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Research on regime shifts has focused primarily on how changes in the intensity and duration of 23 

press disturbances precipitate natural systems into undesirable, alternative states. By contrast, the 24 

role of recurrent pulse perturbations, such as extreme climatic events, has been largely neglected, 25 

hindering our understanding of how historical processes regulate the onset of a regime shift. We 26 
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performed field manipulations to evaluate whether combinations of extreme events of 27 

temperature and sediment deposition that differed in their degree of temporal clustering 28 

generated alternative states in rocky intertidal epilithic microphytobenthos (biofilms) on rocky 29 

shores. The likelihood of biofilms to shift from a vegetated to a bare state depended on the 30 

degree of temporal clustering of events, with biofilm biomass showing both states under a 31 

regime of non-clustered (60 days apart) perturbations while collapsing in the clustered (15 days 32 

apart) scenario. Our results indicate that time since the last perturbation can be an important 33 

predictor of collapse in systems exhibiting alternative states and that consideration of historical 34 

effects in studies of regime shifts may largely improve our understanding of ecosystem dynamics 35 

under climate change. 36 

 37 

Keywords: alternative states, extreme events, regime shift, epilithic microphytobenthos, biofilm, 38 

climate change, temporal clustering, abrupt changes 39 

INTRODUCTION 40 

Ecosystems often display non-linear responses to both gradual and abrupt changes in driving 41 

variables (e.g. temperature, nutrient loading), undergoing catastrophic transitions known as 42 

regime shifts (Scheffer et al. 2001, Scheffer and Carpenter 2003). Most theoretical and 43 

experimental work on regime shifts has focused on gradual changes in the intensity of a press 44 

disturbance (the driver variable), showing that many ecosystems can absorb such changes and 45 

maintain their current state up to a threshold beyond which they transition to an alternative, less 46 

desirable state (Petraitis and Dudgeon 2004, Dakos et al. 2008, Scheffer et al. 2012, Benedetti-47 

Cecchi et al. 2015, Rindi et al. 2017). Only recently, ecologists have recognized the importance 48 

of temporal characteristics of press disturbances in regulating regime shifts. Ratajczak et al. 49 

(2017) showed that the duration of the perturbation is crucial for the onset of regime shifts in 50 

systems that respond slowly to external change and that exhibit strong coupling between past and 51 

present dynamics. In contrast, our understanding of the role of recurrent pulse events and how 52 

the history of previous perturbations affects the susceptibility of ecosystems to undergo a regime 53 

shift is still limited. 54 
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Pulse events such as fires, the outbreak of natural enemies and extreme climatic events 55 

have a great potential to induce regime shifts (Scheffer et al. 2001). In highly stochastic 56 

environments, species coexistence is promoted by the capacity of species to respond 57 

differentially to environmental fluctuations. Each population, then, is able to store the gains 58 

coming from good periods and use them to survive losses in bad periods, a phenomenon known 59 

as storage effect, which ultimately allows a community to maintain biodiversity (Chesson 2000). 60 

Pulse perturbations, however, may exceed tolerance limits of organisms, causing impairment of 61 

function or outright mortality of individuals (Schröder et al. 2005). If also resting stages are 62 

affected, pulse events may prevent species coexistence by disrupting storage effects. Pulse 63 

disturbances can also influence community dynamics and biodiversity by selectively removing 64 

community dominants, thereby freeing up resources for other species and reducing community’s 65 

biotic resistance to invasive species (Walker et al. 2005, Mumby et al. 2011). Any of these 66 

changes may translate into a system being suddenly pushed beyond the unstable region 67 

separating the basins of attraction of the contrasting states, resulting in a regime shift (Scheffer et 68 

al. 2001).  69 

The likelihood of a pulse perturbation to push a system into an alternative state depends 70 

upon its location with respect to the critical threshold; the more the system is close to the 71 

threshold, the higher is the likelihood of a transition (Folke et al. 2004, van der Bolt et al. 2018). 72 

Moreover, ecosystems are exposed to multiple, recurrent perturbations, so that the likelihood of a 73 

regime shift may also depend on the particular regime of disturbance the system has experienced 74 

