferable to other mobility settings. In particular, it would

be interesting to explore its applicability to bike-sharing systems and UAV networks.

Interplay between graphs and graph-supported signals. For graph-supported

signals, one measure of interest is its total variation with respect to the underlying

graph. Recall from Chapter 4 that this measure is a quadratic form in the signal,

modulated by a matrix containing information regarding the underlying graph (e.g.,

the graph Laplacian). In the technical discussions in Chapter 4, we note nontrivial

dependencies between moments of the total variation and the underlying graph. It

would be interesting to explore the relationship between the generated graph signals,

underlying graph structure, and distributions of random quadratic forms that are

often functions of certain orthogonal polynomials [178]. This thread translates natu-

rally to eigenvalue distributions (e.g., Laguerre ensembles for positive definite random

matrices) and other results from random matrix theory (e.g., Marčenko-Pastur law

and Wishart matrices), whose intersections have already been explored in the context

of networks [210]. Airport delays, like many other signals generated from networked

infrastructures, can be viewed as non-stationary stochastic processes, influenced by

myriad underlying factors such as airline schedules and weather. Each agent (e.g.,

airport) has its own marginal signal (e.g., delay) distribution, and their interactions

(e.g., back-and-forth flights) lead to nonlinear dependence structures in the joint net-

work signal distribution. In Chapter 7, we consider the use of copulas and canonical

maximum likelihood estimation to model such joint network distributions, but bypass

the issue of non-stationarity by estimating different copulas for different time periods.

An extension of interest would be to use copula processes [275] to work towards a

continuous-time model for these non-stationary joint network distributions.
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Appendix A

Proofs

A.1 Proof for Proposition 1

Proof. Starting with the definition for the TV of x(𝑘), we show that it is equivalent

to ∑︀𝑁
𝑖=1
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(A.1)

Note that the last equivalence comes from the fact that 𝑣𝑖 and 𝑣𝑗 are orthogonal

eigenvectors, i.e., ⟨𝑣𝑖, 𝑣𝑗⟩ = 𝛿𝑖𝑗. �
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A.2 Proof for Proposition 3

Proof. Since we have that 𝜌𝑖𝑗 ≥ 0, we have that TV(X) ≥ 0 (or if all 𝜌𝑖𝑗 ≤ 0, then

TV(X) ≤ 0). Then, E[TV(X)] = 0 =⇒ TV(X) = 0. Hence, Var[TV(X)] = 0. �

A.3 Proof for Proposition 4

Proof. Since 𝑟𝑖𝑗|𝒪𝑀
is a random variable dependent only on 𝑀 previous observations,

and 𝑋𝑖, 𝑋𝑗 are currently unobserved random variables, the expectation operator fac-

torizes over the expression for the TV (from (4.31)):

E[TV(X)] = 1
2
∑︁
𝑖 ̸=𝑗

{︁
E
[︁
𝑟+
𝑖𝑗|𝒪𝑀

]︁
E
[︁
(𝑋𝑖 −𝑋𝑗)2

]︁}︁
= 1

2
∑︁
𝑖 ̸=𝑗

{︁
E
[︁
𝑟+
𝑖𝑗|𝒪𝑀

]︁ (︁
(𝜇𝑖 − 𝜇𝑗)2 + 𝜎2

𝑖 + 𝜎2
𝑗 − 2𝜌+

𝑖𝑗𝜎𝑖𝜎𝑗
)︁}︁
.

(A.2)

Since the bias of 𝑟+
𝑖𝑗|𝒪𝑀

is given in (4.30), for any 𝑀 , there exists a 𝛾𝑖𝑗 > 0 that is a

function of 𝑀 (and lim
𝑀→∞

𝛾𝑖𝑗 = 0) such that:

⃒⃒⃒
E
[︁
𝑟+
𝑖𝑗|𝒪𝑀

]︁
− 𝜌+

𝑖𝑗

⃒⃒⃒
< 𝛾𝑖𝑗 ⇐⇒ 𝜌+

𝑖𝑗 − 𝛾𝑖𝑗 < E[𝑟+
𝑖𝑗|𝒪𝑀

] < 𝜌+
𝑖𝑗 + 𝛾𝑖𝑗. (A.3)

We can use the fact that 𝜈𝑖𝑗 < 𝜌+
𝑖𝑗 < 𝜀𝑖𝑗 in order to rewrite the bounds of (A.3):

max {0, 𝜈𝑖𝑗 − 𝛾𝑖𝑗} ≤ E
[︁
𝑟+
𝑖𝑗|𝒪𝑀

]︁
< 𝜀𝑖𝑗 + 𝛾𝑖𝑗. (A.4)

The maximum operator is included since 𝜈𝑖𝑗 − 𝛾𝑖𝑗 can be negative, but we know

that the expectation of a non-negative random variable TV(X) is bounded below by

0. We aim to use (A.4) in conjunction with the bounds on 𝜌+
𝑖𝑗 to bound (A.2). We

focus first on deriving the upper bound by evaluating (A.2) for the largest-possible

contributions from the positive terms, and the smallest-possible deductions from the
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negative term. This yields:

E[TV(X)] = 1
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(A.5)

Therefore, this gives the upper bound E[TV(X)] < 𝛿2, where

𝛿2 = 1
2
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(A.6)

along with rewriting 𝜀𝑖𝑗 = 𝜀𝑖𝑗 + 𝛾𝑖𝑗 and 𝜈+
𝑖𝑗 = max {0, 𝜈𝑖𝑗 − 𝛾𝑖𝑗}.

To get the lower bound, we evaluate (A.2) for the smallest-possible contribution

from the positive terms and the largest-possible contribution in terms of magnitude

from the negative terms. This gives E[TV(X)] > 𝛿1, where

𝛿1 = 1
2
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(A.7)

Note that 𝛿1 and 𝛿2 are functions of the bounds on 𝜌+
𝑖𝑗 and 𝑀 , so we have:

lim
𝜈𝑖𝑗→𝜌+

𝑖𝑗

𝜀𝑖𝑗→𝜌+
𝑖𝑗

(𝛿1) = lim
𝜈𝑖𝑗→𝜌+

𝑖𝑗

𝜀𝑖𝑗→𝜌+
𝑖𝑗

(𝛿2) = E[TV(X)]. (A.8)

�

A.4 Proof for Proposition 5

Proof. The idea behind the proof is similar to that of Proposition 4. We expand

Var[TV(X)] as done in (4.10) and (4.11). Proposition 2 can then be used to obtain

the appropriate higher-order moments, including Var[TV(X)] as a scalar quantity

that depends on E
[︁
𝑟+
𝑖𝑗|𝒪𝑀

]︁
and 𝜌+

𝑖𝑗. Finally, these two terms can be used to obtain

the desired bounds on Var[TV(X)]. �
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A.5 Proof for Theorem 3

Proof. Select an arbitrary regime 𝒮 trajectory 𝜏 ∈ 𝒮; we would like to show that

there exists an extension 𝜏 ′ =△ Ext(𝜏) such that 𝜏 ′ ∈ ℐ. Since 𝜏 ∈ 𝒮, we know that

𝜏 is limited to the following forms:

(i) { 1 } → 𝒫
(︁

2 , 4
)︁
→ { 1 },

(ii) { 1 } → 𝒫
(︁

2 , 4
)︁
→ { 3 },

(iii) { 3 } → 𝒫
(︁

2 , 4
)︁
→ { 1 },

(iv) { 3 } → 𝒫
(︁

2 , 4
)︁
→ { 3 }.

