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Abstract

We study a multi-period inventory allocation problem in a one-warehouse multiple-retailer

setting with lost sales. At the start of a finite selling season, a fixed amount of inventory is

available at the warehouse. Inventory can be allocated to the retailers over the course of the

selling horizon (transshipment is not allowed). The objective is to minimize the total expected

lost sales and holding costs. In each period, the decision maker can use the realized and possibly

censored demand observations to dynamically update demand forecast and consequently make

allocation decisions. Our model allows a general demand updating framework, which includes

ARMA models or Bayesian methods as special cases. We propose a computationally tractable

algorithm to solve the inventory allocation problem under demand learning using a Lagrangian

relaxation technique, and show that the algorithm is asymptotically optimal. We further use

this technique to investigate how demand learning would affect inventory allocation decisions

in a two-period setting. Using a combination of theoretical and numerical analysis, we show

that demand learning provides an incentive for the decision maker to withhold inventory at the

warehouse rather than allocating it in early periods.
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1 Introduction

We study an inventory allocation problem for seasonal goods in a one-warehouse multiple-

retailer system. At the start of the selling season, a fixed amount of inventory is available at the

warehouse. The decision maker must decide how to allocate this inventory from the warehouse

to the retailers. We assume that lateral transshipment between the retailers is not allowed. The

decision maker’s objective is to minimize the total expected lost sales costs and holding costs.

Our study is motivated by the challenges faced by a large US retail chain to manage its

seasonal merchandise inventory. The retail chain’s nationwide distribution network is divided

into several regions, where each region has around 30 to 50 retail locations serviced by a regional

distribution center. Seasonal goods offered by this retailer usually have selling horizons that last

from 12 to 16 weeks. Demand uncertainty is high, and there is little salvage value associated

with seasonal goods at the end of their life cycles. Due to lengthy supply lead times, production

orders must be placed well before the selling season begins, and in most cases, inventory cannot

be replenished during the selling season after the initial order quantity is determined. There

is no transshipment between the store locations. Therefore, the decision to allocate warehouse

inventory among different retail locations can have a significant impact on sales.

For one-warehouse multiple-retailer systems, it has been widely observed in the literature

(Jackson 1988, Jackson and Muckstadt 1989) that the warehouse can reduce inventory cost by

making multiple allocations throughout the selling season, rather than allocate all its inventory

to the retailers at once. The benefit of postponement and delayed allocation has also been

studied by Lee (1996), Lee and Tang (1997), and Cheung and Lee (2002). The intuition is that

if some retailers experience high demands in earlier periods, reserving inventory at the warehouse

allows the retailer to re-balance inventory levels by allocating more inventory to these retailers

(and less inventory to retailers who experience low demands) in later periods. This ability to

mitigate demand fluctuations by storing inventory in a central location and delaying allocation

is known as the “risk-pooling” effect or the “postponement” strategy.

In this work, our chief contribution is to study a second motive – namely, demand learning

– for the decision maker to delay inventory allocations to later periods. When the customer

demand distribution is unknown, learning demand allows the decision maker to continuously

improve her demand forecasts during the season, by observing historical demand and updating

her demand beliefs in response to these observations. Intuitively, one would expect that by

reserving inventory at the warehouse, the decision maker can make more informed allocation

decisions later on in the time horizon, and allocate more inventory to retailers who have been

observed to experience high demands, and less inventory to retailers who have been observed

to experience low demands. In this paper, we provide evidence to support this intuition by

showing that we can expect the decision maker’s first-period allocations from the warehouse to

the retailers to decrease with the extent of learning.

To prove this property, we first address the question of how the decision maker can optimally

allocate inventory from the warehouse to the retailers in a computationally tractable way. Since

the exact solution to the allocation problem becomes computationally intractable as the number

of retailers grows large, we propose a heuristic method. Of the many heuristics proposed in the

literature (Federgruen and Zipkin 1984, Jackson 1988, McGavin et al. 1993) for the two-echelon

inventory allocation problem, we base our work on the heuristic developed by Marklund and

Rosling (2012) for a backordering, independent demand setting. The idea behind their method
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is that the source of the computational complexity in the allocation problem is that the fixed

warehouse inventory couples the allocation decisions across the retailers. If each retailer had

to pay some ordering cost for each unit of inventory, instead of satisfying the fixed warehouse

inventory constraint exactly, the allocation problem would decouple, and each retailer could

solve its inventory ordering problem separately.

We propose a heuristic that relaxes the fixed inventory constraint to allow for this problem

decomposition. We prove an optimality gap between the expected costs of applying the heuristic

and the optimal value of the original allocation problem. A key difference between our result

and that of Marklund and Rosling (2012), besides the fact that they study a backordering

setting and we study a lost sales setting, is that our result applies to a setting with correlated

demands, which includes demand forecasting settings as well as settings with Bayesian learning.

In Marklund and Rosling (2012), however, demands at each retailer are assumed to be i.i.d.

across time.

Then, using the heuristic as a proxy for the exact optimal solution, we investigate how the de-

cision maker’s allocation policy depends on demand learning. We consider a two-period demand

forecasting model with identical retailers that parametrizes the extent of demand uncertainty in

the second period. We show analytically, by further approximating our lost sales setting with a

no carryover inventory setting (where no remaining inventory at the retailers can be carried over

to the next period), that the dependence of the first-period allocation on the level of uncertainty

is consistent with the property that early allocations should decrease as the amount of demand

learning increases. This allows us to conclude that demand learning complements risk pooling

in incentivizing the decision maker to reserve inventory at the warehouse, and to delay inventory

allocations to later periods.

We also separately use the heuristic to prove an additional structural result on the allo-

cation decisions when the retailers are non-identical. In particular, we look at a setting with

independent but non-identical retailers experiencing truncated normal demands, and who share

the same demand means but different variances. We ask how the retailer should prioritize

among these retailers when allocating inventory. We show that the decision maker’s strategy

will depend on the amount of available warehouse inventory: When the warehouse inventory

is small, the decision maker should favor a conservative policy, and allocate more inventory to

retailers with lower demand variances, since these retailers have a lower chance of experiencing

low demands. On the other hand, when the warehouse inventory is large, the decision maker

should take a risk on retailers with higher demand variances, and allocate more inventory to

these retailers, since they have a higher chance of experiencing high demands.

1.1 Literature Review

Inventory allocation in two-echelon systems was studied in the seminal work of Clark and Scarf

(1960), who observed that the complexity of this problem relative to a serial system stems from

the fact that that the retailers’ inventory positions cannot be lowered through transshipments or

returns to the warehouse. This causes the optimal allocations to depend not only on the echelon

inventory level, but also on the inventory positions at all locations. Tan (1974) analyzed the

structure of optimal policies for a special case with two retailers. Since the inventory allocation

problem becomes computationally intractable as soon as either the number of retailers or the

number time periods grows large, several papers have proposed effective but computationally
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tractable policies that rely on approximations of the original problem. Jackson (1988) considers

a class of “order-up-to-S” policies, where the warehouse stocks each retailer (all of whom are

assumed to experience i.i.d. demand) up to S every period until it runs out of inventory. He

proposes that when the warehouse runs out of inventory to allocate all the retailers’ inventory

levels up to S, it should solve a “run out allocation” problem, and develops approximations to

efficiently solve this optimization problem. Jackson and Muckstadt (1989) study a two-period

model with backordering. They approximate the cost function by analyzing the case where

the number of retailers tends to infinity, and use this approximation to develop an efficient

optimization procedure. McGavin et al. (1993) and McGavin et al. (1997), like us, study the

lost sales setting, but with only two periods and identical retailers. They show that the optimal

policy takes the form of balancing policy, and also propose a heuristic, known as the infinite

retailer heuristic, which estimates the first-period optimal allocations and second-period order-

up-to levels by approximating their set up with a deterministic setting with infinitely many

retailers.

The above papers demonstrate the effectiveness of their proposed heuristics through numer-

ical simulations. Marklund and Rosling (2012) is the first that we know of that establishes

the optimality gap between the expected cost of their heuristic and that of the exact optimal

solution. They study a backordering setting with N non-identical retailers, each of whom ex-

periences demand that is i.i.d. across time. They propose a Lagrangian relaxation heuristic

and prove that the ratio of the optimality gap between the heuristic and the original problem

to the value of the optimal problem is bounded by O(
√
N), implying that this optimality gap

goes to 0 as the number of retailers grows large. In this work, we adapt the result in Marklund

and Rosling (2012) to our lost sales, correlated demand setting to get the same optimality gap

bound of O(
√
N). The main technical contribution we have made in adapting their proof lies

in showing the convexity of the relaxed optimization problem in the lost sales setting. We give

a sufficient condition on the relationship between prices and holding costs that guarantees the

convexity of this optimization problem, which ensures that their result holds in our setting.

