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Research,on.regime shifts has focused primarily on how changes in the intensityatiod ofr

press disturbances precipitate natural systems into undesirable, alternative states. By contrast, the
role of recurrent pulse perturbations, such as extreme climatic events, has been largely neglected,
hindering our understanding of how histadi processes regulate the onset of a regime shift. We
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performed field manipulations to evaluate whether combinatioasttgme eventsf

temperature and sediment depositioat differed in theidegree of temporal clustering
generated alternative staiagocky intertidal epilithic microphytobenthdsiofilms) on rocky
shores. The likelihood dfiofilms to shift from a vegetated to a bare state depended on the
degree of temporal clustering of events, viaibfilm biomass showing both states under a
regime of non-clustered (60 days apart) perturbations while collapsing in therextLEt5 days
apart) seenario. Our results indicate that time since the last perturbation can be an important
predictor of‘collapse in systems exhibiting alternative statethamdonsideration of historical
effects in Studies of regime shifts may largely improve our understanding gsezasdynamics
under climatesehange.

Keywords: alternative states, extreme eveargime shiftepilithic microphytobenthos, biofilm,
climate change, temporal clusterjradprupt changes

INTRODUCTION

Ecosystemsften display noriinearresponseto both gradual and abrupt changes in driving
variables (e:g=temperature, nutrient loading), undergoing catastrophiddrankitown as
regimeshifts (Scheffer et al. 2001, Scheffer and Carpenter 20083t kheoretical and
experimentalwork on regime shifts has focusedmuadual changes in the intensity of a press
disturbance (the driver variable), showing that many ecosystems can absorb suchar@nges
maintain their current state up to a threshold beyond whichtithiesition toan alternative, less
desirablestate(Petraitis and Dudgeon 2004, Dakos et al. 2008, Scheffer et al.BXXijett
Cecchi et/al2015, Rindi et al. 2017). Only recently, ecologists have recognizeghtreince

of temporal'characteristics pfess disturbances regulatingregime shiftsRatajczak et al.
(2017) showed thahe duration of the perturbation is crucial for the onset of regime shifts
systemssthat respond slowlyégternalchange andhat exhibit strong coupling between past and
present dynamics. In contrast, our understanding ableeof recurrenpulse eventand how

the history of previous perturbations affects the susceptibility of ecosysbesmdergo a regime

shiftis still limited.
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Pulse events such as firése outbreak of natural enemimsd extreme climatic events
have a great potential to inckiregime shift(Scheffer et al. 2001)n highly stochastic
environmentsspeciesoexistence ipromoted by theapacity of species to respond
differentialy to environmental fluctuations. Each population, then, is able to store the gains
coming from.good periods and use them to survive losses in bad periods, a phenomenon known
as storage effect, which ultimately allows a community to maintain biodiy¢g&ikesson 2000).
Pulse perturbations, howevenay exceed tolerance limits of organisms, causing impairment of
function oroutright mortality of individuals (Schroder et al. 200Iso resting stages are
affected, pulse events may prevent species coexistence by disrupting storagePafects.
disturbancesean alsailuence community dynamics and biodiversity by selectively removing
community*dominants, thereby freeing up resources for other species and reducing ¢gsimuni
biotic resistance to invasive spec{@galker et al. 2005, Mumby et al. 2011). Any of these
changesnay translaténto asystem beinguddenly pushed beyond the unstable region
separating\the basins of attractmiithe contrastingtatesresulting in a regime shifGcheffer et
al. 2001).

The'likelihood ofa pulse perturbation to push a system into an alternative state depends
uponits leeation withrespecto the critical thresholdhie more the system is close to the
thresholdythe higher is the likelihood of a transition (Folke et al. 2004, van der Bol2@18).
Moreover, eceystemsare exposed to multiple, recurrent perturbationghatihe likelihood of a
regime shiftmay also depend on the particular regime of disturbance the system has experienced
(Paine et al*1998%pecifically, he characteristics of a regime of pulse disturbances that may
leave strong:hisrical signatures on ecosystem dynanmctude thenature theorder andhe
timing of accurrence operturbationgBenedettiCecchi et al. 2015, Dantas et al. 2016, Dal Bello
et al. 2017)Although alterations of disturbance scenarios are alresmiving a great amount
of attention.in.the ecological liteture, how variation in the regime of pulse perturbataifect
regime shifts has been largely neglected.

