
MIT Open Access Articles

Classical Simulation of Quantum Circuits by Half Gauss Sums

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bu, Kaifeng and Koh, Dax E. 2022. "Classical Simulation of Quantum Circuits by Half 
Gauss Sums."

As Published: https://doi.org/10.1007/s00220-022-04320-1

Publisher: Springer Berlin Heidelberg

Persistent URL: https://hdl.handle.net/1721.1/140600

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/140600


Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

Classical Simulation of Quantum Circuits by Half Gauss Sums

Cite this Accepted Manuscript (AM) as: Accepted Manuscript (AM) version of Kaifeng Bu, DaxEnshan Koh, Classical
Simulation of Quantum Circuits by Half Gauss Sums, Communications in Mathematical Physics https://doi.org/10.1007/s00220-
022-04320-1

This AM is a PDF file of the manuscript accepted for publication after peer review, when applicable, but does not reflect post-
acceptance improvements, or any corrections. Use of this AM is subject to the publisher's embargo period and AM terms of use.
Under no circumstances may this AM be shared or distributed under a Creative Commons or other form of open access license,
nor may it be reformatted or enhanced, whether by the Author or third parties. See here for Springer Nature's terms of use for
AM versions of subscription articles: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

The Version of Record of this article, as published and maintained by the publisher, is available online at:
https://doi.org/10.1007/s00220-022-04320-1. The Version of Record is the version of the article after copy-editing and typesetting,
and connected to open research data, open protocols, and open code where available. Any supplementary information can be
found on the journal website, connected to the Version of Record.

https://doi.org/10.1007/s00220-022-04320-1
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/s00220-022-04320-1


Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

CLASSICAL SIMULATION OF QUANTUM CIRCUITS BY HALF

GAUSS SUMS

KAIFENG BU∗† AND DAX ENSHAN KOH‡¶§

ABSTRACT. We give an efficient algorithm to evaluate a certain class of expo-

nential sums, namely the periodic, quadratic, multivariate half Gauss sums. We

show that these exponential sums become #P-hard to compute when we omit

either the periodicity or quadraticity condition. We apply our results about these

exponential sums to the classical simulation of quantum circuits, and give an al-

ternative proof of the Gottesman-Knill theorem. We also explore a connection

between these exponential sums and the Holant framework. In particular, we

generalize the existing definition of affine signatures to arbitrary dimensions,

and use our results about half Gauss sums to show that the Holant problem for

the set of affine signatures is tractable.
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1. INTRODUCTION

Exponential sums have been extensively studied in number theory [1] and have
a rich history that dates back to the time of Gauss [2]. They have found numerous
applications in communication theory [3], graph theory [4], coding theory [5, 6],

cryptography [5,7], algorithms [5] and many other areas of applied mathematics.
More recently, they have also found useful applications in quantum compu-

tation. In 2005, Dawson et al. showed, using Feynman’s sum-over-paths tech-
nique [8], that the amplitudes of quantum circuits with Toffoli and Hadamard
gates can be expressed in terms of exponential sums [9]. Such an approach has

complexity-theoretic applications. For example, by noting that the exponential
sum can be expressed as a GapP-function, it can be used to show that the com-
plexity class BQP is contained in PP, a result first proved by [10] using different
methods.

The idea of using exponential sums to express quantum amplitudes has been
developed further in a number of subsequent works [11–17]. For example, in
[11], Bacon, van Dam and Russell find an exponential-sum representation of the
amplitudes of algebraic quantum circuits. They then exploit the theory of expo-

nential sums to prove several properties of such circuits. For instance, they prove
that in the limit of large qudit degree, the acceptance probabilities of such circuits
converge to either zero or one.

The use of exponential sums to express quantum amplitudes elucidates a cor-
respondence between quantum circuits and low-degree polynomials, called the

circuit-polynomial correspondence [13]. This correspondence allows results about
polynomials to be used to prove results about quantum circuits, and vice versa.
For example, this correspondence was exploited in the forward direction by [14],
which provided an alternative proof of the Gottesman-Knill Theorem [18] for

quopit Clifford circuits, i.e. Clifford circuits in odd prime dimensions [14], by
showing that the amplitudes of such circuits can be expressed in terms of tractable
exponential sums.