(Paine et al. 1998). Specifically, the characteristics of a regime of pulse disturbances that may 75 

leave strong historical signatures on ecosystem dynamics include the nature, the order and the 76 

timing of occurrence of perturbations (Benedetti-Cecchi et al. 2015, Dantas et al. 2016, Dal Bello 77 

et al. 2017). Although alterations of disturbance scenarios are already receiving a great amount 78 

of attention in the ecological literature, how variation in the regime of pulse perturbations affect 79 

regime shifts has been largely neglected. 80 

Extreme climatic events are becoming more common and severe as a consequence of 81 

climate change (Fischer and Knutti 2015) and they can induce abrupt transitions in terrestrial and 82 

aquatic ecosystems (Holmgren et al. 2006, Wernberg et al. 2016). There is general consensus 83 

that the effects of extreme events vary with their nature and temporal regimes (Benedetti-Cecchi 84 

et al. 2006, Mumby et al. 2011, Williams et al. 2011). Moreover, recent studies showed that 85 
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changes in the temporal clustering of extreme events, i.e. the degree of separation between 86 

consecutive instances, can modulate ecological memory of microbial assemblages (Dal Bello et 87 

al. 2017) and regulate the onset of regime shifts in tropical ecosystems (Holmgren et al. 2013). 88 

Evaluating how different scenarios of extreme events can trigger a regime shift in systems with 89 

alternative states will be a crucial step to better understand the impact of climate change on 90 

ecosystems.  91 

Here, we address this challenge using rocky intertidal epilithic microphytobenthos 92 

(biofilms) as model system. We focused on extreme events of temperature and sediment 93 

deposition after heavy rains, since these are major drivers of biofilm abundance and distribution 94 

(Thompson et al. 2004, Dal Bello et al. 2017). We used photosynthetic biofilms primarily 95 

because it is a tractable system for field experiments, being the result of the activity of fast 96 

growing organisms, which display rapid responses to perturbations (Christofoletti et al. 2011). 97 

Moreover, we expected alternative states in biofilms due to stabilizing mechanisms that operate 98 

both at high and low values of biomass. High biomass values sustain high photosynthesis rates, 99 

which, in turn, support enhanced production of extracellular polymeric substances (EPS) (Wulff 100 

et al. 2000, Wolfstein and Stal 2002). EPS, being the major components of the dense matrix in 101 

which microalgal cells are embedded, provide protection against stressful conditions, e.g. heat 102 

stress during low tides and further boost photosynthesis and biomass accumulation (Flemming 103 

and Wingender 2010). This positive feedback can be eroded by processes that either remove 104 

biomass or degrade EPS, e.g. high temperatures, abrasion due to sediment scouring, wave action 105 

(Decho 2000, Thompson et al. 2004). We propose that such losses trigger runaway changes 106 

propelling the switch from a “vegetated” to a “bare” (or “semi-bare”) state. The semi-bare state 107 

will be then maintained due to the uncoupling of photosynthesis and EPS production at low 108 

biofilm biomass values (“Allee effect”). Such feedback can work both ways: the more the 109 

biomass, the higher the growth and the less the biomass, the lower the growth. Positive feedback 110 

loops like this one may be responsible for the catastrophic effect of extreme events, similarly to 111 

what observed in microcosm experiments with yeasts populations, which show cooperative 112 

growth and a negative growth rate at low cells density (Dai et al. 2012).  113 

We used a field experiment and a model to test for the presence of alternative states in 114 

rocky shore photosynthetic biofilms and to explore the underlying feedback mechanisms. The 115 

field experiment tested the hypothesis that series of extreme events of temperature and sediment 116 
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deposition that differed in their degree of temporal clustering induced alternative states in 117 

biofilm assemblages. Multimodality in the frequency distribution of biofilm biomass (Scheffer et 118 

al. 2012, Sirota et al. 2013) and divergence in the temporal trajectories of experimental units 119 

belonging to the same treatment (Scheffer and Carpenter 2003, Schröder et al. 2005) are both 120 

indirect indications for the presence of alternative states, here a vegetated and a semi-bare state 121 

(Schröder 2009). Based on the results of a previous study (Dal Bello et al. 2017), we anticipate 122 

that the vegetated state would correspond to the biomass in the controls, while the semi-bare 123 

state would reflect reduced biofilm biomass in the clustered perturbation scenario. This is 124 

expected because extreme events clustered in time may push the system below a threshold 125 

biomass value, impairing the ability of biofilm to recover to the vegetated state. Moreover, we 126 

expect two modes in the non-clustered scenario, where two perturbations separated in time may 127 

be able to push some experimental units in the semi-bare state, while others, due to small initial 128 

differences in biomass, may remain in the vegetated state. To further explore the effects of 129 

temporal clustering of extreme events on biofilm biomass, we parametrized a simple model that 130 

incorporated the positive feedback between photosynthesis and EPS production through an 131 

