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Abstract
Concerns over climate change along with rapidly falling costs of clean energy technolo-
gies have led to increased scrutiny over the role of fossil-fuels in a low-carbon energy
future. This thesis evaluates the role of natural gas-fired power plants (NG) in future
electrical grids using an advanced, multi-period capacity expansion modeling frame-
work with perfect foresight. We model cost-optimal grid operations, investments, and
retirements through 2050 using a detailed representation of the American Southeast’s
electrical grid which includes inter-region transmission, variable renewable energy re-
source characteristics, brownfield capacity, and lifetime and economic retirements.
We examine several pathways to a highly decarbonized grid, assuming rapid growth
in energy demand through mid-century. Sensitivities include CO2 emissions limits,
technology costs, nuclear plant lifetime extensions, and NG deployment and financing
schemes which aim to minimize stranded costs.

We find that investments in NG are made across all scenarios evaluated, as well
as unprecedented deployments of variable renewable energy resources and battery
storage. Results highlight the substantial emissions contributions of the existing coal
fleet, and the potential for emissions reductions if lower-carbon generation resources,
including new NG with and without carbon capture and storage, can replace this
capacity. Furthermore, emissions limits which require the lowest mid-century CO2
emissions do not necessarily lead to the greatest cumulative emissions reductions over
the planning horizon. These results support a nuanced approach to resource planning
for future low-carbon grids which considers both short-term and long-term emissions
reductions.

Thesis Supervisor: Dharik Mallapragada
Title: Research Scientist, MIT Energy Initiative
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0 Introduction 

 Climate change driven by anthropogenic greenhouse gas (GHG) emissions threatens to 

bring rising sea levels, more extreme weather events, and severe human and economic losses. 

Governments and private sector interests alike are recognizing the need for rapid decarbonization 

of the global economy to limit temperature rise. In 2015, nearly all nations entered the Paris 

Climate Accord, where they pledged to keep global warming well below 2oC, and pursue efforts 

to keep warming below 1.5oC. In order to meet a 1.5oC temperature rise ceiling, the 

Intergovernmental Panel on Climate Change has suggested that CO2 emissions will need to reach 

“net-zero” by around 2050. Under net-zero emissions, no more anthropogenic CO2 would be 

emitted into the atmosphere than removed from it. Although achieving such as goal is physically 

possible, it would require “rapid, far-reaching and unprecedented” changes across the global 

economy (IPCC, 2018). 

 At 25% of global emissions, electricity and heat production are responsible for the largest 

share of GHG emissions across economic sectors, based on 2010 emissions data (Edenhofer et al., 

2014). In the United States, electricity production alone accounted for 25% of the nation’s GHG 

emissions in 2019 (US EPA). America’s electricity sector must undergo rapid decarbonization if 

mid-century net-zero targets are to be achieved. 

In the United States, nearly three-quarters of electricity customers received their power 

from “investor-owned utilities,” or IOUs, in 2017, which are “large electric distributors that issue 

stock owned by shareholders.” (U.S. EIA, 2019) Most IOUs are publicly traded companies and 

include some of America’s largest companies by market capitalization – a number of electric and 

multi-utilities are listed on the S&P 500 index. Many of these utilities have already announced 

mid-century net-zero goals. As of July 2020, 13 of America’s 30 largest publicly traded electric 
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and gas utilities by market capitalization have set net-zero or 100% clean energy goals for 2050 

(Whieldon & Ryser, 2020). 

A recent report by Deloitte states that IOUs “are expected to have the greatest impact on 

driving a full transition” to net-zero across the electric power sector due to their high percentage 

of customers and nationwide electricity sales (Porter et al., 2020, p. 4). It is encouraging, then, that 

every year more public utilities are announcing corporate net-zero targets. However, announcing 

a net-zero goal decades in the future does not mean that utilities will successfully reach those 

targets, or that they are necessarily serious about achieving them. Indeed, the Deloitte report notes 

“there are significant gaps between decarbonization targets and the scheduled fossil-fuel plant 

retirements, renewable additions, and flexibility requirements needed to achieve full 

decarbonization.” (p. 8) Other commentators have questioned public utilities’ commitment to their 

net-zero pledges, noting a “lack of urgency” among a “growing” number of public utilities with 

ambitious net-zero goals (Gearino, 2019).  

 The American Southeast – which I define here to include Alabama, Florida, Georgia, 

Mississippi, North Carolina, South Carolina, and Tennessee – is home to many of the country’s 

largest IOUs by market capitalization. The three largest IOUs by market cap to announce net-zero 

by 2050 goals – Dominion Energy Corp. (Dominion Energy), Duke Energy Corp. (Duke Energy), 

and Southern Company – operate there predominantly as vertically-integrated public utilities 

which own their generation, transmission, and distribution assets. These utilities operate as natural 

monopolies and are shielded from competition by state regulators. Unlike utilities operating in 

wholesale competitive power markets, most utilities operating in the Southeast generate power 

from their own power plants, and therefore have a higher degree of control over their resource 

mixes. According to Energy Innovation, a nonpartisan energy and climate policy firm, this has led 



 11 

them to be “among the slowest to embrace clean electricity resources,” and for them to continue 

operating coal-fired power plants even when nearly all of them are uneconomic compared to new 

local wind and solar power (Eric Gimon and Mike O’Boyle et al., 2020).  

 There is active debate over the role of natural gas (NG) on pathways towards deep 

decarbonization, with recent research suggesting a limited role for NG and industry plans for 

continued NG development coming into conflict. A widely cited 2019 study by the Rocky 

Mountain Institute projects that by 2035, new clean-energy portfolios consisting of wind, solar, 

battery storage and demand flexibility will be cheaper to build than continued operation of 90% of 

proposed new natural gas combined cycle (NGCC) power plants (Teplin et al., 2019). Southeastern 

IOUs, however, are standing by their plans to develop new NG plants. Duke Energy’s 2018 

resource plan, for example, “lean[s] heavily on natural gas-fired generation” (Walton, 2018) and 

proposed adding nearly 10 gigawatts (GW) of new NG capacity by 2033, compared to less than 4 

GW of new solar resources. According to Grubert et al. (2020), historic trends suggest a retirement 

age of approximately 30 years for NGCC and natural gas combustion turbine (NGCT) power 

plants, which supports concerns that new NG facilities such as these may become “stranded 

assets,” or plants which retire before the end of their economic life, in a rapidly decarbonizing grid 

with low-cost variable renewable energy resources (VREs) and storage. This outcome risks leaving 

ratepayers, or in some cases, corporate shareholders, to continue paying off the cost of power 

plants that are no longer in use. 

 In this thesis, I investigate how technological, regulatory, and financial assumptions affect 

the role of NG in future low-carbon grids, using the American Southeast as a case study, and 

motivated by the recent net-zero announcements of major IOUs in the region. I use GenX (Jenkins 

et al., 2021), an advanced capacity expansion model, to model cost-optimal grid operations, 
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investments, and retirements through 2050 using a detailed representation of the American 

Southeast which includes inter-region transmission, VRE characteristics, brownfield capacity, and 

lifetime and economic retirements.  

In Part I, I lay out the motivation behind my investigation into the role of NG under deep 

decarbonization pathways. I begin with a high-level overview of the challenges that electric 

utilities nationwide will face as they work to achieve mid-century net-zero goals, followed by a 

more in-depth examination of the challenges specific to planning for new investments in NG 

capacity in low-carbon grids. Then, I provide an overview of exiting literature which discusses the 

role of NG in future low-carbon energy systems. I include academic studies which aim to better 

understand optimal investments under low-carbon scenarios broadly, as well as those which focus 

on the role of NG as their central research question. Additionally, I include a specific example of 

how one Southeastern IOU is incorporating uncertainty over the future role of NG into its resource 

planning. 

In Part II, I provide a detailed overview of the present-day electric power sector in the 

American Southeast, including the net-zero plans of the regions’ largest IOUs and relevant state 

clean energy and emissions policies. In addition, I discuss current and historic trends in the regions’ 

capacity mix, annual generation, and CO2 emissions. 

In Part III, I lay out the experimental setup. I introduce the GenX capacity expansion model 

and the multi-period modeling framework which was adopted for this experiment. I then outline 

the policy, technology, and financial sensitivities that I’ll be evaluating. Finally, I describe the 

model representation of the Southeastern grid that I use in the experimental analysis, detailing key 

data sources, data processing and aggregation methodologies, and modeling assumptions. 
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In Part IV, I present modeling results and discuss key findings for both constrained and 

unconstrained CO2 emissions scenarios.  

Finally, in Part V, I conclude with a discussion of experimental limitations and possibilities 

for future research, followed by policy recommendations for lawmakers, regulators, and utility 

decision makers based on key findings from this work. 

1 Part I: Motivation  

1.1 The Challenge of Net-Zero 

 Utilities will need to radically transform their businesses if they are to achieve their net-

zero goals. Fossil fuels accounted for over 60% of the annual generation mix in the United States 

in 2020. Meanwhile, carbon-free wind and solar only accounted for only 8.4% and 2.3% of nation-

wide electricity generation, respectively (U.S. EIA, 2021a). Utilities will need to transition to 

produce or procure exclusively low- or no-carbon electricity and ensure system reliability, while 

simultaneously meeting a demand for electricity which is projected to grow substantially over the 

coming decades with increasing electrification of transport and other end-uses. What’s more, 

utilities face tremendous uncertainty about future energy technologies, commodity prices, and state 

and federal policies which may have unforeseen implications for how they implement their plans. 

1.1.1 Meeting an Increased Demand for Electricity 

 Electric utilities will need to decarbonize their generating mixes while simultaneously 

meeting a greater demand for electricity. Sector-wide shifts towards “beneficial electrification,” 

or electrification of traditionally fossil-fuel heavy sectors of the economy, such as transportation 

and industry, could lead to far greater increases in electricity demand in the coming decades. A 

2018 study by the National Renewable Energy Laboratory (NREL) suggests that economy-wide 
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electrification of transportation, residential and commercial buildings, and industry could result in 

an increase in electricity consumption by nearly 40% by 2050 compared to a business-as-usual 

reference case (Mai et al., 2018). If such a high-electrification scenario materializes, utilities must 

be prepared to meet what the study describes an “unprecedented” sustained annual growth in 

demand.  

1.1.2 Technological and Policy Uncertainty 

 Utilities face a number of exogenous policy, regulatory, and market factors that are sure to 

impact their investment and operational decisions over the coming decades. Changes in the federal 

administration may lead to abrupt changes in climate policy; for example, the final version of the 

Clean Power Plan, which established CO2 emissions limits on American power plants, was 

unveiled by President Obama in 2015, with the Trump Administration announcing its repeal only 

two years later. Federal climate policy is supplemented with a patchwork of state-level regulations, 

such as renewable portfolio standards (RPS) or cap and trade programs. Like federal policy, state 

climate policy is subject to shifts – for example, New Jersey withdrew from the Regional 

Greenhouse Gas Initiative, a multi-state cap and trade program, in 2012, only to rejoin in 2020 

(C2ES, 2021b).  Market forces, such as variations in fuel prices or new technological innovations 

in the oil and gas sector, can lead to unforeseen shifts in energy economics, as has been observed 

in declining NG prices over the past decade because of the shale gas boom.  

 The emergence of innovative new energy technologies may also have a substantial impact 

on how utilities achieve their net-zero ambitions. The International Energy Agency (IEA) projects 

that by 2050, nearly half of emission reductions will be attributed to technologies currently in the 

demonstration or prototype phase, although the technologies needed to drive most emissions 

reductions through 2030 are already on the market (IEA, 2021). These new technologies include 
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small modular nuclear reactors, long-duration energy storage resources, electrolysis-based 

hydrogen, and more. If such technologies become commercially viable, they may help to provide 

dispatchable power supply and reduce concerns about the variability of solar and wind resources, 

although the rate at which they can be deployed at scale remains uncertain. 

1.1.3 Addressing the “Net” in Net-Zero 

Net-zero emissions targets are distinct from no-carbon emissions targets in that they allow 

emitters to produce some carbon dioxide, which they intend to offset through negative emissions 

technologies. Although this gives utilities greater flexibility and allows for a broader range of 

feasible decarbonization pathways, this same flexibility presents a challenge for how they plan to 

achieve their goals. While forestry and enhanced agricultural practices offer natural methods of 

sequestering carbon, these methods require credible carbon accounting to be effective and can 

realistically remove only a fraction of annual emissions; for example, a 2019 report published the 

National Academies Press estimates that the United States has capacity for only 0.5 gigatonnes 

(Gt) of annual CO2 removal via these methods using current technologies (Committee on 

Developing a Research Agenda for Carbon Dioxide Removal and Reliable Sequestration et al., 

2019, p. 112), a fraction of the 5.13 Gt of energy-related CO2 emissions produced by the U.S. in 

2019 (U.S. EIA, 2020f). Other nascent negative carbon technologies, such as Direct Air Capture 

and Bioenergy with Carbon Capture and Sequestration are costly and still in early stages of 

development. It is unclear whether a cost-effective portfolio of negative emissions technologies 

will be available by 2050 to offset utilities’ remaining CO2 emissions.  

1.2 Why Consider Natural Gas as Part of a Decarbonization Pathway? 

Natural gas-fired power plants accounted for 38% of America’s utility-scale electricity 

generation in 2019, and the percent share of total generation produced by NG has been trending 
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steadily upwards over the past two decades (see Figure 1). NG produces around 45-50% fewer 

CO2 emissions per million metric British thermal units (MMBtu) than coal, and 65% of the decline 

in U.S. power sector emissions between 2005 and 2019 is attributable to the shift away from coal 

to NG (U.S. EIA, 2021a). 

 
Figure 1: U.S. electricity generation by fuel, all sectors. Total generation (billion kilowatthours) (left) and percent share of total 

generation (right). Source: U.S. Energy Information Administration, Short-Term Energy Outlook, June 2021. 

In 2010, NGCC power plants had the lowest average levelized cost of energy (LCOE) of 

all major generator resources, including solar photovoltaic (solar PV), wind, and coal.  However, 

rapid cost declines of VREs means that the average LCOE of both solar PV and wind has fallen 

below that of NG (Lazard, 2020). Nonetheless, natural gas-fired power plants offer grid services 

which VREs, while perhaps cheaper on an LCOE basis, may not be able to provide. First, natural 

gas-fired power plants are dispatchable, which means that they can be turned on or off to produce 

power on demand. Some NG peaker plants, for example, have start up times of less than ten 

minutes (U.S. EIA, 2020e), which means that they can be used to ensure system reliability during 

periods of low VRE penetration. Although grid-scale battery storage coupled with VREs may be 
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able to provide these services, less than a GW of large-scale battery storage was operational in the 

United States at the end of 2018, representing only 1.2 megawatt hours (MWh) of storage capacity 

(U.S. EIA, 2020d, p. 5). Second, the power density of natural gas-fired power plants, that is, the 

electric power produced per unit of land area by a power source, is three orders of magnitude 

greater than that of VREs like solar PV and wind (van Zalk & Behrens, 2018). This means that NG 

power plants can reliably serve an increasing load without widespread land-use impacts.  

Despite the reliability and land use benefits of natural gas-fired power plants compared to 

VREs, NG remains a fossil fuel, and if NG plants continue to emit CO2, they may only be able to 

play a limited role, if any, under deep decarbonization pathways1. However, new technologies 

offer the potential to retrofit NG plants for hydrogen firing or carbon capture and storage (CCS) 

so that they produce low- to zero-emissions, which could allow them to retain their economic value 

even in a low-carbon grid. If such technologies become commercially viable, it would help to 

mitigate the risk of NG plants becoming “stranded assets.”  

1.3 Literature Review 

 There is a growing body of academic literature focusing on low-carbon power grid 

scenarios using various capacity expansion models, many of which suggest possibilities for the 

role of NG in future low-carbon energy systems. Sepulveda et al. (2018) use the GenX capacity 

expansion model to generate optimal resource portfolios across nearly 1,000 emissions, 

geographic, and technology uncertainties. They explore several low emissions intensity scenarios, 

including fully-decarbonized cases, and find that the availability of firm, low-carbon generation 

resources, such as NGCC with CCS and nuclear power, reduce costs 10-62% across fully-

 
1 NG production and transportation is also a major source of methane, a greenhouse gas with substantially greater 
global warming potential than CO2. Grubert et al. (2020) estimate that methane emissions associated with the NG 
system add about 30% to the emissions intensity of natural gas-fired electricity in the United States. However, 
methane emissions are not considered in this analysis.   
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decarbonized scenarios. When firm, low-carbon resources are not included, NG capacity without 

CCS is built across scenarios with emissions intensities as low as 1 gCO2 per kilowatt-hour (kWh). 

