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promising candidates as the controlled introduction of porosity allows for tailoring their density 
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while activating strengthening size-effects at the nano- and micro-structural level. Here, plate-

lattices are conceived by placing plates along the closest-packed planes of crystal structures. Based 

on theoretical analysis, a general design map is developed for elastically-isotropic plate-lattices of 

cubic symmetry. In addition to validating the design map, detailed computational analysis reveals 

that there even exist plate-lattice compositions that provide nearly-isotropic yield strength together 

with elastic isotropy. The most striking feature of plate-lattices is that their stiffness and yield 

strength are within a few percent of the theoretical limits for isotropic porous solids. This implies 

that the stiffness of isotropic plate-lattices is up to three times higher than that of the stiffest truss-

lattices of equal mass. This stiffness advantage is also confirmed by experiments on truss- and plate-

lattice specimens fabricated through direct laser writing. Due to their porous internal structure, the 

potential impact of the new metamaterials reported here goes beyond lightweight engineering, 

including applications for heat-exchange, thermal insulation, acoustics, and biomedical engineering. 

 

The stress-strain curve reveals the stiffness and strength of a material. It is obtained from 

mechanical experiments in which a block or coupon of material is subjected to uniaxial tension (or 

compression). The stress-strain response often depends on the orientation of the material with 

respect to the direction of loading. Wood, for instance, is much stiffer and stronger when loaded 

along its fiber direction as opposed to its radial direction. [1] In the case of mechanical metamaterials 

such as foams, honeycombs and truss lattices, it is less obvious to recognize the loading direction 

sensitivity of their mechanical response. For example, a simple-cubic truss with a unit cell composed 

of three orthogonal beams features the same stiffness along all [100] directions, yet it is a highly 

anisotropic material: its stiffness along the diagonal [111] directions is several orders of magnitude 

lower.[2]  

At low levels of microstructural hierarchy, anisotropy can be leveraged to achieve high strength in 

combination with high damage tolerance[3,4]. However, at the macroscopic level, engineering 

materials for large volume markets are expected to exhibit isotropic stiffness and strength. For 
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example, all polycrystalline metals, polymers and ceramics fall into the class of nearly isotropic 

solids. Stochastic solid foams are the first generation of man-made porous isotropic metamaterials. 

These are primarily used for elastic cushioning (shape recovery) and impact energy absorption 

purposes.[1] Foams achieve the direction-independent stress-strain response through a random 

structure of open or closed cells. When it comes to stiffness and strength, truss lattice materials 

outperform random foams for the same constituent material and the same relative density.[1,5] 

Anisotropic truss-lattices received significant attention,[6-15] before the discovery of isotropic 

configurations.[16-18] Computational and experimental studies led to a mature level of understanding 

of the mechanical property space of three-dimensional lattice architectures.[18-20] Advanced material 

processing techniques have enabled the fabrication of truss-lattices at the micro- and nano-scales, 

thereby increasing their mechanical performance through tailoring the relevant length scales.[10-12,21]  

Despite their superiority in stiffness to stochastic foams,[16] the structural efficiency of the stiffest 

elastically-isotropic truss-lattices is still not optimal. For example, at low relative densities, their 

stiffness attains less than 33% of the Hashin-Shtrikman (HS) bound, which is the highest 

theoretically-achievable elastic modulus for an isotropic porous solid.[22] Lattices composed of 

shells[23] (“shellular”) and plates appear to be more promising. Using numerical analysis, Berger et 

al.[24] identified one particular cubic-octet foam, which is a first example of an isotropic plate-lattice 

structure achieving maximum theoretical stiffness.  