“Allee effect”. 132 

 133 

MATERIALS AND METHODS 134 

Study area 135 

The experiment was done along the coast of Calafuria (Livorno, 43°30′ N, 10°19′ E) between 136 

April and August 2013. The coast consists of gently sloping sandstone platforms with high-shore 137 

levels (0.3 - 0.5 m above mean low-level water) colonized by assemblages of barnacles 138 

interspersed among areas of seemingly bare rock, where photosynthetic biofilms develop. 139 

Biofilm assemblages at Calafuria include mainly cyanobacteria, with diatoms being less 140 

abundant (Maggi et al. 2017). The most important grazer at this height on the shore is the 141 

littorinid snail Melaraphe neritoides (L). During the experiment, however, grazing pressure over 142 

biofilm assemblages was nearly absent (Dal Bello et al. 2017). 143 

Experimental design  144 

Along Mediterranean rocky shores, highly thermally stressing periods of calm sea and high 145 

barometric pressure alternate with heavy rainfalls, the latter resulting in the deposition of 146 

sediments at tidal heights where photosynthetic biofilms develop (Airoldi 2003, Benedetti-147 
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Cecchi et al. 2006, Dal Bello et al. 2017). In order to mimic this pattern, we imposed different 148 

series of extreme events of warming and sediment deposition. A scenario characterized by non-149 

clustered events was created by imposing two extreme disturbances 60 days apart, while two 150 

disturbances 15 days apart characterized the clustered condition. The non-clustered scenario was 151 

conceived to allow biofilm biomass to recover between the two events, whilst recovery was 152 

considered unlikely in the time window separating clustered events. Since biofilm is composed 153 

of fast-growing species with short generation time, an interval of 60 days was sufficiently long to 154 

allow recovery and therefore the two perturbations could be considered as separate events. For 155 

each level of clustering, we imposed all the possible combinations of warming and sediment 156 

deposition: two consecutive sediment deposition events, two consecutive extreme warming 157 

events, one extreme sediment deposition event followed by an extreme warming episode, an 158 

extreme warming event followed by an extreme sediment deposition episode. Extreme warming 159 

was obtained by artificially increasing air temperature over experimental plots using aluminum 160 

chambers equipped with stoves. The treatment consisted in maintaining the air temperature 161 

inside the chambers as close as possible to 32 °C during the two hours corresponding to the peak 162 

in daily temperatures, i.e. around midday in all instances. The temperature chosen represents the 163 

100-years return time temperature for the months in which the experiment was performed (Katz 164 

et al. 2005). Procedural controls for artifacts (CA) were set-up to control for the effects of 165 

shading on biofilm biomass due to the use of non-transparent heating chambers. CA plots were 166 

therefore kept in shaded conditions but without heating for the duration of the warming treatment 167 

by means of cardboard chambers. Sediment addition on experimental plots was used to simulate 168 

the effects of runoff after a heavy rainfall event. The treatment consisted in adding a 5mm-thick 169 

layer of sediment collected in situ and diluted in fresh water to produce the colloidal material that 170 

is naturally deposited on rocky shores after severe precipitation events. Three experimental plots 171 

were assigned to each combination of extreme events of disturbance. Three unmanipulated plots 172 

were used as controls (C) and six plots were used as procedure controls of artefacts (CA). 173 

Experimental plots were located 2-10 meters apart and consisted of areas of substratum of 30 x 174 

50 cm marked at their corners with raw-plugs inserted into the rock for subsequent relocation.  175 

Data collection and analyses 176 

Biofilm biomass was quantified indirectly by means of an image-based remote sensing technique 177 

that uses chlorophyll a concentration as a proxy. Chlorophyll a was estimated from the ratio of 178 
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reflectance at near-infrared (NIR) and red bands (Ratio Vegetational Index - RVI) obtained by 179 

means of an IR-sensitive camera, following the method proposed by Murphy et al. (2006). 180 

NIR/red ratios are linked to the chlorophyll content in the rock by a linear relationship, 181 

calculated on the basis of laboratory chlorophyll a extractions from Calafuria sandstone cores 182 

(Dal Bello et al. 2015).  183 

Experimental plots were monitored in time after the imposition of both experimental 184 

perturbations, with the non-clustered scenario sampled at days 70, 84, 108,133 and the clustered 185 

scenario sampled at days 81, 91, 109, 138, counting from day 0 (i.e. when the experiment started 186 

and we imposed the first extreme of the non-clustered scenario) (see Appendix 1: Fig. S1). 187 

Controls were sampled also at days 5, 20 and 55, in addition to days 70, 84, 91, 108 and 133 188 