MacDonald et al. (2016) use the National Electricity with Weather System (NEWS) model to 

generate a cost-optimized U.S.-wide power system that includes new generation and HVDC 

transmission, and focus on solar PV, wind, and NGCC power plants. They suggest that an optimal 

system under low NG and high VRE costs assumptions would lead to a 33% decrease in grid-wide 

CO2 emissions compared to a 1990 emissions baseline, while high NG prices and low VRE costs 

would lead a 78% reduction in emissions. In both cases, these emissions reductions would be 

achieved without an increase in the LCOE compared to a reference case. Mileva et al. (2016) use 

the SWITCH capacity expansion model to explore how various economic, environmental, and 

technology sensitivities influence resource deployment in the Western Electricity Coordinating 

Council region through 2050 under a CO2 emissions reduction pathway. They find that across most 

scenarios, the “substitution of coal with gas [was] a main carbon-reduction strategy through 2030” 

except in the “Methane Leakage” scenario, which includes assumed methane CO2-equivalent 

emissions from NG use. Doubling the price of NG led to more wind and geothermal resource 

deployment before 2030 but had a limited effect on system composition after 2030. Jayadev et al. 

(2020) develop an optimization model for U.S.-wide electric sector capacity planning and explore 

four scenarios: a no-policy baseline, a no new transmission sensitivity, a pessimistic VRE and 

storage cost sensitivity, and a carbon tax sensitivity. Their results suggest five key policy insights, 

one of which is that “natural gas capacity growth is strong and robust, but utilization of gas capacity 

declines steadily and significantly.”  

 Although each of the aforenoted studies describes a role for new NG capacity in future 

low-carbon grids, NG is not the central focus. Only a handful of papers have centrally evaluated 
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the role of NG under varying regulatory, policy, and financial assumptions. Mignone et al. (2017) 

use the National Energy Modeling System (NEMS) U.S. energy system model with foresight to 

evaluate the effect of a rising future price of CO2 on investments in new NG capacity before 2030. 

They find no material effect on new NG deployment before 2030 under varying carbon pricing 

cases. However, their modeling excludes new storage resources, which are expected to be an 

important part of a renewables-dominant grid. Babaee and Loughlin (2018) use the MARKet 

ALocation (MARKAL) U.S.-wide energy systems optimization model to explore the role of 

NGCC power plants with CCS in a low-carbon energy future from 2005 to 2055. They evaluate 

three emissions reductions scenarios, representing 50%, 40%, and 30% reductions in GHG 

emissions compared to a business-as-usual scenario, in addition to several sensitivities related to 

CCS costs and operational characteristics, and other energy system parameters. They find that 

NGCC provides substantial generation along emissions reductions pathways in the short-term and 

mid-term with the exception of runs with high NG prices, and that a substantial portion of this 

capacity is retrofit with CCS in the long-term. Additionally, they find the methane leakage rate to 

be the strongest factor in contributing to optimal deployment of NGCC with CCS. Riesz et al. 

(2015) use a Monte-Carlo based generation portfolio modeling tool to evaluate the role of NG in 

low-carbon energy pathways in Australia’s National Energy Market region. Their findings suggest 

a decreasing role of NG through 2050, and that portfolios with high amounts of NG capacity are 

costlier and riskier compared than those with high levels of renewables. In addition, they find that 

dispatchable, firm generation would be best provided by transitioning existing coal-fired plants 

into peaker plants rather than building new NG capacity under the lowest cost and lowest risk 

portfolios. 
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 In response to concerns about continued reliance on NG, utilities, in some cases, have 

performed their own analyses to explore system outcomes without new NG generation. For 

example, in its 2020 Integrated Resource Plan, Duke Energy Carolinas (DEC) evaluates a “No 

New Gas Generation Sensitivity” in its sensitivity analysis of potential resource planning 

pathways, citing the “growing interest from environmental advocates and Environmental, Social, 

and Corporate Governance (ESG) investors to understand the impacts of no longer relying on 

natural gas as a bridge fuel to a net-zero carbon future.” (p. 181) In evaluating this sensitivity, DEC 

assumes that coal plants would remain in operation through their “most economic” retirement dates 

to “provide the needed capacity until the nascent technologies needed in the mix can be 

implemented throughout the systems at scale.” (p. 182) DEP finds that they are able to provide 

reliable power without building new NG through the 15-year IRP window, however, plant 

retirements soon after the planning horizon mean that reliably meeting demand will be challenging 

without new NG capacity “until more zero-emitting, load following resources can be deployed.” 

(p. 182) Likely in response to concerns about potential stranding of NG assets, DEC also tested 

the sensitivity of reducing the book life of NGCC and NGCT power plants from the 35 years 

assumed in their base case to 25 years and found “little change in the expansion plan.” (p. 172) 

1.4 Research Contribution 

 This thesis will provide several novel contributions to the growing body of knowledge 

surrounding the role of NG in future low-carbon energy systems. First, it is unclear the extent to 

which the aforementioned studies evaluate the role of NG in a highly electrified future; our analysis 

will assume high electrification in order to better understand how the capacity mix responds to a 

growing electrical load, as would likely occur if we are to achieve a highly decarbonized economy. 

Second, in addition to contributing further insight into commonly tested technology and policy 
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sensitivities such as low VRE and storage costs, we will explore several novel scenarios, including 

the effect of nuclear plant lifetimes, salvage-value assumptions for NG plants, and restrictions on 

new NG construction. Third, there is a gap in research investigating the role for NG specifically 

under deep decarbonization, as opposed to low-carbon, pathways. While studies such as Sepulveda 

et al. (2018) include deep decarbonization scenarios including 1 gCO2/kWh emissions intensity 

and no-emissions cases, they take a “greenfield” approach which lacks inter-annual trends or 

existing “brownfield” capacity. Existing studies which take a multi-period approach, such as 

Babaee and Loughlin (2018), fail to evaluate NG deployment under extremely low emissions 

scenarios. By combining a multi-period approach with multiple deep decarbonization pathways 

which increase in stringency over the planning horizon, this thesis will shed light on how the 

capacity mix will evolve over time in a transition to a deeply decarbonized grid. Furthermore, by 

focusing on a specific region and including existing capacity, our analysis will be granular enough 

to help inform regional resource planning. 

2 Part II: Electric Power in the American Southeast – An Overview 

2.1 Introduction to the American Southeast 

 The American Southeast (see Figure 2, states in dark red) is home to about 62.7 million 

people as of April, 2020 (US Census Bureau, 2021). In 2019, a total of 31.5 million retail electricity 

customers were served by the Southeast’s full-service electricity providers, which include 

investor-owned utilities (IOUs), public entities such as municipal utilities, federal utility providers 

such as the Tennessee Valley Authority (TVA), electricity cooperatives (co-ops), and non-utility 

providers. IOUs serve the majority (57%) of retail electricity customers in the region, although 
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this varies dramatically by state – 75% of retail customers in Florida are served by one of the 

state’s 12 IOUs, while only 1% of retail customers in Tennessee are (U.S. EIA, 2021e).   

 
Figure 2: Map of the American Southeast (in dark red), which includes the states of Alabama, Florida, Georgia, Mississippi, 

North Carolina, South Carolina, and Tennessee. 

 The majority of the Southeast is served by vertically-integrated utilities, with a few 

exceptions – the northeastern corner of North Carolina, in the service area served by Dominion 

Energy, and a small portion of northeastern Tennessee, served by Appalachian Power, are part of 

the PJM regional transmission organization, where utilities bid for power on competitive wholesale 

power markets; the western half of Mississippi, served by Entergy Mississippi, participates in 

MISO-operated wholesale power markets. South Carolina, Georgia, Alabama, and Florida are 

fully served by vertically-integrated utilities. 

2.2 Public Utility Net-Zero Plans 

 The three largest public utilities in the American Southeast – Duke Energy, Dominion 

Energy, and Southern Company – have all set goals of achieving net-zero emissions from 

electricity generation by 2050, and which include 2030 interim targets (see Table 1). Each 

company has announced early-stage plans for how they will achieve these goals. Notably, all three 

companies plan to rely on NG generation to varying degrees and plan to leverage early-stage no- 
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and low-carbon technologies as central elements in achieving their emissions reductions goals. For 

example, Southern Company “expect[s] that natural gas will remain a fuel source it [its] 2050 

operations” due to its “domestic abundance, affordability, and relatively low GHG emissions 

profile,” (Southern Company, 2020, p. 16) and analysis performed by Duke Energy in its 

“Achieving a Net Zero Carbon Future” report, “makes it clear” that Zero-Emitting Load-Following 

Resources like advanced nuclear reactors; carbon capture, sequestration and utilization (CCUS); 

hydrogen; renewable natural gas; and long-duration energy storage technologies will be “needed” 

for it to achieve its net-zero goals (Duke Energy, 2020, p. 5). While they vary in their details, the 

companies’ plans additionally call for expanding VREs like wind and solar PV, increased 

investments in storage resources, increased energy efficiency and demand-side management, and 

phasing out coal-fired power plants.  

 
Table 1: Emissions reductions goals for major investor-owned utilities which operate in the American Southeast, at the time of 

writing. 

2.3 State Climate Policies 

 Most states in the American Southeast lack state-wide climate, clean energy, or GHG 

emissions reductions policies. As of March 2021, only North Carolina has a statewide emissions 

reduction target (C2ES, 2021a). North Carolina Executive Order 80, signed by Governor Roy 

Cooper in October 2018, establishes a statewide target of a 40% reduction in GHG emissions by 

2030, and ordered the Department of Environmental Quality (DEQ) to develop a Clean Energy 

Plan (Cooper, 2018). This plan, published in October 2019, calls for a 70% reduction in GHG 

emissions below a 2005 baseline by 2030, and for the state to become net-zero by 2050 (NC DEQ, 

Company Base Year Interim Target 2050 Target
Duke Energy 2005 50% reduction by 2030 Net-zero
Dominion Energy 2005 55% reduction by 2030 Net-zero
Southern Company 2007 50% reduction by 2030 Net-zero
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2019). While this plan is aligned with Duke Energy’s and Dominion Energy’s mid-century net-

zero goals (both utilities operate in North Carolina), it is more ambitious than both companies’ 

2030 goals. Furthermore, North Carolina is the only state with a renewable portfolio standard 

(RPS) requirement, requiring IOUs to obtain renewable energy certificates accounting for least 

12.5% of retail electricity sales, although South Carolina has a 2% voluntary RPS goal for its IOUs 

(NCLS, 2021). 

2.4 Electric Sector Overview 

2.4.1 Generation and Capacity 

 
Figure 3: Share of utility-scale electricity generation by primary energy source in 2019. Source: EIA-923 and EIA, Monthly 

Energy Review (March 2020), Table 7.2a.  

 In 2019, utility-scale electricity generation in the seven states in the American Southeast 

produced 897 TWh of energy, about 22% of the nation’s total. NG was the predominant source of 

electricity, accounting for 48% of the region’s electrical energy, followed by nuclear at 28%, coal 

at 16%, hydroelectric power at 4.9%, renewables at 3.7%, and petroleum and other sources at 

around 1% (see Figure 3). The share of electric generation from NG and nuclear in the Southeast 
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were notably higher than the national average (at 38% and 20% respectively), and the share of 

electric generation from coal and hydroelectric power notably lower than the national average (at 

23% and 7% respectively). The 3.7% share of generation attributed to renewable energy sources 

was especially low in the Southeast compared to the national average of 10%. 

 
Figure 4: Share of utility-scale electricity generating capacity by primary energy source in 2019. Source: EIA-860 and EIA, 

Electric Power Monthly (February 2020), Table 6.1. 

 

 
Figure 5: Share of utility-scale generating capacity in the American Southeast by resource type from 2010 – 2019. Source: EIA-

860. 
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Utility-scale generation capacity in the Southeast totaled approximately 221 GW in 2019, 

accounting for about 20% of the nation’s total. Compared to generation, capacity by resource type 

in the Southeast is more closely aligned with the national average share of capacity (see Figure 4). 

Over time, changes in the capacity mix in the Southeast has been predominately characterized by 

the steady increase in NG capacity and decline in coal capacity (see Figure 5). In 2010, coal 

accounted for 30.5% and NG for 38% of total electric industry capacity, respectively; by 2019, 

coal accounted for less than 20% of total capacity, and NG for over 49%. Although renewable 

energy sources, at 6% of total capacity, constitute only a small percentage of the 2019 capacity 

mix, renewable capacity has been growing rapidly – total renewable capacity increased over 4.5-

fold since 2010. NG, the second-fastest growing capacity resource over the same period, increased 

only 1.3-fold. 

 
Figure 6: Share of utility-scale electricity generation in the American Southeast by resource type. Source: EIA-923. 
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Figure 7: Share of utility-scale electricity generating capacity in the American Southeast by resource type. Source: EIA-860. 

 Across the states of the Southeast, there is a substantial variation in the breakdown of the 

generation and capacity mix by resource type (see Figure 6 and Figure 7). Containing 27% of the 

Southeast’s total generation capacity and generating 27% of total utility-scale electricity, Florida 

constitutes a substantially larger capacity mix and share of total generation than the other 

Southeastern states; total generation in Florida is about the same as the total generation of the 

smallest three Southeastern states by total generation and capacity – South Carolina, Tennessee, 

and Mississippi – combined. Florida and Mississippi have little to no hydroelectric capacity, while 

hydroelectric power constitutes nearly 20% of the capacity mix in Tennessee. Nuclear power 

accounts 56% of the electricity generated in South Carolina each year, but less than 12% of 

electricity generated in Florida. Figure 8 and Figure 9 show statewide total generation (TWh) and 

capacity (GW) by resource type.  
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Figure 8: Total utility-scale electricity generation in the American Southeast by resource type. Source: EIA-923. 

 
Figure 9: Total utility-scale electricity generating capacity in the American Southeast by resource type. Source: EIA-860. 
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no doubt driven, as discussed earlier, by the transition away from coal and towards NG (see 

Figure 10). 

 
Figure 10: Total electric power industry CO2 emissions in the American Southeast from 1990 to 2019. Source: Source: EIA. 

3 Part III: Experimental Setup 

3.1 The GenX Capacity Expansion Model 

3.1.1 Introduction to GenX 

 GenX (Jenkins et al., 2021) is a high resolution, least-cost capacity expansion model which 

features high temporal granularity, operational detail, and integrated transmission network 

planning (see Figure 11). GenX is open-source and available for public use, and at the time of 

writing, has been used in over a half-dozen peer-reviewed publications.  

GenX can model supply-side generation and storage resources, including long duration 

energy resources, and demand-side flexibility. It is highly customizable and can represent a range 

of new and existing technology types, making it suitable for modeling low-carbon electricity 
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unit commitment of thermal resources, and spinning and operating reserve requirements. GenX is 

compatible with downscaled representations of timeseries data via representative and extreme 

period selection, which allows it to capture inter- and intra-annual operational variability while 

maintaining computational feasibility. It also supports advanced representation of VREs with a 

range of capacity limits and resource availability profiles to support computational efficiency. 

 
Figure 11: Key features of the open-source GenX capacity expansion model, highlighted in blue. Although “multi-year” 

chronological detail is not available in the open-source GenX software at the time of writing, a custom-built software extension 
was developed to permit multi-year modeling. Source: https://genxproject.github.io/. 

 GenX has traditionally been used to model a single year of grid operations, including a 

single investment period. However, planning for future grids with high levels of VREs and 

evolving carbon policies requires detailed modeling of grid operations over multiple planning 

periods. In addition, a multi-period model allows us to incorporate dynamic cost information and 

lifetime retirements for new and existing capacity. 

 The dual dynamic program (DDP) algorithm is a well-known approach for solving multi-

period optimization problems in a computationally efficient manner, first proposed by Pereira and 
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Pinto (1991). This algorithm splits up a multi-period investment planning problem into multiple, 

single-period sub-problems. Each period is solved iteratively as a separate linear program (LP) 

(“forward pass”), and information from future periods is shared with past periods (“backwards 

pass”) so that investment decisions made in subsequent iterations reflect the contributions of 

present-day investments to future costs. 

 

Figure 12: Representation of the forward pass (left) and backwards pass (right) of the dual dynamic programing (DDP) 
algorithm. !"!,# represents the optimal value of the linking variable from period t, iteration k; #$!,#	represents the objective 

function value (total costs) of the optimal solution at period t, iteration k; and &!,# represents the dual variable (shadow price) of 
the linking constraint '! = 	!"!$%,# at period t, iteration k. Source: Lara et al. (2018). 

3.1.2 Multi-Period GenX Model Setup 

 The DDP algorithm was used to link single-period GenX LPs into a multi-year, least-cost 

optimization problem with perfect foresight. We use 6 periods, each five years in length, beginning 

in 2020 and extending up to 2050. Capacity additions and retirements are made at the start of each 

model period, and no capacity additions are allowed in 2020, although retirements are permitted. 

Although each model period simulates a single year of operational behavior, operational costs, 

non-served energy costs, and emissions are scaled up so that each period represents 5 years of 

each. Beginning with the 2025 model period, investment cost assumptions and fixed O&M (FOM) 

cost assumptions from 5 years prior were used, to capture the fact that project financing typically 

occurs years before plants become operational. For example, in the 2025 model period, investment 

cost and FOM cost assumptions for the year 2020 were used. Annual fuel prices, variable O&M 
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(VOM) costs, and hourly load profiles match their corresponding model year; that is, the 2025 

model period uses 2025 fuel prices, VOM costs, and load profiles, for example (see Table 2). 