We first examine case (i) where 𝜏 is of the form { 1 } → 𝒫
(︁

2 , 4
)︁
→ { 1 }. Since

the left and right terminal states are already 1 and the anchor states are either 2

or 4 , we define 𝜏 ′ =△ 𝜏 , and observe that 𝜏 ′ ∈ ℐ.

We now examine case (ii) where 𝜏 is of the form { 1 } → 𝒫
(︁

2 , 4
)︁
→ { 3 }.

Let 𝜏 ′ ⊃△ 𝜏 , where

𝜏 ′ : { 1 } → 𝒫
(︁

2 , 4
)︁
→ { 3 }⏟  ⏞  

𝜏

→

Ext(𝜏)∖△𝜏⏞  ⏟  
𝒫
(︁

2 , 3 , 4
)︁
→ { 1 } . (A.9)

Note that (A.9) can be rewritten as

𝜏 ′ : { 1 } → 𝒫
(︁

2 , 3 , 4
)︁
→ { 1 },

which clearly shows that 𝜏 ′ ∈ ℐ.

We now examine case (iii) where 𝜏 is of the form { 3 } → 𝒫
(︁

2 , 4
)︁
→ { 1 }.

Let 𝜏 ′ ⊃△ 𝜏 , where

𝜏 ′ :

Ext(𝜏)∖△𝜏⏞  ⏟  
{ 1 } → 𝒫

(︁
2 , 3 , 4

)︁
→ { 3 } → 𝒫

(︁
2 , 4

)︁
→ { 1 }⏟  ⏞  

𝜏

. (A.10)
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Note that (A.10) can also be rewritten as

𝜏 ′ : { 1 } → 𝒫
(︁

2 , 3 , 4
)︁
→ { 1 },

which clearly shows that 𝜏 ′ ∈ ℐ.

Finally, we examine case (iv) where 𝜏 is of the form { 3 } → 𝒫
(︁

2 , 4
)︁
→ { 3 }.

We first construct extension 𝜏 ′
ℓ ⊃△ 𝜏 , where

𝜏 ′
ℓ : { 3 } → 𝒫

(︁
2 , 4

)︁
→ { 3 }⏟  ⏞  

𝜏

→

Ext(𝜏)∖△𝜏⏞  ⏟  
𝒫
(︁

2 , 3 , 4
)︁
→ { 1 } .

Now, we construct 𝜏 ′ ⊃△ 𝜏 ′
ℓ, where

𝜏 ′ :

Ext(𝜏 ′
ℓ)∖△𝜏

′
ℓ⏞  ⏟  

{ 1 } → 𝒫
(︁

2 , 3 , 4
)︁
→

{ 3 } → 𝒫
(︁

2 , 4
)︁
→ { 3 } → 𝒫

(︁
2 , 3 , 4

)︁
→ { 1 }⏟  ⏞  

𝜏 ′
ℓ

.
(A.11)

Note that (A.11) can also be rewritten as

𝜏 ′ : { 1 } → 𝒫
(︁

2 , 3 , 4
)︁
→ { 1 },

which clearly shows that 𝜏 ′ ∈ ℐ. �

A.6 Proof for Theorem 4

Proof. Let 𝜏 be a trajectory in regime ℐ(ℋ), and count the number of occurrences of

3 in 𝜏 , and record this count as 𝑘. Since 1 and 3 are both terminal states for

any trajectory belonging to regime 𝒮, the number of terminal states in 𝜏 with respect

to regime 𝒮 is 𝑘 + 2, i.e., 𝑘 plus the left and right terminal states in 𝜏 , which by

definition of 𝜏 ∈ ℐ(ℋ) must both be 1 . If we were to count the number of (possibly

empty) sub-lists of 𝜏 , where the sub-lists has left and right terminal states as either
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1 or 3 , there must be 𝑘 + 2− 1 = 𝑘 + 1 such (possibly empty) sub-lists. Observe

that empty sub-lists all must be of the following forms:

{ 1 } → { 3 },

{ 3 } → { 1 },

or { 3 } → { 3 }.

Thus, count the number of occurrences of such empty sub-lists, and record this count

as 𝑚. Now observe that non-empty sub-lists all must be of the following forms:

{ 1 } → 𝒫
(︁

2 , 4
)︁
→ { 3 },

{ 3 } → 𝒫
(︁

2 , 4
)︁
→ { 1 },

or { 3 } → 𝒫
(︁

2 , 4
)︁
→ { 3 }.

(A.12)

Note that all forms in (A.12) can be equivalently rewritten as

{ 1 , 3 } → 𝒫
(︁

2 , 4
)︁
→ { 1 , 3 },

which is clearly a generic trajectory in regime 𝒮 by way of Definition 5. Thus, the

number of disjoint trajectories in 𝒮(ℋ) that 𝜏 ∈ ℐ(ℋ) decomposes to, or equivalently,

the number of non-empty sub-lists, is given by 𝑘 + 1−𝑚. �

A.7 Proof for Theorem 5

Proof. We first introduce and prove a lemma that will be used in the proof of Theorem

5:

Lemma 1 (Non-negativity of counts) Let 𝜏 ∈ ℐ(ℋ), and examine the supersets

of decomposed trajectories 𝒮(𝜏) and 𝒟(𝜏). In accordance with Theorem 4 and Corol-

lary 2, record the cardinalities |𝒮(𝜏)| = 𝑘𝒮 + 1−𝑚𝒮 and |𝒟(𝜏)| = 𝑘𝒟 + 1−𝑚𝒟. We

have that
𝑘𝒮 + 1−𝑚𝒮 ≥ 0,

𝑘𝒟 + 1−𝑚𝒟 ≥ 0.
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Proof of Lemma 1. We first examine the 𝒮 case, and the𝒟 case will follow analogously.