(Appendix 1: Fig. S1). Once in the lab, each image was handled with a routine in ImageJ 189 

software to haphazardly select 5 subplots of 256 x 256 pixels and to provide a mean estimate of 190 

biofilm biomass for each of them.  191 

The presence of alternative states was tested indirectly through the evaluation of 192 

multimodality in the frequency distribution of biofilm biomass (Scheffer et al. 2012, Sirota et al. 193 

2013). The number of modes in the frequency distribution of biofilm biomass values was 194 

estimated at the first sampling date after the second perturbation event for both non-clustered and 195 

clustered scenario (days 70 and 81 from the start of the experiment, respectively), while we used 196 

data from the four dates after the second perturbation event to assess divergence among temporal 197 

trajectories of biofilm biomass. The number of modes has been identified with normal mixture 198 

modelling and model-based clustering using Mclust package in R. We used bootstrapping to 199 

calculate 95% confidence intervals. For each level of temporal clustering (control, clustered and 200 

non-clustered), observations were resampled 999 times and modes were estimated. 95% 201 

confidence intervals were calculated as 2.5th and 97.5th percentile of the vector of bootstrapped 202 

modes (Davison et al. 1997).  203 

Another qualitative indicator for the presence of alternative states is the divergence of 204 

temporal trajectories of identically treated experimental units (Scheffer and Carpenter 2003). In 205 

particular, alternative state theory predicts that the final state of a system, vegetated or semi-bare 206 

in our case, will depend on the initial position of the state variable with respect to a threshold: 207 

units with biofilm biomass above the threshold at the first sampling date will remain in the 208 

vegetated state, while units below that threshold will shift to the semi-bare state (Schröder et al. 209 
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2005). To test this, we adopted a binary classification technique commonly used in machine 210 

learning: given the value of biofilm biomass at the first sampling date after both extreme events, 211 

the algorithm decides whether that particular unit will end up in the semi-bare (0) or in the 212 

vegetated state (1). In this case the algorithm was a binomial generalized linear model that we fit 213 

to our data using the glm function in the R package stats (version 3. .5.1). We divided the data 214 

belonging to the non-clustered scenario into two groups: 1) a training set, consisting of 60% of 215 

data points, in which an experimental unit was classified as vegetated if its biomass was 216 

embraced in the confidence interval of the mean control biomass at the last sampling date or 217 

semi-bare otherwise, and 2) a testing set including the remaining 40% of the data. The training 218 

set was used to fit the binomial generalized linear model, whose accuracy was then tested over 219 

the testing set.  220 

Model formulation and parameterization  221 

We developed a simple mathematical model to explore whether different temporal regimes of 222 

temperature extremes could induce alternative states in biofilm biomass. We considered only one 223 

stressor variable since extremes warming and sediment deposition events have comparable 224 

effects on biofilm biomass (Dal Bello et al. 2017). The goal here was to assess biofilm dynamics 225 

under different temporal scenarios of temperature extremes and to test whether the degree of 226 

temporal clustering could generate alternative states. This model provided a qualitative 227 

benchmark with which to compare the experimental results. 228 

We modelled the dynamics of biofilm using a simple growth equation describing changes 229 

of biofilm biomass (μg chl a cm-2

 233 

) as a function of temperature and a loss equation, which 230 

reflects general processes leading to biofilm mortality (e.g. consumption by grazers and 231 

dislodgment by waves): 232 

���� = �(�) − �(�) + �� ����                                                   (Eq. 1) 234 

 235 

where B is the biomass of biofilm (μg chl a cm-2), t is time and T is mean air temperature (°C). 236 

Function G(B) is a logistic equation that describes the growth of biofilm biomass, in which the 237 

per capita growth rate varies as a function of mean air temperature (C°). Function F(B) describes 238 

the loss of biomass due to biological or physical disturbance. Due to the narrow amplitude of 239 

tides, intertidal organisms along Mediterranean coasts may be exposed to elevated desiccation 240 
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stress due to prolonged periods of calm seas and high barometric pressure. In contrast, waves and 241 

rough sea conditions can keep intertidal organisms constantly wet, even during low tides 242 