 
Table 2: Assumed years used for representing investment costs, FOM costs, VOM costs, fuel costs, and hourly load projections 

for each model period. 

 GenX was configured to model unit commitment of thermal power plants under a linear 

relaxation assumption, which has been shown to be a reasonable approximation when considering 

capacity expansion under decarbonization constraints. Network expansion of existing transmission 

was also enabled. However, operating reserves were not modeled due to the substantial increase 

in memory and computational time that this would require.  

 

 

 

 

 

 

 

 

 

Model 
Period

Investment 
Cost Year

FOM Cost 
Year

VOM Cost 
Year

Fuel Cost  
Year

Load Profile 
Year

2020 2020 2020 2020 2020 2020
2025 2020 2020 2025 2025 2025
2030 2025 2025 2030 2030 2030
2035 2030 2030 2035 2035 2035
2040 2035 2035 2040 2040 2040
2045 2040 2040 2045 2045 2045



 33 

3.2 Experimental Sensitivities 

 
Table 3: List of scenarios. Cells in grey indicate parameters in each scenario which differ from the Reference Case. Note that 

SLTE stands for “second lifetime extension.” 

3.2.1 Emissions Reductions Policies 

 We consider the effects of three emissions reduction policies with varying limits on annual 

CO2 emissions, in addition to a fourth, “no emissions policy” scenario, in which there are no limits 

on annual CO2 emissions. All emissions reductions policies were computed relative to a regional 

2007 baseline level of CO2 emissions. This baseline was computed as approximately 500 million 

tonnes (Mt) of CO2 per year over the entire the Southeast model region2, and was used as the 2020 

emissions cap. All three policies require 50% emissions reductions by 2030 compared to this 

 
2 To compute this value, annual CO2 emissions for each of the seven Southeastern states were taken from 2019 EIA 
state-level summary tables. Then, these state totals were scaled according to state-level contributions to each 
Southeast model region according to Table 28, and summed together to get an approximate model region-wide 
annual emissions value. Based on this calculation, 2007 was the year with the greatest historic region-wide 
emissions of 508 Mt of CO2, which we approximate as a 500 Mt emissions baseline for the purpose of this analysis. 

Scenario Name
Scenario 
Number

CO2 
Emissions 
Reduction 

Policy

VRE 
Technology 

Costs

Nuclear 
Second 

Lifetime 
Extentions 

(SLTEs)

Salvage 
Value for 

NG w/o CCS 
After 2050

No New NG 
w/o CCS 

After 2025 
Constraint

Reference Case 0 None Moderate Yes Yes No
NoCO2Limit_LowVRECosts 1 None Low Yes Yes No
NoCO2Limit_NoSLTE 2 None Moderate No Yes No
HighCO2Limit 3 High Moderate Yes Yes No
MedCO2Limit 4 Medium Moderate Yes Yes No
LowCO2Limit 5 Low Moderate Yes Yes No
HighCO2Limit_LowVRECosts 6 High Low Yes Yes No
MedCO2Limit_LowVRECosts 7 Medium Low Yes Yes No
LowCO2Limit_LowVRECosts 8 Low Low Yes Yes No
HighCO2Limit_NoSLTE 9 High Moderate No Yes No
MedCO2Limit_NoSLTE 10 Medium Moderate No Yes No
LowCO2Limit_NoSLTE 11 Low Moderate No Yes No
HighCO2Limit_NG2025 12 High Moderate Yes No No
MedCO2Limit_NG2025 13 Medium Moderate Yes No No
LowCO2Limit_NG2025 14 Low Moderate Yes No No
HighCO2Limit_NGFullCost 15 High Moderate Yes Yes Yes
MedCO2Limit_NGFullCost 16 Medium Moderate Yes Yes Yes
LowCO2Limit_NGFullCost 17 Low Moderate Yes Yes Yes
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baseline, or a model region-wide annual emissions limit of 250 Mt CO2 (see Figure 13 and Table 

4). In 2045, the “high” emissions policy requires a 90% emissions reduction (50 Mt annual CO2 

limit), the “medium” emissions policy requires a 95% reduction (25 Mt annual CO2 limit), and 

the “low” emissions policy requires a 99% reduction compared to this baseline. These three 

scenarios were chosen to represent various mid-century emissions targets that a net-zero strategy 

may aim for, with varying levels of expected emissions offsets.  

In addition to the limits imposed in the 2020, 2030, and 2045 model periods, emissions 

caps were imposed on interim periods. These limits were computed via linear interpolation of 

emissions caps from 2020 to 2030, and from 2030 to 2045. This resulted in an annual emissions 

limit of 375Mt in 2025 under all three policies, and policy-dependent limits for 2035 and 2040. 

 
Figure 13: Annual model region-wide CO2 emissions limits (Mt) by emissions reduction policy. 

  

 

Table 4: Annual model region-wide CO2 emissions limits (Mt) by emissions reduction policy. 
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3.2.2 Technology Advancement  

 We evaluate two technology advancement scenarios, as specified in the National 

Renewable Energy Laboratory’s (NREL’s) 2020 Annual Technology Baseline (ATB) (Akar et al., 

2020) – “moderate” and “advanced” technology advancement. These assumptions are reflected in 

technology costs trajectories, with “moderate” representing mid-level future cost projections and 

“advanced” representing low-level future cost projections. While capital costs and FOM costs for 

thermal generation remain the same under both scenarios, these costs decline more steeply for 

solar PV, wind, and battery storage under the “advanced” technology advancement scenario (see 

Figure 14 and Figure 15). VOM costs do not change for any technologies between the two 

scenarios. 

 
Figure 14: Cost projections ($/kW) for solar PV and onshore wind resources. Source: 2020 NREL ATB, with “Mid” cost 

projections corresponding to “Moderate” technology advancement, and “Low” cost projections corresponding to “Advanced” 
technology advancement. 
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Figure 15: Cost projections for Li-ion battery storage resources, in $/kW for power capacity and $/kWh for energy capacity. 

Source: 2020 NREL ATB, with “Mid” cost projections corresponding to “Moderate” technology advancement, and “Low” cost 
projections corresponding to “Advanced” technology advancement.  

3.2.3 Second Lifetime Extensions for Existing Nuclear Power Plants 

Our default assumption is that all existing nuclear plants in the Southeast receive a second 

lifetime extension (SLTE), which would lead to an 80-year assumed operational lifetime for 

existing nuclear capacity. Under this assumption, there would be no retirements in the existing 

nuclear fleet before 2050 (see Table 5). We assume that there are no re-licensing or refurbishing 

costs associated with SLTEs, and plants continue to operate under the same cost and performance 

assumptions.  

We test the impact of nuclear SLTEs by including scenarios where none are granted. This 

results in a 60-year operational lifetime assumption for all existing nuclear power plants in the 

Southeast region, and for assumed operational capacity to decline from 32.9 GW in the 2020 model 

period to 23.6 GW, 18.6 GW, and 9.5 GW in the 2035, 2040, and 2045 model periods, respectively. 
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Table 5: Existing nuclear capacity included in the Southeast model, including the month and year the plant entered into 

operation, and assumed retirement dates if the plant does and does not receive a second lifetime extension (SLTE) (note that 
Vogtle Units 3 and 4 are included even though they have not yet entered into operation, and therefore an operational start date 
and expected retirement dates under the two assumptions are not included). Total existing nuclear capacity in 2020, plus Vogtle 

Units 3 and 4, is included for reference. Source: EIA-860. 

3.2.4 Salvage Value for Natural Gas without CCS after 2050 

 We explore the effect of financial assumptions related to the salvage value of new NGCT 

and NGCC power plants without CCS. We consider two financial models – one which assumes 

that undepreciated costs post-model horizon of these plants are fully recoverable, and one which 

Plant Name Generator ID
Model 
Region

Nameplate 
Capacity 

(MW) Start Date

Assumed 
Retirement 

Date 
Without 

SLTE

Assumed 
Retirement 

Date 
With 
SLTE

Browns Ferry 1 TVA 1,152 8/1/1974 8/1/2034 8/1/2054
Browns Ferry 2 TVA 1,152 3/1/1975 3/1/2035 3/1/2055
Browns Ferry 3 TVA 1,190 3/1/1977 3/1/2037 3/1/2057
Sequoyah 1 TVA 1,221 7/1/1981 7/1/2041 7/1/2061
Sequoyah 2 TVA 1,221 6/1/1982 6/1/2042 6/1/2062
Watts Bar Nuclear Plant 1 TVA 1,270 5/1/1996 5/1/2056 5/1/2076
Watts Bar Nuclear Plant 2 TVA 1,270 6/1/2016 6/1/2076 6/1/2096
Brunswick Nuclear 1 Carolinas 1,002 3/1/1977 3/1/2037 3/1/2057
Brunswick Nuclear 2 Carolinas 1,002 11/1/1975 11/1/2035 11/1/2055
Catawba 1 Carolinas 1,205 6/1/1985 6/1/2045 6/1/2065
Catawba 2 Carolinas 1,205 8/1/1986 8/1/2046 8/1/2066
H B Robinson 2 Carolinas 769 3/1/1971 3/1/2031 3/1/2051
Harris 1 Carolinas 951 5/1/1987 5/1/2047 5/1/2067
McGuire 1 Carolinas 1,220 9/1/1981 9/1/2041 9/1/2061
McGuire 2 Carolinas 1,220 3/1/1984 3/1/2044 3/1/2064
Oconee 1 Carolinas 887 7/1/1973 7/1/2033 7/1/2053
Oconee 2 Carolinas 887 9/1/1974 9/1/2034 9/1/2054
Oconee 3 Carolinas 893 12/1/1974 12/1/2034 12/1/2054
V C Summer 1 Carolinas 1,030 1/1/1984 1/1/2044 1/1/2064
Edwin I Hatch 1 SoCo 857 12/1/1975 12/1/2035 12/1/2055
Edwin I Hatch 2 SoCo 865 9/1/1979 9/1/2039 9/1/2059
Joseph M Farley 1 SoCo 888 12/1/1977 12/1/2037 12/1/2057
Joseph M Farley 2 SoCo 888 7/1/1981 7/1/2041 7/1/2061
Vogtle 1 SoCo 1,160 5/1/1987 5/1/2047 5/1/2067
Vogtle 2 SoCo 1,160 5/1/1989 5/1/2049 5/1/2069
Vogtle 3 SoCo 1,250 - - -
Vogtle 4 SoCo 1,250 - - -
St Lucie 1 Florida 1,080 5/1/1976 5/1/2036 5/1/2056
St Lucie 2 Florida 1,080 6/1/1983 6/1/2043 6/1/2063
Turkey Point 3 Florida 877 12/1/1972 12/1/2032 12/1/2052
Turkey Point 4 Florida 760 9/1/1973 9/1/2033 9/1/2053

Total Assumed Existing Nuclear Capacity: 32.9 GW
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requires that all capital costs be paid in full before the end of the model horizon. We call the first 

the “rental” financial model, and the second the “full-cost” financial model. 

3.2.4.1 Rental Financial Model 

 In the rental financial model, annualized investment costs are modeled as rental payments 

for each year’s use of a capital asset. We only pay for the years in which the capital asset is able 

to be used – that is, the model does not consider annualized investment costs which would occur 

after the model horizon.  

The annualized investment cost (AIC) of an asset in period p with weighted cost of capital 

!"## and overnight capital cost #!"#$%&'() is computed using the following formula: 

"$#* = 	!"## ∗ #
!"#$%&'()

1 − (1 +!"##)+, 

where - is the economic lifetime of the asset. The adjusted total capital cost under the “rental” 

financial model, #-#%)./, which equals the discounted sum of the annual “rents” paid for within 

the model horizon, is computed as follows: 

#*-#%)./ = . "$#*
(1 +!"##)&

0123,,5!6

&78
 

where /* is the number of years remaining between the start of period 0 and the end of the planning 

horizon. Note that when - ≤ /*, #*-#%)./ =	#!"#$%&'() that is, the sum of rental payments is equal 

to the overnight capital cost. When /* < -, however, #*-#%)./ < #!"#$%&'(), that is, the sum of 

rental payments is less than the overnight capital cost. 

 For example, suppose we build a capital asset in 2030 with an overnight capital cost of 

$1,000,000, and an economic lifetime of 30 years. With a WAAC of 4.5%, this translates to an 

annualized investment cost of about $67,000. If the model horizon only extends through 2050, 
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however, we would only pay this amount annually for 20 years, not the full 30 years of the assets’ 

economic life. This means that from the model’s perspective, the adjusted total capital cost equals 

the discounted sum of these rents over this 20-year period, which is about $800,000.  

3.2.4.2 Full-cost Financial Model 

In the “full-cost” financial model, we assume that there is no salvage value for NG assets 

without CCS beyond the model horizon; that is, they become “stranded assets” without any useful 

economic value after 2050. Therefore, the full-cost financial model requires that all capital costs 

of new NG plants without CCS be paid in full within the model horizon. This means that 

#*9://+;<=) =	#!"#$%&'() for all periods 0. 

3.2.5 CCS Requirement for New Natural Gas Beginning in 2030 

 We consider the effects of limiting all deployment of new NG capacity beginning in 2030 

to include CCS. This constraint means that all NG power plants without CCS may only be built in 

the 2025 model period.  

3.2.6 Reference Case 

A reference case is established as a baseline against which to compare how the sensitivities 

described above impact relative costs, emissions, and capacity mixes. The reference case does not 

include a CO2 emissions policy (i.e., emissions are unconstrained), uses “moderate” technology 

advancement assumptions (i.e., baseline costs for VREs and battery storage), assumes that SLTEs 

are granted for all existing nuclear power plants (i.e., all existing nuclear capacity remains online 

through the 2050 planning horizon), assumes full salvage value for all resources post-planning 

horizon (i.e., “rental” financial model for all assets), and imposes no constraints on when new NG 

capacity may be deployed (i.e., new NG capacity may be built any model period besides the first, 

when no new investments of any kind are allowed) (see Table 3, Scenario Number 0). 



 40 

3.3 Southeast Power Sector Model 

3.3.1 Model Regions 

 
Figure 16: Geographic boundaries of the Southeast model, by model region.  

 Four model regions from the United States Environmental Protection Agency’s (EPA’s) 

Power Sector Modeling Platform v6 Integrated Planning Model (IPM) (EPA, 2018, p. 40) were 

used to define the boundaries of the Southeast model (see Figure 16). These regions are S_C_TVA, 

S_VACA, S_SOU, and FRCC, which will be referred to here as “TVA,” “Carolinas,” “SoCo,” 

and “Florida” respectively (see Table 6). These four model regions include parts of the seven 

Southeastern states outside of wholesale power markets (see section 2.1). 

 
Table 6: IPM regions from EPA’s Integrated Planning Model and their corresponding representations in the Southeast model. 

IPM Region
Name in Southeast 

Model
S_C_TVA TVA
S_VACA Carolinas
S_SOU SoCo
FRCC Florida
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3.3.2 Resource Types 

 
Table 7: List of resources included in the Southeast model, including whether each resource type includes representations of 

brownfield capacity and whether it is eligible for capacity additions. 

 The Southeast model is configured to represent 17 unique resources in each model region. 

Seven of these resource types exclusively represent existing, or “brownfield” capacity, and are not 

eligible for new capacity additions, but may be retired owing to lifetime of economic 

considerations (see Table 7). Brownfield thermal resource types not eligible for new capacity 

additions include existing NGCC plants (NGCC_bf), existing NGCT plants (NGCT_bf), existing 

NG steam turbine plants (NGST_bf), existing coal plants (Coal_bf), and existing nuclear plants 

(Nuclear_bf). Brownfield hydroelectric resources not eligible for new capacity additions include 

run-of-river hydroelectric plants (Hydro_RoR_bf) and reservoir hydroelectric plants 

(Hydro_Res_bf). Other resource types are used to exclusively represent new, or “greenfield,” 

Resource 
Label Full Resource Name

Includes 
Brownfield 
Capacity?

Eligible for 
Capacity 

Expansion?
Coal_bf Conventional Steam Coal Yes No
Hydro_Res_bf Reservoir Hydroelectric Yes No
Hydro_RoR_bf Run-of-River Hydroelectric Yes No
NGCC_bf Natural Gas Fired Combined Cycle Yes No
NGCT_bf Natural Gas Fired Combustion Turbine Yes No
NGST_bf Natural Gas Steam Turbine Yes No
Nuclear_bf Nuclear Yes No
PHS Hydroelectric Pumped Storage Yes Yes
Solar_PV Solar Photovoltaic Yes Yes
Wind_1 Onshore Wind Turbine Yes Yes
Wind_2 Onshore Wind Turbine Yes Yes
Wind_3 Onshore Wind Turbine Yes Yes
Li-ion Lithium-ion Battery Storage No Yes
NGCC Natural Gas Fired Combined Cycle No Yes
NGCC_CCS Natural Gas Fired Combined Cycle w/ CCS No Yes
NGCT Natural Gas Fired Combustion Turbine No Yes
Nuclear Nuclear No Yes
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capacity additions. These resources include new combined cycle NG plants (NGCC), new 

combined cycle NG plants with CCS (NGCC-CCS), new combustion turbine NG plants (NGCT), 

new nuclear plants (Nuclear), and new utility-scale Li-ion battery storage facilities (Li-ion). 