Another stream of literature that our paper is closely related to is the literature on inventory

allocation in a two-echelon setting with demand learning. Many of these papers are motivated by

real examples of allocation decision problems faced by fashion retail companies, where demand

in later periods of a season can only be learned by observing early sales. Eppen and Iyer (1997)

consider a catalog merchandiser that uses early (uncensored) sales to learn whether a fashion

item will be popular or not. Agrawal and Smith (2013) study a two-period multi-location

inventory allocation problem, but they assume that retailers’ inventory can be sent back to

the warehouse with no additional cost. Fisher and Raman (1996) study a two-period model

where the first-period allocation is unconstrained but the total second-period allocations are

limited. They approximate the decision maker’s optimization problem in order to solve it in a

more computationally tractable way, and test their algorithm on data from the fashion retail

company Sport Obermeyer. In addition, they look at the special case that demand is bivariate

normal, and give a closed-form solution of the optimal first-period allocations to the retailers in

terms of their demand means and variances. This is related to our result in Section 4.2, where

we compare the allocations to retailers with different demand variances. However, the result in

Fisher and Raman (1996) does not show how the warehouse should prioritize among retailers

with low and high variances. In this work, we show that the warehouse’s strategy should depend
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on the amount of available inventory at the warehouse.

Besides Fisher and Raman (1996), Fisher and Rajaram (2000) study the problem of mer-

chandise testing, i.e. of allocating small amounts of inventory to a small number of selected

retailers before the season starts to learn demand. They develop an algorithm to determine

which retailers testing inventory should be allocated to in order to maximize learning during

the testing period, and test their algorithm on data from a real fashion retailer. Gallien et al.

(2017) work with Zara to study the problem of determining inventory allocations to retailers

early in the season. They propose an algorithm that approximately solves this problem, prove

an asymptotic optimality bound on the proposed algorithm, and run field experiments to vali-

date its performance. We note that all three of these demand learning papers study two-period

models. This shows that many real-world settings faced by fashion retailers can be formulated

as two-period models, and suggests that the model used in our structural analysis in Section 4

to a two-period setting is not only simpler to analyze, but also practical.

It is also worth comparing our work with several papers on demand learning for the single

retailer setting. This classical problem has been studied for several decades, see Clark and Scarf

(1960), Iglehart (1964), Azoury (1985), Miller (1986), Lovejoy (1990), Lariviere and Porteus

(1999), Lu et al. (2008), Chen and Plambeck (2008), Chen (2010), Jain et al. (2014), and

references therein. Our Lagrangian relaxation heuristic introduced in Section 3 aims to reduce

the multi-retailer problem to N separate single retailer problems, for which the computation

methods developed by these papers can be readily applied. From this stream of literature,

Ding et al. (2002) study a two-period newsvendor model where demand learning can take place

through Bayesian updates of unknown parameters based on observed sales data. They compare

the optimal first-period allocations when demand is censored (i.e. demand at each retailer

can only be observed up to its inventory position) with the optimal allocations when demand is

fully observable. They analytically derive the intuitive result that when demand is censored, the

decision maker should allocate more inventory in the first-period so as to obtain more accurate

demand information. Azoury (1988) and Azoury and Miller (1984) also study a two-period

model, though with backordering, and like us, they compare the optimal first-period allocations

with and without learning. In their setting, however, demand learning takes place through

Bayesian updates of the unknown parameters, whereas our structural analysis in Section 4 is

based on a demand forecasting model. They prove that under specific assumptions on demand

(such as the fact that it belongs to a family of distributions that satisfies what is known as

the single crossing property), the first-period allocations are greater without learning (when

the parameter is updated) than when it is updated. The intuition behind this result is that

in the learning setting, a parameter update could reveal that demand is on average lower than

anticipated; Then, allocating too much inventory in the first-period puts the decision maker at

risk of having a higher inventory position than is optimal. In this work, we derive a similar

structural result that says that the first-period allocations are decreasing with the extent of

learning. However, because we assume a multiple-retailer setting with fixed inventory (whereas

in Azoury (1988) and Azoury and Miller (1984) inventory is unlimited), the interpretation of

our result is different. In our case, allocating less inventory when there is learning has to do

with saving inventory for the second period, when demand uncertainty is lower, and it is clearer

which retailers will experience high demands, and which retailers will experience low demands.
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1.2 Notation

In the paper, (column) vectors are denoted by boldface letters. Let 1n denote a vector of all ones

of length n, and let 0n denote a vector of all zeros of length n. We will omit the subscript n when

the dimension of these vectors is evident. For any m-dimensional vector x, let [x]+ := max{0,x}
where max is the element-wise maximum.

2 Model

We study an inventory allocation problem for seasonal goods in a two-echelon network with one

warehouse and N retailers. At the start of the selling season of length T , a fixed amount of

inventory w0 is available at the warehouse, while the N retailers have no starting inventory. In

each time period t = 1, 2, . . . , T , the warehouse can choose to allocate some amount of inventory

ai,t ≥ 0 to each retailer i. Let at denote the N dimensional vector with i-th entry being ai,t.

Transshipments (moving inventory between retailers) or returning inventory from the retailers

to the warehouse are not allowed, and we assume that there is no additional replenishment to

the warehouse during the season. This implies that the total allocation to all retailers over the

selling horizon satisfies
∑N

i=1

∑T

t=1 ai,t ≤ w0 almost surely.

We denote the retailer inventory positions at the beginning of period t by a N -dimensional

vector xt. The retailer inventory positions after the allocations are denoted by theN -dimensional

vector yt, where yt = xt + at. After the warehouse allocates inventory to the retailers, each

retailer i then sells the product at price pi,t and correspondingly observes demand Di,t. We

assume that for each i and t, Di,t is a random variable that is discrete and bounded uniformly

by some constant Dmax. We also assume that demand is independent from retailer to retailer.

However, for each retailer, we allow the demands Di,t to be correlated across time. In particular,

the distribution of Di,t can depend on the demand history {Di,1, . . . , Di,t−1} as well as other

exogenous variables.

We study a lost sales setting with no lead times. Any demand that is not met is lost and not

backordered, giving a starting inventory position at the retailers at time t of xt+1 = [yt −Dt]
+.

Any demand that is not met by retailer i incurs a per-unit lost sales cost of pi,t, where pi,t is

the price of the product and pi,t ≥ 0. Any demand that remains at retailer i at time t incurs a

per-unit holding cost of hi,t, with hi,t ≥ 0. We ignore transportation costs.

The decision maker’s objective is to minimize the expected discounted costs for a given

discount factor is 0 < γ ≤ 1 incurred by the different retailers over the course of the selling

horizon. At time t, given that retailer i has a post allocation inventory position of yi,t, the cost

incurred by this retailer is this is the sum of a lost sales component of pi,t[Di,t − yi,t]
+ and a

holding cost component of hi,t[yi,t −Di,t]
+. We define the cost

Li,t(yi,t) := pi,t[Di,t − yi,t]
+ + hi,t[yi,t −Di,t]

+.

The decision maker then determines inventory allocations to the retailers based on the current

warehouse inventory, the history of demand observations, and its belief of future demand. At

each time t, we assume she has knowledge of the history of past demand realizations, which can

either be the full demand history Ht = {Di,s, ∀i = 1, . . . , N, s = 1, . . . , t − 1} or the censored

information Ht = {yi,s ∧ Di,s, ∀i = 1, . . . , N, s = 1, . . . , t − 1}. With this knowledge, she can
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derive the conditional distribution of current demand P[Di,t | Ht] for i = 1, . . . , N on these past

demand realizations. However, she does not know the current demand realizations beforehand.

Using the notation defined above, the inventory allocation optimization problem at time t

can be formulated with the dynamic program given by equations (1)-(3). The cost-to-go function

Vt, is simply 0 at time T + 1, and can otherwise be recursively computed by miniminizing (2).

Gt(y, wt,xt,Ht) =
N
∑

i=1

E [Li,t(y) | Ht] + γE
[

Vt+1(wt − 1T(y − xt), [y −Dt]
+,Ht+1) | Ht

]

(1)

Vt(wt,xt,Ht) = min
y≥xt

1
T
y≤1

T
xt+wt

Gt(y, wt,xt,Ht) (2)

VT+1(w0,T+1,xT+1,HT+1) = 0. (3)

2.1 Demand Models with Learning/Forecasting

In the above model formulation, we describe a general demand learning framework where de-

mand forecasts are updated in each period using realized demand/sales information from the

last period. Two types of demand learning models that this framework can capture are Bayesian

methods, where the decision maker updates her beliefs on the unknown demand model parame-

ter distributions with time, and time series models (e.g., ARMA or ARIMA). These models are

described below.