Extreme climatic eventare becoming more command severe as a consequence of
climatechange. (Fischer and Knutti 2015) and thay induce abrupt transitionsterrestrial and
aguatic ecosystenggslolmgren et al. 2006, Wernberg et al. 20T8)ere is general consensus
that the effet of extreme eventgary withtheir nature andemporalregimes(BenedettiCecchi
et al. 2006, Mumby et al. 2011, Williams et al. 2011). Moreover, recent studies showed that
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changes in the temporal clustering of extreme eveémt the degree of separation between
consecutive instancesan modulate ecological memory of microlaasemblageal Bello et
al. 2017)and regulate # onset of regime shifts in tropical ecosystérsmgren et al. 2013).
Evaluating howdifferent scenarios axtreme eventsan trigger a regime shift gystens with
alternative states wibe a crucial stefp better understand timpact of climate change on
ecosystems

Here,'we address this challenggng rocky intertidal epilithic microphytobenthos
(biofilms) as'model systenWe focused on extreme events of temperature and sediment
deposition after heavy rains, since these are major drivéisfdm abundance and distribution
(Thompson etal. 2004, Dal Bello et al. 2017k Wged photosynthetic biofilmmimarily
because its/a tractable system for field eqments, beinghe result of the activity of fast
growing organisms, which display rapid responses to perturbg@mistofoletti et al. 2011)
Moreover we expecatdalternative states ibiofilms due to stabilizing mechanisms that operate
both at high and low values of biomass. Hoygbmassvalues sustain high photosynthesis rates,
which, in turnpsupport enhanced production of extracellular polymeric substanceg\ERS
et al. 2000; Waelfstein and Stal 2002). EPS, being the major components of the dense matrix in
which mierealgal cel are embedded, provide protection against stressful conditions, e.g. heat
stress during low tidesnd further boost photosynthesis and biomass accumu({&temming
and Wingender 2010). This positive feedback can be erodpbbgssesthateither remove
biomass or. degrade EPS, e.g. high temperatures, abrasion due to sediment, seagiagtion
(Decho 2000;"Thompson et al. 2004). We propose titdt I9sses trigger runaway cigges
propellingthesswitch froma “vegetatetito a “bare (or “semibare”) state.The semibare state
will be thenmaintained due to the uncoupling of photosynthesis and EPS production at low
biofilm biomass valueg'Allee effect”). Such feedback can work both ways: the more the
biomass, the higher the growth and the less the biomass, the lower the §usitike feedback
loops like this.onenay be responsible fahe catastrophic effect ektreme eventsimilarly to
what observed imicrocosm experiments with yeagigpulations, which show cooperative
growth andanegativegrowth rate atow cells density(Dai et al. 2012).

We useda field experimenand a model to test for the presence of alternative states in
rocky shore photosynthetic biofilms and to explore the underlying feedback mechanisms. The
field experiment testetthe hypothesis thaeries oextreme events of temperature and sediment
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depositionthat diffeledin their degree of temporal clusterimglucedalternative stateis

biofilm assemblags. Multimodality in the frequency distributionf biofilm biomass (Scheffer et

al. 2012, Sirota et al. 2013) and divergence in the temporal trajectories of exparuinést
belonging.to the same treatment (Scheffer and Carpenter 2003, Schrdder et al. 200B) are bot
indirect indications for the presence of alternative states, here a vegetated antarsetaite
(Schroder'2009Basedon the results of a previous studal Bello et al. 2017)we anticipate

that the"vegetated state woulgirespond tohe biomas#n the corrols, while thesemibare
statewouldreflectreducediofilm biomassn the clusteregberturbationscenarioThis is
expectedecause extreme events clustered in time may push the system bieteshald

biomass valueypimpairing the ability of biofilm to recover tobgetatedtate Moreover, we
expect two'modes in the nahistered scenario, where two perturbations separated in time may
be able to pushi.some experimental units irstdratbare state, hile others, due to small initial
differences in biomass, may remain in the vegetated state. To further explore the effects of
temporal clustering aéxtreme eventenbiofilm biomass, we parametrized a simple mdHdat
incorporatedrthe positive feedback between photosynthesis and EPS production through an
“Allee effect”.