Finally, some resource types are used to represent both existing capacity and new capacity 

additions. These include utility-scale solar photovoltaic facilities (Solar_PV), pumped 

hydroelectric storage facilities (PHS), and onshore wind turbine facilities. The onshore wind 

resource type is broken down into three sub-types in each model region, representing the 

differences in grid interconnection costs and wind availability profiles associated with different 

types of developable sites in that region (Wind_1, Wind_2, and Wind_3) as per Brown and 

Botterud (2021)3. 

3.3.3 Existing Energy Resources 

 
Figure 17: Brownfield capacity (GW) in each Southeast model region for each of the EIA technology types, with the 

“Conventional Hydroelectric” resource type broken down into “Run-of-River Hydroelectric” and “Reservoir Hydroelectric” 
subtypes. Source: EIA-860. 

 
3 We do not consider offshore wind resources due to data limitations; however, we acknowledge that the American 
Southeast has substantial offshore wind development potential and that offshore wind projects are being actively 
considered by utilities in the region.  
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Table 8: Brownfield capacity (GW) in each Southeast model region for each of the EIA technology types, with the “Conventional 
Hydroelectric” resource type broken down into “Run-of-River Hydroelectric” and “Reservoir Hydroelectric” subtypes. Source: 

EIA-860. 

The 2018 United States Energy Information Agency (EIA) EIA-860 form data (U.S. EIA, 

2021c) was used to compute total existing capacity of the brownfield resource types listed above 

in each of the four model regions (see Figure 17 and Table 8). The Southeast model includes the 

following subset of technologies included in the EIA-860 form: “Solar Photovoltaic,” “Onshore 

Wind Turbine,” “Nuclear,” “Natural Gas Steam Turbine,” “Natural Gas Fired Combined Cycle,” 

“Natural Gas Fired Combustion Turbine,” “Conventional Steam Coal,” “Conventional 

Hydroelectric,” and “Hydroelectric Pumped Storage.” “Conventional Hydroelectric” was 

subdivided into two subsets, “Run-of-River Hydroelectric” and “Reservoir Hydroelectric” based 

on individual plant classifications from the 2019 Oak Ridge National Laboratory Existing 

Hydropower Assets Plant Dataset (Johnson et al., 2019). Additionally, values for existing nuclear 

capacity in the SoCo region as computed from the EIA-860 data were augmented by 2.50 GW, the 

combined capacities of the Vogtle 3 and 4 units under construction in Georgia, and which are 

expected to be completed in 2022. Although the EIA-860 data includes a number of additional 

resource types that contribute to existing capacity, this selection account for 95% of the existing 

capacity across the four model regions. 

TVA Carolinas SoCo Florida
Conventional Steam Coal 7,150         16,746       19,000       7,307         
Hydroelectric Pumped Storage 1,809         2,657         1,635         0
Natural Gas Fired Combined Cycle 9,924         9,363         19,846       32,343       
Natural Gas Fired Combustion Turbine 5,268         10,904       12,398       9,000         
Natural Gas Steam Turbine 63              589            4,064         2,543         
Nuclear 8,475         12,270       8,318         3,797         
Onshore Wind Turbine 29              0 0 0
Reservoir Hydroelectric 2,735         834            2,939         0
Run-of-River Hydroelectric 1,537         1,623         1,144         12              
Solar Photovoltaic 293            3,584         1,239         1,282         
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3.3.3.1 Existing Thermal Power Plant Economic and Operational Characteristics 

 The PowerGenome data aggregation software (Schivley, 2021) was used to obtain the 

FOM costs ($/MW-yr), VOM costs ($/MWh), average heat rate (MMBtu/MWh), and minimum 

power output (%), for fossil fuel-fired power plants in each of the four model regions.4 These 

parameters are summarized in Table 9, below. 

 

 

 

 

 

 

 
4 To address a data anomaly in the PowerGenome data in the average heat rate of existing natural gas-fired steam 
turbines in the Florida model region, the original value was replaced by the average of heat rates from the other three 
model regions. This value is noted with an asterisk (*) in Table 9.   
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Table 9: Economic and operational parameters for NGCC_bf, NGCT_bf, NGST_bf, and Coal_bf resource types. The value 

marked with an asterisk (*) represents a manually adjusted data field; see footnote 4 in the text for details. Source: 
PowerGenome data aggregation software (available at https://github.com/PowerGenome/PowerGenome). 

 

 

 

Region
FOM Cost 

($/MW-yr)
VOM Cost 
($/MWh)

Heat Rate 
(MMBtu/MWh)

Minimum 
Power Output

TVA 10,019 3.50 6.92 37%
Carolinas 10,641 3.56 7.27 42%
SoCo 11,606 3.58 7.27 53%
Florida 12,078 3.58 7.35 70%

Region
FOM Cost 

($/MW-yr)
VOM Cost 
($/MWh)

Heat Rate 
(MMBtu/MWh)

Minimum 
Power Output

TVA 7,326 11.30 14.75 46%
Carolinas 7,477 11.30 12.17 54%
SoCo 7,546 11.30 11.84 58%
Florida 7,697 11.30 12.92* 45%

Region
FOM Cost 

($/MW-yr)
VOM Cost 
($/MWh)

Heat Rate 
(MMBtu/MWh)

Minimum 
Power Output

TVA 17,798 7.35 10.35 40%
Carolinas 49,776 1.00 11.55 28%
SoCo 30,518 1.00 11.58 34%
Florida 29,173 1.00 11.17 15%

Region
FOM Cost 

($/MW-yr)
VOM Cost 
($/MWh)

Heat Rate 
(MMBtu/MWh)

Minimum 
Power Output

TVA 60,901 1.80 10.93 45%
Carolinas 59,806 1.80 10.18 34%
SoCo 59,412 1.80 10.32 49%
Florida 58,567 1.80 10.65 38%

Existing Conventional Stem Coal (Coal_bf)

Existing Natural Gas Fired Combined Cycle (NGCC_bf)

Existing Natural Gas Fired Combustion Turbine (NGCT_bf)

Existing Natural Gas Fired Steam Turbine (NGST_bf)
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 Economic and operational characteristics of existing nuclear power plants are taken from 

Sepulveda, et al. (2018). Unlike those of existing fossil fuel-fired power plants, the operational 

characteristics of existing nuclear power are assumed to be identical across all model regions. 

These parameters are summarized in Table 10, below. 

 
Table 10: Economic and operational parameters for the Nuclear_bf resource type. Source: Sepulveda, et al. (2018). 

To model unit commitment of thermal resources, GenX requires parameters characterizing 

start-up costs, start-up fuel requirements, ramp-up and ramp-down rates, and minimum up-times 

and minimum down-times. These unit commitment parameters for existing thermal resources, 

which are identical across model regions and all model periods, are summarized in Table 11, 

below. 

 
Table 11: Economic and operational parameters associated with unit commitment for existing fossil resource types. 

3.3.3.2 Existing Hydroelectric Plant Economic and Operational Characteristics 

 Like existing nuclear capacity, existing reservoir, run-of-river, and pumped storage 

hydroelectric facilities are assumed to have the same cost and operating characteristics across 

model regions. FOM and VOM costs for Hydro_RoR and Hydro_Res were taken from the 2018 

FOM Cost 
($/MW-yr)

VOM Cost 
($/MWh)

Heat Rate 
(MMBtu/MWh)

Minimum 
Power Output

118,988 2.32 10.46 50%

Existing Nuclear (Nuclear_bf)

Resource
Start Cost 

($/MW/start)

Start Fuel 
(MMBtu/ 

MW/start) Ramp Up Ramp Down
Up Time 

(Hrs.)
Down Time 

(Hrs.)
NGCC_bf 79 9.00 100% 100% 1 1
NGCT_bf 52 0.22 100% 100% 4 4
NGST_bf 75 9.00 16% 16% 12 12
Coal_bf 120 13.70 57% 57% 24 24
Nuclear_bf 1,000 0.00 25% 25% 36 36
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NREL ATB (Vimmerstedt et al., 2018), and those for PHS from Immendoerfer et al. (2017) which 

are summarized in Table 12 and Table 13, below. 

 

Table 12: Economic and operational parameters associated with Hydro_RoR and Hydro_Res resources. Source: 2018 NREL 
ATB NPD4 Mid Cost Case. 

 
Table 13: Economic and operational parameters associated with PHS resources. Source: Immendoerfer et al. (2017) 

3.3.4 New Energy Resources 

The 2020 NREL ATB was used to obtain economic and operational characteristics of new 

natural gas-fired power plants (the ATB technology types “Natural Gas Fired Combined Cycle,” 

“Natural Gas Combustion Turbine,” and “Natural Gas Combined Cycle with Carbon Capture, 

Utilization, and Storage,” which correspond to the NGCT, NGCC, and NGCC-CCS technology 

types used in our Southeast model, respectively), nuclear (“Nuclear”) and VRE (“Utility Scale 

Solar Photovoltaic” and “Land-Based Wind,” corresponding to Solar_PV and Wind) resource 

types, respectively. These parameters were supplemented with those from various additional data 

sources which are noted below. We assume a 30-year capital recovery period (CRP) and “Market 

Factor” financials for all these technologies. The 2020 ATB is also used for Li-ion battery storage 

(Li-ion) economic and operational assumptions, where a 20-year CRP is assumed. For all 

technologies, we assume an after-tax weighted average cost of capital (WACC) of 4.5% (see Table 

29 for a summary of key model parameters and assumptions). 

Resource
FOM Cost 

($/MW-yr)
VOM Cost 
($/MWh)

Minimum 
Power Output

Reservoir Hydroelectric (Hydro_RoR) 14,000 0.02 10%
Run-of-River Hydroelectric (Hydro_Res) 14,000 0.02 0%

FOM Cost 
($/MW-yr)

VOM Cost 
($/MWh)

Charging 
Efficiency

Discharging 
Efficiency

41,000.00 1.00 89% 89%

Existing Hydroelectric Pumped Storage (PHS)
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3.3.4.1 Thermal Resources 

 
Figure 18: Overnight investment cost projections ($/kW) for new natural gas resources. Source: 2020 NREL ATB. 

 

 
Figure 19: Overnight investment cost projections ($/kW) for new nuclear power plants. Source: 2020 NREL ATB. 

 

The “AverageCF” capacity factor (CF) assumption was used for each of the three new NG 

resources. Table 14 summarizes the cost and operational parameters for new thermal power plants 
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during 2020, and Figure 18 and Figure 19 show overnight investment cost projections, in 

$/kilowatt-hour ($/kW), for new thermal power plants through 2045. 

 
Table 14: Cost and operational parameter assumptions for new thermal power plants for the 2020 model period. Source: 2020 

NREL ATB. 

Additional technical characteristics of thermal power plants, including those required for 

modeling unit commitment and minimum stable power output parameters, are summarized in 

Table 15, below. These parameters are identical across model regions and all model periods. 

 
Table 15: Additional cost and operational parameter assumptions for new thermal power plants. 

3.3.4.2 Variable Renewable Energy Resources 

The 2020 NREL ATB was used for investment costs and FOM costs for solar PV and wind 

resources.  “Class 5” assumptions were used for wind resources. Although the 2020 ATB specifies 

an $0/MWh VOM cost for onshore wind, this value was set to $.01/MWh to ensure that solar PV 

is dispatched first by the model. Table 16, below, summarizes the cost and operational parameters 

in 2020 and Figure 14 shows overnight investment cost projections ($/kW) for new solar PV and 

wind resources through 2045. 

. 

Resource

Overnight 
Investment Cost 

($/MW)
FOM 

($/MW-year)
VOM 

($/MWh)

Heat Rate 
(MMBtu/

MWh)
NGCT 973,606 11,395 4.50 9.51
NGCC 1,065,941 12,863 2.16 6.40
NGCC–CCUS 2,697,020 26,994 5.72 7.12
Nuclear 7,112,287 118,988 2.32 10.46

Resource
Capacity Size 

(MW)
Start Cost 

($/MW/start)

Start Fuel 
(MMBtu/ 

MW/start) Ramp Up Ramp Down
Up Time 

(Hrs.)
Down Time 

(Hrs.)

Minimum 
Stable 
Output

NGCT 237 140 0.19 100 100 0 0 25%
NGCC 573 61 0.20 100 100 4 4 30%
NGCC-CCUS 377 97 0.20 100 100 4 4 50%
Nuclear 1,000 1,000 0.00 100 100 36 36 20%
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Table 16: Cost and operational parameter assumptions for solar PV and wind resources for the 2020 model period. Source: 

2020 NREL ATB. 

Model region-specific interconnection costs, generated via the software tools developed in 

Brown and Botterud (2021), are added to the above overnight investment costs as specified in 

Table 17, below. 

 
Table 17: Interconnections cost adders ($/MW) for solar and wind resources. Computed via software tools introduced in Brown 

and Botterud (2020). 

Additionally, solar PV and wind resources are subject to maximum installed capacity 

constraints, computed using the same software tools, and specified in Table 18, below. 

 
Table 18: Maximum capacity limits (MW) for solar and wind resources. Computed via software tools introduced in Brown and 

Botterud (2020). 

Finally, solar PV and wind resources were subject to maximum installation limits for the 

2025, 2030, and 2035 model periods. A single instillation limit was applied to the three wind 

Resource

Technology 
Advancement 

Assumption

Overnight 
Investment Cost 

($/MW)
FOM

 ($/MW-year)
VOM 

($/MWh)
Advanced 1,340,034 15,694 0.00
Moderate 1,353,543 15,852 0.00
Advanced 1,556,755 41,734 0.01
Moderate 1,578,350 42,496 0.01

Solar_PV

 Wind

Region Solar_PV Wind (Bin 1) Wind (Bin 2) Wind (Bin 3)
TVA 74,563           114,464       157,338       102,886       
Carolinas 43,015           68,955         70,192         66,547         
SoCo 53,837           78,887         114,347       130,954       
Florida 30,200           37,898         68,386         93,796         

Interconnection Cost Adder ($/MW)

Region Solar_PV Wind (Bin 1) Wind (Bin 2) Wind (Bin 3)
TVA 2,420,648      179,342       96,299         23,181         
Carolinas 2,035,425      157,135       73,001         11,349         
SoCo 2,758,571      155,550       190,210       54,325         
Florida 933,392         18,245         73,346         31,618         

Maximum Capacity Limits (MW)
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resource bins in aggregate. These limits were derived from the 2030 “Step 1” capacity limit used 

in the EPA's Power Sector Modeling Platform v6 for “Solar PV” and “Onshore Wind” as specified 

in Table 4-14 in “2020 Update” documentation (EPA, 2020a). These nationwide annual capacity 

limits were scaled down proportional to the share of 2019 U.S.-wide annual generation attributed 

to the Southeast model regions and multiplied by 5 to reflect the 5-year timespan of each model 

period, resulting in a 48,053 MW/period limit for solar PV, and 78,941 MW/period limit for wind. 

These installation limits are summarized in Table 19, below. 

 
Table 19: Maximum installation limits each model period (MW/period) for solar PV and wind resources. “N/A” is specified in 

Period 1 since no capacity additions of any kind are allowed. 

For reference, average CFs of solar PV and wind resources is summarized in Table 20, 

below. 

 
Table 20: Average capacity factors (%) of solar PV and wind resources. Source: NREL EFS load profile with “High” 

electrification and “Moderate” technological advancement. 

3.3.4.3 Lithium-ion Battery Storage Resources 

The 2020 NREL ATB was used for investment costs of Li-ion battery storage (see Figure 

15), and operational assumptions were provided by MIT researchers on the electrochemical team 

of the upcoming Future of Storage Study. Note that costs for discharging power (MW) and energy 

capacity (MWh) are considered separately in the model, which allows it to optimize the duration 

of storage discharged at rated power within the specified range. These parameters are summarized 

Peroid 1 Period 2 Period 3 Period 4 Period 5 Period 6
Solar_PV N/A 48,053  48,053  48,053  None None
Wind N/A 78,941  78,941  78,941  None None

Maximum Installation Limits (MW/period)

Region Solar_PV Wind (Bin 1) Wind (Bin 2) Wind (Bin 3)
TVA 24% 37% 31% 21%
Carolinas 25% 37% 29% 20%
SoCo 26% 35% 32% 28%
Florida 27% 33% 31% 29%

Average Capacity Factors (%)



 52 

in Table 21 and Table 22, below, for 2020, and Figure 15 shows overnight investment cost 

projections ($/kW and $/kWh) for new Li-ion battery storage discharge and energy capacity 

through 2045. 