Bayesian methods. Suppose the demand distributions are parameterized by a vector

θ ∈ Θ, and the PMF of demand at retailer i in period t is given by pi,t(d | θ) (recall that we

assume demand is discrete). If the decision maker has a prior on the parameters, she can update

the posterior on these parameters based on the demand realization history, and thus knows the

posterior distribution of demand at any retailer and time period conditional on this history. In

particular, for all i = 1, . . . , N , t = 1, . . . , T , the demand distribution of Di,t is given by

P[Di,t = d | Ht] =

∫

θ∈Θ

pi,t(d | θ)f(θ | Ht)dθ,

where f(θ | Ht) is the posterior distribution of the parameters θ given history Ht. Details of

Bayesian methods for demand learning in inventory models can be found in, e.g., Scarf (1960),

Azoury (1985), Lovejoy (1990), Lariviere and Porteus (1999), Chen (2010), among others.

ARMA/ARIMA models. Our model framework also allows another type of demand

learning approach based on time series models, such as the autoregressive moving average

(ARMA) model and the autoregressive integrated moving average (ARIMA) model. In this

case, the demand at each retailer and time period is a weighted sum of the previous period

demand at that retailer as well as some demand noise. For example, consider the following

ARMA(p, q) model: the demand for period t and retailer i is given by

Di,t = µi + α1Di,t−1 + · · ·+ αpDi,t−p + ǫi,t + β1ǫi,t−1 + · · ·+ βqǫi,t−q,

where µi is a constant, α1, . . . , αp, β1, . . . , βq are parameters, and ǫi,t, ǫi,t−1, . . . are error terms

with mean zero. Assuming the full demand information is observed (i.e., no demand censoring),

7This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



the history Ht includes information about previous demand at the retailer Di,t−1, Di,t−2, . . .

and the noise terms ǫi,t−1, ǫi,t−2, . . .. Given the parameters of this ARMA model, the decision

maker can update demand forecasts based on this history. See Aviv (2003), Gilbert (2005) for

examples that apply time series models to inventory management.

3 Computating Inventory Allocation Decisions

In this section, we discuss computation issues of the dynamic programming model. The dynamic

program (1)-(3) is difficult to solve explicitly, as it suffers from the curse of dimensionality, where

its state space grows exponentially in the number of retailers N . In this section, we consider a

heuristic that is computationally much less expensive to implement. This heuristic is based on

the observation that (1)-(3) is weakly coupled, meaning that if the constraint 1Ty ≤ 1Txt+wt is

relaxed, the problem decouples into N separate dynamic programs, reducing the computational

complexity to linear in N . The idea is to achieve this problem decomposition by approximating

the original problem with its Lagrangian relaxation. We dualize the coupling constraint and

add an associated Lagrangian term to the objective function, thus decomposing the problem

into N separable optimization problems. This Lagrangian relaxation technique has been used

to approximate weakly coupled optimization problems for a variety of applications. A survey

is given in Adelman and Mersereau (2008). In the literature on inventory allocation and risk

pooling, Marklund and Rosling (2012), who also study an inventory allocation problem for single

warehouse multiple retailer setting, proposed a heuristic based on this technique. They show

that this relaxation technique gives a lower bound on the optimal cost-to-go function, and that

the performance of the heuristic converges to the lower bound as N goes to infinity, implying

that the heuristic is asymptotically optimal. However, while Marklund and Rosling (2012)

assumed that each retailer’s demands are i.i.d. across time, we allow the demands experienced

by each retailer to be correlated across time, such as in the demand learning setting described

in the previous section. Another difference is that Marklund and Rosling (2012) assumed a

backordering setting, while we consider a lost sales setting. Below, we show how the Lagrangian

relaxation approach can be adapted to our setting.

3.1 Lagrangian Relaxation Heuristic

We start by rewriting (1)-(3) as a stochastic program as follows:

min
T
∑

t=1

N
∑

i=1

γt−1E [E[Li,t(yi,t)|Ht]]

subject to yi,t = xi,t + ai,t ∀i, t,Ht

xi,t+1 = [yi,t −Di,t]
+, ∀i, t,Ht

N
∑

i=1

T
∑

t=1

ai,t ≤ w0 a.s.

ai,t ≥ 0 ∀i, t,Ht .

(P1)

Here, the variables ai,t, xi,t, yi,t are non-anticipative and are functions of the demand history

Ht.

8This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



To achieve the desired problem decomposition, we will relax the inventory constraint

N
∑

i=1

T
∑

t=1

ai,t ≤ w0

by requiring that it is only satisfied in expectation over all demand realizations, rather than

almost surely. This gives the constraint
∑N

i=1

∑T

t=1 E[ai,t] ≤ w0. We will also eliminate the

state variables xi,t and yi,t from the formulation and express the problem in terms of the

decision variables ai,t. This can be achieved by using the equations

xi,t = max{0,
t−1
∑

s=u

(ai,s −Di,s), ∀1 ≤ u ≤ t− 1} ,

yi,t = xi,t + ai,t .

This gives

min
T
∑

t=1

N
∑

i=1

γt−1E

[

E
[

Li,t(ai,t +max{0,
t−1
∑

s=u

(ai,s −Di,s), ∀1 ≤ u ≤ t− 1})|Ht

]

]

subject to
N
∑

i=1

T
∑

t=1

E[ai,t] ≤ w0

ai,t ≥ 0 ∀i, t,Ht .

(P2)

We then consider the Lagrangian relaxation for the constraint
∑N

i=1

∑T

t=1 E[ai,t] ≤ w0. This

gives the following decomposition:

max − λw0 +
N
∑

i=1

SUBi(λ)

subject to λ ≥ 0 ,

(D1)

where SUBi(λ) is the optimal objective value to the following problem

SUBi(λ) := min
T
∑

t=1

γt−1E

[

E
[

Li,t(ai,t +max{0,
t−1
∑

s=u

(ai,s −Di,s), ∀1 ≤ u ≤ t− 1})|Ht

]

]

+
T
∑

t=1

γt−1E
[

λγ1−tai,t
]

subject to ai,t ≥ 0 ∀t,Ht .

(D2)

For a given value of λ ≥ 0, the subproblem (D2) is a single retailer inventory problem, where

the unit ordering cost at period t is λγ1−t. Existing algorithms for single echelon systems can

be readily applied to solve (D2) using either Bayesian methods or time series methods (see

Section 2.1). Also, the N retailers’ subproblems can be solved independently and in parallel.

The master problem (D1) tries to find the optimal value of the Lagrangian multiplier λ.

Before we show how to find the optimal λ∗ that maximizes (D1), we discuss the convexity of

the allocation problem (P2). The optimization problem (P2) is convex if 1 ≤ i ≤ N , pi,t+hi,t ≥

9This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



γpi,t+1, that is, the discounted price at period t + 1 is no more than the sum of the price and

holding cost at period t. The convexity result is stated in Lemma 1 and proven in Appendix A.1.

Lemma 1. Suppose that pi,t + hi,t ≥ γpi,t+1 for all 1 ≤ t < T and 1 ≤ i ≤ N . Then (P2) is a

convex optimization problem. By strong duality, the optimal values of (P2) and (D1) are equal.

An intuitive interpretation of the condition in Lemma 1 is that there should be no incentive

for a retailer to reject any customer demand: if the retailer fulfills one unit of demand in period

t, it receives revenue pi,t; if the retailer rejects the current demand and withholds this unit for

the next period, it pays holding cost hi,t and receives at most γpi,t+1. The latter results in lower

profit since γpi,t+1 − hi,t ≤ pi,t. A sufficient condition for pi,t + hi,t ≥ γpi,t+1 is that the prices

at each retailer are nonincreasing with time, a widely adopted practice known as markdown

pricing. In this case, we simply have pi,t ≥ pi,t+1 ≥ γpi,t+1.

Given the convexity result in Lemma 1, we can solve for the optimal value λ∗ that maximizes

(D1) as follows. Let a∗i,t(λ
∗) be the optimal solution to (D2) associated with λ∗. By Lemma 1,

they must satisfy the complementary slackness condition of (P2), namely

λ∗

(

w0 −
T
∑

t=1

N
∑

i=1

E[a∗i,t(λ
∗)]

)

= 0.

Define pmax = max1≤i≤N,1≤t≤T {pi,t}. We know that λ∗ must always fall within the range

[0, pmax], since for all λ such that λ > p∗, the ordering cost λγ1−t in subproblem (D2) is always

greater than the retail price pi,t. Therefore, the retailers will not order any inventory from the

warehouse, i.e., a∗i,t(λ) = 0, which violates complementary slackness condition. Therefore, the

optimal solution λ∗ can be found by searching the interval [0, pmax] (e.g., using the bisection

method) until the complementary slackness condition is satisfied. These steps are summarized

in the following inventory allocation heuristic.

0. Set the initial condition λ = 0, λ = pmax.

1. Set λ = (λ+ λ)/2. For each retailer i, solve (D2) with λ and calculate the corresponding

optimal allocations a∗i,t(λ) for all demand scenarios. (This step can be done for each retailer

in parallel.)