MATERIALES AND METHODS

Sudy area

Theexperiment was done along the coast of Calafuria (Livorno, 48°3®°19' E) between

April and August 2013. The coasinsistof gently sloping sandstone platforms with high-shore
levels (0.3'%0:5 m above mean ldswel water)colonizedby assemblages of barnacles
interspersed among areas of seemingly bare rock, whetesynthetic biofilms develop.

Biofilm assemblagest Calduria include mainlycyanobacteria, with diatoms being less
abundant (Maggi et al. 2017he most important grazer atghieight on the shore is the

littorinid snailMeélaraphe neritoides (L). During the experiment, however, grazing pressure over
biofilm assemblages was nearly absent (Dal Bello. &C4l7).

Experimental design

Along Mediterranean rocky shores, highitygrmally stressing periods of calm sea and high
barometric pressure alternate with heavy rainfalls, the latter resulting ieghbsition of
sedimentst tidal heightsvhere photosynthetic biofilms devel@piroldi 2003, Benedetti
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Cecchi et al. 2006, Dal Bello et al. 2017). In order to mimic this pattern, we imposere rakiff
series of extreme events of warming and sediment depositiecerario characterized lopn-
clustered eventwas createdby imposing two extreme disturbances 60 days apart, while two
disturbances 15 daypart characterized theusktered condition. The nariustered scenariwas
conceived tallow biofilm biomass to recover between the two evenmltsist recovery was
considered. unlikelyn the time window separating clustered evestace biofilm is composed
of fastgrowing species with short generation time, an interval of 60 days was sufficaglyol
allow recovery and therefore the two perturbations could be considered as separatE@vents
each level of clusteringve imposed all the possible combinatiofigvarming and sediment
depositionatwe,consecutive sediment deposition events, two consecutive extrenmggwarm
events, one‘extrensadiment deposition event followed by an extreme warming episode, an
extreme warmig event followed by an extreme sediment deposition episodieerie warming
wasobtained by artificially increasing air temperature over experimental ygotg aluminm
chambers equipped with stov@$ie treatment consisted in maintaining theemperature

inside the chambers as close as possibl@ teC3during the two hours corresponding to the peak
in daily temperatures, i.e. around midday in all instanties.temperature chosegpresentshe
100+years=eturn time temperature for thentins in which the experiment was perfornjgdtz

et al. 2005)Procedural controls for artifacts (CA) were-gptto control for the effes of

shading orbiofilm biomass due to the usermdn+transparent heating chambers. CA plots were
therefore kept in shaded conditions but without heating for the duration of the wareaitmyent
by means of‘cardboard chambers. Sediment addition on experimental plots wassimathte
the effects‘ef.runoff after a heavy rainfall evéite treatment consisted in addin§ram-thick
layer of sediment collectad situ and diluted in fresh water to produce the colloidal matél
is naturally deposited on rocky shores after severe precipitation evViergs.experimental plots
were assigned.to each combination of extreme events of disturB&inee.unmanipulated plots
were used.as.controls (C) and six plots were used asdoireceontrols of artefacts (CA).
Experimentalplots wernecated 210 meters apart and consistecadas of substratum of 30

50 cm marked,at their corners with raplugs inserted into the rock for subsequent relocation.
Data collection and analyses

Biofilm biomass was quantified indirecthy means of an imageased remote sensing technique
that uses chlorophyél concentration as a proxy. ChlorophgMvas estimated frortheratio of
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reflectance at neanfrared (NIR) and red bands (Ratio Vegetasibimdex- RVI) obtained by
mears of an IR-sensiive camera, following the method proposed by Murphy et al. (2006).
NIR/red ratios are linked to the chlorophyll content in the rock by a linear relationship,
calculated on the basis of laboratory chloropbhyktractiors from Calafuria sandstone cores
(Dal Bello et.al. 2015)

Experimentaplotsweremonitored in time after the impositiat both experimental
perturbationswith the nonelustered scenario sampled at €l&Q, 84, 108,133 and the clustered
scenario sampled at dagl, 91, 109, 138, counting from day O (i.e. wherettgeriment started
and we imposed the first extreme of the wtustered scenandgseeAppendix 1:Fig. S1).
Controls weressampled also at days 5, 20 and 55, in addition to days 70, 84, 91, 108 and 133
(Appendix1: Fig. S1)Once in the lab, each imagashandled with a routine in ImageJ
software to haphazardly select 5 subplots of 256 x 256 pixels and to proweha astimate of
biofilm biomass for each of them.