Note first that since 𝑘𝒮 and 𝑚𝒮 are counts, they are necessarily non-negative. Now,

we have that 𝑘𝒮 increases by 1 for every 3 state in 𝜏 , and with every unit increase

in 𝑘𝒮 , 𝑚𝒮 (recall from Theorem 4 that 𝑚𝒮 counts the number of occurrences of pairs

{ 1 } → { 3 }, { 3 } → { 1 }, and { 3 } → { 3 }) can increase by 0 (see Figure

A-1, first row), or 1 (see Figure A-1, first row), or 2. However, observe that 𝑚𝒮 can

increase by 2 for an unit increase in 𝑘𝒮 at most once. In fact, observe that only in

the following situation (illustrated in Figure A-2), where 𝜏 is

𝜏 : { 1 } → 𝒫
(︁

3
)︁
→ { 1 },

is the worst-case upper bound 𝑘𝒮 + 1 ≥ 𝑚𝒮 required. For the most general 𝜏 ∈ ℐ(ℋ),

where

𝜏 : { 1 } → 𝒫
(︁

2 , 3 , 4
)︁
→ { 1 },

the bound 𝑘𝒮 ≥ 𝑚𝒮 holds. The same argument can be used to show that 𝑘𝒟+1−𝑚𝒟 ≥

0, by trivially relabeling 2 ↦→ 3 and 3 ↦→ 2 . �

+1

+1

+1
1 1,

3 3

3 3

, 423

, 42 3
+0

Figure A-1: State pairs in 𝜏 and the relationship between 𝑘𝒮 and 𝑚𝒮 .

We now resume the proof for Theorem 5. Let 𝜏 ∈ ℐ(ℋ), we will first derive the

follow inequality:
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⋮

𝑛

1 13

1 13 3

1 1⋯3 3

1 2

2 3

𝑛 𝑛 + 1

⋮ ⋮

Figure A-2: Trajectory 𝜏 under the worst-case bound 𝑘𝒮 + 1 ≥ 𝑚𝒮 .

|𝒮(𝜏)|+ |𝒟(𝜏)| ≥ 1

⇔ (𝑘𝒮 + 1−𝑚𝒮) + (𝑘𝒟 + 1−𝑚𝒟) ≥ 1.
(A.13)

In order to show that the inequality in (A.13) is true, we note that there are four

cases with respect to 𝑘𝒮 and 𝑘𝒟, keeping in mind that 𝑘𝒮 ∈ N≥0 and 𝑘𝒟 ∈ N≥0:

(i) 𝑘𝒮 = 𝑘𝒟 = 0,

(ii) 𝑘𝒮 ≥ 1 and 𝑘𝒟 ≥ 1,

(iii) 𝑘𝒮 ≥ 1 and 𝑘𝒟 = 0,

(iv) 𝑘𝒮 = 0 and 𝑘𝒟 ≥ 1.

Since 𝜏 is a valid regime ℐ trajectory, in the first case where 𝑘𝒮 = 𝑘𝒟 = 0, this is

equivalent to constraining 𝜏 to be of the form

𝜏 : { 1 } → 𝒫
(︁

4
)︁
→ { 1 }, (A.14)

since no anchor states can be 2 or 3 . Observe that when 𝜏 is of the form given in

(A.14), we must have that 𝑚𝒮 = 𝑚𝒟 = 0 since pairs { 1 } → { 3 }, { 3 } → { 1 },

and { 3 } → { 3 } or { 1 } → { 2 }, { 2 } → { 1 }, and { 2 } → { 2 } cannot

occur. Thus, the left-hand side of (A.13) simplifies down to:

(𝑘𝒮 + 1−𝑚𝒮) + (𝑘𝒟 + 1−𝑚𝒟) = 2 ≥ 1.
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For case (ii), observe that since 𝑘𝒮 ≥ 1 and 𝑘𝒟 ≥ 1, 𝜏 cannot be of the form

𝜏 : { 1 } → 𝒫
(︁

2
)︁
→ { 1 }

or

𝜏 : { 1 } → 𝒫
(︁

3
)︁
→ { 1 }

since there is at least one occurrence of a 2 anchor state and a 3 anchor state.

Thus, from Lemma 1, we have that 𝑘𝒮 −𝑚𝒮 ≥ 0 and 𝑘𝒟 −𝑚𝒟 ≥ 0. Rearranging the

left-hand side of (A.13) and applying the inequalities 𝑘𝒮 −𝑚𝒮 ≥ 0 and 𝑘𝒟−𝑚𝒟 ≥ 0,

we see that

(𝑘𝒮 −𝑚𝒮)⏟  ⏞  
≥0

+ (𝑘𝒟 −𝑚𝒟)⏟  ⏞  
≥0

+2 ≥ 1.

For the last two cases (iii) and (iv), note that they are symmetric cases. Without

loss of generality, we set and examine the case where 𝑘𝒮 ≥ 1 and 𝑘𝒟 = 0. Since

𝑘𝒟 = 0, the pairs { 1 } → { 2 }, { 2 } → { 1 }, and { 2 } → { 2 } cannot occur,

so we have that 𝑚𝒟 = 0. From Lemma 1, we know that 𝑘𝒮 + 1−𝑚𝒮 ≥ 0. Thus, we

see that in this case, the left-hand side of (A.13) becomes:

(𝑘𝒮 + 1−𝑚𝒮)⏟  ⏞  
≥0

+1 ≥ 1.

Analogously, if we had set 𝑘𝒮 = 0 and 𝑘𝒟 ≥ 1, we would have had

1 + (𝑘𝒟 + 1−𝑚𝒟)⏟  ⏞  
≥0

≥ 1.

Hence, we have that ∀𝜏 ∈ ℐ(ℋ), the decomposition cardinalities satisfy |𝒮(𝜏)| +

|𝒟(𝜏)| ≥ 1. Taking the sum over all such trajectories 𝜏 ∈ ℐ(ℋ), we have that
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|𝒮(𝜏)|+ |𝒟(𝜏)| ≥ 1∑︁
𝜏∈ℐ(ℋ)

{︁
|𝒮(𝜏)|+ |𝒟(𝜏)|

}︁
≥

∑︁
𝜏∈ℐ(ℋ)

1

∑︁
𝜏∈ℐ(ℋ)

|𝒮(𝜏)|+
∑︁

𝜏∈ℐ(ℋ)
|𝒟(𝜏)| ≥ |ℐ(ℋ)| .

(A.15)

Note that the left-hand side of the last expression in (A.15) records a sum over

decompositions of all trajectories 𝜏 ∈ ℐ(ℋ). In order to rewrite the inequality in terms

of the cardinality of 𝒮(ℋ) and 𝒟(ℋ), note that for any 𝜏𝒮 ∈ 𝒮(𝜏), since 𝜏 ∈ ℐ(ℋ), this

implies that 𝜏𝒮 ∈ 𝒮(ℋ). Thus, we have the containment 𝒮(𝜏) ⊆ 𝒮(ℋ),∀𝜏 ∈ ℐ(ℋ).