(Benedetti-Cecchi et al. 2006). Frequent shocks to biofilm biomass due to such contrasting and 243 

rapidly changing weather conditions are represented in the model by the term �BdW dt⁄ , where 244 �� ��⁄  is a Wiener white noise process with mean 0 and variance dt and � is the scale parameter 245 

of the noise process, which was arbitrarily set to 0.04. 246 

As anticipated before, the G(B) function is a logistic equation describing the growth of 247 

biofilm biomass:  248 �(�) = �(�)� �1 − ���                                                         (Eq. 2) 249 

where r(T) is a two-phase thermal performance curve modelling the variation of growth rate as a 250 

function of temperature and K is maximum biofilm biomass (Deutsch et al. 2008, Vasseur et al. 251 

2014) (Appendix S1: Fig. S2).  252 

 �(�) = ⎩⎪⎨
⎪⎧

  

���� �1 − ��−���������−�����2   � ≥ ����
�max �����−�����2�� �2�        � < ���� �                                         (Eq. 3) 253 

 254 

where rm is the maximum growth rate of biofilm biomass, T is air temperature, Topt is the mean 255 

air temperature at which the growth rate is maximum (r(Topt)=rmax), Tmax is the temperature limit 256 

beyond which the growth rate becomes negative, and σp 

The model included an “Allee effect” implying a lower growth rate at low levels of 262 

biomass. We assumed that the mortality rate of biofilm increased below a certain value of 263 

biomass, due to the decrease in EPS production and the consequent increase in desiccation stress 264 

and reduction of protection against UV radiation (Potts 1999, Wulff et al. 2000, Wolfstein and 265 

Stal 2002): 266 

is a parameter controlling the rate of 257 

increase of growth rate in the ascending part of the curve. This relationship is in line with 258 

experimental evidence and observations that higher values of air temperature (T °C) strongly 259 

decreased the growth rate of rocky intertidal biofilms (Sanz-Lázaro et al. 2015, Dal Bello et al. 260 

2017). 261 

�(�) = ��� � ℎ��+ℎ��                                                             (Eq. 4) 267 
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The loss term caused a net reduction of per capita growth rate at low biomass levels. This was 268 

achieved through a Monod equation with a half-saturation constant ha

Model parametrization and simulations  271 

, which defines the 269 

biomass level below which this loss term is halved. 270 

Parameters were estimated empirically by fitting the model to time series of biofilm biomass at 272 

the study site (Appendix S1: Table 1). On nine occasions between April and August 2013 we 273 

sampled six plots the same size as the experimental units (30 x 50 cm) and biofilm biomass was 274 

evaluated as described in the previous section. Daily temperature data were obtained from Rete 275 

Mareografica Nazionale (ISPRA, http://www.mareografico.it). Maximum likelihood parameter 276 

estimates were obtained with the mle2 function of the bmle library in R, assuming lognormal 277 

errors (Bolker 2008). Predicted time series were obtained by integrating over time initial biofilm 278 

biomass. We used the ode function of R package deSolve, with backward differentiation formula 279 

(Soetaert et al. 2012). We used plot averages of biofilm biomass for this analysis because 280 

subplots within plots differed among dates, so only data aggregated at the plot level could be 281 

tracked through time (Appendix S1: Fig. S2). The interpolating function aproxfun in the R 282 

package deSolve was used to obtain temperature estimates at exact time points during the 283 

integration routine. Likelihood profiles were inspected to ensure that parameters were well 284 

defined. 285 

To evaluate the effect of extreme climatic events in the model, we first generated a 286 

baseline condition where air temperature increased from 23 to 27.5 °C, which resembled the 287 

increase in temperature observed during the experiment (data obtained by from Rete 288 

Mareografica Nazionale, ISPRA, http://www.mareografico.it). Moreover, to reproduce the 289 

variability in mean temperature similar to that observed over the study period, we superimposed 290 

to temperature time series a white noise process with mean (�) zero and standard deviation (�) 291 

equal to 1.5 °C. Time series of air temperature were finally modified to integrate the maximum 292 

air temperature measured in the experimental warming session (aerial temperature of 32 °C). As 293 

in the experiment, we produced two temporal patterns of extreme events, a clustered pattern in 294 

which we imparted two warming events separated by 15 days (day 76 and day 91) and a non-295 

clustered scenario consisting of the same temperature extreme separated by 60 days (day 10 and 296 

day 70; Appendix S1: Fig. S1). We constructed a set of simulated time series for each scenario 297 

running Eq. 1 from 50 different initial conditions randomly selected from a normal distribution 298 
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(� = 3.5, �= 0.5), for 150 time-steps. Also, a third set of simulations without the imposition of 299 

extreme events was produced. Simulations were performed by using an Euler-Murayama method 300 

with Ito calculus (Iacus 2009). 301 

 302 

RESULTS 303 

Biofilm biomass exhibited two distinct states (Fig. 1). Biomass distribution in controls (no 304 

extreme events) was unimodal and centered on the value of 4.59 µg chl a cm-2 (95%CIs [4.23 - 305 