The.presence of alternative states was tested indirectly through the evaluation of
multimodalityin‘the frequency distribution diiofilm biomasqScheffer et al. 2012, Sirota et al.
2013). The*number of modes in the frequency distributidnaffim biomass valuewas
estimated-athe first sampling date afténe secongberturbation everfor both nonclustered and
clustered.secenari@ays 70 and 8ftom thestart of the experiment, respectivelwhile we used
data from the four dates after the secpadurbatiorevent to assess divergence among temporal
trajectories, obiofilm biomass. The number of modeas been identified with normal mixture
modelling andmodel-based clustering using Mghastkage in RWe used bootstrapping to
calculated5%:.confidence interval&or each levebf temporalclustering ¢ontrol clustered and
non-clustered), observations weesample®99timesand modesvereestimated95%
confidence intervalsere calculated a&.5th and 97.5h percentileof the vector of bootstrapped
modes (Davison et al. 1997).

Anotherqualitative indicator for the presence of alteveastates ishe divergenceof
temporal trajectories of identicallyemtedexperimental unit¢Scheffer and Carpenter 2003). In
particular,alternative sta&theory predicts that the final staika system, vegetated semibare
in our case, will depend on the initial position of the state variable with tespethreshold:
units with biofilm biomass above the threshatdhe first sampling date wilemain in the
vegetated statevhile units below that thresholdll shift to thesemibare statéSchroder et al.
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210 2005).Totest this, we adopted a binary classification technique commonly used in machine
211 learning: given the value of biofilm biomass at the first sampling datetaiterextreme events,
212  the algorithm decides whether that particular unit will end up is¢hgbare Q) or in the

213  vegetatedstate(1). In this case the algorithmas a bnomial generalized linear model that we fit
214  to our data.using thgim function in the R package stats (version 3. .3Mg divided the data
215 belonging'to the nowctustered scenarioto twogroups 1) a training setconsisting of 60% of
216 data points;in‘which an experimental umds classified agegetated if its biomasgas

217 embracedntheconfidence interval dfie mearcontrolbiomass at the last sampling date

218 semibarelotherwise, and 2)testing seincluding the remaining 40% of the data. The training
219 setwasused toxfit the binomial generalized linear model, whose accuracy was therotested
220 the testing'set:

221  Model formulation and parameterization

222  We developed amsiple mathematical model to explore whether different temporal regimes of
223  temperature extremesuldinduce alternative states in biofilm biomass. We considengdone
224  stressor variable sinextreme warming and sediment deposition events have comparable
225 effects orbiofilm biomass (Dal Bello et al. 2017)he goal here was to asses#ilm dynamics
226  under different temporal scenarios of temperature extremes andwihétser he degree of

227  temporal.elusteringouldgenerate alternative states. This model provided a qualitative

228  benchmark with which to compare the experimental results.

229 We modelled the dynamics of biofilm using a simple growth equation describing changes
230  of biofilm biomass (ug chl a cm?) as a function of temperature and a loss equation, which
231 reflects general processes leading to biofilm mortality (e.g. consumptionsrgend

232  dislodgment by waves):

233

234 L =GB)-F(B)+0B~, (Eq. 1)
235

236  whereBas'the biomass of biofilm (ug chl a cm?), tis time and T is mean air temperature (°C).
237  FunctionG(B) 1s'a logistic equatiothatdescrikesthe growth of biofilm biomass, in which the
238  percapita growth ratgariesas afunction of mean air temperature (C°). Functi{B) describes
239 the loss of biomass due biological or physical disturbancBue to the narrow amplitude of

240 tides, intertidal organisms alomdediterranean coasteay beexposed to elevated desiccation
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stress da toprolongedperiods of calm seas and high barometric pressireontrastwaves and
roughseaconditions can keep intertidal organseonstantly wet, even during low tides
(BenedettiCecchi et al. 2006). Frequent shocks to biofilm biomass due to such contrasting and
rapidly changing weather conditions are representdte modeby the termpBdW/dt, where
dW /dt is a;Wiener white noise process with mean 0 and vari@trenedo is the scale parameter
of the noise pracess, which was arbitrarily se.@a.