2. Calculate the sum
∑T

t=1

∑N

i=1 E[a
∗
i,t(λ)]. If the sum is greater than w0, update λ to be

the current value of λ; otherwise, update λ to be the current value of λ. If λ− λ is bigger

than the predetermined tolerance, go back to Step 1.

3. Set λ∗ = λ. After the season starts, allocate inventory according to a∗i,t(λ
∗) until the

warehouse runs out inventory or until the season ends.

3.2 Optimality Bound

We will now analyze the performance of the Lagrangian relaxation heuristic. This result is

stated in Theorem 1 below.

Theorem 1. Suppose pi,t + hi,t ≥ γpi,t+1 for all 1 ≤ t < T . Denote the expected cost of the

Lagrangian relaxation heuristic by UB, and denote the value of (P1) by OPT. Then we have

UB− OPT = O(
√
NT ).
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If we assume further that the value of each retailer subproblem (D2) is always lower bounded

by a constant for λ = λ∗, it is easy to see that OPT is lower bounded by N times this constant.

Then, Theorem 1 implies that UB−OPT

OPT
is O(1+ 1√

N
). The heuristic would thus be asymptotically

optimal in the number of retailers N , in that its expected costs converge to the costs of the

optimal policy asN grows large. However, the heuristic is not necessarily asymptotically optimal

in the length of the selling horizon T , because we have assumed a fairly general condition of

demands: they can be correlated over the selling horizon, and their distribution can be unknown.

The proof of Theorem 1 is deferred to Appendix A.2. The idea behind the proof is that

the value of (D1) is a lower bound on (P1). This follows from the fact that the convexity of

(P2) implies strong duality. Thus the relaxed optimization problem (P2), whose optimal value

is a lower bound on (P1), is equal to its dual (D1). Now the cost of the heuristic is clearly

an upper bound on the optimal value of the problem (thus we denoted it by UB). The cost of

applying the heuristic is greater than the optimal value of (D1) exactly when the sum of the

recommended allocations (i.e.,
∑

ai,t) is greater than its expected value. Since the demand of

the N retailers are independent, the difference between the sum of the recommended allocations

and its expected values is of order
√
N rather than N , thus allowing us to bound the optimality

gap as a factor of
√
N .

We would like to make two remarks comparing the analysis of Theorem 1 with the analysis

in Marklund and Rosling (2012). Firstly, in the backordering setting studied in Marklund and

Rosling (2012), the convexity of the relaxed inventory allocation problem is guaranteed regardless

of the assumptions on prices and holding costs. However, in our lost sales setting, we prove a

sufficient condition on prices and holding costs to guarantee the convexity of (P2). Secondly, our

heuristic and optimality bound, unlike Marklund and Rosling (2012), can be applied to settings

with correlated demand, and hence with demand learning frameworks described in Section 2.1.

However, it is important to note that the optimality bound 1 is not a regret bound and that it

does not specify the rate of learning any underlying demand model parameters.

4 The Impact of Demand Learning on Inventory Alloca-

tions

The heuristic presented in Section 3 allows us to solve the two-echelon inventory allocation

problem in a computationally tractable way by expressing this problem in terms of the simpler

single retailer inventory ordering problem. In this section, we will also use this connection to

shed light on the structure of inventory allocation policies. Using the Lagrangian relaxation

heuristic as a proxy for the exact optimal solution, we investigate how the decision maker’s

inventory allocation policies depend on the effect of demand learning.

To address this question, we limit our analysis in this section to a two-period setting (T = 2),

but continue to allow the number of retailers to be arbitrary. As discussed in the literature review

in Section 1.1, two-period models are widely used in the literature on inventory allocation in

one-warehouse multiple-retailer systems with demand learning, including in papers that study

practical settings faced by fashion retailers (Fisher and Raman 1996, Fisher and Rajaram 2000,

Gallien et al. 2017). Thus we expect the two-period setting studied in this section to be not

only simpler to analyze, but to also be of practical relevance.
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4.1 Inventory Allocation with Symmetric Retailer Demands

We first investigate the impact of demand learning on optimal allocation policies with symmetric

retailers. We assume that the N retailers face identical demand distributions, and experience

the same price pt and holding cost ht in time period t = 1, 2. We then model demand learning

using the following demand forecasting model: In the first period, each retailer i experiences

demand Di,1, where {Di,1, i = 1, . . . , N} are IID. At the end of the first period, the decision

maker observes uncensored demands {Di,1, i = 1, . . . , N}. We assume the second-period demand

follows an AR(1) time series model; that is, the demand experienced by retailer i in the second

period is then given by

Di,2 = Di,1 + ρǫi for some ρ > 0 (4)

where the demand noises {ǫi, i = 1, . . . , N} are i.i.d. with mean 0. The decision maker thus

knows a component of the second-period demand beforehand (i.e., Di,1) and can adjust inventory

allocation to the retailers in the second period based on the first-period demand observations.

The component of demand that is not learned is ρǫi. The parameter ρ is a measure of the amount

of learning, because when ρ increases, the second-period demand forecast accuracy decreases.

We are interested in how the first-period allocations to the retailers depend on this parameter

ρ, or, equivalently, on the extent of learning.

Due to complications from the lost sales setting and demand learning, analyzing the exact

cost of inventory policies becomes prohibitive, even for two-period models (see Fisher and Ra-

man (1996)). We thus approximate the inventory allocation problem (P1) with (P2), which

relaxes the hard inventory constraint to one in expectation. (By Theorem 1, (P2) is a good

approximation of (P1) when the number of retailers N is large.) We then make a further sim-

plification that inventory cannot be carried over from the first period to the second period. We

refer to this simplification as the multiperiod newsvendor setting (see, e.g., Ding et al. 2002,

Bensoussan et al. 2007), which allows us to isolate the effect of demand learning.

The dynamic program representing this approximation is given below in (P3). Similar to

the analysis in Section 3, we can show that the inventory constraint can be dualized, causing

the problem to separate into N independent single-retailer inventory ordering problems.

min
T
∑

t=1

N
∑

i=1

γt−1E [E[Li,t(ai,t)|Ht]]

subject to
N
∑

i=1

T
∑

t=1

E[ai,t] ≤ w0

ai,t ≥ 0 ∀i, t,Ht.

(P3)

The dual problem is given below in (D3).

max − λw0 + SUBi(λ)

subject to λ ≥ 0,
(D3)
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where SUBi(λ) is the solution to the single retailer inventory ordering problem

min

T
∑

t=1

N
∑

i=1

γt−1E[E[Li,t(ai,t)|Ht]]

+ γt−1
T
∑

t=1

N
∑

i=1

E[λγ1−tai,t]

subject to ai,t ≥ 0 ∀i, t,Ht.

(D4)

Since the retailers have identically distributed demands, the first-period allocations that

optimize (D4) are by symmetry the same across all retailers. This allocation a∗i,1(ρ) depends

on ρ, the standard deviation of the demand forecasting error in the second period. In fact,

we can show that a∗i,1(ρ) is strictly increasing in ρ, i.e. the first-period allocations are strictly

decreasing with the extent of learning. This result is stated in Theorem 2 below and is proven

in Appendix A.3.

Theorem 2. In the multiperiod newsvendor setting (P3) with inventory relaxation , there exists

a maximum warehouse inventory level wmax, such that for any 0 ≤ w0 ≤ wmax, the optimal first-

period allocation a∗i,1(ρ) to each retailer i is strictly increasing in ρ.

An intuitive explanation of Theorem 2 is that when the decision maker is able to forecast the

second-period demand more accurately (i.e., smaller ρ), she should save more of the available

warehouse inventory for the second period, as she will derive more value from deploying this

inventory in the second period rather than in the first period. Equivalently, this implies that

with a smaller ρ, she should allocate less inventory in the first period. Theorem 2 thus suggests

that demand learning has an effect that incentivizes the decision maker to reserve inventory at

the warehouse and to delay inventory allocations to later periods. Note that this intuition only

holds when the amount of inventory is limited; if there is sufficient inventory at the warehouse,

there is no need for the decision maker to reserve inventory. This explains why Theorem 2

requires the initial inventory level to be less than some constant wmax.

4.2 Inventory Allocation with Asymmetric Retailer Demands

We now look at a different setting where the retailers have asymmetric demand distributions.

Our objective is to investigate the impact of different levels of demand uncertainty among the

retailers on the inventory allocation decisions. If the mean demand varies from retailer to

retailer, intuition says that it is generally optimal to allocate more inventory to retailers with

higher demand means. However, the structure of the optimal policy is less clear when retailers

have the same means but different variances: should the decision maker allocate more inventory

to retailers with higher or lower demand variance? By allocating more inventory to retailers

with higher demand variance, the decision maker can potentially satisfy more customer demand.

On the one hand, if the decision maker allocates more inventory to retailers with lower demand

variance, she will experience a smaller chance of misallocating inventory.