4.97]), which identifies the vegetated state (Fig. 1A, D, see Table 1). The distribution of biomass 306 

in the clustered scenario was also unimodal but centered on a lower value (1.23 µg chl a cm-2; 307 

95%CIs [1.08 - 1.38]), which identifies a semi-bare state (Fig. 1B, D and Table 1). Non-clustered 308 

event treatments showed instead bimodality (1.61 µg chl a cm-2; 95%CIs [1.25 - 1.91] and 4.38 309 

µg chl a cm-2

Inspection of the temporal trajectories of biofilm biomass revealed that, despite a slight 313 

decline, controls remained in the vegetated state during the course of the study, while clustered 314 

treatments were consistently in the semi-bare state. The non-clustered scenario showed a 315 

divergent pattern, with some experimental units recovering to biomass values observed in 316 

controls and other units declining towards values measured in the clustered treatments (Fig. 2). 317 

In the non-clustered scenario, whether a unit recovered to the vegetated state or declined to the 318 

semi-bare state depended on its value of biomass at the first sampling date (Appendix S1: Fig 319 

S4). In particular, a unit increase in biofilm biomass increased the probability (log odds) to end 320 

up in the bare state by 1.88 (Table 2). Finally, the model predicted the final state of experimental 321 

units in the testing set with reasonable accuracy (AUC=0.9, Appendix S1: Fig. S5). 322 

; 95%CIs [3.63 - 4.89]), with intermediate values of biofilm biomass (Fig. 1C, D 310 

and Table 1). Graphical scrutiny of the results suggests that warming and sediment deposition 311 

have similar effects on the distribution of biofilm biomass (Appendix S1: Fig. S3). 312 

The response of biofilm biomass to extreme events in the model was consistent with the 323 

experimental results (Fig. 3). In the non-clustered scenario, time series of biofilm biomass 324 

showed a marked divergent pattern, with some replicates recovering and others collapsing. This 325 

resulted in a bimodal frequency distribution, with one mode of ~0 µg chl a cm-2 and the other of 326 

~3 µg chl a cm-2 (Fig. 3a). In the clustered scenario, instead, biofilm biomass collapsed, showing 327 

a unimodal pattern with a mode corresponding to ~0 µg chl a cm-2 (Fig. 3b). In the controls, 328 

biofilm biomass showed a slight decrease over time and a unimodal pattern in the frequency 329 
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distribution, with a mode of ~3 µg chl a cm-2

DISCUSSION 334 

 (Fig. 3c). Although the model clearly produced a 330 

bimodal pattern, the frequencies distribution in the experiment did not exactly match the pattern 331 

produced by the simulation, with the experimentally observed modes slightly greater than the 332 

ones predicted by the model. 333 

Our findings suggest that the history of extreme events and the time since the last perturbation 335 

may affect the susceptibility of rocky intertidal photosynthetic biofilms to undergo a regime 336 

shift. The analysis of the frequency distribution of biofilm biomass indicated the occurrence of 337 

two alternative states under a regime of non-clustered extremes: a semi-bare state characterized 338 

by low biomass and a vegetated state were biomass was high, separated by an unstable range of 339 

biomass values. In contrast, clustered extremes induced the collapse of biofilm biomass 340 

precipitating the system in the semi-bare state. 341 

Assessing multimodality in the frequency distribution of state variables has been often 342 

used as a qualitative flag to assess the consistency between empirical data and theoretical 343 

expectations of catastrophic transitions (Scheffer et al. 2012). Assessing whether a system shows 344 

alternative states also involves testing for the temporal random divergence of identically treated 345 

experimental units (Schröder et al. 2005). This implies that, in a bistable system strongly 346 

influenced by stochastic perturbations, some experimental units will tend to one state and others 347 

will converge towards the other state and the outcome depends on initial conditions. Yet, 348 

observing a state transition and lack of recovery following the application of pulse perturbations 349 

provides a stringent test for alternative sates in natural systems (test for non-recovery, Suding et 350 

al. 2004, Schröder et al. 2005). Biofilm biomass in the clustered scenario exhibited a state 351 

transition toward the semi-bare state and a complete lack or recovery which persisted for two 352 

months following the imposition of extreme events. Our experimental results together with 353 

model simulations were consistent with these expectations, showing how experimental units with 354 

intermediated values of biomass followed divergent trajectories, culminating to either the semi-355 

bare or the vegetated state in the non-clustered scenario. 356 

Self-replacement, the capacity of an assemblage to maintain itself over time, is a proxy for 357 

stability of alternative states (Connell and Sousa 1983). Biofilm at our study site was mainly 358 

composed of cyanobacteria characterised by fast-growing species with short generation time 359 