As anticipated beforehé G(B) function is a logistic equation describing the growth of

biofilm biomass:
B

G(B) = r(T)B (1 - E) (Eq. 2)
wherer(T)Is a twophase thermal performance curve modelling the variation of growth rate as a
function of temperature ariflis maximum biofilm biomas@Deutsch et al. 2008, Vasseur et al.
2014) (Appendix S1Fig. SJ.

- 2
( Tonax |1 — M] T = Topt

Topt_Tmax

r(1) = [ [wr (Eq. 3)
el 2 T < Topt

rm ax

wherer nis'the'maximum growth rate of biofilm bioma3ss air temperaturel oy is the mean
air temperature at which the growth rate is maximu(fof)=r max), Tmax IS the temperature limit
beyond which the growth rate becomes negativeggigla parameter controlling the rate of
increase of growth rate in the ascending part of the ctlihisrelationship isn line with
experimental.evidence and observations that higher values of air tempera@jesirongly
decreasedthe.growth rate of rocky intertidal biofi(8anzLazaro et al. 2015, Dal Bello et al.
2017).

The model included arAtlee effect” implying a lower growth rate at low levels of
biomass. We assumed that the mortality rate of biofilm incdelasleow a certain value of
biomass,.due to the decrease in EPS production and the consequent increase imdesiesati
and reduction of protection against UV radiation (Potts 1999, Wulff et al. 2000, Wolfstein a
Stal 2002):

F(B) = m,B ( u ) (Eq. 4)

B+hgy
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The loss term caused a net reduction of per capita growth rate at low biomass levels. This was
achieved through a Monod equation with a Isalfuration constati,, which defines the
biomass level below which this loss term is halved
Model parametrization and simulations
Parametersiere estimated empiricallyy fitting the model tdime series of biofilm biomass at
the study site (Appendix S1: Table Onnine occasions between April and August 2013 we
sampled six'plotthe same size as the experimentats (30 x 50cm) and hofilm biomass was
evaluated“adescribed in the previoection. Daily temperature data were obtained from Rete
Mareografica Nazionale (ISPRA, http://www.mareograficoMaximum likelihoodparameter
estimates were,obtain@dth themle2 function of the bmle library in Rassuming lognormal
errors(Bolker 2008). Redicted time series weodtained by integrating over time initial biofilm
biomass We usedheode function of R package deSolweith backward differentiation formula
(Soetaert et al. 2012)Ve used plot averages of biofilm biomass for this analysis because
subplots within plots differed among dates, so only data aggregated at the plot level could be
tracked through timéAppendix S.: Fig. S2) The interpolating functioaproxfun in the R
package deSelve was used to obtain temperature estimates at exact time points during the
integrationsroutine. Likelihood profiles were inspegtto ensure that parameters were well
defined,

To evaluate the effect of extreme climatic eventthe model, wdirst generated a
baselineconditionwhere air temperature increased fragto 27.5 °C, which resembled the
increase instemperature obsendrding the experiment (data obtainedftoym Rete

MareograficasNazionale, ISPRALttp://www.mareografico.it)Moreover, to reproduce the

variability iIn mean temperature similar to that obsdreeer the study period, we superimposed
to temperature time series a white ngisecess with meau) zero and standard deviatiaon)
equal to 1.5.°CTime seriesof air temperaturgverefinally modified tointegratethe maximum

air temperature measuré the experimental warming session (aerial temperature of 3ASC).
in the experiment, eproduced two temporal patternseoftremeevents, alusteredpattern in
which we impartedwo warming events separated by 15 days (day 76 and dan8&)non-
cluster@ scenariaconsisting of the santemperature extrenmseparated by 60 days (day 10 and
day 7Q Appendix S1: FigS1). We constructed a set of simulated time series for each scenario

running Eq. from 50 different initial conditions randoméelected from a normal distribution
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299 (u =3.5,0=0.5),for 150time-stepsAlso, a third sebf simulatiors without the imposition of
300 extreme eventwasproduced. Simulations were performed by using an Bbleayama method
301  with Ito calculug(lacus 2009).