Here, we identify a full family of elastically-isotropic plate-lattices that provide near-optimal mass-

specific stiffness. Moreover, we reveal novel architectures that provide not only high isotropic 

stiffness, but which exhibit also a nearly isotropic plastic response. Plate-lattices are fabricated using 

3D direct laser writing to demonstrate experimentally their stiffness advantage over isotropic trusses 

of the same mass. Attention is limited to structures of cubic symmetry. Simple Cubic (SC), Body-
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Centered-Cubic (BCC) and Face-Centered-Cubic (FCC) elementary plate-lattices (Figure 1a-c) are 

obtained by placing plates on the closest-packed planes of cubic crystals. Isotropic plate lattices 

(Figure 1d-f) are then synthesized through mixing of elementary cubic structures. 

Using theoretical homogenization (Supporting Information), an analytical expression for the full 

stiffness tensor of plate-lattices is obtained as a function of the relative density, ,/* VVs  i.e. 

the ratio of the volume sV  of the solid constituent material comprised in a unit cell of volume V . For 

the elementary SC, FCC and BCC plate-lattices (Figures 1a-c), the ratios of the moduli for the softest 

and stiffest directions are 0.49, 0.58 and 0.83, respectively. We exploit the fact that the stiffest 

direction of the SC elementary structure coincides with the softest direction of the FCC and BCC 

elementary structures, and vice versa. It is actually possible to combine different elementary 

structures in a way that the resulting compositions exhibit an elastically-isotropic response (e.g. 

Figures 1d-f). 



 

     

 

This article is protected by copyright. All rights reserved. 

5 

 

 

Figure 1. Stiffness of plate-lattices: a) to c) Anisotropic elementary structures and their normalized 

uniaxial stiffness as a function of the direction of loading. The edges of the gray coordinate grids are 

aligned with the [100] directions of the cubic unit cells. d) to f) Isotropic plate-lattice compositions 

obtained by mixing the elementary structures. g) Design map providing the minimum-to-maximum 

modulus ratio as a function of the mixing ratios of the elementary structures. The black line inside the 

red zone highlights all isotropic compositions. h) Scaling of normalized Young’s modulus of isotropic 

metamaterials as a function of their relative density. Simulation results for selected isotropic plate-

lattices (square dots) and truss-lattices (circular dots) are shown next to the theoretical upper limit 

(Hashin-Shtrikman bound). 
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The design map shown in Figure 1g provides the required solid volume fractions of the elementary 

cubic structures for synthesizing elastically-isotropic plate-lattices. The color contour is the ratio of 

the minimum-to-maximum modulus, Emin/Emax. An infinite number of isotropic SC-BCC-FCC 

compositions is found (black line in the red region in Figure 1g). The limiting cases are a particular 

SC-BCC composition (structure ①) and the cubic-octet foam structure of Berger et al.[24] (which 

corresponds to the particular SC-FCC composition ③). According to our theoretical solution at the 

low relative density limit, we have 5.0
*


sE

E


  for the isotropic plate-lattices (with  E  and sE  

denoting the Young’s moduli of the lattice structure and the solid constituent material, respectively). 

When comparing this result with the known solution for truss-lattices,[16,18]  17.0
*


sE

E


, it 

becomes apparent that the identified plate-lattices are up to three times stiffer than optimal trusses 

of the same relative density. It is strikingly clear that, even if they respond in the ideal stretching-

dominated manner, isotropic truss-lattices cannot compete with plate-lattices of equal density. 

Since the analytical estimates are only exact in the limit of infinitesimal relative density )0( *  , 

we build detailed finite element models of selected plate-lattices (Experimental Section) to confirm 

that the elastic moduli of plate-lattices reach the Hashin-Shtrikman bound for relative densities of up 

to 50% (Figure 1h).   