Taking a union over all 𝜏 ∈ ℐ(ℋ) preserves the containment, i.e.,

⋃︁
𝜏∈ℐ(ℋ)

𝒮(𝜏) ⊆ 𝒮(ℋ).

Since 𝒮(𝜏) and 𝒮(ℋ) are supersets of trajectories, taking the cardinality of both sides

gives

⃒⃒⃒⃒
⃒⃒ ⋃︁
𝜏∈ℐ(ℋ)

𝒮(𝜏)

⃒⃒⃒⃒
⃒⃒ ≤ |𝒮(ℋ)|

⇔
∑︁

𝜏∈ℐ(ℋ)
|𝒮(𝜏)| ≤ |𝒮(ℋ)| .

(A.16)

Note that the same argument applied to regime 𝒟 decompositions give the equivalent

of (A.16), but for regime 𝒟, i.e., ∑︀𝜏∈ℐ(ℋ) |𝒟(𝜏)| ≤ |𝒟(ℋ)|. Thus, we have the desired

upper bound (6.2) via

|ℐ(ℋ)| ≤
∑︁

𝜏∈ℐ(ℋ)
|𝒮(𝜏)|+

∑︁
𝜏∈ℐ(ℋ)

|𝒟(𝜏)| ≤ |𝒮(ℋ)|+ |𝒟(ℋ)| .

�
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A.8 Proof for Theorem 6

Proof. Let 𝜏 ∈ ℐ(ℋ), similar to the process of the proof for Theorem 5, we first show

an equivalent inequality to (6.3) for a single trajectory 𝜏 , then use an aggregation

argument across all 𝜏 ∈ ℐ(ℋ). We first show that the following statement is valid:

|𝜏 |△ ≤
∑︁

𝜏𝒮∈𝒮(𝜏)
|𝜏𝒮 |△ +

∑︁
𝜏𝒟∈𝒟(𝜏)

|𝜏𝒟|△ , (A.17)

for any 𝜏 ∈ ℐ(ℋ) and its decompositions 𝒮(𝜏) and 𝒟(𝜏). Recall that in the proof

for Theorem 5, we showed that |𝒮(𝜏)|+ |𝒟(𝜏)| ≥ 1 for any 𝜏 ∈ ℐ(ℋ), implying that

|𝒮(𝜏)| ∈ N≥0 and |𝒟(𝜏)| ∈ N≥0 cannot both be 0, i.e., there must be at least one

decomposition trajectory. Furthermore, since |·|△ : 𝜏 → N≥0 gives the length (or the

number of states) belonging to a trajectory, we must have that

∑︁
𝜏𝒮∈𝒮(𝜏)

|𝜏𝒮 |△ ≥ 0,
∑︁

𝜏𝒟∈𝒟(𝜏)
|𝜏𝒟|△ ≥ 0.

We first examine the proposed upper bound in (A.17), and observe that it consists

of two summation terms summing over trajectories in 𝒮(𝜏) and 𝒟(𝜏), where at least

one of 𝒮(𝜏) or 𝒟(𝜏) must be non-empty. Consider first the case where |𝒮(𝜏)| = 0,

forcing |𝒟(𝜏)| ≥ 1. Note that |𝒮(𝜏)| = 0 implies

⎛⎝ ⋃︁
𝜏𝒮∈𝒮(𝜏)

⎞⎠
△

𝜏𝒮 =△ {∅}

⇔
∑︁

𝜏𝒮∈𝒮(𝜏)
|𝜏𝒮 |△ = 0,

where {∅} denotes an empty list. On the other hand, we have that

⎛⎝ ⋃︁
𝜏𝒟∈𝒟(𝜏)

⎞⎠
△

𝜏𝒟 =△ 𝜏

⇔
∑︁

𝜏𝒟∈𝒟(𝜏)
|𝜏𝒟|△ = |𝜏 |△ ,

and so in this case, (A.17) holds in equality, since
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max

⎧⎨⎩ ∑︁
𝜏𝒮∈𝒮(𝜏)

|𝜏𝒮 |△ ,
∑︁

𝜏𝒟∈𝒟(𝜏)
|𝜏𝒟|△

⎫⎬⎭ = max
{︁
0, |𝜏 |△

}︁
= |𝜏 |△

and ∑︀𝜏𝒮∈𝒮(𝜏) |𝜏𝒮 |△ +∑︀
𝜏𝒟∈𝒟(𝜏) |𝜏𝒟|△ = 0 + |𝜏 |△ = |𝜏 |△. By symmetry, (A.17) holds in

equality as well if we had set |𝒟(𝜏)| = 0, hereby forcing |𝒮(𝜏)| ≥ 1.

Consider the final possibility that both |𝒮(𝜏)| ≥ 1 and |𝒟(𝜏)| ≥ 1. In this case,

we have that

⎛⎝ ⋃︁
𝜏𝒮∈𝒮(𝜏)

⎞⎠
△

𝜏𝒮 ∪△

⎛⎝ ⋃︁
𝜏𝒟∈𝒟(𝜏)

⎞⎠
△

𝜏𝒟 =△ 𝜏

⇔
∑︁

𝜏𝒮∈𝒮(𝜏)
|𝜏𝒮 |△ +

∑︁
𝜏𝒟∈𝒟(𝜏)

|𝜏𝒟|△ − 𝐶 = |𝜏 |△ .

Where the integer constant 𝐶 ≥ 1 counts overlapping terminal states shared by

trajectories in 𝒮(𝜏) and 𝒟(𝜏). The upper bound now becomes loose, since if both

𝒮(𝜏) and 𝒟(𝜏) are non-empty, there must be at least one overlapping terminal state,

counted by 𝐶. Combining all three cases together (i.e., |𝒮(𝜏)| = 0 and |𝒟(𝜏)| ≥ 1;

|𝒮(𝜏)| ≥ 1 and |𝒟(𝜏)| = 0; |𝒮(𝜏)| ≥ 1 and |𝒟(𝜏)| ≥ 1), we arrive at the relationship

in (A.17).

We can now begin the aggregation argument to show that (A.17) implies (6.3).