302

303 RESULTS

304 Biofilm biomassxhibitedtwo distinct stateg¢Fig. 1). Biomass distribution in controls (no

305 extremé evenjavas unimodal and centered on the value of 4.59 pg ami® (95%Cls[4.23 -
306 4.97]), whichfidentifesthe vegetated state (Fig. 1A, see Table )1 The distribution of biomass
307 in the clustered scenario was alsomodal but centered on a lewalue (1.231gchlacm?;

308 95%Cls [1:08=,1.38] which identifies a senrbare state (Fig. LB and Table 1)Non-clustered
309 event treatments showatstead bimodality (1.61 pg chlcm?; 95%Cls [1.25 - 1.91] and 4.38
310 pg chlacm? 95%Cls [3.63 - 4.89]), with intermediate values of biofilm biomass (Fig. 1C, D
311 and Table 1)Graphical scrutiny of the results suggests that warming and sediepsogition

312  have similar effects on the distribution of biofilm biomésgpendix S1: Fig. S3).

313 Inspectionof thetemporal trajectories of biofilhiomass revealetthat,despite a slight
314 decline, contrels remained in the vegetated stateng the course of the study, while clustered
315 treatmentsvereconsistentlyin the semibare state. fie nonelustered scenarishowed a

316 divergentspatternwith some experimental units recovering to biomass values observed in
317 controls and other units deéuhg towards values measured in the clustered treatr{fégts2).
318 In the nonelustered scenario,vether a unit recovered to the vegetated state or declined to the
319 semibare state,depended on its value of biomass at the first sampkn(@ppendix S1Fig

320 S4).In partieular, a unit increase in biofilm biomassreasedhe probability (log odds) to end
321 upinthe bare state by 1.8Bable 2) Finally, the model prediatdthe final state of experimental
322 units in the testing setith reasonable accura@fUC=0.9, Appendix S1: Fig. S5).

323 The.response dfiofilm biomass textreme events the model was consistewith the
324  experimentatesults(Fig. 3). In the norclustered scenaridgime series obiofilm biomass

325 showed a.marked divergent pattern, with some replicates recovering and otbpssnzp This
326 resulted in"a’bimodal frequency distribution, with one modedgfg chla cmi?and the other of
327 ~3pg chlacm? (Fig. 3a). In the clustered scenario, instead, biofilm biomass collapsed, showing
328  aunimodal pattern with a mode corresponding to ~0 pg chi? (Fig. 3b). In the controls,

329  Dbiofilm biomass showed a slight decrease over timeaamimodal pattern in the frequency
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distribution, with a mode 0f3 pg chla cm? (Fig. 3c). Although the modelearly produced a
bimodal pattern, thequenciedistributionin the experimendid notexactlymatch the pattern
producedy the simulation with the experimentally observed modes slightiyaterthan the
ones predicted by the model.
DISCUSSION
Ourfindings suggestatthe history oextreme eventand thetime since the last perturbation
may affect'the'susceptibilitpf rocky intertidalphotosynthetic biofilms to undergo a regime
shift. The analysis of the frequency distributiorbadfilm biomassndicated theoccurrencef
two alternative Statasnder a regime of noclustered extremes: a sebare state characterized
by low biomass,and a vegetated state were biomaskiglasseparated by an unstable range of
biomass valuedn contrast, clusteregiktremesnduced the collapse ofdfilm biomass
precipitating the system in the sebdre state.

Assessingnultimodality inthe frequency distribution of state variabitesbeen often
used as a gualitative flag to assess the consistency between empirical data and theoretical
expectationsrof catastrophic transitigésheffer et al. 2012). #sessingvhether a system shows
alternativestatealsoinvolves testing for the temporal random divergence of identically treated
experimental unit§Schroder et al. 2005). This implies that, in a bistable system strongly
influenced-by stochastic perturbatiosemeexperimental units witend to onestateand others
will converge towards the other stated the outcome depends on initial conditiofe,
observing a state transition and lack of recovery following the application of putsgbpéons
provides asstringent test for alternative sates in natural systems (test-fecowary Suding et
al. 2004, Schréder et al. 200B)iofilm biomass in the clustered scenario exhibited a state
transition toward the serhiare state and complete lack or recovery which persisted for two
months following the imposition of extreme ever@sir experimental result®gether with
model simulationsvere consistent wittheseexpectations, showing hogxperimental unitsvith
intermediated.values of biomass followed divergent trajectories, culminatatherthe semi
bareor the vegetated state the nonelustered scenario