More generally, the circuit-polynomial correspondence also establishes a con-

nection between exponential sums and the strong classical simulation of quantum
circuits—deciding whether a class of quantum circuits is classically simulable, in
many cases, can be reduced to the problem of deciding whether an exponential
sum is tractable. This has important applications, for example, to the goal of
quantum computational supremacy [19–21]—the intractability of an exponential

sum can be used to show that the class of circuits it corresponds to cannot be
efficiently simulated.

In this paper, we consider a generalization of the exponential sums used in the
above examples. In particular, we introduce the periodic, quadratic, multivariate

half Gauss sum, and show that these incomplete Gauss sums can be computed
efficiently using number-theoretic techniques. Moreover, we show that these ex-
ponential sums can be used to express the amplitudes of qudit Clifford circuits,
thereby providing an alternative proof of the Gottesman-Knill theorem for qudit
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Clifford circuits. We also show that without the periodicity or quadraticity con-

dition, these exponential sums become intractable, under plausible complexity
assumptions.

Our work improves on existing results in a number of ways. First, while the re-
sults of [13] and [14] are restricted to qubit and quopit systems, respectively, our

results hold for all d-level systems. In doing so, we address a limitation of the ap-
proach used in [14], where the proof of the Gottesman-Knill theorem works only
for d-level systems, where d is restricted to be an odd prime. Second, while pre-
vious works on tractable exponential sums are based on Gauss sums [14, 22, 23],

ours are based on half Gauss sums, which are a generalization of Gauss sums.
Consequently, we find a larger class of tractable exponential sums compared
to previous works. Third, we generalize the existing definition of affine signa-
tures [22] to arbitrary dimensions, and use our results about half Gauss sums to
show that the Holant problem for the set of affine signatures is tractable. Fourth,

we demonstrate the importance of a periodicity condition, which has not been
previously explored, to the classical simulation of quantum circuits.

The rest of the paper is structured as follows. In Section 1.1, we summarize
the main results of our work. In Section 2, we define half Gauss sums and give an

efficient classical algorithm to compute a subclass of these sums, namely the pe-
riodic, quadratic, multivariate half Gauss sums. In Section 3, we apply our results
about half Gauss sums to Clifford circuits, and provide an alternative proof of the
Gottesman-Knill Theorem. In Section 4, we study the hardness of evaluating half

Gauss sums that do not satisfy either the periodicity condition or the quadraticity
condition. In Section 5, we explore a connection between half Gauss sums and
the Holant framework. We generalize the existing definition of affine signatures
to arbitrary dimensions, and use our results about half Gauss sums to show that
the Holant problem for the set of affine signatures is tractable.

1.1. Our results. The complexity of evaluating the exponential sum

Z(d, f ) = ∑
x1,...,xn∈Zd

ω
f (x1,...,xn)

d , (1)

where d,n ∈ Z+ are positive integers, ωd = exp(2πi/d) is a dth root of unit,
and f (x1, . . . ,xn) is a polynomial with integer coefficients, has been studied in
previous works. In particular, it was proved that Z(d, f ) can be evaluated in

poly(n) time when f is a quadratic polynomial. This was first proved for the case
when d is a prime number [23], before being generalized to the case when d is
an arbitrary positive integer [22]. On the other hand, when f is a polynomial of
degree ≥ 3, the problem of evaluating such exponential sums was proved to be

#P-hard [22, 24].
In this paper, we consider the following generalization of the above exponential

sum:

Z1/2(d, f ) = ∑
x1,...,xn∈Zd

ξ
f (x1,...,xn)

d . (2)

Here, ξd is a chosen square root of ωd (i.e. ξ 2
d = ωd) satisfying ξ d2

d = 1.

3            
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Z1/2k(2, f ) deg( f ) = 1 deg( f ) = 2 deg( f )≥ 3

periodic k ≥ 0 FP FP #P-hard

aperiodic k ≥ 1 FP #P-hard #P-hard

TABLE 1. Hardness of computing Z1/2k(2, f ), where k ≥ 0 or k ≥ 1,

and f is a polynomial function with coefficients in Z and domain Z
n
2.