(from days to weeks) (Whitton 2012, Maggi et al. 2017). The persistence of the two alternative 360 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

states for a time encompassing several generations of the species composing biofilm (two 361 

months in our study) suggests the that the two alternatives states may be considered stable sensu 362 

Connell and Sousa (1983). On the contrary, in our study we did not investigate whether 363 

alternative states were locally stable, for instance, whether the semi-bare state recovered to a 364 

vegetated state upon the arrival of new individuals from the water column (Beisner et al. 2003). 365 

One approach would involve the application of a small perturbation (e.g. a small clearing) at 366 

each of the two contrasting states to test whether or not they returned to the original condition. 367 

Previous studies have shown that biofilm may experience drastic changes in biomass and recover 368 

from apparently catastrophic transitions within a relatively short time scale (Alsterberg et al. 369 

2007, Larson and Sundbäck 2012). Although we cannot entirely rule out that vegetated and the 370 

semi-bare state represent alternative transient states (sensu Fukami and Nakajima 2011), our 371 

results support the hypothesis that biofilm may shift from a vegetated to a semi-bare state in 372 

response to multiple pulses of temperature and sediment deposition. 373 

Out results are important in light of the predicted increase in the frequency of extreme 374 

climatic events under climate change (IPCC 2013). The degree of temporal clustering of 375 

extremes is expected to increase, as signalled by increased variance in the interval of time 376 

between events in tropical ecosystems (Mumby et al. 2011, Holmgren et al. 2013), grasslands 377 

(Fuchslueger et al. 2016) and Mediterranean coastal areas (Volosciuk et al. 2016). Changes in 378 

temporal clustering can moderate the severity of ecological impacts caused by extreme events 379 

(Benedetti-Cecchi et al. 2006, Holmgren et al. 2006, Kreyling et al. 2011, Mumby et al. 2011) 380 

and modulate the ecological memory of natural systems (Dal Bello et al. 2017). Here we 381 

highlight that the degree of temporal clustering of extremes may regulate the occurrence of 382 

regime shifts.   383 

Exogenous periodic forces and seasonality may affect the ability of a natural system to 384 

respond to extreme events and, in general, to stochastic pulse perturbations. Our study shows that 385 

biofilm biomass decreased along the course of the experiment, from spring to summer. A similar 386 

decline in biofilm biomass has been described in other studies and likely reflects the effect of 387 

increasing temperature and light intensity (Nagarkar and Williams 1999, Jackson et al. 2010). 388 

Biofilm assemblages likely experienced progressively stressful conditions during the course of 389 

the experiment, which made them more susceptible to collapse as summer proceeded. As 390 

temperature increased during the experiment, the capacity of biofilm to recover from a 391 
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temperature extreme drastically decreased, making it more susceptible to a subsequent 392 

perturbation. In agreement with these experimental results, the biofilm model indicated that 393 

seasonal warming amplified the impact of temporally clustered perturbations. When sudden 394 

perturbations occur in combination with unfavourable environmental conditions (e.g. higher 395 

summer temperatures), their compounded effects may have dramatic consequences. Such 396 

contingencies may, thus, play a pivotal role in determining the occurrence of tipping points and 397 

alternative states in natural systems. 398 

Thermal buffering provided by conspecifics is a widespread facilitative mechanism in 399 

rocky intertidal communities (Stachowicz 2001). Biofilms should benefit from living at high 400 

density due to higher EPS production, which in turn enhances survival and boosts growth (Potts 401 

1994, Steele et al. 2014). Our experimental results showed how extreme temperatures may push 402 

biofilm biomass toward a threshold level, below which growth rates can no longer compensate 403 

for increased mortality. As shown in another study, EPS production decreases with declining 404 

growth rates of biofilm, hence increasing the risk of lethal damages due to enhanced thermal 405 

stress when a critical level of low biofilm biomass is reached (Wulff et al. 2000). At this point 406 

the production of EPS becomes too low and it is no longer effective in protecting biofilm from 407 

stressful conditions. This mechanism generates feedbacks, so that the resulting loss of biomass 408 

further weakens the facilitative effect of EPS. Our experimental and model results support the 409 

view that the combined effect of greater mortality at low biomass (“Allee effect”), a mechanism 410 

that may reflect the reduction of EPS production, along with seasonal changes in aerial 411 

temperature markedly affect biofilm biomass temporal dynamics. 412 

Biofilm assemblages consist of microscopic photosynthetic organisms and, despite their 413 

small size they strongly contribute to the primary productivity of intertidal rocky shores 414 