To understand the above tradeoff, we analyze a two-period model where the prices and

holding costs are the same across retailers and time periods. Denote the price by p and the

holding cost by h, and assume further that p > h. We model the demands at the retailers using

(discrete) truncated normal demand distributions that are symmetrical about their means. For
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each retailer i, we let demand Di,t have mean µ and range [µ − b, µ + b], i.e. the means

and ranges are kept constant across retailers. Since we are interested in isolating the impact of

different levels of demand uncertainties among the retailers, only the variances {σi, i = 1, . . . , N}
corresponding to demands {Di,t, i = 1, . . . , N} may be non-identical across retailers.

We once again analyze the allocations chosen by the Lagrangian relaxation heuristic (D1).

The heuristic’s first-period allocations are denoted by {a∗i,1, i = 1, . . . , N}. We find that the

decision maker’s allocations under the heuristic depend on the initial inventory at the warehouse.

If the initial inventory level is high, then the decision maker should take higher risks and allocate

more inventory to retailers with higher demand variances. However, if the initial inventory level

at the warehouse is low, the decision maker should be more conservative and allocate more

inventory to retailers with lower demand variances. This result is stated in Theorem 3 and

proven in Appendix A.4.

Theorem 3. There exists a positive constant w such that for any initial warehouse inventory

level w0 ≥ w, the heuristic’s first-period allocations satisfy a∗i,1 < a∗j,1 whenever σi < σj. The

second-period order-up-to levels, denoted by {x∗
i,2, i = 1, . . . , N}, also satisfy x∗

i,1 < x∗
j,1 whenever

σi < σj.

There also exists a positive constant w such that for any initial warehouse inventory level 0 ≤
w0 ≤ w, the heuristic’s first-period allocations satisfy a∗i,1 > a∗j,1 whenever σi < σj. Similarly,

the second-period order-up-to levels satisfy x∗
i,1 > x∗

j,1 whenever σi < σj.

5 Numerical Experiments

The structural properties in Section 4 were analyzed under several model approximations, in-

cluding relaxing the inventory constraint and (sometimes) ignoring inventory carryover. In this

section, we use numerical experiments to verify if these results hold for the original model. Sec-

tion 5.1 presents our simulations for the symmetric demand setting, and Section 5.2 presents

simulations for the asymmetric demand setting.

5.1 Demand Learning with Symmetric Retailer Demands

We first ran a set of simulations to empirically investigate the impact of demand learning on

inventory allocations. We consider a two-period setting with one warehouse and two retailers.

As in Section 4, we assume the demand follows the AR(1) model in Equation (4). For these

simulations, we fixed the prices at $1, the holding costs at $0.20, and the starting warehouse

inventory at w0 = 12, but varied the distributions of demand at the retailers.

We simulated for two types of demand distributions. First we simulated a setting where

the first-period demand is drawn from a truncated discrete normal distribution, i.e., Di,1 is

normally distributed according to N (µ, σ) conditional on Di,1 belonging to the interval [a, b].

We discretized the interval [a, b] with stepsize 0.01, and forcing demand to take values from this

discretized set. We then set σ = 1, varied the mean demand µ in the set {2, 2.5, 3, 3.5, 4}, and
for each µ set a = µ− 1, b = µ+ 1. The second-period noise is drawn from a similar truncated

normal distribution from [−1, 1].

Next, we also simulated a setting where each retailer i’s first-period demand that is drawn

from a discrete uniform distribution. For a given mean demand µ, period 1 demand Di,1 is
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drawn from the set {µ−1, µ−1+0.01, . . . , µ+1−0.01, µ+1} with equal probability. We varied

the mean demand µ within the set {2, 2.5, 3, 3.5, 4}. We use the same second-period noise as in

the first setting.

For each choice of demand distribution, we solved for the optimal allocations corresponding

to different values of ρ in the interval [0, 1]. We solved the retailers’ optimal allocations as follows:

First, we computed the optimal second-period allocations for each retailer corresponding to each

possible tuple of the first-period allocation y, and realized demands D1,1 and D2,1. Then, using

the property that the optimal first-period allocations must by symmetry be the same for both

retailers, we recursively computed the expected cost of each possible first-period allocation from

the set {0, 0.01, 0.02, . . . , 6}, and selected the allocation minimizing this cost. We calculated

the optimal allocations for both the original lost-sales model and the multiperiod newsvendor

setting.

The results of these simulations are given in Figures 1a-1d. Figures 1a and 1b correspond

to the setting with truncated normal demand. In Figure 1a, we plot the optimal allocations

for the lost sales setting for ρ in {0, 0.2, 0.4, 0.6, 0.8, 1.0}, and in Figure 1b we plot the optimal

allocations for the multiperiod newsvendor setting (i.e., no inventory carryover) for these values

of ρ. The results for uniformly distributed demand are plotted in Figures 1c and 1d.

For all these settings, we see that the optimal first-period allocations are indeed increasing

in ρ. This agrees with our finding in Theorem 2 that the first-period allocations are decreasing

as the extent of learning increases, which is in turn consistent with the property that demand

learning, like the risk pooling effect, incentivizes reserving inventory at the warehouse for later

periods. However, unlike Theorem 2, which makes several approximations of the inventory

allocation problem (P1) and analyzes the allocation decisions corresponding to the approximate

optimization problem, Figures 1a and 1c give the allocations that exactly solve the inventory

allocation problem in its original form. These results thus suggest that the demand learning

effect is a property of our original allocation problem, and not just of the approximate problem

studied in Theorem 2.

Finally, it is also interesting to note that our plots of the exact optimal solutions in Figures

1a and 1c show that for our demand forecasting model, the optimal first-period allocations are

not necessarily monotonically increasing in the mean demand at the retailers. This is contrary

to what we would observe if the demands at each retailer were i.i.d. across time periods, and

indeed, this effect becomes less pronounced as ρ increases from 0 to 1 (i.e. as the periods 1 and

2 demands become less strongly correlated). Although this result may seem counterintuitive,

we interpret it as being related to the property that demand learning can incentivize saving

inventory for the second period: As the demand means increase, and the warehouse inventory

becomes more limited with respect to demand, the decision maker derives more value from

deploying this limited inventory in the second period, when an improved demand forecast is

available.

5.2 Non-identical Retailers with Different Levels of Demand Uncer-

tainty

We also conducted a second set of simulations on a setting with non-identical retailers in order

to verify Theorem 3. For these simulations, we considered a set up with three retailers, all of

whom experience demand drawn from truncated normal distributions with parameters µ, σi, a, b,
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(b) Multiperiod newsverndor setting with trun-
cated normal demand.
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(c) Lost sales setting with uniformly distributed
demand.
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(d) Multiperiod newsvendor setting with uni-
formly distributed demand.

Figure 1: Optimal first-period allocations with truncated normal and uniform demand distribution.
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i.e. retailer i’s demands Di,t are normally distributed according to N (µ, σ2), conditional on Di,t

belonging to the range [a, b]. As in the simulations on demand learning, we discretized these

truncated normal distributions by discretizing the interval [a, b] with stepsize 0.01, and forcing

demand to take values from the discretized set.

For the three different retailers, we kept the demand means and ranges fixed at µ = 2, a =

1, b = 3, but varied the demand variances. For Retailer 1, or the ‘low variance retailer’, we set

σ = 0.1. For Retailer 2, or the ‘mid variance retailer’, we set σ = 1. Finally, for Retailer 3, or

the ‘high variance retailer’, we set σ = 5.

We then computed the first-period heuristic allocations to the different retailers. Instead of

solving for the λ that optimizes the dual problem (D1) for some given level of the starting ware-

house inventory w0, we varied λ between 0 and price p (since, as we have observed in Section 3,

the optimal λ always lies within this range), and solved for the first-period allocations that

optimize (D2) given this λ. This was done recursively: First, using the well known result that

the optimal allocation policy for the single retailer inventory ordering problem is an order-up-to

policy, we computed the second-period order-up-to levels by discretizing the interval [1, 3] with

a stepsize of 0.01 (i.e. for each retailer, we searched the set [1, 1.001, 1.002, . . . , 3] for the second-

period newsvendor levels). We then recursively computed the optimal first-period allocation

by once again discretizing the interval [1 3], and selecting the allocation from this set with the

lowest expected cost. By also recursively computing the total expected allocations across all

retailers and time periods, we were able to obtain the warehouse inventory w0 corresponding to

our chosen λ.

Figure 2a plots the heuristic’s first-period allocations to the three retailers when prices at all

retailers are set to $1 and holding costs are set to $0.20, and Figure 2b plots the heuristic’s first-

period allocations to the three retailers when prices at all retailers are set to $1 and holding costs

are set to $0.80. For both configurations of the price and holding cost, we see that the results

directly verify Theorem 3: For sufficiently small starting warehouse inventory, the first-period

heuristic allocations are decreasing in the variance of the retailers. However, when the starting

warehouse inventory is sufficiently large, the first-period heuristic allocations are increasing in

the variance of the retailers.