We have that

|𝜏 |△ ≤
∑︁

𝜏𝒮∈𝒮(𝜏)
|𝜏𝒮 |△ +

∑︁
𝜏𝒟∈𝒟(𝜏)

|𝜏𝒟|△

∑︁
𝜏∈ℐ(ℋ)

|𝜏 |△ ≤
∑︁

𝜏∈ℐ(ℋ)

∑︁
𝜏𝒮∈𝒮(𝜏)

|𝜏𝒮 |△ +
∑︁

𝜏∈ℐ(ℋ)

∑︁
𝜏𝒟∈𝒟(𝜏)

|𝜏𝒟|△ .
(A.18)

Recall from the proof of Theorem 5 that

⋃︁
𝜏∈ℐ(ℋ)

𝒮(𝜏) ⊆ 𝒮(ℋ),
⋃︁

𝜏∈ℐ(ℋ)
𝒟(𝜏) ⊆ 𝒟(ℋ).

Hence, we have that
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∑︁
𝜏∈ℐ(ℋ)

|𝜏 |△ ≤
∑︁

𝜏∈ℐ(ℋ)

∑︁
𝜏𝒮∈𝒮(𝜏)

|𝜏𝒮 |△ +
∑︁

𝜏∈ℐ(ℋ)

∑︁
𝜏𝒟∈𝒟(𝜏)

|𝜏𝒟|△

≤
∑︁

𝜏∈𝒮(ℋ)
|𝜏 |△ +

∑︁
𝜏∈𝒟(ℋ)

|𝜏 |△ −
∑︁

𝜏∈𝒮(ℋ)∩𝒟(ℋ)
|𝜏 |△

=
∑︁

𝜏∈𝒮(ℋ)∪𝒟(ℋ)
|𝜏 |△ .

(A.19)

Note that we must adjust for double-counting, since it is possible that 𝒮(ℋ) ∩𝒟(ℋ)

is non-empty – for example, the trajectory { 1 } → 𝒫
(︁

4
)︁
→ { 1 } is both a regime

𝒮 and a regime 𝒟 trajectory. �

A.9 Proof for Proposition 8

Proof. We first show that the cost function 𝒥
(︁
x(𝑡)

)︁
is convex, where

𝒥 : R𝑁 → R

x(𝑡) ↦→
⃦⃦⃦
x(𝑡) − x1

⃦⃦⃦
2

+ ̃︀𝜆 ⃦⃦⃦x(𝑡) − x2

⃦⃦⃦
2

+ (1− 𝜆)c⊤
(︁
x(𝑡) − x2

)︁
.

(A.20)

Note that x1 and x2 are constant vectors as they were either a known initial condition,

the optimal solution from the previous time step, or historically observed in O𝑀 . Since

all 𝑝-norms with 𝑝 ≥ 1 are convex, and we have that ̃︀𝜆 ≥ 0 since ̃︀𝜆 = 𝜆1⊤c𝑁−1 ≥

0, the first two terms in (A.20) are convex. The third term is an affine function

c⊤
(︁
x(𝑡) − x2

)︁
scaled by a non-negative quantity 1 − 𝜆 given that 𝜆 ∈ [0, 1]. Thus,

the third term is also convex, and we have that 𝒥
(︁
x(𝑡)

)︁
is convex as it is the sum of

three convex functions.

We can easily verify the convexity of the feasible region defined by the conservation

constraints in (7.13) as any closed interval [𝑎, 𝑏] ⊆ R is convex, and such a (non-

measure zero) interval is exactly defined by
[︁⃦⃦⃦

x(𝑡)
O𝑀

⃦⃦⃦
1
− 𝛿,

⃦⃦⃦
x(𝑡)
O𝑀

⃦⃦⃦
1

+ 𝛿
]︁
⊆ R given a

non-zero buffer 𝛿 > 0. �
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Appendix B

Supplementary Figures
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Figure B-1: Heat maps of the delay correlations between the top 30 airports for AA
and DL. Reprinted from [158] (Supplementary Material).
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Figure B-2: Heat maps of the delay correlations between the top 30 airports for UA
and WN. Reprinted from [158] (Supplementary Material).

Figure B-3: AA sub-network: TV versus TD for all days in 2008-2017 with level 𝑘 = 4
weak and strong outlier bounds demarcated. Reprinted from [158] (Supplementary
Material).
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Figure B-4: DL sub-network: TV versus TD for all days in 2008-2017 with level 𝑘 = 4
weak and strong outlier bounds demarcated. Reprinted from [158] (Supplementary
Material).

Figure B-5: UA sub-network: TV versus TD for all days in 2008-2017 with level 𝑘 = 4
weak and strong outlier bounds demarcated. Reprinted from [158] (Supplementary
Material).
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Figure B-6: WN sub-network: TV versus TD for all days in 2008-2017 with level 𝑘 = 4
weak and strong outlier bounds demarcated. Reprinted from [158] (Supplementary
Material).

Figure B-7: TV versus total delay plot for American Airlines (AA) during 2008-2017
with specific disruptions and their average values annotated. Reprinted from [158]
(Supplementary Material).
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Figure B-8: TV versus total delay plot for Delta Air Lines (DL) during 2008-2017
with specific disruptions and their average values annotated. Reprinted from [158]
(Supplementary Material).

Figure B-9: TV versus total delay plot for United Airlines (UA) during 2008-2017
with specific disruptions and their average values annotated. Reprinted from [158]
(Supplementary Material).

263



Figure B-10: TV versus total delay plot for Southwest Airlines (WN) during 2008-
2017 with specific disruptions and their average values annotated. Reprinted from
[158] (Supplementary Material).
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Figure B-11: Geographic locations of the airports (IATA code given) within our

graph of China (a) and the US (b). Note that HNL is not shown in (b) for simplicity.

Reprinted from [161]. c○ 2020 IEEE
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Appendix C

Supplementary Tables

IATA Code Airport Name ARTCC (Center)

ATL Hartsfield-Jackson Atlanta International Airport ZTL (Atlanta)

BOS
Boston General Edward Lawrence Logan

International Airport
ZBW (Boston)

BWI
Baltimore/Washington International

Thurgood Marshall Airport
ZDC (Washington)

CLT Charlotte Douglas International Airport ZTL (Atlanta)

DCA Ronald Reagan Washington National Airport ZDC (Washington)

DEN Denver International Airport ZDV (Denver)

DFW Dallas/Fort Worth International Airport ZFW (Fort Worth)

DTW Detroit Metropolitan Wayne County Airport ZOB (Cleveland)

EWR Newark Liberty International Airport ZNY (New York)

FLL
Fort Lauderdale-Hollywood

International Airport
ZMA (Miami)

HNL
Honolulu Daniel K. Inouye

International Airport
ZHN (Honolulu)

IAD Washington Dulles International Airport ZDC (Washington)

IAH
Houston George Bush

International Airport
ZHU (Houston)

JFK
New York John F. Kennedy

International Airport
ZNY (New York)

LAS Las Vegas McCarran International Airport ZLA (Los Angeles)

LAX Los Angeles International Airport ZLA (Los Angeles)
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LGA New York LaGuardia Airport ZNY (New York)

MCO Orlando International Airport ZJX (Jacksonville)

MDW Chicago Midway International Airport ZAU (Chicago)

MIA Miami International Airport ZMA (Miami)

MSP Minneapolis-Saint Paul International Airport ZMP (Minneapolis)

ORD Chicago O’Hare International Airport ZAU (Chicago)

PDX Portland International Airport ZSE (Seattle)

PHL Philadelphia International Airport ZNY (New York)

PHX Phoenix Sky Harbor International Airport ZAB (Albuquerque)

SAN San Diego International Airport ZLA (Los Angeles)

SEA Seattle-Tacoma International Airport ZSE (Seattle)

SFO San Francisco International Airport ZOA (Oakland)

SLC Salt Lake City International Airport ZLC (Salt Lake City)

TPA Tampa International Airport ZJX (Jacksonville)

Table C.1: IATA three-letter code and corresponding full airport

name; the ARTCC that each airport is located within is also listed.