(Thompson et al. 2004). A wealth of studies showed that changes in primary productivity affect 415 

higher trophic levels (Wernberg et al. 2016, Guo et al. 2017, but see Liess et al. 2015 for a 416 

counter example). Since fast growing microbial populations are an important component of 417 

primary producers in virtually all ecosystems, increasing temporal clustering of extreme events 418 

will likely have pervasive impacts on food webs, altering biological interactions and affecting the 419 

stability of whole ecosystems. Our results should therefore prompt new studies investigating the 420 

cascading effects of regime shifts in primary producer communities. 421 
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Current research on regime shifts has mainly focused on investigating how gradual 422 

changes in ecological drivers precipitate natural systems into undesirable, alternative states. Only 423 

recently, ecological research turned its attention to the examination of the effects of other types 424 

of disturbances, such as recurrent pulse events. Here, we show that ecosystem dynamics can be 425 

largely affected by extreme events, with the likelihood of a regime shift primarily depending on 426 

the time separating consecutive events. However, further work is needed to determine the 427 

generality of these results to better understand and predict ecosystem dynamics in a rapidly 428 

changing world.  429 
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 601 

Table 1. BIC criterion of models with a different number of fitted density distributions (here we 602 

show the first 4) for control, non-clustered and clustered scenarios. The model with the smallest 603 

BIC (in bold) has the best fit. 604 

Modes Controls (no extremes) Non-clustered events Clustered events 

1   223.9490 238.5700 118.1841 

2 231.3705 231.1430 120.7077 

3 241.5501 243.4187 ‡ 

4 251.3868 249.2830 ‡ 

‡ No convergence 605 

 606 

Table 2. Binomial generalized linear model on the final state of experimental units (semi-bare or 607 

vegetated state) as a function of the value of biofilm biomass at the first sampling date after both 608 

extreme events. An experimental unit is assigned to the vegetated state if its biomass value is 609 

embraced in the 95% confidence interval of the mean control biomass at the last sampling date; 610 

otherwise it is classified as semi-bare state. McFadden R2

* p<0.05, ** p<0.01, *** p<0.001 612 

 indicates the goodness of fit. 611 

 Coefficient (SE)  

Intercept -8.46 (3.19) ** 

Biomass at the first sampling date 1.88 (0.71) ** 

McFadden R2  =52%  

 613 

 614 

LEGEND TO FIGURES  615 

Figure 1. Frequency distribution of biofilm biomass and probability density functions (solid 616 

lines) separately for controls (panel a), non-clustered (panel b) and clustered events treatments 617 

(panel c).  In panel d, the modes for each experimental condition are shown together with 618 

bootstrapped 95% confidence intervals.  619 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Figure 2. Observed temporal trajectories of biofilm biomass under the non-clustered (left panel) 620 

and the clustered (right panel) scenarios of extreme climatic events, indicated as days from the 621 

first experimental perturbation. The control treatment is used for reference and is shown as 95% 622 

confidence interval region (light grey) and averaged temporal trajectory (black). Arrows indicate 623 

the timing of the perturbations for non-clustered (orange) and clustered (blue) events. 624 

Figure 3. Simulated temporal trajectories of biofilm biomass (µg chl a cm-2) for (a) non-625 

clustered and (b) clustered warming regimes. In panel (c) there are controls. Time series were 626 

computed from simulations with 50 replicates over a time span of 160 days for increasing mean 627 

air temperature from 22 to 27 °C. Warming in the simulation mirrored the observed increase in 628 

temperature during the study period (data obtained from Rete Mareografica Nazionale ISPRA, 629 

http://www.mareografico.it). Down-facing arrows indicate the timing of perturbations. We 630 

simulated two temporal patterns of ECEs: a clustered pattern in which we imparted two warming 631 

events (aerial temperature of 32 °C) separated by 15 days, and a non-clustered scenario 632 

consisting of the same temperature extremes separated by 60 days. The initial periods of 10 days 633 

were excluded from the visualization to remove transient dynamics. The insets show the 634 

frequency distributions and probability density functions (solid lines) of biofilm biomass under 635 

non-clustered and clustered warming regimes calculated for the day indicated by the colored bar.  636 
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