6 Conclusion

We have studied a two-echelon inventory allocation problem for a lost sales, correlated demand

setting. We have shown that a Lagrangian relaxation heuristic can reduce the computationally

intractable two-echelon inventory allocation problem to a set of separate single retailer inventory

ordering problems. Under some general assumptions on the prices and holding costs, we show

that the heuristic is asymptotically optimal in the number of retailers N . Using the heuristic as

a proxy for the optimal solution, we prove that under in a two-period newsvendor setting, that

demand learning incentivizes the decision maker to reserve more inventory at the warehouse

for later periods. Demand learning should thus have a similar effect on allocation decisions as

risk pooling. Much remains to be said on the subject of demand learning in the two-echelon

inventory setting. Since we have only been able to show that the optimality gap between the

heuristic and the exact solution to the allocation problem is sublinear in the number of retailers,

and not in the length of the selling horizon, proving a non-trivial regret upper bound in terms
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(a) Heuristic allocations with prices = $1, Hold-
ing costs = $0.20
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(b) Heuristic allocations with prices = $1, Hold-
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Figure 2: First period allocations under the heuristic in a setting with 3 retailers, all off whom experience
demand drawn from truncated normal distributions with parameters µ, σi, a, b (retailer i’s demands Di,t are
normally distributed according to N (µ, σ2), conditional on Di,t belonging to the range [a b].) For Retailer
1, the ‘low variance retailer’, µ = 2, σ = 0.1, a = 1, b = 3. For Retailer 2, the ‘mid variance retailer’,
µ = 2, σ = 1, a = 1, b = 3, and for Retailer 3, the ‘high variance retailer’, µ = 2, σ = 5, a = 1, b = 3.

of the length of the selling horizon would be difficult. We leave such questions to future work.
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Bensoussan, A., Çakanyıldırım, M., and Sethi, S. P. (2007). A multiperiod newsvendor problem

with partially observed demand. Mathematics of Operations Research, 32(2):322–344.

Chen, L. (2010). Bounds and heuristics for optimal Bayesian inventory control with unobserved

lost sales. Operations research, 58(2):396–413.

Chen, L. and Plambeck, E. L. (2008). Dynamic inventory management with learning about the

demand distribution and substitution probability. Manufacturing & Service Operations

Management, 10(2):236–256.

Cheung, K. L. and Lee, H. L. (2002). The inventory benefit of shipment coordination and stock

rebalancing in a supply chain. Management science, 48(2):300–306.

18This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Clark, A. J. and Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem.

Management Science, 6(4):475–490.

Ding, X., Puterman, M., and Bisi, A. (2002). The censored newsvendor and optimal acquisition

of information. Operations Research, 50(3):517–527.

Eppen, G. and Iyer, A. (1997). Improved fashion buying with Bayesian updates. Operations

research, 45(6):805–819.

Federgruen, A. and Zipkin, P. (1984). Approximations of dynamic, multilocation production

and inventory problems. Management Science, 30(1):69–84.

Fisher, M. and Rajaram, K. (2000). Accurate retail testing of fashion merchandise: Methodology

and application. Management Science, 19(3):266–278.

Fisher, M. and Raman, A. (1996). Reducing the cost of demand uncertainty through accurate

response to early sales. Operations Research, 44(1):87–99.

Gallien, J., Mersereau, A. J., Garro, A., Mora, A. D., and Vidal, M. N. (2017). Initial shipment

decisions for new products at zara. Operations Research, 63(2):269–286.

Gilbert, K. (2005). An arima supply chain model. Management Science, 51(2):305–310.

Iglehart, D. L. (1964). The dynamic inventory problem with unknown demand distribution.

Management Science, 10(3):429–440.

Jackson, P. L. (1988). Stock allocation in a two-echelon distribution system or ”what to do until

your ship comes in”. Management Science, 34(7):1–17.

Jackson, P. L. and Muckstadt, J. A. (1989). Risk pooling in a two-period, two-echelon inventory

stocking and allocation problem. Naval Research Logistics, 36:1–26.

Jain, A., Rudi, N., and Wang, T. (2014). Demand estimation and ordering under censoring:

Stock-out timing is (almost) all you need. Operations Research, 63(1):134–150.

Lariviere, M. A. and Porteus, E. L. (1999). Stalking information: Bayesian inventory manage-

ment with unobserved lost sales. Management Science, 45(3):346–363.

Lee, H. L. (1996). Effective inventory and service management through product and process

redesign. Operations Research, 44(1):151–159.

Lee, H. L. and Tang, C. S. (1997). Modelling the costs and benefits of delayed product differ-

entiation. Management science, 43(1):40–53.

Lovejoy, W. S. (1990). Myopic policies for some inventory models with uncertain demand

distributions. Management Science, 36(6):724–738.

Lu, X., Song, J.-S., and Zhu, K. (2008). Analysis of perishable-inventory systems with censored

demand data. Operations Research, 56(4):1034–1038.

Marklund, J. M. and Rosling, K. (2012). Lower bounds and heuristics for supply chain stock

allocation. Operations Research, 60(1):iii–248.

McGavin, E. J., Schwarz, L. B., and Ward, J. E. (1993). Two-interval inventory-allocation

policies in a one-warehouse n-identical-retailer distribution system. Management Science,

39(9):1092–1107.

McGavin, E. J., Schwarz, L. B., and Ward, J. E. (1997). Balancing retailer inventories. Opera-

tions Research, 45(6):780–989.

19This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Miller, B. L. (1986). Scarf’s state reduction method, flexibility, and a dependent demand inven-

tory model. Operations Research, 34(1):83–90.

Scarf, H. E. (1960). Some remarks on bayes solutions to the inventory problem. Naval Research

Logistics Quarterly, 7(4):591–596.

Tan, F. K. (1974). Optimal policies for a multi-echelon inventory problem with periodic ordering.

Management Science, 20(7):1104–1111.

A Appendix

A.1 Proof of Lemma 1

Proof. Since we have assumed that the demands Di,t are discrete and bounded for all i, t, there

are finitely many scenarios for the stochastic program (P2). Defining a different allocation

decision ai,t for each scenario in Ht (recall that the allocation must be non-anticipative), the

deterministic equivalent of (P2) is a deterministic optimization problem with finitely many

variables and constraints. The constraints are affine in ai,t and therefore convex. It remains

to show that the objective function of (P2) is convex. We will show that this is true given the

assumption pi,t + hi,t ≥ γpi,t+1.

Given a demand realizationDi,t, define L̃i,t(ai,t) := γt−1hi,t[ai,t+xi,t−Di,t]
++γt−1pi,t[Di,t−

ai,t − xi,t]
+ and define L̃i,0(ai,0) := 0 for each i. We will prove that

∑T

t=1 L̃i,t is convex, which

is sufficient to prove the theorem. First, we will expand the expression for L̃i,t(ai,t) as follows:

L̃i,t(ai,t) = γt−1hi,t[ai,t + xi,t −Di,t]
+ + γt−1pi,t[Di,t − ai,t − xi,t]

+

= γt−1hi,t max{0,
t
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t}

+ γt−1pi,t max{0, Di,t − ai,t −max{0,
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t− 1}}

= γt−1hi,t max{0,
t
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t}

+ γt−1pi,t max{Di,t − ai,t,max{0,
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t− 1}} (5)

− γt−1pi,t max{0,
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t− 1}. (6)

Note that the sum of the two addends in (5) is convex, since the pointwise maximum of convex

functions is convex, and γ, hi,t, pt ≥ 0. We will now show by induction that

−γt−1pi,t max{0,
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t− 1}+
t−1
∑

s=1

L̃i,s(ai,s) (7)

is convex. This will prove that
∑T

t=1 L̃i,t, as the sum of convex functions, is convex in {ai,s, s =
1, . . . , t − 1}. For t = 0, (7) is 0 and therefore clearly convex. Suppose now that (7) is convex

for some 1 ≤ t < T . We will show that it must be convex for t+ 1 as well. By using the same
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expansion in (5) we have

− γtpi,t+1 max{0,
t
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t}+
t
∑

s=1

L̃i,s(ai,s)

= −γtpi,t+1 max{0,
t
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t}+ γt−1hi,t max{0,
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t}

+ γt−1pi,t max{Di,t − ai,t,max{0,
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t− 1}}

− γt−1pi,t max{0,
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t− 1}}+
t−1
∑

s=1

L̃i,s(ai,s).