Plate-lattices are designed such that all constituent plates respond primarily through 

membrane deformation, as opposed to compliant-mechanism metamaterials, whose 

macroscopic response is governed by the bending of the constituent plates.[25] The remarkable 

stiffness advantage of plate- over truss-lattices can be understood without going into the 
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mathematical details. Consider a first SC unit cell made from three beams of equal length L  and 

cross-sectional area A , and a second made from three plates of area LL  and of thickness 

LAt /  (equal volume). When these structures are subjected to uniaxial compression along the 

[100] direction, one of the three beams is uniformly compressed in the truss-lattice, while two of the 

three plates are uniformly compressed in the plate-lattice (the stretched elements are highlighted in 

yellow in the schematics ④ and ⑤ in Figure 2). Given that the constituent beams and plates have 

equal volume, and that the deformed portions of the respective solid phases experience the same 

amount of strain (i.e. same local strain energy density), it can be concluded that for the same 

macroscopic strain M , the total strain energy introduced into the plate-lattice unit-cell is twice as 

high as that introduced into the truss-lattice (which implies that the apparent macroscopic stiffness 

of the plate-lattice is then also twice as high). The fundamental advantage of plate-lattices is that 

each constituent plate contributes to the load carrying capacity for all direction vectors comprised in 

the plane of the plate. A single beam of the same volume as a plate provides also the same stiffness, 

but for one pre-defined direction only.  
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Figure 2. Distribution of the strain energy density within lattices of 30% relative density subject to 
uniaxial compression along the vertical direction. The contour plots and the right-hand plot show the 
strain energy density as normalized by the Voigt solution (uniform distribution). All inserts except for 

the schematics ④ and ⑤ show results from finite element simulations. 

 

After introducing the Strain Energy Density (SED) for uniform straining of the constituent material,  

2

2

1
Mss E   , we plot the normalized distribution of the local SED   as a function of the fraction of 

solid volume comprised in a unit cell (Figure 2). In the case of the SC structures, a simple step 

function is obtained (when neglecting the role of intersections). We have  1/ s  for 33% of the 

volume of the truss-lattice, and for 66.7% of the volume of the plate-lattice (gray curves). The SED 

plots become more interesting when analyzing the simulation results for uniaxial compression of the 

isotropic compositions along their [100] direction. In an isotropic SC-BCC truss-lattice of 30% relative 

density (structure ⓪ in Figure 2), the SED is 1/ s in the vertical struts aligned with the 

direction of loading (about 11% of the solid volume). It then drops to values of about 1.0/ s  

for the diagonal and horizontal members (about 82% of the solid volume experiences 5.0/ s ). 
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The integration over different parts of the truss-lattice then shows that about 50% of the total Strain 

Energy (SE) is stored in the vertical struts, even though they only make up for 11% of the volume. In 

case of the SC-BCC plate-lattice (structure ①), the SED is 1/ s  for all vertical plates.  The main 

difference as compared to the truss-lattice is that as much as 34% of the solid matter is comprised in 

these vertical plates, while only 56% is oriented along weakly strained ( 5.0/ s ) diagonal and 

horizontal directions. As a result, the integral of the SED over the entire plate-lattice is much higher 

than that for the truss-lattices, which translates into a much higher stiffness at the macroscopic 

level. The results for other SC-BCC-FCC topologies (Figure 2) and different directions of loading 

(Supporting Information) lead to the same conclusions: the SED in plate-lattices is always more 

uniform (smaller min/max deviations from the average SED), while the solid volume fraction 

experiencing an SED greater than s  is always at least twice as high in the plate-lattices as in the 

truss-lattices of equal mass.  

To validate our stiffness estimates experimentally, we use 3D direct laser writing to fabricate truss- 

and plate-lattices with a cubic unit cell size of 66m from a glassy polymer (Figure 3a-l).  For the SC-

BCC and SC-FCC plate-lattices, a relative density of  %30*   is obtained for SC (BCC/FCC) plate 

thicknesses of 1.5(2.1) and 3.0(2.0)m, respectively. For the SC-BCC and SC-FCC truss-lattices, the 

corresponding SC (BCC/FCC) beam diameters are 17.4(14.0) and 12.2(10.3)m, respectively. The 

main road block to date for manufacturing plate-lattices through liquid-bath or powder-bed based 

additive processes is that excess liquid or powder is trapped inside the closed cells formed by the 

plates. Here, circular holes of a diameter of 5.3m are placed at the center of each plate to allow for 

the extraction of unexposed liquid photoresist (at the expense of less than 5% of the plate-lattice 

stiffness, see Supporting Information).  
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Figure 3. Polymer specimens of 30% relative density fabricated through direct laser writing. a) to d) 

isometric views of plate-lattice specimens: a) [100]-SC-BCC, b) [110]-SC-BCC, c) [100]-SC-FCC, d) 