Selfreplacement, the capacity of an assemblage to maintain itself over time, is a proxy for
stability of alternative states (Connell and Sousa 1983). Bidafilour study sitavas mainly
composed of cyanobacteria characterised bygiamsting species with short generation time
(from days to weeks) (Whitton 2012, Maggi et al. 2017). The persistence of the two igkernat
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states for a timencompassing several generations of gezies composing biofilrttwo
months in our studyguggests the that the two alternatisegesnay be considered statdensu
Connell and Sousd 983). On the contrary, in our study we did not investigate whether
alternative states were locally stabla, instance, whether tleemibarestate recovedto a
vegetated state upon the arrival of new individuals from the water columméBetsal. 2003).
One approachwould involwee application of a small perturbati@g. a small clearingjt
each of‘the"two contrastirggates to tesvhether or nothey returedto the originakcondition.
Previous studies have shown that biofilm neaperience drastic changes in biomass and recover
from apparently catastrophti@nsitiors within a relatively short time sca(@lsterberg et al.
2007, Larsonsand Sundbéack 2012). Although we caemitelyrule out that vegetated and the
semibare state represent alternative transientss{sdiesu Fukami and Nakajima 2011), our
results supportthe hypothesis that biofilm rshift from a vegetated to a sebare state in
response toultiple pulses of temperatuasmd sediment deposition.

Out results aremportant in light of the predicted increase in the frequenextoéme
climatic eventsander climate change (IPCC 2013). The degree of temporal clustering of
extremes Is expected to increase, as signalled by increased variandetiertiaé of time
between events imopical ecosystem@dlumby et al. 2011, Holmgren et al. 2018jasslands
(Fuchslueger et al. 2016) aMediterranean coastal are@®losciuk et al. 2016). Changes in
temporalclusteringcan moderate the severiyecological impactsaused bgxtreme events
(BenedettCecchi et al. 2006, Holmgren et al. 2006, Kreyling et al. 2011, Mumby et al. 2011)
and modulaterthe ecological memory of natsyatemgDal Bello et al. 2017)Here we
highlight that:the degree of temporal clusterafigxtremesnayregulate the occurrencd
regime shifts

Exogenous eriodicforcesand seasonalitynay affect thebility of a natural system to
respond t@xtreme eventand, in general, tetochastiqulse perturbations. Our study shaWat
biofilm biomass decreased along the course oéfperiment, from spring to summévr similar
decline inbiefilm biomass has beeatescribed in other studies aliickly reflectsthe effect of
increagng temperaturandlight intensity(Nagarkar and Williams 1999, Jackson et al. 2010).
Biofilm assemblages likely experienced progressively stressful conditions during tbe abur
the experiment, which made them meusceptibldo collapseas summer proceedefls
temperature increaselliring the experimenthé capacityf biofilm to recoveifrom a

This article is protected by copyright. All rights reserved



392 temperature extreme drastically decreaseaking itmoresusceptible to a subsequent

393 perturbation. In agreemewith theseexperimental results, the biofilm model indicated that

394  seasonal warming amplified the impact of temporally clustered perturbaiMiten sudden

395  perturbations occur in combination with unfavourable environmental conditions ¢hgr hi

396 summer temperatures), their compounded effects may have dramatic consequences. Such
397  contingengies.may, thus, play a pivotal role in determining the occurrence of tippirggrant
398 alternative'states in natural systems

399 Thermal'buffering provided by conspecifics is a widespread facilitativéaném in

400 rocky intertidal communitie€Stachowicz 2001). Biofilms should benefit from living at high
401 density due terhigher EPS production, which in turn enhances survival and boosts(Baitgth
402 1994, Steele et al. 20149 ur experimentatesults showetiow extreme temperatusenay push
403  biofilm biomassitoward a threshold level, below which growth rates can no longerrsatge
404 for increased mortality. As shown in another study, EPS production decreases inihglec

405 growth rates obiofilm, hence increasing the risk of lethal damages due to enhanced thermal
406  stress whengarcritical level aw biofilm biomass is reachgdVulff et al. 2000) At this point

407 the productionsof EPS becomes too low and it is no loefjective in protecting biofilm from

408  stressful'eenditions. This mechanism generates feedbacks, so that the resulting loss of biomass
409 further weakens the facilitativaffectof EPS Our experimental and modeésultssupport the

410 view that the combined effeof greater mortality at low biomassA{lee effect”), a mechanism
411 that may reflecthe reduction of EPS production, along with seasonal changesgah a

412  temperaturenarkedlyaffectbiofilm biomass temporal dynamics.