By the induction hypothesis, the term in the final line is convex. The sum of the remaining

terms is equal to

− γtpi,t+1 max{0, ai,t −Di,t, ai,t −Di,t +
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t}

+ γt−1hi,t max{0,
t−1
∑

s=u

ai,s −Di,s, 1 ≤ u ≤ t}

+ γt−1pi,t max{0, Di,t − ai,t,max{0,
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t− 1}

= γt−1(hi,t − γpi,t+1)(ai,t −Di,t)

+ γt−1(hi,t − γpi,t+1,+pi,t)max{0, Di,t − ai,t,max{
t−1
∑

s=u

ai,s −Di,s, ∀1 ≤ u ≤ t− 1}}.

The first addend in the final line is linear and therefore convex. The term max{0, . . . , } in the

second addend is also convex as it is the pointwise maximum of convex functions. Finally, since

we have assumed hi,t + pi,t ≥ γpi,t+1, the second addend in the final line is convex, proving

the induction hypothesis and completing the proof that (P2) is a convex optimization problem.

Finally, this problem clearly satisfies Slater’s condition (e.g., setting ai,t = w0/(2NT )), so strong

duality holds.

A.2 Proof of Theorem 1

Proof. Let LB denote the value of the dual (D1). Since the Lagrangian relaxation heuristic

allocates inventory according to the solution of (D1), a∗i,t(λ
∗), until the warehouse runs out of

inventory, UB is only different from LB when
∑N

i=1

∑T

t=1 ai,t > w0. If the warehouse runs out of

inventory, the heuristic incurs additional lost sales costs not accounted for in the dual problem.

Denoting pmax := max{pi,t, i = 1, . . . , N, t = 1, . . . , T}, then each unit of lost sales accounts for
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at most pmax. So we have

UB ≤ LB+ pmaxE

[

[
N
∑

i=1

T
∑

t=1

a∗i,t(λ
∗)− w0]

+

]

(∗)
≤ LB+ pmaxE

[

[
N
∑

i=1

T
∑

t=1

a∗i,t(λ
∗)− E[

N
∑

i=1

T
∑

t=1

a∗i,t(λ
∗)]]+

]

≤ LB+ pmaxE

[

|
N
∑

i=1

T
∑

t=1

a∗i,t(λ
∗)− E[

N
∑

i=1

T
∑

t=1

a∗i,t(λ
∗)]|
]

≤ LB+ pmax

√

√

√

√Var

[

N
∑

i=1

T
∑

t=1

a∗i,t(λ
∗)

]

. (8)

The step (∗) above follows because we have strong duality between (P2) and its dual (D1),

implying that the primal feasibility constraint

E[
T
∑

t=1

N
∑

i=1

a∗i,t(λ
∗)] ≤ w0

is satisfied for the optimal allocation policy {a∗i,t(λ∗), i = 1, . . . , N, t = 1, . . . , T}. The final line

follows from Jensen’s inequality, which applies because of the convexity of the square function.

We will now bound Var[
∑N

i=1

∑T

t=1 a
∗
i,t(λ

∗)]. (We will do so using a different argument from

Marklund and Rosling (2012), since the latter assumes that demand is independent from time

period to time period. We show that even without this assumption, a bound of the same order

in terms of N can be achieved, and that our bound is in fact an improvement in terms of T .)

We have

Var

[

N
∑

i=1

T
∑

t=1

a∗i,t(λ
∗)

]

(∗)
=

N
∑

i=1

Var

[

T
∑

t=1

a∗i,t(λ
∗)

]

(∗∗)
≤

N
∑

i=1

1

4
D2

maxT
2

=
1

4
D2

maxNT 2 .

The equality (∗) follows from the assumption that different retailers experience independent

demands. Since the allocations a∗i,t are solutions to a decoupled optimization problem, they are

independent. The inequality (∗∗) follows from Popoviciu’s inequality on variances, using the

assumption that Di,t is upper bounded by Dmax for each i, t. Then the optimal a∗i,t must satisfy

0 ≤ a∗i,t(λ
∗) ≤ Dmax, because if a

∗
i,t(λ

∗) exceeds Dmax, the amount of allocation a∗i,t(λ
∗)−Dmax

can be deferred to the next period, resulting in strictly lower cost. The gap between UB and LB

in (8) is thus O(T
√
N), proving the theorem.
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A.3 Proof of Theorem 2

Proof. Given a dual variable λ, the optimal second-period allocation to each retailer is the

solution to the minimization problem

min
ai,2≥0

λai,2 + p2E[[Di,1 + ρǫi − ai,2]
+] + h2E[[ai,2 − (Di,2 + ρǫi)]

+] .

It is easy to see that this is a convex optimization problem, and that the optimal allocation

a∗i,2 conditional on the first-period demand is given by a∗i,2 = Di,1 + ρF−1
ǫi

( p2−λ
p2+h2

), where F−1
ǫi

represents the inverse CDF of the demand noise ǫi. The optimal first-period allocation to each

retailer is then the solution to the minimization problem

min
ai,1 ≥0

λai,1 + p1E[[Di,1 − ai,1]
+] + h1E[[ai,1 −Di,1]

+] .

Again, this is a convex optimization problem, and the optimal a∗i,1 is given by the newsvendor

level a∗i,1 = F−1
Di,1

( p1−λ
p1+h1

), where F−1
Di,1

represents the inverse CDF of the first-period demand at

retailer i.

For a given λ > 0, by complementary slackness, the total expected allocation across retailers

and time periods is equal to the initial warehouse inventory, namely

N
∑

i=1

(

F−1
Di,1

(
p1 − λ

p1 + h1
) + E[Di,1] + ρF−1

ǫi
(
p2 − λ

p2 + h2
)

)

= w0 .

Because we assumed that demand for retailers is symmetric, for each retailer i, we have

F−1
Di,1

(

p1 − λ

p1 + h1

)

+ E[Di,1] + ρF−1
ǫi

(

p2 − λ

p2 + h2

)

=
w0

N
.

For each ρ, denote the corresponding dual variable λ that solves the above equation be λ∗(ρ).

Choose a positive constant wmax such that for any w0 ≤ wmax, the solution λ∗(ρ) satisfies

F−1
ǫi

(

p2 − λ∗(ρ)

p2 + h2

)

< 0 .

Set wmax = NE[Di,1].

(Since ǫi has median 0, λ∗(ρ) must be sufficiently large that (p2 − λ∗(ρ))/(p2 + h2) < 1/2).

Now for a fixed ρ, suppose we increase ρ by some ∆ρ > 0. For any λ such that λ ≥ λ∗(ρ)

F−1
Di,1

(

p1 − λ

p1 + h1

)

≤ F−1
Di,1

(

p1 − λ∗(ρ)

p1 + h1

)

,

and

0 > ρF−1
ǫi

(

p2 − λ∗(ρ)

p2 + h2

)

> (ρ+∆ρ)F−1
ǫi

(

p2 − λ

p2 + h2

)

,

where both inequalities follow from the fact that when λ ≥ λ∗(ρ), we have (p−λ)/(p+h) < 1/2.

Thus

F−1
Di,1

(

p1 − λ

p1 + h1

)

+ E[Di,1] + (ρ+∆ρ)F−1
ǫi

(

p2 − λ

p2 + h2

)

6= w0

N
,

and we must have λ∗(ρ) > λ∗(ρ+∆ρ). Since the optimal first-period allocation a∗i,1(ρ) is given
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by a∗i,1(ρ) = F−1
Di,1

(p1−λ∗(ρ)
p1+h1

), it is hence strictly increasing in ρ.

A.4 Proof of Theorem 3

Proof. For a given starting warehouse inventory level w0 in (P1), let the associated dual variable

of (D1) be λ. Each retailer i’s subproblem (D2) is

min
ai,2≥0

λai,2 + pE[[Di,2 − ai,2 − [ai,1 −Di,1]
+]+] + hE[[ai,2 + [ai,1 −Di,1]

+ −Di,2]
+] .

If we reformulate this problem as

min
ai,2≥0

λai,2 + pE[[Di,1 − ai,1]
+] + pE[[Di,2 − ai,2 − [ai,1 −Di,1]

+]+] (9)

+ hE[[ai,2 + [ai,1 −Di,1]
+ −Di,2]

+] ,

we can see that this reformulated optimization problem is jointly convex in ai,1 and ai,2. Indeed,

the first term in (9) is linear in ai,2, the last term in (9) (associated with holding costs) is convex

since it is the composition of a convex increasing function and a convex function, and the sum

of the second and third terms (associated with lost sales) can be expanded as

V2(ai,1, Di,1) = pE[[Di,1 − ai,1]
+] + pE[[Di,2 − ai,2 − [ai,1 −Di,1]

+]+]

= pE[[Di,1 − ai,1]
+] + pE[max{Di,2 − ai,2, [ai,1 −Di,1]

+}]− pE[[ai,1 −Di,1]
+]

= pE[max{Di,2 − ai,2, ai,1 −Di,1, 0}]− (Di,1 − ai,1) .

This is the sum of the pointwise maximum of affine functions, which is convex, and an affine

function. Thus the reformulated optimization problem (9) is jointly convex in ai,1 and ai,2.