[110]-SC-FCC. e) to h) corresponding top views. i) to l) isometric and top views of [100] SC-BCC and 

SC-FCC truss-lattice specimens. m) Measured Young’s moduli. n) and o) Isometric views of deformed 

unit cells after applying ~15% compression strain along vertical direction. Scale bars: (a)-(d), (i)-(j), 

(n)-(o) 100µm, (e)-(h), (k)-(l), inserts in (n)-(o) 50µm. 

 

The elastic moduli are determined through linear regression of the initial slope of the stress-strain 

curves measured during uniaxial compression experiments. The average moduli are 332MPa and 

151MPa for the plate-and truss lattices, respectively (Figure 3m). This equates to a stiffness ratio of 

2.1 which is close to the stiffness ratio of 1.9 expected from numerical simulations for %30*  . 

As anticipated from the numerically-predicted spatial distribution of the strain energy density 

(Figure 2), the experimental observations for moderate strains show that the vertical plates and 

struts are the first to fail through bucking (Figures 3n, o). A detailed discussion and videos of the 
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large deformation response is provided in the Supporting Information. Given the visco-plastic nature 

of the constituent material, the plastic yield response cannot be quantified from the experimental 

measurements. Instead, another series of simulations is performed to investigate the yield strength 

of plate-lattices using a rate-independent model for the constituent material.   

It is important to recognize that elastic isotropy does not guarantee plastic isotropy. The effective 

elastic response is determined by the spatial average of the local stresses over the entire volume of 

the unit cell. In the case of plasticity, local stress variations are decisive, i.e. if the local stresses at 

some material point cause the constituent material to deform plastically, the overall response of the 

metamaterial becomes non-linear. In a second series of simulations, the constituent solid is modeled 

as an isotropic elasto-plastic material with isotropic strain hardening mimicking the stress-strain 

response of stainless steel 316L. The yield strength of the metamaterial is defined by the stress 

applied at the instant when the permanent deformation attains 0.2% for uniaxial loading. The pole 

figures (Figure 4a,b) display the orientation dependence of the yield strength of the SC-FCC and SC-

BCC plate-lattices. The extreme value ratios are 19.1/ minmax  yy  and 1.14 for the SC-FCC and SC-

BCC plate-lattices, respectively.  

 To identify possibly plastically-isotropic configurations within the family of SC-BCC-FCC 

compositions, we computed the response of seven distinct elastically-isotropic configurations 

(Figure 4c) that lie between the limiting SC-FCC and SC-BCC configurations (Figure 1g). After 

conducting 91 elasto-plastic shell element simulations per configuration, the corresponding 

maximum-to-minimum yield stress ratios are plotted in Figure 4d as a function of the BCC solid 

volume fraction. The plot reveals a non-monotonic relationship, with a local minimum of 

103.1/ minmax  yy . In other words, within the new family of elastically-isotropic plate-lattice 
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configurations, there exists also an SC-BCC-FCC member (with a BCC solid volume fraction of about 

40%), that attains not only the theoretical stiffness limit, but that is also nearly plastically-isotropic! 

With regards to the structural efficiency, it is noted that the yield strength of the isotropic plate-

lattices (Figure 4e) of low relative density reaches about 68% of the yield strength y

s*  of a 

hypothetical, homogeneously strained solid of equal mass. This value is very close to Suquet’s (1993) 

yield strength bound of y

s*72.0  for isotropic porous media.[26] The obtained (approximately) 

isotropic metamaterial is therefore close to being optimal from the point of view of stiffness and 

yield strength. This optimality also becomes apparent when comparing the plate-lattice results with 

the yield stress estimates for the isotropic truss-lattices (Figure 4e). Similar to the stiffness, the yield 

strength of plate-lattices is substantially higher than that of truss-lattices of equal mass.   