Disruption Dates
9/28/17 9/8/17 8/21/17 4/3/17 3/20/17 2/22/17 2/8/17 1/29/17 1/22/17
12/17/17 1/2/17 11/4/16 10/13/16 8/8/16 8/9/16 7/24/16 7/20/16 7/21/16
5/26/16 3/17/16 2/9/16 12/2/15 10/29/15 10/11/15 9/17/15 8/15/15 7/8/15
7/2/15 4/28/15 3/30/15 8/26/08 11/19/09 7/2/09 1/4/10 6/17/11 6/18/11
5/21/11 3/26/11 7/5/11 8/28/12 2/21/12 4/16/13 6/21/13 8/6/13 9/13/13

Outage

9/26/14 9/27/14 11/24/14 4/9/08
2/25/10 2/26/10 2/27/10 1/30/11 1/31/11 2/1/11 2/2/11 2/3/11 2/7/13
2/8/13 2/9/13 2/10/13 2/11/13 2/11/14 2/12/14 2/13/14 2/14/14 1/26/15
1/27/15 1/28/15 1/29/15 1/30/15 1/21/16 1/22/16 1/23/16 1/24/16 1/25/16
11/12/09 11/13/09 11/14/09 12/16/09 12/17/09 12/18/09 12/19/09 12/20/09 3/12/10
3/13/10 3/14/10 3/15/10 3/16/10 12/26/10 12/27/10 12/28/10 1/11/11 1/12/11
1/13/11 10/28/11 10/29/11 10/30/11 11/8/12 11/9/12 12/26/12 12/27/12 3/5/13

Nor’easter

3/6/13 3/7/13 3/8/13 2/7/17 2/8/17 2/9/17
6/23/14 6/24/14 5/15/15 5/16/15 8/7/14 8/8/14 8/9/14 7/6/16 6/24/15
8/20/16 7/12/17 6/18/14 6/19/14 5/12/14 4/9/15 5/20/17 5/21/17 6/3/17
6/4/17 10/14/14 4/7/17 4/8/17 4/30/17 6/13/14 6/19/17 7/13/17 7/14/17Thunderstorm

8/18/17 8/20/15 5/25/17 6/1/15 6/14/17 6/14/15 6/15/15 6/25/14
10/28/12 10/29/12 10/30/12 10/31/12 11/1/12 8/24/17 8/25/17 8/26/17 8/27/17
8/28/17 8/29/17 8/30/17 9/9/17 9/10/17 9/11/17 9/12/17 9/12/08 9/13/08
9/14/08 9/15/08 10/6/16 10/7/16 10/8/16 10/9/16 8/25/11 8/26/11 8/27/11Hurricane

8/28/11 8/29/11 8/31/08 9/1/08 9/2/08 9/3/08 9/4/08

Table C.2: List of 178 disruption days used in the system-wide and airline-specific
analysis. Reprinted from [158] (Supplementary Material).

Day-type Dates

1/2/08 12/25/08 8/21/09 7/12/10 4/16/11 12/25/11 11/30/12 8/1/15

1/3/08 12/27/08 8/22/09 8/5/10 4/26/11 12/26/11 12/17/12 8/13/15

1/12/08 1/5/09 10/19/09 8/12/10 5/11/11 12/29/11 12/26/12 9/4/15
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Day-type Dates