 
Table 21: Investment cost assumptions for Li-ion battery storage in the 2020 model period. Source: 2020 NREL ATB. 

 

 
Table 22: Cost and operational parameter assumptions for Li-ion battery storage in the 2020 model period. 

3.3.4.4 Pumped Hydroelectric Storage Resources 

Pumped hydroelectric storage supply curves from the 2018 Hydropower Vision study 

(O’connor et al., 2016) at the Regional Energy System Deployment model (ReEDs) balancing area 

(BA) level were used to estimate capital costs and maximum capacity limits for new facilities. For 

each ReEDs BA, four bins were provided which represent PHS sites at different costs per MWh. 

ReEDs BAs were aggregated to approximate the PHS storage potential within each of the four 

Southeast model regions. Where the ReEDs BA intersected only a portion of an IPM region, the 

resource potential was scaled down proportional to the intersected area.  

The supply curve data suggests that there is potential for new PHS investment only in the 

SoCo and TVA model regions, although EIA-860 data indicates that there is already existing PHS 

capacity in the Carolinas model region. We limit PHS maximum allowable capacity to that of the 

Technology 
Advancement 

Assumption

Overnight Discharge 
Investment Cost 

($/MW)

Overnight Energy 
Investment Cost 

($/MWh)
Advanced 214,966 246,899
Moderate 260,021 298,647

Lithum-ion Battery Storage (Li-ion)

Technology 
Advancement 

Assumption
FOM Discharging 
Cost ($/MW-yr)

FOM Energy 
Cost ($/MW-yr)

VOM Cost 
($/MWh)

Charging 
Efficiency

Discharging 
Efficiency

Minimum 
Duration 

(Hrs.)

Maximum 
Duration 

(Hrs.)

Self-
Discharge 

(Fraction/Hr.)
Advanced 250 1,420 1.00 92% 92% 0.25 200 0.002
Moderate 750 2,230 1.00 92% 92% 0.25 200 0.002

Lithum-ion Battery Storage (Li-ion)
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lowest-cost bin in each respective region, plus total existing capacity, and only allow new PHS 

capacity to be built in the TVA and SoCo regions. The capital costs and maximum new PHS 

capacities allowed in each model region are summarized in Table 23, below. 

 
Table 23: Investment costs ($/MW) and maximum capacity limits (MW) for PHS. Source: Analysis of 2018 Hydropower Vision 

study PHS supply curves. 

Additional technical assumptions for new PHS are identical to those of existing PHS facilities, 

which are summarized above in Table 13. 

3.3.5 Technology Lifetimes and Brownfield Retirements 

All technologies were assigned an operational lifetime, and each technology’s economic 

lifetime (used to compute annual investment costs) was assumed to be equal to its operational 

lifetime. Plant retirement data from the EPA’s eGRID2019 dataset (EPA, 2020b) was used to 

compute capacity-weighted average lifetimes of fossil fuel-fired power plants. Lifetimes for new 

and existing NGCC and NGCT power plants, as well as existing natural gas steam turbine (NGST) 

power plants, were computed based on a nation-wide capacity weighted average of plant 

retirement ages, while lifetimes for existing coal plants approximate the capacity weighted average 

retirement age of coal plants within each Southeast model region using data from the closest 

approximate eGrid region (“SRTV” eGrid region corresponding to “TVA”, SRVC corresponding 

to the Carolinas, “SRSO” corresponding to SoCo, and “FRCC” corresponding to Florida). Nuclear 

power plants are assumed to have either a 60 or 80-year operational life, based on whether we 

Region

Maximum 
Capacity 

(MW)

Overnight 
Investment Cost 

($/MW)
TVA 4,450         1,509,439        
SoCo 2,535         1,894,728        

 Hydroelectric Pumped Storage (PHS)
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assume that all existing nuclear plants receive a SLTE. Table 24, below, summarizes lifetimes of 

all resources across model regions. 

 
Table 24: Operation and economic lifetime assumptions for resources in the Southeast model. 

Based on the model region- and resource-specific lifetimes, total expected lifetime 

retirements were computed for existing capacity of each resource type for each model period. For 

each existing generating facility, we added its assumed operational lifetime to the year the facility 

began operation (specified by the “Operating Year” field in the EIA-860 dataset) to obtain the year 

we expect that facility to retire. We require the model to retire that facility at the start of the first 

model period whose year exceeds or equals the expected retirement year. For example, suppose a 

coal plant located within the SoCo model region was built in the year 1990. Since we assume that 

coal plants located in this region have a lifetime of 51 years, we would expect the plant to retire in 

2041. Using 5-year model periods beginning in the year 2020, the first period which exceeds this 

expected retirement year is the 2045 model period. Thus, we would “retire” that plant at the start 

of the 2045 model period. 

Resource
TVA Carolinas SoCo Florida

Conventional Steam Coal 59 54 51 40
Hydroelectric Pumped Storage 50 50 50 50
Natural Gas Fired Combined Cycle 27 27 27 27
Natural Gas Fired Combustion Turbine 44 44 44 44
Natural Gas Steam Turbine 55 55 55 55
Nuclear 60/80 60/80 60/80 60/80
Onshore Wind Turbine 30 30 30 30
Reservoir Hydroelectric 100 100 100 100
Run-of-River Hydroelectric 100 100 100 100
Solar Photovoltaic 30 30 30 30
Li-ion Battery Storage 15 15 15 15
Natural Gas Fired Combined Cycle w/CCS 30 30 30 30

Lifetime (yrs.)
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3.3.6 Fuel Types and Costs 

 The 2020 EIA Annual Energy Outlook (AEO) (U.S. EIA, 2020a) Reference Case was used 

for the fuel costs associated with NG, coal, and nuclear power plants. “Electric Power” fuel costs 

in $/MMBtu for “natural gas,” “steam coal,” and “uranium,” were used for each of these resource 

types, respectively. Additional EIA data (U.S. EIA, 2021b) was used to establish CO2 content for 

each fuel type, in tonnes per MMBtu (see Table 26). Since the coal-fired power plants in the 

Southeast use coal from both the western and eastern United States (U.S. EIA, 2013), we use the 

average of CO2 emissions per MMBtu of bituminous and subbituminous coal to approximate the 

emissions rate from these facilities. NGCC plants with CCS were assumed to have a 90% CO2 

capture rate, and a capture and sequestration cost of $20/tonne CO2. Fuel costs and CO2 content 

are summarized in Table 25 and Figure 20, below. 

 
Table 25: Fuel cost projections from 2020 to 2050. NGCC plants with CCS were assumed to have a 90% CO2 capture rate, and a 

capture and sequestration cost of $20/tone CO2. Source: 2020 EIA AEO Reference Case. 

 
Figure 20: Fuel cost projections from 2020 to 2045. Source: 2020 EIA AEO Reference Case. 

Year 2020 2025 2030 2035 2040 2045 2050
Uranium 0.67 0.68 0.69 0.70 0.71 0.72 0.73
Coal 2.05 1.94 1.94 1.94 1.94 1.94 1.94
Natural Gas 2.64 3.29 3.61 3.72 3.78 3.83 4.04
Natural Gas w/ CCS 3.60 4.25 4.57 4.68 4.75 4.79 5.00Fu
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Table 26: CO2 content of fuel sources. Source: EIA. 

3.3.7 Network Topology and Costs 

The Southeast model includes representations of four high-voltage transmission lines 

which connect, from source to sink, SoCo to TVA, Carolinas to TVA, SoCo to Florida, and 

Carolinas to SoCo. Transmission lines are assumed to be 500 kilovolts (kV) and line distances 

were computed by approximating the straight-line distance between the geographic center of each 

model region using a geospatial mapping tool. Maximum transmission line capacity values were 

taken from Table 3-20 of the EPA Platform v6 model documentation (EPA, 2018). Transmission 

loss percentages were approximated as 0.01% of line distance. These parameters are summarized 

in Table 27, below. 

 
Table 27: Transmission line representations in the Southeast model. 

Transmission network expansion was enabled in GenX, and all transmission lines were 

eligible for reinforcement up to 30,000 MW of capacity. New transmission lines were assumed to 

have a CRP of 40 years and after-tax WAAC of 4.5%. Line reinforcement costs, adopted from 

Fuel Type
CO2 Content 

(tonnes/MMbtu)
Uranium 0.0000
Coal 0.0953
Natural Gas 0.0531
Natural Gas w/ CCS 0.0053

Transmission Line

Line 
Capacity 

(MW)

Line 
Distance 

(km)
Transmission 

Loss
SoCo to TVA 5,554    370       0.037           
Carolinas to TVA 276       590       0.059           
SoCo to Florida 3,600    600       0.060           
Carolinas to SoCo 3,000    500       0.050           
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Section 6.2 of the ReEDs Version 2019 documentation (M. Brown et al., 2020), were assumed to 

be $960 /MW-km for new 500 kV transmission lines. 

3.3.8 Load Timeseries Data 

 State-level load data are derived from the 2018 NREL Electrification Futures Study (EFS) 

(Mai et al., 2018) load profiles. Load data for even years (2020, 2030, 2040, and 2050) were taken 

directly from the study’s dataset; load data for odd years (2025, 2035, 2045) were approximated 

by interpolating data from the even-numbered years. For example, 2025 load was approximated 

as the pointwise average of projected hourly load in 2020 and 2030. Load profiles represent the 

“High” electrification and “Moderate” technological advancement scenarios, and leap days were 

removed. 

 State-level load data from the EFS dataset was aggregated to approximate total load for 

each of the four model regions. Utility customer sales data from the 2018 EIA-861 dataset (U.S. 

EIA, 2021e), labeled by balancing area (BA), were used to approximate the percentage of each 

state’s total load to be assigned to each model region. Then, state-level load profiles from the EFS 

dataset were aggregated using weightings proportional to these values to generate region-specific 

load profiles. The BAs corresponding to each model region, and the percentage of each state’s load 

assigned to each model region, are summarized in Table 28, below. 

 
Table 28: Percent of statewide 2018 utility customer sales attributed to each of the four Southeast model regions, aggregated by 

balancing area. Source: 2018 EIA-861. 

Region TVA Carolinas SoCo Florida
Tennessee 98.0% 0.0% 0.0% 0.0%
Alabama 26.2% 0.0% 73.8% 0.0%
North Carolina 0.6% 95.3% 0.0% 0.0%
South Carolina 0.0% 100.0% 0.0% 0.0%
Georgia 2.4% 0.0% 97.6% 0.0%
Florida 0.0% 0.0% 5.6% 94.4%
Mississipi 32.3% 0.0% 23.3% 0.0%

Percent of Total Customer Sales

St
at

e
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The region-specific load profiles were then adjusted to account for power interchange 

between BAs within the four Southeast model regions and those outside of them. There are six 

interconnections to consider which allow for such power interchange: SOCO-MISO, TVA-AECI, 

TVA-EEI, TVA-LGEE, TVA-MISO, and TVA-PJM. EIA-930 form data downloaded via the 

EIA’s hourly electric grid monitor (U.S. EIA, n.d.) includes hourly interchange, in MWh, between 

each of these BA interconnections, starting from July 2015. Negative interchange values represent 

power flows into a BA, while positive interchange values represent power flows out of a BA.  It 

also includes net-generation within each BA. 

The EIA-930 form data contained many missing values, and so we looked to equivalent 

hours in future or past years as proxies for the missing data. For example, if interchange data were 

missing for May 1st, 2017 at 12:00pm, we looked to see if data were available on May 1st, 2018 at 

12:00pm. If so, we would set the missing interchange value to that observed at that date and time. 

If data were also missing for the 2018 data, we continue to 2019, 2020, etc. If we still have not 

identified a viable substitute datapoint after this “forward pass,” we consider past years in the same 

manner. If still no viable data points were identified through this “backwards pass,” we assume an 

interchange value of 0 MWh for that hour.  

Hourly net interchange from the TVA BA was computed by taking the sum of hourly 

interchange between TVA-AECI, TVA-EEI, TVA-LGEE, TVA-MISO, and TVA-PJM. Since the 

MISO BA is the only non-model BA connected to the SoCo model region, hourly transfers from 

the SOCO BA to the MISO BA represent the entire external net hourly interchange. Next, for both 

the TVA and SOCO BAs, an hourly scaling factor was computed by taking the pointwise 

difference between net-generation and interchange and dividing by net-generation. We defined 

outlier hours as those with a scaling factor greater than 1.5 or less than 0.5, representing power 
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flows into the BA greater than 50% of the net-generation within that BA in that hour, or power 

flows out of the BA greater than 50% of the net-generation within that BA in that hour, 

respectively. These outlier hours were replaced by the average of all hourly scaling factors 

excluding outlier hours in their respective BAs. Next, the hourly scaling factors for each BA were 

averaged across years to compute an average scaling factor for each hour. For example, an average 

scaling factor for June 15 at 3:00pm in the SOCO BA was computed by taking the average of 

scaling factors computed for that same date, time, and BA in 2016, 2017, 2018, and so on through 

the final year available in the dataset. Finally, each hour in the annual load profile projections 

computed for the S_SOU and S_C_TVA model regions was scaled by its corresponding hourly 

scaling factors computed for the SoCo and TVA model regions, respectively, to obtain an 

interchange-adjusted representation of regional load. 

3.3.9 Variable Renewable Energy Resource Timeseries Data 

Seven years of historical annual CF data (2007-2013) was generated for solar PV and wind 

resources using the methodology outlined in Brown and Botterud (2020).  For solar resources, we 

assumed a horizontal 1-axis-tracking PV, and for wind resources, we assumed a Gamesa 

G126/2500 turbine at 100-meter height. 

EIA-923 data (U.S. EIA, 2021d) was used to compute historic monthly net-generation, in 

gigawatt-hours (GWh), of all run-of-river and reservoir hydroelectric plants in each of the four 

model regions from 2007-2013. Monthly net-generation was then downscaled to hourly resolution 

by dividing monthly generation by the number of hours in each month (for leap years, non-leap 

year number of hours per month were used). Finally, the average hourly CF for each hydroelectric 

plant type in each model region was computed by dividing the hourly net-generation by the 

nameplate capacity of the respective hydroelectric plant type in each model region. 
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3.3.10 Time Domain Reduction 

 Representative and extreme weeks were selected from among the seven years of historic 

VRE and hydropower CF data and the annual simulated load data in order to reduce the required 

computational and memory requirements of GenX model simulations. 

 Extreme weeks were chosen from each of the four Southeast model regions. Average 

weekly CFs were computed for solar PV and wind resources. For solar PV resources, the week 

with the lowest average solar PV CF in each model region was included in the set of extreme 

weeks. Since there are three wind resource “bins,” the week with the lowest area-weighted average 

CF across the three bins in each model region was included in the set of extreme weeks. Finally, 

the week with the greatest hourly load in each model region was included in the set of extreme 

weeks, as well as the week with the greatest hourly total system load across the four regions (shown 

in Figure 21). In total, 9 unique extreme weeks were selected by this methodology. 

 Representative period selection followed the methodology outlined in Mallapragada et al. 

(2018). First, each timeseries was normalized to values between 0 and 1 (inclusive). Next, load 

and VRE hourly timeseries were split into week-length groupings, and “stitched together” as in 

Mallapragada et al. (2018) to form 365 vectors, one for each week of the seven years represented 

by the historic VRE timeseries data (the six, year-long timeseries representing hourly load from 

2020, 2025, … , 2045 were repeated seven times so that they could be combined with the VRE 

timeseries data). Vectors corresponding to extreme weeks were dropped, and k-means clustering 

was applied to the set of remaining vectors to group them into clusters of similar weeks, such that 

such that the total number of extreme weeks and clusters summed to 14, resulting in five clusters. 

The five representative weeks represented used in the model were selected from each cluster by 

choosing the vector with the lowest Euclidian distance from the cluster centroid.  
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Figure 21: Load profiles (GW) and solar PV and wind capacity factor (CF) profiles for the model-wide peak load week, included 
as one of the extreme weeks in the model. Peak capacity grows from 153 GW in 2020 to 263 GW in 2045. Solar PV and wind CF 
profiles are named according to the convention PV_[Region]_0 and Wind_[Region]_[Bin], where 1, 2, 3, and 4 correspond to 

the TVA, Carolinas, SoCo, and FRCC regions, respectively. 
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3.3.11 Summary of Key Data Sources and Model Assumptions 

Table 29, below, summarizes key model parameters and assumptions described throughout 

Section 3.3. 

 
Table 29: Summary of key model parameters and assumptions. 

 

Assumption Value
Dollar Year 2018
WACC 4.50%
CRP (Li-Ion) 20 years
CRP (Transmission) 40 years
CRP (All Other Resources) 30 years
NREL ATB Financials Market Factor
NREL ATB Wind Class Class 5
NREL EFS Technology Advancement Moderate 
NREL EFS Electrification High
Number of Extreme Periods 9
Number of Representative Weeks 5
Value of Lost Load $50,000/MWh
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4 Part IV: Results and Discussion 

4.1 The Role for Natural Gas Under Unconstrained Emissions Scenarios 

4.1.1 Reference Case 

 
Figure 22: System-wide capacity (GW) (left) and annual generation (TWh) (right) for the Reference Case. Discharge and charge 

from storage resources (Li-ion and PHS) are excluded from the annual generation plot.  