We can then differentiate the objective function with respect to ai,2, and get the first order

condition

(h+ λ)P[Di,2 − [ai,1 −Di,1]
+ ≤ ai,2] = (p− λ)P[Di,2 − [ai,1 −Di,1]

+ > ai,2]

a∗i,2 = max{F−1
i (

p− λ

p+ h
), [ai,1 −Di,1]

+} − [ai,1 −Di,1]
+ ,

(10)

where Fi denotes the CDF of retailer i’s demand, and F−1
i denotes the inverse CDF of this

demand. Then by the convexity of the period 2 allocation problem in ai,2 (convexity in ai,1 will

be used later), the period 2 optimal order up to level is thus F−1
i ((p− λ)/(p+ h)).

The first-period allocation is then the solution to the optimization problem

min
ai,1

λai,1 + hE[[ai,1 −Di,1]
+] + V2(ai,1, Di,1) .

Using the well known property that π(x) = ming(y,x)≤0 f(y, x) is convex given that f, g are

jointly convex in x, y, we know that V2 is convex in ai,1. Then the objective function of the

first-period optimization problem, as the sum of convex functions, is convex in ai,1, and any

solution of the first order conditions will be a global optimum. Using the expression for the
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period 2 optimal order up to level, F−1
i ((p− λ)/(p+ h)), we can expand V2 and write

min
ai,1

λai,1 + pE[[Di,1 − ai,1]
+] + hE[[ai,1 −Di,1]

+] + λE[[F−1
i (

p− λ

p+ h
)− [ai,1 −Di,1]

+]+]

+ pE[[Di,2 −max{F−1
i (

p− λ

p+ h
), [ai,1 −Di,1]

+}]+]

+ hE[[max{F−1
i (

p− λ

p+ h
), [ai,1 −Di,1]

+} −Di,2]
+] ,

which is equivalently

min
ai,1

λai,1 + pE[[Di,1 − ai,1]
+] + hE[[ai,1 −Di,1]

+] + λE[Di,2 − [ai,1 −Di,1]
+]

+ (p− λ)E[[Di,2 −max{F−1
i (

p− λ

p+ h
), [ai,1 −Di,1]

+}]+]

+ (h+ λ)E[[max{F−1
i (

p− λ

p+ h
), [ai,1 −Di,1]

+} −Di,2]
+] . (11)

Now suppose w is the minimum inventory level such that for w0,1 ≥ w, λ = 0. Such a w exists

since demand at all the retailers is almost surely upper bounded by the parameter b. Then

if λ = 0, the second-period order-up-to level is F−1
i (p/(p + h)). Since we have assumed that

p > h, we have p/(p+h) < 1/2. Then, since demand follows the truncated normal distribution,

for i > j, we have P[Di,t > d] > P[Dj,t > d] when d > µ, implying that the second-period

order-up-to level is increasing in i.

As for the optimal first-period allocation when λ = 0, suppose we know that a∗i,1 ≤ F−1
i (p/(p+

h)). Then, differentiating the objective function of (11) evaluated on any ai,1 ≤ F−1
i (p/(p+h))

gives

λ− pP[D0,i > a0,i] + hP[D0,i ≤ a0,i] .

Then the left derivative of (11) is 0 when a∗0,i = F−1
i (p/(p+h)). By the differentiability of (11),

the derivative of (11) is also 0 when a∗0,i = F−1
i (p/(p + h)), and by the convexity of (11), the

optimal first-period allocation is F−1
i (p/(p+h)), i.e. the same as the second-period order-up-to

level. This implies that the optimal first-period allocation is also increasing in i.

To analyze the case when the starting warehouse inventory w0,1 is small, and λ is large, we

will construct w by noting that demand is truncated normal, which implies that there exists

some tmax, 0 < tmax < 1/2 such that the demand probability density functions fi(t) is increasing

in i for all t ≤ tmax. Then set w as the starting warehouse inventory that corresponds to dual

variable λ = p− (p+ h)Fi(tmax/2). For w0,1, w0,1 ≤ w, the associated dual variable λ satisfies

λ ≥ p− (p+ h)Fi(tmax/2).

For such w0,1 that satisfies w0,1 ≤ w, since the associated λ satisfies λ ≥ p−(p+h)Fi(tmax/2) ≥
(p − h)/2, we have (p − λ)/(p + h) ≤ 1/2 and thus, F−1

i ((p − λ)/(p + h)) is strictly decreas-

ing in i by our assumption that demand is truncated normal, which implies that for i > j,

P[Di,t > d] < P[Dj,t] > d] when d < µ.

We now complete the proof by showing that the optimal first-period allocation ai,1 is also

decreasing in i for w0,1 that satisfies w0,1 ≤ w. We do so by writing the first order conditions
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of (11):

p− λ = (p+ h− λ)P[Di,1 ≤ ai,1]

+ (p− λ)P[Di,1 ≤ ai,1 − F−1
i (

p− λ

p+ h
)]

+ (h− p+ 2λ)P[Di,1 +D2,i ≤ ai,1 | Di,1 ≤ ai,1 − F−1
i (

p− λ

p+ h
)]P[Di,1 ≤ ai,1 − F−1

i (
p− λ

p+ h
)] .

(12)

We claim that 2F−1
i ((p− λ)/(p+ h)) is an upper bound on the optimal ai,1 when w0,i ≤ w.

Suppose instead that ai,1 > 2F−1
i ((p− λ)/(p+ h)). Then the right hand side of (12) is at least

(p+ h− λ)P[Di,1 ≤ 2F−1
i (

p− λ

p+ h
)]

+ (p− λ)P[Di,1 ≤ F−1
i (

p− λ

p+ h
)] + (h− p+ 2λ)P[Di,1 ≤ F−1

i (
p− λ

p+ h
)]

≤2(p+ h− λ)P[Di,1 ≤ F−1
i (

p− λ

p+ h
)] + (p− λ)P[Di,1 ≤ F−1

i (
p− λ

p+ h
)]

+ (h− p+ 2λ)P[Di,1 ≤ F−1
i (

p− λ

p+ h
)]

=P[Di,1 ≤ F−1
i (

p− λ

p+ h
)](2p+ 3h− λ)

=
p− λ

p+ h
(p+ h+ p+ 2h− λ)

>p− λ.

The last line follows from the fact that w0,i ≤ w implies that the associated dual variable

λ satisfies λ > (p − h)/2, and the third line follows from our assumption of truncated normal

demand that is symmetrical about the mean, which implies that

P[Di,1 ≤ 2F−1
i (

p− λ

p+ h
)] = P[Di,1 ≤ F−1

i (
p− λ

p+ h
)] + P[F−1

i (
p− λ

p+ h
) ≤ Di,1 ≤ 2F−1

i (
p− λ

p+ h
)]

≤ 2P[Di,1 ≤ F−1
i (

p− λ

p+ h
)]

when (p − λ)/(p + h) < 1/2. Thus the right hand side of (12) is strictly greater than the left

hand side, leading to a contradiction.

For each ai,1 such that ai,1 < 2F−1
i ((p−λ)/(p+h)), we will show that each of the summands

on the right hand side of (12) is strictly increasing in both ai,1 and i. This will imply that the

heuristic first-period allocations a∗i,1 are strictly decreasing in i, proving the theorem.

Consider the first summand of (12). Since λ ≤ p, this term is strictly increasing in ai,1.

Further, since ai,1 ≤ 2F−1
i ((p − λ)/(p + h)) ≤ tmax, by our definition of tmax, the summand is

strictly increasing in ai,1.

Now consider the second summand of (12). Again, since λ ≤ p, this term is increasing in

ai,1. And since ai,1 − F−1
i ((p − λ)/(p + h)) ≤ 2F−1

i ((p − λ)/(p + h)) ≤ tmax, this summand is

also increasing in ai,1.

Finally, consider the third summand of (12). We have set w0,i such that the associated dual

variable λ satisfies λ > (p − h)/2. Thus the coefficient of the probability term, h − p + 2λ, is
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positive, and the summand is increasing in ai,1. We can write the probability term as

P[Di,1 +D2,i ≤ ai,1 | Di,1 ≤ ai,1 − F−1
i (

p− λ

p+ h
)]P[Di,1 ≤ ai,1 − F−1

i (
p− λ

p+ h
)]

=

∫ ai,1

a

∫ s−a

a

fi(t)fi(s− t)dtds.

For t such that a ≤ t ≤ s − a, and s such that s ≤ ai,1, we also have a ≤ t ≤ ai,1 ≤
2F−1

i ((p− λ)/(p+ h)) ≤ tmax. Thus fi(t) is increasing in i for each t within the bounds of the

integral. Similarly, for each t and s within the bounds of the integral, we have a ≤ s− t ≤ s−a.

By the same argument, fi(s − t) is increasing in i. Thus the probability term in the third

summand of (12) is increasing in i, proving the claim and the theorem.
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