1/21/08 1/7/09 10/30/09 9/8/10 7/8/11 12/30/11 1/31/13 10/28/15

2/1/08 1/28/09 11/19/09 9/27/10 7/11/11 1/8/12 8/3/13 11/19/15

2/24/08 2/1/09 11/25/09 10/4/10 7/13/11 1/22/12 8/18/13 1/31/16

2/26/08 2/2/09 12/5/09 10/5/10 7/14/11 1/23/12 10/27/13 3/29/16

3/7/08 2/6/09 12/7/09 10/17/10 7/15/11 3/14/12 11/21/13 6/30/16

5/20/08 2/10/09 12/10/09 10/26/10 7/25/11 3/16/12 1/18/14 7/20/16

6/4/08 2/16/09 12/21/09 11/19/10 8/7/11 5/29/12 2/7/14 7/22/16

6/10/08 3/22/09 1/22/10 11/22/10 8/15/11 6/1/12 4/30/14 9/29/16

6/22/08 3/26/09 2/8/10 12/21/10 8/18/11 7/1/12 5/21/14 10/16/16

7/8/08 4/9/09 3/11/10 1/2/11 8/21/11 8/12/12 8/3/14 1/5/17

7/10/08 4/14/09 3/30/10 1/8/11 8/25/11 8/22/12 9/27/14 2/1/17

7/21/08 5/1/09 4/25/10 2/5/11 8/28/11 8/26/12 10/23/14 5/11/17

9/23/08 5/4/09 5/26/10 2/17/11 9/6/11 8/31/12 11/19/14 9/8/17

11/13/08 5/26/09 6/11/10 2/18/11 9/11/11 9/8/12 11/25/14 9/18/17

11/18/08 5/27/09 6/15/10 2/19/11 10/13/11 9/10/12 12/30/14

11/22/08 6/3/09 6/18/10 2/25/11 10/19/11 9/18/12 6/2/15

12/10/08 8/2/09 6/24/10 3/23/11 11/22/11 11/20/12 7/13/15

0,0,0,0,1

12/15/08 8/19/09 7/6/10 4/13/11 12/21/11 11/21/12 7/18/15

1/16/08 7/30/12 12/17/13 3/21/15 5/10/16 2/12/17 12/9/17

1/19/08 8/9/12 1/7/14 3/27/15 5/28/16 3/2/17 12/13/17

2/17/08 10/22/12 1/28/14 4/6/15 6/21/16 3/10/17 12/17/17

2/27/08 12/24/12 1/30/14 5/26/15 6/24/16 3/24/17 12/23/17

7/31/08 1/13/13 3/26/14 6/9/15 7/2/16 3/28/17 12/25/17

2/7/09 1/24/13 4/7/14 6/24/15 7/18/16 4/3/17

6/30/09 1/30/13 5/27/14 7/21/15 7/26/16 4/7/17

11/3/09 2/11/13 6/10/14 9/10/15 8/9/16 4/8/17

11/27/09 2/26/13 6/14/14 10/24/15 8/10/16 4/9/17

1/16/10 3/13/13 7/27/14 10/29/15 8/11/16 4/15/17

2/23/10 3/18/13 9/23/14 10/30/15 8/14/16 4/20/17

2/24/10 5/17/13 9/30/14 12/24/15 9/19/16 5/6/17

7/13/10 5/26/13 10/14/14 1/6/16 11/15/16 5/21/17

7/23/10 6/5/13 10/22/14 1/7/16 11/16/16 5/22/17

5/26/11 6/8/13 1/6/15 1/9/16 12/14/16 6/3/17

6/15/11 6/13/13 2/3/15 2/4/16 1/8/17 7/11/17

11/25/11 6/28/13 2/9/15 3/1/16 1/9/17 7/14/17

12/22/11 7/17/13 2/16/15 3/4/16 1/14/17 7/17/17

4/9/12 10/18/13 2/20/15 3/10/16 1/21/17 10/12/17

6/16/12 11/1/13 3/1/15 3/24/16 1/29/17 10/29/17

0,0,1,0,0

7/15/12 12/11/13 3/15/15 4/17/16 2/10/17 12/6/17

1/22/08 6/12/10 5/22/12 5/12/14 7/31/15

3/21/08 9/15/10 5/30/12 6/9/14 10/23/15

3/27/08 9/28/10 6/6/12 6/19/14 3/8/16

4/8/08 10/23/10 6/21/12 7/14/14 4/7/16

4/10/08 1/17/11 8/16/12 8/6/14 4/29/16
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Day-type Dates

6/19/08 2/20/11 4/9/13 8/17/14 5/26/16

7/2/08 4/8/11 4/16/13 9/5/14 5/31/16

10/24/08 4/19/11 5/2/13 10/2/14 6/12/16

12/12/08 4/20/11 5/3/13 10/30/14 6/18/16

1/14/09 5/1/11 6/17/13 12/16/14 6/23/16

5/2/09 5/14/11 8/13/13 12/20/14 7/29/16

6/5/09 5/23/11 9/5/13 12/28/14 7/30/16

6/6/09 9/16/11 9/20/13 12/31/14 9/14/16

6/12/09 9/18/11 10/22/13 1/17/15 10/21/16

7/27/09 1/28/12 12/21/13 2/26/15 1/15/17

10/23/09 1/29/12 2/2/14 2/27/15 4/2/17

12/24/09 2/10/12 2/8/14 4/24/15 4/17/17

12/26/09 3/31/12 3/31/14 4/26/15 6/27/17

1/25/10 4/3/12 4/1/14 4/28/15 9/7/17

2/19/10 4/10/12 4/3/14 5/25/15

0,1,0,0,0

3/20/10 5/11/12 4/15/14 6/23/15

2/23/08 11/2/10 6/25/13 6/16/15 7/23/16 5/7/17

9/21/08 11/3/10 7/10/13 6/18/15 9/6/16 5/20/17

1/2/09 5/18/11 7/29/13 7/8/15 10/25/16 5/31/17

1/8/09 6/10/11 9/12/13 8/20/15 10/28/16 6/13/17

2/11/09 6/17/11 10/4/13 10/31/15 11/2/16 6/14/17

2/13/09 6/18/11 7/3/14 11/10/15 11/17/16 6/17/17

6/24/09 8/1/11 8/9/14 11/11/15 12/15/16 7/20/17

10/1/09 12/9/11 9/26/14 12/30/15 1/10/17 7/21/17

1/4/10 7/13/12 12/2/14 2/11/16 2/2/17 7/28/17

3/23/10 8/5/12 12/5/14 4/3/16 2/8/17 8/7/17

5/27/10 9/4/12 1/5/15 5/25/16 3/3/17 8/22/17

8/24/10 12/29/12 1/9/15 6/2/16 4/4/17 9/16/17

9/5/10 5/22/13 2/6/15 6/16/16 4/13/17 10/23/17

0,0,0,1,0

10/15/10 6/23/13 4/16/15 7/8/16 4/23/17 12/15/17

1/5/08 6/16/08 10/2/09 11/20/10 7/19/12 11/23/13 8/15/15 8/4/17

1/25/08 12/11/08 10/15/09 5/16/11 8/10/12 2/28/14 4/2/16 11/26/17

2/6/08 12/16/08 11/7/09 5/19/11 10/11/12 5/13/14 10/14/16

5/9/08 2/17/09 7/4/10 6/11/11 12/21/12 11/30/14 2/20/17

0,0,0,1,1

5/16/08 3/29/09 8/23/10 1/20/12 6/24/13 12/3/14 8/3/17

1/29/08 4/28/08 2/22/09 6/11/09 4/11/10 9/30/10 3/18/11 12/4/14

2/4/08 12/1/08 2/23/09 10/13/09 4/26/10 10/24/10 3/24/11

2/18/08 12/17/08 4/15/09 12/11/09 5/14/10 12/17/10 4/28/11
0,1,0,0,1

3/19/08 12/26/08 5/22/09 1/18/10 7/29/10 12/20/10 12/10/12

6/14/08 1/18/09 1/30/10 5/8/10 7/28/12 2/1/15

6/15/08 2/26/09 2/10/10 7/19/10 1/27/13 1/16/16

8/2/08 3/2/09 2/11/10 1/10/11 2/9/13 1/24/16
1,0,0,0,0

10/25/08 4/13/09 2/26/10 9/29/11 2/17/14

7/6/13 10/31/14 2/19/16 3/31/17 5/1/17 7/24/17 10/19/17
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Day-type Dates

11/17/13 12/18/15 8/13/16 4/24/17 7/10/17 8/18/170,0,1,1,0

2/15/14 1/22/16 3/22/17 4/25/17 7/13/17 10/9/17

1/4/08 6/6/08 3/11/09 4/25/11 3/12/14 6/8/15 12/27/15 12/8/16
0,1,0,1,0

3/20/08 1/15/09 12/8/09 5/6/12 4/9/15 6/17/15 8/12/16 5/3/17

Table C.4: Inventory of days belonging to the top 9 most frequently occurring

day-type tuples (excluding the no-outlier case). Reprinted from [158] (Supple-

mentary Material).
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Airline Hubs (AA, DL, UA), Operating Bases and Focus Cities (WN)
American
Airlines (AA) CLT, DCA, DFW, JFK*, LAX**, LGA*, MIA, ORD*, PHL, PHX*

Delta
Air Lines (DL) ATL*, BOS, DTW, JFK*, LAX**, LGA*, MSP, SEA, SLC

United
Airlines (UA) DEN*, EWR, IAD, IAH, LAX**, ORD*, SFO, (GUM)

Southwest
Airlines (WN)

ATL*, BWI, DEN*, FLL, LAS, LAX**, MCO, MDW, PHX*, SAN, TPA,
(AUS), (BNA), (DAL), (HOU), (OAK), (SJC), (SMF), (STL)

Table C.3: List of airline hubs, operating bases, and focus cities. Boldface denotes
an airline’s largest hub, operating base, or focus city by number of departing seats
in 2017. (*) and (**) denotes an airport that is shared as a hub, operating base, or
focus city between 2 or 3+ airlines, respectively. Reprinted from [158] (Supplementary
Material).