The model outcomes in the Reference Case (Figure 22) suggest that, in the absence of CO2 

emissions limits, under “moderate” (baseline) VRE and storage technology costs, and with all 

existing nuclear plants receiving second lifetime extensions (SLTEs), natural gas-fired generation 

will continue to be a substantial part of a least-cost resource mix in the American Southeast under 

cost optimal resource planning. New NG capacity is installed every period in which new capacity 

investments are allowed (see Figure 22, left). Nonetheless, the 2045 grid looks notably different 

than the 2020 grid, as VREs and Li-ion battery storage grow to become a substantial percentage 

of total installed capacity. Total NG capacity as a share of total system capacity rises from 57% in 
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2020 to a maximum of 65% in 2030, before falling to 40% in 2045. This decline is driven by a 

substantial buildout of VREs, predominately, solar PV and some Li-ion battery storage capacity. 

Although combined solar PV and wind capacity were a negligible percentage of the capacity mix 

in 2020 (<4% of total capacity), their share grows to 38% in 2045. Additionally, new PHS 

resources, allowed only in the TVA and SoCo model regions (see section 3.3.4.4), are built out to 

their capacity instillation limits in 2035. 

 Annual generation trends show that despite their sharp rise as a percentage of total capacity, 

the contribution of solar PV and wind resources to annual generation still lags substantially behind 

the contribution of NG resources by mid-century (see Figure 22, right). In 2045, NG power plants 

contribute 46% of annual generation, compared to only 29% of annual generation from solar PV 

and wind resources. Nonetheless, by 2045, the grid is substantially cleaner, with carbon intensity 

declining from 284 gCO2/kWh in 2020 to 182 gCO2/kWh in 2045. Existing nuclear power plants 

provide most of the remaining share of generation in 2045; they provide 36% of total annual 

generation in 2020, and by 2045, still provide over a fifth of total generation, since the assumed 

SLTEs allow all existing nuclear capacity to stay online through 2050 (see Table 5). 

 
Figure 23: Net load duration curves (net system-wide load minus dispatched solar PV and wind generation) for the Reference 

Case for all model periods. 
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Although new NG capacity plays a major role in meeting a growing demand for energy 

under the Reference Case, the operation of those plants and the types of plants that are built change 

over the course of the planning horizon, as the grid adapts to support a greater share of VRE 

capacity. Indeed, by 2040 and 2045, VREs are able to meet all or nearly all system-wide load 

during some hours as seen by hours with negative net load in Figure 23. While generation 

attributed to NG resources remains relatively steady through 2045, its share of total annual 

generation is only 5% lower in 2045 than in 2020, and the average annual CFs of NG plants 

steadily decline (see Figure 31 and Figure 32). While new NGCC plants operate at a 77% average 

annual CF in 2025, this number drops to 57% in 2045. Furthermore, while only NGCC plants are 

built through 2035, NGCT plants are deployed in the final two model periods, aligning with the 

sharp increases of VRE resources and Li-ion battery storage. While NGCT plants represent only 

3 out of the 27 GW of new NG capacity built in 2040, in 2045, they represent over half – 25 out 

of 45 GW – of new NG capacity. Although their VOM costs are twice those of NGCC plants and 

their heat rate is greater, NGCT plants have lower FOM costs and overnight capital costs, and have 

no minimum on- or off-times, making them well suited for use as low CF “peaker” plants (see 

Table 14 and Table 15). The model’s dispatch decisions support this – NGCT plants operate at far 

lower average CFs compared to the NGCC plants, at 4% and 56% average CFs in 2045, 

respectively. These results suggest an evolving role of NG resources in future grids even in the 

absence of emissions constraints. 
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4.1.2 Impact of Low-cost VREs and Storage 

 
Figure 24: System-wide capacity (GW) for the Reference Case (left) and NoCO2Limit_LowVRECosts case (right). 

Considerable uncertainty surrounds future projections of VRE and battery storage costs. 

For example, a 2021 expert elicitation study published in Nature Energy estimates declines of 

wind energy costs ranging from 37%-49% in 2050, but concludes that there is “considerable 

uncertainty” surrounding future costs (Wiser et al., 2021). This uncertainty is reflected in the cost 

projections of VREs and battery storage across sources. For instance, in the EIA’s 2020 Annual 

Energy Outlook, 2050 overnight capital costs for utility-scale solar PV are 3.5x greater in the high-

cost VRE case than the low-cost case; in NREL’s 2020 ATB, overnight capital costs associated 

with 4-hour battery storage are 2.5x greater under “Conservative” technology advancement 

assumptions than “Advanced” ones.   

We evaluate the possibility of steep declines in VRE and Li-ion battery storage costs in the 

absence of CO2 emissions limits in the NoCO2Limit_LowVRECosts scenario. Compared to cost 
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assumptions under the Reference Case, capital costs of solar PV and wind decline an additional 

12% and 22% from 2020 to 2045, respectively; additionally, cost reductions for these resources 

proceed at a faster rate between 2020 and 2030 for solar PV and wind resources (see Figure 14). 

Capital costs for Li-ion battery storage discharge and energy capacity both decline an additional 

13% between 2020 and 2045 compared to the Reference Case (see Figure 15). These lower costs 

lead to greatly reduced investment in new NG capacity, and far greater investment in solar PV, 

wind, and Li-ion battery storage (see Figure 24, right) at cumulative costs – the sum of investment 

costs, operational costs, and non-served energy costs over the planning horizon – 1.5% lower than 

that of the Reference Case. Unlike the Reference Case, where the combined capacity of solar PV 

and wind is roughly equal to total installed NG capacity in 2045, in the low-cost VREs and storage 

scenario, there is over three times as much combined solar PV and wind capacity in 2045 than NG 

capacity. These additional resources lead to a 36% greater total system capacity in 2045 compared 

to the Reference Case. Furthermore, while NG resources provide the greatest contribution to 

annual generation of all resource types in 2045 in the Reference Case, VREs provide the majority 

of energy by mid-century in the low-cost VRE and storage scenario – solar PV and wind resources 

provide 60% of annual generation in 2045, while NG accounts for only 16%. Despite the 

dominance of VREs in later model periods, however, new solar PV and wind capacity are not built 

until 2030 in both scenarios, presumably an outcome of the model’s ability to anticipate cost 

reductions in later periods. 
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4.1.3 Impact of No Second Lifetime Extensions for Existing Nuclear  

 
Figure 25: System-wide capacity (GW) for the Reference Case (left) and NoCO2Limit_NoSLTE case (right). 

Nuclear plants in the United States are licensed to operate for 40 years, after which plant 

operators may apply for license renewals. Each license renewal extends the plant’s operational 

lifetime an additional 20 years, and as of 2018, some plant operators have begun applying for their 

second license renewals, which would extend the plant lifetime to a total of 80 years (NRC, 2018). 

As a source of zero-carbon electricity, and accounting for 28% of total utility-scale generation in 

2019 in the Southeast (see Figure 3), these second lifetime extensions (SLTEs) can help ensure 

that existing nuclear capacity in the Southeast remains operational through 2050 (see Table 5). 

However, there is no guarantee that all nuclear operators will choose to apply for SLTEs, nor that 

the Nuclear Regulatory Commission, the federal agency responsible for approving license 

renewals, will grant them to all applicants.  
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 The NoCO2Limit_NoSLTE case evaluates the “worst case” scenario in which no existing 

nuclear plants receive SLTEs. This causes cumulative costs to increase by 1.8% compared to the 

Reference Case. This results in only 29% of existing nuclear capacity in the Southeast model 

remaining by 2045, and with existing nuclear capacity first beginning to retire in the 2035 model 

period (see Figure 25, right). Although this leads to greater mid-century capacity of solar PV, wind, 

and NG resources, increased deployment of new NG is more pronounced. New NG capacity is 

16% greater in 2045 compared to the Reference Case, while solar PV and wind capacity are 11% 

greater. Changes in annual generation are even more tilted toward NG – annual generation from 

new NG increase 28% compared to the Reference Case, while combined dispatched solar PV and 

wind generation is only 10% greater.  

4.1.4 CO2 Emissions Under Unconstrained Emissions Scenarios 

 
Figure 26: Annual CO2 emissions by resource type in million tonnes per year for the Reference Case (left), 

NoCO2Limit_LowVRECosts case (center), and NoCO2Limit_NoSLTE case (right). 

 Cumulative emissions, the sum of annual emissions over the 30 years of the planning 

horizon, across the three unconstrained emissions scenarios range from 6.0 Gt of CO2 in the 

scenario with low VRE and storage costs to 7.4 Gt in the Reference Case. The scenario without 

SLTEs of existing nuclear plants only had slightly lower cumulative emissions than the Reference 

Case, at 7.4 Gt. 
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Figure 27: Marginal cost of generation of fossil resource types in the TVA model region over all model periods. Note that the 
marginal cost of generation for existing coal (Coal_bf) is flat beginning in 2025, while it rises through 2050 for NG resource 

types. Marginal cost of generation in the other three model regions follows similar trends. 

At around 230 Mt per year, annual emissions in the Reference Case are practically identical 

in 2020 and 2045 (see Figure 26, left). The 32% increase in emissions between 2020 and 2025 can 

be attributed to a substantially greater utilization of existing coal capacity, which has the lowest 

marginal cost of operation of all fossil resources (both new and existing NG) beginning in 2025 

(see Figure 27). This can be attributed to a projected decline in the cost of coal and increase in the 

cost of NG between 2020 and 2025 (see Table 25; fuel costs are adopted from the EIA Annual 

Energy Outlook 2019 Reference Case). Despite high average annual CFs (>90%) for all coal plants 

beginning in 2025, lifetime retirements lead to a declining contribution of coal to annual emissions. 

This drives emissions reductions up until 2040 even as new NG capacity comes online to help 

meet growing energy demand. With most existing coal capacity already having retired by 2040, 

however, CO2 emissions attributed to new NG capacity built in 2045 are not offset by reductions 

from retiring coal capacity, leading to an increase in emissions between these model periods. 

The high levels of VRE resource deployment and utilization when VRE and storage costs 

are low leads to 19% lower cumulative emissions, as well as substantially lower annual emissions 
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by mid-century (see Figure 26, center). Compared to the Reference Case, annual emissions in 2040 

are 50% lower, and in 2045, are 59% lower. Notably, however, emissions are greater in the first 

two model periods than in the Reference Case, by 15% in 2020 and 3% in 2025. This can be 

attributed to the 34% and 12% greater coal capacity and 81% and 12% greater contribution of coal 

to total annual generation during these two model periods, respectively. With lower cost VREs 

and storage on the horizon, less existing NG capacity is retired and less new NG capacity is built 

during the first two model periods; instead, there is a greater reliance on high-emitting but low 

marginal cost existing coal capacity in the transition period. 

While low-cost VREs and storage leads to reduced annual CO2 emissions in later model 

periods, disallowing SLTEs of existing nuclear plants has the opposite effect (Figure 26, right). 

Increased reliance on NG under this scenario contributes to annual CO2 emissions being 14% and 

23% above those in the Reference Case in 2040 and 2045, respectively. However, cumulative 

emissions decrease by 1.0%. This counterintuitive result can be attributed to comparatively lower 

emissions in the 2025, 2030, and 2035 model periods, by 14%, 20%, and 3.5%, respectively. When 

SLTEs are not granted, early deployment of new NG and VREs is more attractive, and existing 

NG plants are incentivized to stay online for longer, since these resources will be needed in greater 

amounts once existing nuclear plants begin to retire. In 2025, there is 2.9 GW of additional new 

NG and an additional 7.5 GW of existing NG compared to the Reference Case, and in 2030, there 

is 1.4 GW of additional new NG, an additional 3.1 GW of existing NG, and 16.4 GW of additional 

VRE capacity. This additional capacity, totaling 10.4 GW in 2025 and 25.4 GW in 2030, suffices 

to push existing coal capacity offline, driving the emissions reductions; coal capacity is 8.2 GW 

lower in 2025 and 7.6 GW lower in 2030 compared to the Reference Case, representing 42% and 

52% capacity reductions, respectively. 
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4.1.5 Discussion 

Even in the absence of a CO2 emissions policy, the role of NG in future low-carbon energy 

systems in the American Southeast is uncertain – accelerated cost declines for VREs and battery 

storage alone may determine whether NG constitutes the majority or minority of capacity under a 

least-cost mid-century resource mix. However, even when these technology costs are low, nearly 

80 GW of new NG capacity is built, including 25 GW in 2045, suggesting that NG still may have 

a role to play in grids with high levels of VREs absent CO2 emissions considerations. 

Annual and cumulative CO2 emissions trends compared to the Reference Case observed in 

the two experimental scenarios underscore that a holistic, pathway-aware approach should be taken 

when thinking about emissions reductions. For example, the mid-century increases in annual 

emissions which result when nuclear SLTEs are not granted are offset by lower annual emissions 

in early model periods. Furthermore, while intuition may suggest that low-cost VREs and storage 

would lead to annual emissions reductions across model periods, emission increases are observed 

relative to the Reference Case through 2030, owing to increased utilization existing coal resources 

instead of new NG being deployed due to expectations (with prefect foresight in case of the model) 

of increasing demand and declining capital costs of VREs and storage in future periods.  

Finally, it is notable that in the Reference Case, emissions are nearly identical in 2020 and 

2045 despite a 1.7x increase in load, highlighting the outsized contributions of coal generation to 

annual emissions despite constituting a small percentage of total capacity compared to NG. 

However, the upward trend in emissions between the 2040 and 2045 model periods, combined 

with the fact that most existing coal capacity has retired by mid-century, suggests that emissions 

will continue trending upwards past the model’s 2050 planning horizon without an emissions 
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reduction policy. The effects of potential emissions limits on planning outcomes, costs, and 

cumulative emissions impacts will be examined in the following section. 

4.2 The Role for Natural Gas Under Constrained Emissions Scenarios 

 
Figure 28: System-wide capacity (GW) for the HighCO2Limit (left), MedCO2Limit (center), and LowCO2Limit (right) scenarios. 

 
Figure 29: Annual CO2 emissions by resource type in million tonnes per year for the HighCO2Limit (left), MedCO2Limit 

(center), and LowCO2Limit (right) scenarios. Across the three scenarios, annual emissions in 2035 and onward are equal to the 
annual emissions limit imposed by each respective emissions policy. 

Imposing constraints on annual CO2 emissions in the HighCO2Limit, MedCO2Limit, and 

LowCO2Limit scenarios leads to reduced cumulative deployment of new NG capacity and 

substantial increases in solar PV, wind and Li-ion battery storage capacity compared to the 

Reference Case (see Table 31, Table 32, and Figure 28). The least restrictive “high” emissions 

policy, evaluated in the HighCO2Limit scenario, leads to a 40% reduction in total NG capacity 
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without CCS and a 127% increase in combined solar PV, wind, and battery storage capacity in 

2045, compared to the Reference Case; the most restrictive “low” emissions policy, evaluated in 

the LowCO2Limit scenario, lead to a 70% reduction and 176% increase, respectively. The effects 

of this massive increase in VREs and storage on grid operations by mid-century can be seen in the 

net load curves for the three scenarios, which all show substantially more hours than the Reference 

Case where system-wide VRE generation exceeds demand, and in which storage resources can be 

charged (see Figure 30). 

 
Figure 30: 2045 net load duration curves (net system-wide load minus dispatched solar PV and wind generation) for the 

Reference Case and HighCO2Limit, MedCO2Limit, and LowCO2Limit scenarios. 

Despite their emissions constraints, all three scenarios include new NG capacity. NGCT 

capacity is built in 2040 and 2045 under “high” and “medium” emissions polices; under the “low” 

emissions policy, NGCT capacity is built in 2035. The “low” emissions policy case is unique in 

that it is the only in which new NGCC and NGCT capacity are retired early, with total new NG 

capacity without CCS declining in 2045; 8 GW of NGCC capacity, or 17% of 2040 NGCC 

capacity, retires between the final two model periods, as does 1.8 GW of NGCT capacity, 

representing all 2040 NGCT capacity. Furthermore, this scenario is the only in which NGCC-CCS 

plants are built, the 23 GW built in 2045 representing a third of all NG capacity in the final model 

period. In all three cases, new NG capacity tends to be built earlier and existing NG capacity tends 
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to retire later compared to the Reference Case, mirroring the capacity deployment trends in the 

unconstrained emissions scenario when costs of VREs and storage are low or when SLTEs are not 

granted (see section 4.1.2 and explanation of early-period emissions reductions when SLTEs are 

not granted in section 4.1.4). For example, 31% of cumulative NGCC deployments through the 

planning horizon occur in 2025 under the “high” emissions policy, as do 31% under the “medium” 

emissions policy; under the Reference Case, only 11% do. Additionally, average CFs for new 

NGCC plants are slightly greater relative to the Reference Case in 2025 under the three emissions 

reductions policies and are substantially lower relative to the Reference Case in later model periods 

as emissions constraints become stricter (see Figure 31). For existing NG resources, average CFs 

closely track those of the Reference Case in all three emissions reductions scenarios (Figure 32). 