413 Biofilm-assemblages consistmfcroscopic photosynthetic organisms and, despite their
414  smallsizetheystrongly contribute tohe primary productivity of intertidal rocky shores

415 (Thompsaon et al. 2004). A wealth of studies showed that chamgesnary productivityaffect

416 higher trophic level§Wernberg et al. 2016, Guo et al. 20but sed. iess et al. 201%r a

417  counter example)Since fast growing microbial populations are an important component of
418  primary producers in virtually all ecosystems, increasing temporal clusterexgreie events
419  will likely have pervasive impactsn food webs, &tring biological interactionand affecting the
420  stability of whole ecosystem®ur results should therefore prompt new studies investigating the

421 cascading effects of regime shifts in primary producer communities.
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Current research on regime shifts na@ainly focused on investigating how gradual
changes in ecological drivers precipg@atural systems into undesirable, alternative states. Only
recently, ecological research turned its attention to the examination of the effects of other types
of disturbances, such as recurrpulse eventHere, we showhatecosystendynamics can be
largely affected bextreme eveniswith the likelihood of a regime shift primarily depending on
thetime segrating consecutive events. However, further work is needed to determine the
generality"of these resulis better understanandpredictecosystem dynamics in a rapidly

changing world.
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Table 1. BIC criterion of models with a different number of fitted density distributions (here we
show the first4) for control, noclustered and clustered scenarios. The model with the smallest
BIC (in bold) has the best fit.

Modes Controls (no extremes) Non-clusteed events Clustered events
1 223.9490 238.5700 118.1841
2 231.3705 231.1430 120.7077
3 241.5501 243.4187 T
4 251.3868 249.2830 T

T No convergence

Table 2. Binomial generalized linear modeh the final state of experimental unigeibare or
vegetatedsstatgs a function of the value of biofilm biomass at the first sampling date after both
extreme eventsAn experimental unis assigned to the vegetated state if its biomass value is
embracednrthe 95%confidence interval of the meaontrolbiomass at the last sampling date;
otherwiserfs classified asemibare stateMcFadden Rindicates the goodness of fit.

* p<0.05, ** p<0.01, *** p<0.001

Coefficient (SE)

I nter cept -8.46 (3.19) o
Biomass at thefirst sampling date 1.88 (0.71) *

McFadden R=52%

LEGEND TO*FIGURES

Figure LaFrequency distribution of biofilm biomass and probability density functions (solid
lines) separately for controls (pa@@] nonelustered (pandd) and clustered events treatments
(panel ¢). In panel d, the modes for each experimental condition are shown togdther wit

bootstrapped 95% confidence intervals.
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Figure 2. Observedemporaltrajectores ofbiofilm biomassunder the norclustered (left pangl
and theclusteredright panel)scenaris of extreme climatic eventgdicated aslays from the

first experimental perturbatioifhe control treatmers used for reference and is shown as 95%
confidence interval region (light grey) and averaggdporal trajectory (black). Arrows indicate

the timirng ofthe perturbatios for non-clusteredorangé andclusteredblue)events.

Figure 3. Simulated temporal trajectories of biofilm biomass (ugaath®) for (a) non
clusteredand(b) clustered warming regimes. In panel (c) there are conirotte series were
computeddromysimulations with 50 replicates over a time span of 160 days for imgne&sin

air temperature frord2 to 27 °C. Warming in the simulation mirrored the observed increase in
temperature/during the study periahi{aobtainedirom Rete Mareografica Naziolea SPRA,
http://mwww:mareografico.jt Down-facng arrows indicatéhetiming of perturbatios. We
simulatediwoestemporal patterns of ECEsclustered pattern in which we imparted two warming
events (aérial temperature of 32 ¥@parated by 15 days, and a mtustered scenario

consisting of the same temperature extreseparated by 60 days. The initial periods of 10 days
were excluded from the visualizatibtmremove transient dynamicBhe insets show the
frequeney-distributions and probability density funcsigeolid lines)f biofilm biomass under

non-<lusteredand clustered warming regimes calculdtmdthe day indicated by the colored bar.
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