Day-type 0,1,1,0,0 1,0,1,0,0 1,1,1,1,1 0,1,0,1,1 0,1,1,1,0 0,0,1,0,1 1,1,0,1,1 1,1,1,1,0 0,0,1,1,1
6/26/09 3/1/09 12/19/08 1/27/08 6/22/09 7/29/09 2/12/08 8/15/08 11/22/13
12/12/10 1/24/10 12/20/08 2/3/08 11/10/11 3/12/10 8/4/08 7/2/09 1/4/14
11/29/11 2/25/10 12/21/08 5/2/08 7/18/12 3/24/13 9/26/08 12/28/10 12/21/15
12/23/12 8/19/11 4/3/09 11/2/08 7/26/12 12/9/14 11/6/08 2/3/14 12/29/15
5/23/13 11/7/12 9/11/09 11/9/08 4/10/13 12/10/14 11/14/08 2/21/15 1/5/16
6/13/14 9/2/13 3/31/11 2/15/09 9/19/13 12/19/14 12/23/08 11/21/15 2/16/16
10/13/14 12/19/13 3/8/13 3/8/09 5/18/15 2/8/15 6/19/09 12/28/15 3/11/16
11/10/14 1/21/14 4/17/13 1/21/10 7/31/16 12/23/15 12/20/09 2/5/16 1/22/17
2/22/15 1/29/14 6/18/14 5/17/11 8/20/16 4/9/16 3/15/10 4/4/16 2/3/17
11/18/15 5/16/14 3/23/15 6/9/11 12/18/16 11/21/16 6/23/10 7/1/16 2/17/17
7/28/16 7/2/14 12/15/15 4/18/13 12/21/16 12/23/16 10/1/10 7/12/17 6/7/17
8/19/16 2/2/16 12/17/16 6/26/13 3/14/17 3/30/17 5/25/11 8/2/17 10/13/17
12/11/16 8/8/16 4/5/17 12/15/14 6/19/17 5/24/17 1/2/14 10/14/17
5/5/17 2/9/17 4/6/17 12/14/15 10/24/17

Dates

12/8/17 9/11/17 6/6/17
Day-type 1,0,0,1,0 1,0,0,1,1 1,1,0,0,0 1,1,1,0,0 0,1,1,0,1 0,1,1,1,1 1,0,1,1,0 1,1,0,1,0 1,1,1,0,1

8/11/08 5/12/08 1/11/08 7/24/08 4/4/08 12/18/08 2/13/14 6/8/08 3/8/08
9/9/08 7/23/08 3/18/08 8/14/08 3/23/13 6/22/12 8/25/14 1/10/09 7/27/08
4/18/09 10/28/08 5/27/08 9/21/09 2/21/14 2/24/16 4/20/15 2/12/09 8/10/08
5/9/10 12/22/08 6/18/08 3/14/10 3/29/14 7/21/16 6/15/15 12/1/10 12/24/08
12/27/10 1/19/09 4/6/09 6/25/12 5/8/14 10/24/16 2/15/16 5/29/11 2/16/10
1/19/12 9/7/11 4/20/09 8/8/14 3/26/16 11/22/16 4/18/16 12/8/13 1/6/14
1/8/15 11/12/12 1/3/10 2/2/15 9/30/16 12/16/16 7/25/16 1/23/16 5/31/15
1/25/16 6/30/14 1/26/11 3/5/15 12/22/16 5/25/17 9/21/16 5/27/16 5/4/16
12/4/16 2/14/16 12/25/12 5/10/15 3/6/17 12/14/17 1/7/17
2/25/17 11/3/17 6/2/17 12/25/16

Dates

7/7/17
Day-type 1,0,0,0,1 1,1,0,0,1 1,0,1,0,1 1,0,1,1,1

2/22/08 1/31/08 7/13/08 2/3/09
11/13/09 2/13/08 8/22/10 1/3/14
1/18/11 11/30/08 10/27/10 1/5/14
1/27/11 4/17/09 6/1/15 2/6/17
8/14/11 6/9/09 2/13/17
10/29/11 3/13/10

Dates

1/1/14

Table C.5: Inventory of days belonging to the day-type tuples not captured in Table
C.4. Reprinted from [158] (Supplementary Material).
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IATA Airport Name IATA Airport Name

CAN Guangzhou ATL Atlanta

CGO Zhengzhou BOS Boston

CKG Chongqing BWI Baltimore

CSX Changsha CLT Charlotte

CTU Chengdu DCA Washington-National

DLC Dalian DEN Denver

FOC Fuzhou DFW Dallas-Fort Worth

HAK Haikou DTW Detroit

HET Hohhot EWR Newark

HGH Hangzhou FLL Fort Lauderdale

HRB Harbin HNL Honolulu

KMG Kunming IAD Washington-Dulles

KWE Guiyang IAH Houston-Intercontinental

NKG Nanjing JFK New York-John F. Kennedy

NNG Nanning LAS Las Vegas

PEK Beijing LAX Los Angeles

PVG Shanghai-Pudong LGA New York-LaGuardia

SHA Shanghai-Hongqiao MCO Orlando

SHE Shenyang MDW Chicago-Midway

SYX Sanya MIA Miami

SZX Shenzhen MSP Minneapolis

TAO Qingdao ORD Chicago-O’Hare

TNA Jinan PDX Portland

TSN Tianjin PHL Philadelphia

TYN Taiyuan PHX Phoenix

URC Urumqi SAN San Diego

WUH Wuhan SEA Seattle

XIY Xi’an SFO San Francisco

XMN Xiamen SLC Salt Lake City

ZGC Lanzhou TPA Tampa

Table C.6: IATA three-letter code and corresponding full airport name of the airports

within our graph of China and the US. Reprinted from [161]. c○ 2020 IEEE
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