 
Figure 31: Average annual capacity factors (%) for NGCC resources under “high”, “medium”, and “low” emissions policies, 

compared to the Reference Case. 
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Figure 32: Average annual capacity factors (%) for existing natural gas (B_NG) resources under “high”, “medium”, and “low” 

emissions policies, compared to the Reference Case. 

Introducing CO2 emissions constraints leads to increased total costs, which increase 2.6%, 

3.7%, and 5.8% compared to the Reference Case, and all three policies lead to substantial 

cumulative CO2 emissions reductions compared to the Reference Case, at 29%, 37%, and 31% 

under “high,” “medium,” and “low” emissions policies, respectively (see Table 30). Emissions 

constraints become binding beginning in 2035 in all three scenarios, after which annual emissions 

are equal to the upper bound of each scenario’s respective annual emissions constraints (see Figure 

29). Although the “low” emissions policy has the most stringent emissions limits, the “medium” 

emissions policy leads to the greatest cumulative emissions reductions across the three policies. 

This can be attributed to the extremely limited role for fossil resources in later periods under the 

“low” emissions policy, which incentivizes existing fossil capacity to remain in the capacity mix 

instead of new NG capacity being built. This results in increased utilization of existing coal plants, 

which drives the greater emissions in the earlier periods. 
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4.2.1 CO2 Emissions Policies under Low VRE and Storage Costs 

 
Figure 33: Effects of low solar PV, wind, and Li-ion battery storage costs across different CO2 emissions policy scenarios. 
Difference in capacity (GW), annual generation (TWh) and annual CO2 emissions (million tonnes per year) between the 

HighCO2Limit_LowVRECosts and HighCO2Limit (column (a)), MedCO2Limit_LowVRECosts and MedCO2Limit (column (b)), 
and LowCO2Limit_LowVRECosts and LowCO2Limit (column (c)) scenarios by resource type. 

Figure 33 shows the impacts of low VRE and storage costs on the capacity mix to be 

compliant with the “high,” “medium,” and “low” CO2 emissions policies. Even in the absence of 

CO2 emissions constraints, low-cost VREs and storage lead to a substantially increased 
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deployment of solar PV, wind, and storage capacity and decreased NG capacity by mid-century 

(see section 4.1.2). The effects of these low technology costs carry over when emissions policies 

are introduced, leading to greater NG displacement by VREs and storage than under the emissions 

policies alone. The introduction of low VRE and storage costs leads to a 15%, 13%, and 28% 

decline in cumulative NGCC and NGCT capacity over the planning horizon compared to 

cumulative capacity under the “high,” “medium,” and “low” emissions policies alone, 

respectively. Although cumulative solar PV and wind deployment only increase by 2%, 1%, and 

12% across these three respective cases, Li-ion storage discharge capacity increases by 13%, 11%, 

and 20%, and energy capacity increases by 31%, 25%, and 37% (see Table 31 and Table 32). This 

result suggests that low-cost storage rather than low-cost VRE deployment is the greater driver of 

NG capacity reductions under these scenarios. 

The introduction of low VRE and storage costs leads to greater reductions in cumulative 

emissions than the emissions reductions policies alone, driving an additional 0.7%, 3.1% and 2.1% 

of cumulative emissions reductions compared to scenarios with “high,” “medium,” and “low” 

emissions policies and baseline technology costs, respectively. Finally, while the introduction of 

emissions policies under baseline technology costs led to 2.6% to 5.8% increases in cumulative 

costs compared to the Reference Case, with low VRE and storage costs, cumulative costs under 

the three polices are within 1% of the cumulative cost of the NoCO2Limit_LowVRECosts 

scenario. This result reinforces the expectation that low VRE and storage costs increase the cost-

effectiveness of CO2 emissions reductions. 
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4.2.2 CO2 Emissions Policies without SLTEs for Existing Nuclear Plants 

 
Figure 34: Effects of disallowing second lifetime extensions (SLTEs) across different CO2 emissions policy scenarios. Difference 

in capacity (GW), annual generation (TWh) and annual CO2 emissions (million tonnes per year) between the 
HighCO2Limit_NoSLTE and HighCO2Limit (column (a)), MedCO2Limit_NoSLTE and MedCO2Limit (column (b)), and 

LowCO2Limit_NoSLTE and LowCO2Limit (column (c)) scenarios by resource type. 

Figure 34 shows the how the capacity mix responds when no SLTEs are granted to existing 

nuclear capacity under the three emissions policies. Disallowing SLTEs under emissions policies 

makes it more expensive to adhere to the imposed CO2 emissions budgets, increasing cumulative 



 80 

costs by an additional 3.5-4.0% relative to the Reference Case (see Table 30). Substantial 

additional capacity is required to meet load as existing nuclear capacity begins to retire; although 

some additional NG capacity is built, solar PV, wind, and Li-ion battery storage constitute most 

of the capacity additions across the three emissions policies. For example, disallowing SLTEs 

under the “high” emission policy leads to 22.6% more combined solar PV, wind, and Li-ion battery 

storage discharge capacity in 2045, but only 9.9% more total NG capacity. Nuclear plant 

retirements have the additional effect of increasing deployment of NGCC with CCS. When no 

SLTEs are granted, NGCC-CCS capacity in 2045 increases by 42% under the “low” emissions 

policy, relative to the case when SLTEs are granted. Furthermore, while there is no NGCC-CCS 

deployed in 2045 under the “medium” emissions policy when SLTEs are granted, 6.0 GW is built 

in 2045 when they are disallowed. 

When no SLTEs are granted for existing nuclear plants, impacts on cumulative emissions 

vary across the three emissions policies (see Table 30). Under the “high” emissions policy, 

cumulative emissions are nearly identical whether or not SLTEs are granted. Under the “medium” 

emissions policy, cumulative emissions increase 4.2% from 4.7 Gt CO2 to 4.9 Mt CO2 when 

SLTEs are not granted. Under the “low” emissions policy, however, cumulative emissions 

decrease from 5.1 Gt CO2 when all nuclear plants receive SLTEs to 4.9 Mt CO2 when they are not 

granted, a 3.5% drop. Since foresight allows the model to plan for forthcoming nuclear retirements 

by building low-carbon capacity that will be needed in later model periods early on, greater 

deployment of NG capacity in 2025 and VRE capacity in 2030 (see Figure 34, top right) allow for 

reduced generation from existing coal-fired power plants (see Figure 34, center right), leading to 

the lower emissions observed in this scenario.  
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4.2.3 CO2 Emissions Policies with Additional Regulatory Measures 

 
Figure 35: Effects of constraining all new NG deployment without CCS to 2025 across different CO2 emissions policy scenarios. 

Difference in capacity (GW), annual generation (TWh) and annual CO2 emissions (million tonnes per year) between the 
HighCO2Limit_NG2025 and HighCO2Limit (column (a)), MedCO2Limit_NG2025 and MedCO2Limit (column (b)), and 

LowCO2Limit_NG2025 and LowCO2Limit (column (c)) scenarios by resource type. 

Concerns about climate change are leading to rapidly shifting altitudes regarding the role 

of fossil fuels in a low-carbon future. For example, the IEA’s “Net Zero by 2050” report 

recommends no new investment in coal-fired power plants without CCS, and no investment in 
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new oil and gas fields (IEA, 2021), and the Biden Administration had proposed a “carbon-pollution 

free” electric power sector by 2035 (The White House, 2021). Additionally, the “2035 Report”, 

published by researchers at the University of California Berkeley and GridLab, suggests that a 

reliable, affordable, 90% decarbonized U.S. grid by 2035 is possible without new coal or NG 

plants, besides those already under construction (Phadke et al., 2021). These developments suggest 

the possibility of future regulatory actions which limit the construction of new fossil infrastructure. 

As a result, we consider a sensitivity where all new NGCT plants and NGCC plants without CCS 

may only be built in 2025, its impacts on the capacity mix shown in Figure 35. This constraint 

raises cumulative costs an additional 1.3-2.1% compared to the Reference Case over emissions 

policies alone. 

Since new NG cannot be built after 2025, all NG capacity that is to be utilized in future 

model periods must be built that year. Although the inability to deploy new NG without CCS in 

future periods has the intended effect of reducing cumulative new NGCC and NGCT capacity 9% 

to 17%, it also leads to 2.9-3.1x higher NG deployment in 2025 across the three emissions policies 

(see Table 31 and Table 33). Under perfect foresight, the model still attributes value to the flexible 

operating capacity of NG resources to balance increasing VRE generation in future periods. 

The constraint on new NG construction after 2025 causes cumulative emissions to decrease 

an additional 2% and 2.9% compared to the Reference Case over the “high” and “low” emissions 

policies alone, respectively; on the other hand, the addition of the constraint under the “medium” 

emissions policy leads to a 3.1% increase due to increased coal capacity utilization predominately 

in 2025 and 2030. This emissions policy was strict enough to decrease new NG deployment in 

2025 relative to the “high” emissions case with the same restriction on new NG without CCS 

(Scenario 12), but not strict enough to incentivize early deployment of VREs and storage in early 
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periods as observed to the “low” emissions case with the same restriction (Scenario 14), resulting 

in increased coal filling this gap in capacity (see Figure 35, top row). 

 
Figure 36: Effects of assuming no salvage value for new NGCC and NGCT capacity via full-cost financial assumptions across 
different CO2 emissions policy scenarios. Difference in capacity (GW), annual generation (TWh) and annual CO2 emissions 

(million tonnes per year) between the HighCO2Limit_NGFullCost and HighCO2Limit (column (a)), MedCO2Limit_NGFullCost 
and MedCO2Limit (column (b)), and LowCO2Limit_NGFullCost and LowCO2Limit (column (c)) scenarios by resource type. 

Just as changing attitudes surrounding the role of fossil infrastructure are influencing the 

attitudes of key industry analysts and policy makers, so to too are they affecting the attitudes of 
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investors and regulators, who are increasingly concerned about potential “stranded asset” risk and 

the future book value of NG infrastructure. Under a net-zero grid by 2050, for example, there may 

be little or no “salvage value” for NG plants without CCS. Figure 36 explores the impact of 

enforcing this no salvage value assumption for NG plants without CCS beyond the model horizon 

under the three CO2 emissions policy scenarios. In other words, these scenarios require that all 

investment costs associated with new NGCT and NGCC capacity without CCS be paid in full by 

the end of the 2050 model planning horizon. Under this assumption, most new NG capacity is built 

in 2025 and is replacing existing NG capacity, mirroring the capacity buildout observed in 

scenarios where new NG without CCS may only be built in 2025. Since all costs associated with 

these plants must be paid for within the model horizon no matter when they are built, the model is 

incentivized to maximize the use of these facilities to get the most “bang for its buck” by investing 

in them early on. However, a small percentage of NG capacity is built after 2025 – 25.7%, 1.1% 

and 13.5% of all new NG capacity is built after 2025 under the “high,” “medium,” and “low” 

emissions polices and “full-cost” financial assumptions, respectively. All three cases lead to less 

cumulative emissions relative to the Reference Case than under “rental” financial assumptions by 

an additional 0.7% (“high” emissions policy) to 3.7% (“medium” emissions policy), but at 

increased cumulative system costs ranging from 1.1% (“low” emissions policy) to 3.5% 

(“medium” emissions policy) (see Table 30). 

4.2.4 Discussion 

The role of NG in future low-carbon energy systems declines with increasing stringency 

of CO2 emissions policies. Not only is less NG capacity built, but average CFs of new NGCC 

plants decline as the stringency of CO2 emissions limits increase (see Figure 31). However, we 

find that more stringent emissions reductions policies do not necessarily lead to lower cumulative 
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emissions over the planning horizon. For example, the “low” emissions policies require an 

extremely limited role for fossil fuels by mid-century, and to minimize spending on new fossil 

infrastructure, higher-emitting coal plants remain in the capacity mix longer and provide greater 

contributions to annual generation, leading to greater cumulative emissions. Since CO2 is a long-

lived climate forcer, it is important to consider not only the impacts of CO2 emissions reductions 

policies on mid-century emissions, but on how these policies may affect cumulative emissions 

from the capacity mixes which takes us there.   

Notably, all “low” emissions policy scenarios evaluated under baseline VRE and storage 

technology costs included early retirements for newly built NG capacity. This suggests that it may 

be economic to build new NG plants even if their economic lifetimes are shorter than their 

operational lifetimes on pathways towards highly decarbonized future grids under a range of 

technology and policy scenarios. However, no early retirements of new NG capacity are seen under 

low cost assumptions for VREs and storage, attributable to the fact that less cumulative new NG 

capacity is built to begin with compared to the other “low” emissions policy cases (see Table 31). 

This suggests that early economic retirement of new NG capacity is not a given in future resource 

planning scenarios.  

Under baseline VRE and storage costs, cumulative costs of CO2 emissions policy scenarios 

increase by 2.6-9.9% compared to the Reference Case (see Table 30). Interestingly, when VRE 

and storage costs are low, cumulative costs are 2.1% and 0.5% lower than the Reference Case even 

under “high” and “low” emissions polices, respectively.  Incidentally, SLTEs of existing nuclear 

plants reduce cumulative costs by 4 percentage points compared to when they are not granted 

under the “low” CO2 emissions policy, and highlight the role of the existing nuclear fleet in cost-

effective decarbonization of the power sector. However, it is notable that no new nuclear plants 
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are deployed in any of the scenarios considered; due to its extremely high capital costs, new nuclear 

is unable to compete with lower-cost resources. This result is influenced, in part, by increasingly 

bullish cost projections for VREs and storage, while cost projections for new gigawatt-scale 

nuclear capacity trend upwards. For example, while 2050 capital cost projections under 

“moderate” technology advancement assumptions declined 65% for 4-hour battery storage and 3% 

for onshore wind between the 2018 and 2020 NREL ATBs, projected 2050 costs for nuclear 

increased 6% (projected costs for utility-scale solar PV increased 2%). 

The two regulatory measures considered – those which constrain new NG buildout after 

2025 or avoid “stranded” costs for NG by assuming that NG without CCS has no salvage value 

post-planning horizon – lead to similar least-cost capacity mixes under the three CO2 emissions 

reductions policies at comparable cost increases relative to the Reference Case. The no salvage 

value assumption leads to greater flexibility of outcomes of the two regulatory measures, in that 

new NG may be built in any model periods besides 2020. Even so, both cases lead to new NG 

being built predominately in 2025, accelerated retirements of existing NG capacity, increased VRE 

and storage deployment, and in all but one case (Scenario 13, with no new NG without CCS after 

2025 and a “medium” CO2 emissions reductions policy), reductions in cumulative emissions 

compared to when emissions policies alone are implemented. These outcomes suggest that 

regulations which seek to limit NG development further in the future may promote additional new 

NG development this decade, although these policies can be beneficial as a whole by leading to 

greater reductions in cumulative CO2 emissions through 2050. 
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Table 30: Change in cumulative cost and cumulative emission reductions over the model horizon (2020-2050) relative to the 

Reference Case. SLTE stands for “second lifetime extension.” 

 

 

 

Scenario Name
Scenario 
Number

Change in 
Cumulative 

Cost (%)

 Change In 
Cumulative 
Emissions 

Reductions (%)

Reference Case 0 - -
NoCO2Limit_LowVRECosts 1 -1.5% 19.2%
NoCO2Limit_NoSLTE 2 1.8% 1.0%
HighCO2Limit 3 2.6% 29.3%
MedCO2Limit 4 3.7% 37.0%
LowCO2Limit 5 5.8% 31.3%
HighCO2Limit_LowVRECosts 6 -2.1% 30.0%
MedCO2Limit_LowVRECosts 7 -1.8% 40.1%
LowCO2Limit_LowVRECosts 8 -0.5% 33.4%
HighCO2Limit_NoSLTE 9 6.1% 29.1%
MedCO2Limit_NoSLTE 10 7.5% 34.4%
LowCO2Limit_NoSLTE 11 9.9% 33.7%
HighCO2Limit_NG2025 12 4.7% 31.4%
MedCO2Limit_NG2025 13 5.8% 33.9%
LowCO2Limit_NG2025 14 7.2% 34.3%
HighCO2Limit_NGFullCost 15 5.1% 30.0%
MedCO2Limit_NGFullCost 16 7.2% 40.7%
LowCO2Limit_NGFullCost 17 7.0% 34.2%
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Table 31: Cumulative new capacity (GW) installed over the model horizon (2020-2050) for NGCC, NGCT, and NGCC-CCS 
resources. Peak system load in 2045 is included as a point of comparison. Note that in some scenarios some of the installed 

capacity is retired before the end of the model horizon. SLTE stands for “second lifetime extension.” 