 

Figure 4. Yield strength of elastically-isotropic metamaterials. Pole figures for the computed yield 

strength distribution of plate-lattices: a) SC-FCC, and b) SC-BCC. c) detailed view of the intersection 

of the FCC (yellow), SC (blue) and BCC (red) elementary structures in elastically-isotropic plate-lattice 

compositions of 20% relative density. The percentage below each view is the BCC volume fraction of 

the solid phase. d) Yield stress ratio as a function of the volume fraction of the BCC plates in 

elastically-isotropic SC-BCC-FCC composition. e) Normalized yield stress as a function of the relative 

density. For each configuration (truss- or plate-lattice, SC-BCC or SC-FCC), the maximum (solid dot) 

and minimum (open dot) yield strengths are shown. 
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In summary, using theoretical and computational mechanics, we have identified a class of 

metamaterial composed of plates that exhibit near-optimal isotropic stiffness. Within this family of 

plate-lattice compositions of cubic symmetry, we identified one particular architecture composed of 

SC, BCC and FCC elementary structures which combines isotropic stiffness and (nearly) isotropic yield 

strength, with both properties being close to the theoretical limits for isotropic porous solids. The 

obtained results demonstrate that the stiffness and yield strength of plate-lattices is always higher 

than that of truss-lattices, with a maximum advantage in stiffness of 200% at low relative densities. 

In the future, the size-strengthening principle “smaller is stronger”[9,27] also needs to be explored for 

plate-lattices. Unprecedented mass specific strength and recoverability are expected to be obtained 

by reducing the thickness of the constituent plates to nano-metric dimensions (e.g. through 

pyrolysis[12]) and/or by applying high entropy alloy coatings[21]. In view of the constant progress in 

additive manufacturing technology, it is likely that the newly-discovered isotropic SC-BCC-FCC plate-

lattices will be used in targeted applications that require materials combing low density with high 

specific stiffness and strength. 

 

Experimental Section 

 

Fabrication: Specimens of approximate dimensions 200 x 200 x 200 µm3 are fabricated from IP-S 

photoresist using two-photon polymerization direct laser writing (Photonic Professional GT, 

Nanoscribe GmbH) with a laser power of 50 mW and at a writing speed of 10 mm/s. All structures 

are fabricated in the dip-in mode on glass substrates which are cleaned prior to the fabrication with 

isopropyl alcohol in ultrasonic bath. 
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Experiments: Compression experiments are performed using a custom-made displacement-

controlled micro-testing device. The machine features a 5-axis stage onto which the glass substrate 

with the specimens is mounted. Prior to testing, the specimens are aligned with respect to a flat 

punch )5.01( mmmm  that is connected with a strain-gaged load cell (Omega, LCAE 6N). The 

loading is applied by moving the punch with a piezo-legs motor (Micromo, model LEGS Linear Twin 

40N). A punch speed of 1µm/s is prescribed in all experiments. The displacement of the punch is 

monitored using an optical microscope (Keyence VHX-5000) at 1000x magnification with a frequency 

of 15Hz. Digital image correlation (VIC-2D, Correlated Solutions) is used to measure the 

displacement of the punch. 

Simulations: Non-linear finite element simulations are performed using the implicit solver of the 

commercial software package Abaqus. All reported numerical results are based on unit cell analysis 

with periodic boundary conditions.[28] Unless stated otherwise, solid element meshes are employed 

featuring at least five first-order solid elements along the direction of plate thickness or beam 

diameter. For the sake of computational efficiency, shell element meshes are used when estimating 

the elasto-plastic response of the SC-BCC-FCC plate-lattices. 
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Supporting Information is available from the Wiley Online Library. 
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