Scenario Name
Scenario 
Number

Cumulative 
New 

NGCC 
Capacity 

(GW)

Cumulative 
New 

NGCT 
Capacity 

(GW)

Cumulative 
New 

NGCC-CCS 
Capacity 

(GW)
Reference Case 0 115.6 27.3 0.0
NoCO2Limit_LowVRECosts 1 52.4 25.8 0.0
NoCO2Limit_NoSLTE 2 139.5 26.4 0.0
HighCO2Limit 3 71.7 8.3 0.0
MedCO2Limit 4 57.8 5.5 0.0
LowCO2Limit 5 48.5 1.8 22.8
HighCO2Limit_LowVRECosts 6 51.6 16.6 0.0
MedCO2Limit_LowVRECosts 7 54.9 0.0 0.0
LowCO2Limit_LowVRECosts 8 31.8 4.3 4.8
HighCO2Limit_NoSLTE 9 76.5 14.2 0.0
MedCO2Limit_NoSLTE 10 57.8 10.0 6.0
LowCO2Limit_NoSLTE 11 50.3 7.6 32.4
HighCO2Limit_NG2025 12 59.2 5.1 0.0
MedCO2Limit_NG2025 13 57.7 0.0 0.0
LowCO2Limit_NG2025 14 41.8 0.0 22.9
HighCO2Limit_NGFullCost 15 65.1 0.0 0.0
MedCO2Limit_NGFullCost 16 60.7 0.6 2.4
LowCO2Limit_NGFullCost 17 43.9 0.0 23.1
Peak System Load (2045): 263 GW
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Table 32: Cumulative new discharge capacity (GW) installed over the model horizon (2020-2050) for solar PV, wind, and Li-ion 

battery storage resources; cumulative new energy capacity (GWh) across all model periods for Li-ion battery storage. Peak 
system load in 2045 is included as a point of comparison. Note that in some scenarios some of the installed capacity is retired 

before the end of the model horizon. SLTE stands for “second lifetime extension.” 

 

Scenario Name
Scenario 
Number

Cumulative 
Solar PV 
Capacity 

(GW)

Cumulative 
Wind 

Capacity 
(GW)

Cumulative 
Li-ion 

Discharge 
Capacity 

(GW)

Cumulative 
Li-ion 

Energy 
Capacity 
(GWh)

Reference Case 0 127.7 17.4 37.5 96.4
NoCO2Limit_LowVRECosts 1 205.0 101.2 84.8 334.0
NoCO2Limit_NoSLTE 2 143.5 17.9 36.6 85.7
HighCO2Limit 3 209.1 134.9 81.1 276.6
MedCO2Limit 4 237.9 155.6 94.9 364.2
LowCO2Limit 5 257.0 151.5 108.7 465.0
HighCO2Limit_LowVRECosts 6 222.9 128.2 91.2 361.3
MedCO2Limit_LowVRECosts 7 249.4 147.4 105.5 453.9
LowCO2Limit_LowVRECosts 8 293.3 163.7 129.9 638.6
HighCO2Limit_NoSLTE 9 244.1 187.3 89.4 285.0
MedCO2Limit_NoSLTE 10 265.0 198.8 104.1 400.8
LowCO2Limit_NoSLTE 11 285.5 200.6 114.8 500.6
HighCO2Limit_NG2025 12 228.2 122.5 90.4 374.4
MedCO2Limit_NG2025 13 243.4 151.2 96.9 394.9
LowCO2Limit_NG2025 14 257.5 151.0 110.0 468.2
HighCO2Limit_NGFullCost 15 231.6 119.1 91.8 393.4
MedCO2Limit_NGFullCost 16 244.2 145.9 103.0 421.6
LowCO2Limit_NGFullCost 17 257.3 150.2 110.8 471.1
Peak System Load (2045): 263 GW
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Table 33: Capacity (GW) at the end of the 2025 model period for new NG (combined NGCC and NGCT), existing NG, and 
existing coal resources. Peak system load in 2025 is included as a point of comparison. SLTE stands for “second lifetime 

extension.” 

5 Part V: Conclusion 

5.1 Limitations and Future Research 

5.1.1 Least-Cost Modeling Framework 

While this analysis utilizes an advanced, multi-period capacity expansion model, there are 

limitations to this modeling framework that pave the way for further research.  

First, we assume perfect foresight of future policies and costs. While this assumption is 

useful for scenario analysis, grid planners and regulators do not make decisions under perfect 

Scenario Name
Scenario 
Number

2025 New 
NGCC and 

NGCT 
Capacity 

(GW)

2025  
Existing NG 

Capacity 
(GW)

2025  
Existing 

Coal 
Capacity 

(GW)

Reference Case 0 7.6 93.2 19.7
NoCO2Limit_LowVRECosts 1 11.3 93.0 22.0
NoCO2Limit_NoSLTE 2 15.0 100.7 11.4
HighCO2Limit 3 22.3 94.1 8.3
MedCO2Limit 4 22.0 100.7 4.5
LowCO2Limit 5 13.7 97.8 15.4
HighCO2Limit_LowVRECosts 6 16.6 98.4 12.4
MedCO2Limit_LowVRECosts 7 23.9 99.3 3.3
LowCO2Limit_LowVRECosts 8 10.4 99.4 16.7
HighCO2Limit_NoSLTE 9 21.7 91.2 11.3
MedCO2Limit_NoSLTE 10 15.7 97.4 11.1
LowCO2Limit_NoSLTE 11 15.5 96.5 13.2
HighCO2Limit_NG2025 12 64.3 91.1 7.2
MedCO2Limit_NG2025 13 57.7 71.3 9.9
LowCO2Limit_NG2025 14 41.8 88.6 12.4
HighCO2Limit_NGFullCost 15 48.4 69.0 10.7
MedCO2Limit_NGFullCost 16 60.7 61.5 2.6
LowCO2Limit_NGFullCost 17 38.0 84.0 11.7
Peak System Load (2025): 153 GW
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foresight; rather, they operate under uncertainty about the future. Future research may introduce 

uncertainty into this modeling framework through extension of the algorithms used in this study, 

such as the stochastic dual dynamic programming algorithm (Pereira & Pinto, 1991). This would 

enable modeling of concurrent cost and policy pathways with varying likelihoods, and for 

evaluation of the effect of uncertainty on resource planning decisions. Separately, imperfect-

foresight can be modeled through a rolling model horizon approach, in which foresight extends to 

a limited number of future model periods, as opposed to the end of the planning horizon. This 

approach may more accurately emulate how resource planning decisions are made in practice.  

Second, we do not account for operating or planning reserve requirements due to the 

substantially greater computational requirements they impose, even though many states’ integrated 

resource planning processes require consideration of them. However, newer, more 

computationally efficient versions of the GenX capacity expansion model may allow future 

researchers to simulate detailed investment and planning scenarios with this additional operational 

detail. 

Finally, our capacity planning framework does not represent up-stream costs associated 

with new capacity, such as additional NG pipelines, nor does it consider the health, environmental, 

and climate cost impacts associated with extracting and burning fossil fuels. In addition, the 

emissions reduction policies considered do not account for CO2-equivalent methane emissions 

which may be associated with deployment of new NG resources, and which like CO2, contribute 

to climate change. Future research should evaluate how incorporating these factors into an 

expanded least-cost planning framework affects optimal investment pathways.   
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5.1.2 Brownfield and Greenfield Resource Representations 

There are some notable limitations in the representation of brownfield and greenfield 

capacity in the Southeast model. First, we limit new PHS capacity to that of the lowest-cost 

resource sites, which are maxed out even under the Reference Case, although there is the potential 

for additional capacity at higher-cost sites identified by the regional PHS supply curve analysis. 

Second, we do not consider the possibility of lifetime extensions of existing capacity, retrofits, or 

other one-time capital projects that may lead to increased efficiency, lower emissions, or reduced 

costs. Existing coal-fired power plants have already been retrofit with CCS technology in the 

United States and Canada and retrofitting existing NGCC plants is technically feasible (EPRI, 

2015). Duke Energy has recently announced a partnership with molten-salt thermal storage startup 

Malta to study the possibility of converting an existing coal unit in North Carolina to a clean energy 

storage facility (Duke Energy, 2021). Furthermore, major turbine manufactures are developing the 

technology to allow for high-volume hydrogen firing of NGCC turbines and are aiming to 

demonstrate viable, 100% hydrogen firing in the coming years (Sonia Patel, 2019).  The ability to 

model retrofits of new or existing NG resources for CCS, molten-salt thermal storage, or hydrogen 

co-firing would present a more accurate representation of how the grid may evolve in practice; for 

example, the current model configuration only allows for CCS to be deployed via investment in 

brand new NGCC plants outfitted with the technology. 

Future grids may include several new technology types which are not represented in our 

model, including long-duration energy storage technologies such as hydrogen, advanced 

electrochemical storage such as flow batteries and thermal storage; small modular reactors or other 

advanced nuclear technologies; or hydrogen-fired power plants. Additionally, our analysis is 

limited to supply-side resources: we do not consider the effects of demand-side energy 
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management or energy efficiency on resource planning outcomes. What’s more, under a high-

electrification future, as assumed here, a far greater percentage of load could be flexible, such as 

that attributed to electric vehicle charging or space heating. Future research may consider modeling 

a wider range of resource types, including but not limited to the aforementioned technologies, and 

evaluate their impact on optimal resource configurations. 

5.2 Policy Implications 

As utilities, regulators, and policy makers think about how they might transition the electric 

power sector to net-zero emissions by mid-century, they must confront difficult decisions about 

what to build and when to build it, what to retire and when to retire it. These decisions can be 

especially difficult when thinking about natural gas-fired generation, which offers valuable grid 

services at the cost of GHG emissions. While utilities nationwide have put forth plans for new NG 

capacity before utility regulators, some stakeholder groups are voicing their opposition to new NG, 

including over proposals by utilities operating in the American Southeast such as Duke Energy 

(St. John, 2021) and Southern Company (St. John, 2020). The analysis presented here contributes 

several key findings which may introduce nuance to these contentious conversations, and which 

suggest concrete policy implications. The resulting recommendations, and the findings which 

support them, are presented below. 

5.2.1 Recommendation 1: Consider Natural Gas as a Potential Resource in CO2 Reductions 

Pathways 

Finding: New NG capacity is deployed in all scenarios considered, including cases with 

low-cost VRE and storage assumptions. Furthermore, all scenarios have greater new NG capacity 

deployed in 2025, the first model period where new NG capacity is allowed, than the Reference 

Case, suggesting that mid-century emissions reductions policies, and lower future costs of VREs 
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and storage, may lead to increased deployment of NG in the near-term under perfect-foresight and 

high-electrification growth assumptions. This is consistent with findings of other researchers, such 

as Jayadev et al. (2020), who find that NG capacity growth is “strong and robust” even under a 

carbon tax assumption, and MacDonald et al. (2016) who describe NG as a “cost effective” 

complement to VREs. 

Recommendation: Regulators should consider NG as a potential resource to be utilized on 

low-carbon transition pathways, as it provides flexible generation through mid-century to support 

massive new investments in VREs and battery storage. What’s more, increased NG investment in 

the near-term is not necessarily incompatible with mid-century emissions reductions targets; on 

the contrary, increased new NG capacity can lead to greater cumulative emissions reductions 

through 2050 if it facilitates early coal plant retirements. 

5.2.2 Recommendation 2: Grid Operators Should Prepare for a Changing Role for Natural Gas 

Finding: The role of NG in the grid will likely change in the coming decades – average 

CFs for NG plants trend downwards even in the Reference Case, and NGCT “peaker” plants play 

a greater role in grids with greater VRE capacity in later model periods across scenarios. 

Recommendation: Grid operators should plan for an evolving role of NG in the future 

capacity mix, where NG power plants are operated at lower average annual CFs, whether or not 

emissions reductions policies are expected. In states with existing emissions reductions goals, such 

as North Carolina, or if emissions policies are forthcoming, grid operators should plan for NG 

plants to operate at even lower capacity factors as emissions restrictions become more stringent.  
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5.2.3 Recommendation 3: Minimize Ratepayer Impacts of Early Plant Retirements 

Finding: In all “low” emissions reductions scenarios with baseline VRE and storage cost 

assumptions, some newly built NG capacity is retired before the end of its economic life, including 

when no salvage value is assumed after the planning horizon. This suggests that in some cases, it 

may be cost-optimal to pay full-costs for new NG plants even if they are not utilized for their full 

operational lifetimes. 

Recommendation: State lawmakers and regulators should develop policies which allow 

for accelerated cost recovery of some new NG assets. By anticipating and planning for early plant 

retirements, policymakers can reduce or prevent risk of asset stranding, while minimizing risk of 

continued emissions into mid-century. Regulators, utilities, and consumer advocates should 

recognize that accelerated depreciation timelines may be cost-optimal under certain circumstances, 

and embrace advanced planning tools which can aid them in making such determinations. 

5.2.4 Recommendation 4: Design CO2 Emissions Reductions Policies with Care 

Finding: In most scenarios evaluated, the “low” emissions policies led to greater 

cumulative CO2 emissions over the planning horizon than “medium” emissions policies, which 

can be attributed to greater utilization of existing coal capacity during early model periods, instead 

of new VRE or NG capacity being deployed. 

Recommendation: Policy makers must be careful when designing emissions reductions 

policies which place limits on CO2 emissions and take care to ensure that these policies don’t 

incidentally lead to greater emissions before emissions limits come into effect. In particular, some 

additional flexibility in mid-century CO2 emissions (e.g., “medium” as opposed to “low” emissions 

policies) might contribute to greater cumulative emissions reductions through mid-century by 

creating a policy environment more conducive to investing in more efficient and lower-carbon 
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fossil capacity in the near term, which may allow higher emitting plants to retire early. 

Alternatively, policy makers may consider implementing targeted emissions reductions policies 

which prioritize rapid retirements of the existing coal fleet. 

5.2.5 Recommendation 5: Ensure Technological Readiness of CCS  

Finding: NGCC power plants with CCS are deployed under all “low” emissions policies, 

including when VRE and storage costs are assumed to be low, and under some “medium” 

emissions policies, suggesting a role for CCS technology in achieving low-carbon grids across 

scenarios.  

Recommendation: Since CCS may play an important role in mid-century capacity mixes 

under various emissions reduction pathways, R&D and other policies which support the 

technology, such as the 45Q federal tax credit for sequestered CO2, should be prioritized.  

5.2.6 Recommendation 6: Keep Existing Nuclear Capacity Online to Support Cost-effective 

Decarbonization  

Finding: Continued operation of existing nuclear capacity through mid-century helps to 

reduce costs associated with the transition to a low-carbon grid; however, new nuclear plants are 

not economical under any of the scenarios evaluated. 

Recommendation: When it is possible to safely do so, existing nuclear capacity should be 

kept online through 2050 as a source of substantial zero-carbon electricity without the need for 

investments in additional capacity. This will require that nuclear plant operators apply for, and the 

Nuclear Regulatory Commission approve, second license renewals. However, if SLTEs are not to 

be granted, policy makers should ensure low-carbon capacity replacements instead of increased 

utilization of existing coal plants.  
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5.2.7 Recommendation 7: Complement Short-term Deployment of Natural Gas with Long-term 

Limits 

Finding: Regulations which prohibit new NG or make investments in new NG less 

attractive, such as assuming that NG plants has no salvage value after 2050, lead to similar resource 

planning outcomes, namely the early buildout of new NG capacity in 2025, and in all but one 

scenario, result in lower cumulative emissions than under CO2 emissions reductions policies alone. 

Recommendation: Policy makers and regulators may consider promoting long-term limits 

on new NG deployment or require shorter capital-recovery periods for new NG investments as a 

means to promote additional emissions reductions on top of policies which directly limit CO2 

emissions. Conversely, they should oppose policies that disincentivize displacing coal with lower-

carbon resource options such as new NG or VREs in the short-term. 

5.3 Conclusion 

In this thesis, I examine the role of NG generation in future low-carbon energy systems by 

modeling least-cost resource portfolios in the American Southeast. I utilize a multi-period 

optimization modeling framework to model capacity mixes through mid-century under various 

policy and technology scenarios that assume a greater role for electricity in the broader energy 

system. My findings suggest a role for NG in future low-carbon girds even along deep 

decarbonization pathways under the modeling assumptions considered here. These results support 

policy recommendations which provide increased nuance in decision making regarding short-term 

and long-term NG deployment and the design and implementation of emissions reductions 

policies. It is important to note, however, these results are not proscriptive, but rather provide 

insights on key drivers of costs, emissions, and other planning outcomes under a limited set of 

model assumptions. They suggest one possible set of least-cost operational and investment 
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outcomes; how actual outcomes follow or deviate from these pathways will be the result of an 

ongoing dialogue between utilities, regulators, ratepayers, lawmakers, and other stakeholders. As 

such, it is my hope that this analysis and its findings serve as the starting point for a broader 

discussion among a diverse set of stakeholders about the role of natural gas in future low-carbon 

grids not only in the American Southeast, but nationwide. 
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