Here, ‘periodic’ means that f satisfies the periodicity condition (3), and

‘aperiodic’ means that f does not necessarily satisfy it. The label FP

means that Z1/2k(d, f ) can be computed in classical polynomial time, and

#P-hard means that there is no efficient classical algorithm to compute

Z1/2k(d, f ), unless the widely-believed conjecture FP 6= #P is false.

Unlike Z(d, f ), the sum Z1/2(d, f ) may not be evaluable in poly(n) time even
when f is a quadratic polynomial—the properties of the coefficients of the qua-
dratic polynomial f are crucial to determining the efficiency of evaluating Z1/2(d, f ).
Assuming plausible complexity assumptions, we prove that a necessary and suf-
ficient condition to guarantee the efficiency of evaluating Z1/2(d, f ) for quadratic

polynomials f is a periodicity condition, which states that

ξ
f (x1,...,xn)

d = ξ
f (x1(mod d),...,xn(mod d))

d , (3)

for all variables x1, . . . ,xn ∈ Z. More precisely, we prove that for quadratic poly-
nomials f satisfying the periodicity condition, Z1/2(d, f ) can be evaluated in

poly(n) time, and that without the periodicity condition, there is no efficient al-

gorithm to evaluate Z1/2 unless the widely-believed assumption that FP 6= #P is
false. This is summarized by our main theorem:

Theorem 1. (Restatement of Theorems 7, 15 and 17) Let f ∈ Z[x1, . . . ,xn] be a

quadratic polynomial over n variables x1, . . . ,xn satisfying the periodicity condi-

tion. Then Z1/2(d, f ) can be computed in polynomial time. If either the quadratic-

ity or periodicity condition is omitted, then Z1/2(d, f ) is #P-hard to compute.

We consider the case d = 2, and study the complexities of evaluating more
general exponential sums, namely those of the form:

Z1/2k(2, f ) = ∑
x1,...,xn∈Z2

ω
f (x1,...,xn)

2k+1 , (4)

where k ≥ 0 is an integer and f is a polynomial with n variables. Our classification
results are summarized in Table 1.

Next, we apply Theorem 1 to the classical simulation of Clifford circuits. In

particular, we show that the output probabilities of Clifford circuits can be ex-
pressed in terms of half Gauss sums:

Theorem 2. (Simplified version of Theorem 13) Let C be an m-qudit Clifford

circuit. Let a ∈ Z
m
d and b ∈ Z

k
d . Then the probability of obtaining the outcome b

when the first k qudits of C |a〉 are measured is given by

P(b|a) := || 〈b|1..k C |a〉a..m ||2 = 1

dl
Z1/2(d,φ), (5)

4            
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where l ∈ Z and φ is a quadratic polynomial that satisfies the periodicity condi-

tion (3). Moreover, l and φ can be computed efficiently.

Since half Gauss sums can be computed efficiently, Theorem 2 implies that
there is an efficient strong simulation of Clifford circuits. This gives an alternative
proof (which does not make use of stabilizer techniques) of the Gottesman-Knill
Theorem [18].

2. HALF GAUSS SUMS

2.1. Univariate case. Given two nonzero integers a,d with d > 0 and gcd(a,d)=
1, the Gauss sum1 [25] is defined as:

G(a,d) = ∑
x∈Zd

ωax2

d , (6)

where ωd = exp(2πi/d) is a root of unity. It has been proved that the Gauss
sum G(a,d) can be computed in polynomial time in loga and logd [25]. Several

useful properties of the Gauss sum G(a,d) have been provided in Appendix B.
In this section, we define a generalization of the Gauss sum, called the half

Gauss sum2: given two nonzero integers a,d with d > 0 and gcd(a,d) = 1, let

G1/2(a,d) = ∑
x∈Zd

ξ ax2

d . (7)

Here, ξd is a chosen square root of ωd such that ξ d2

d = 1. This condition is chosen
so that the summation over the ring Zd is well-defined, i.e. if x ≡ y (mod d), then

ξ ax2

d = ξ
ay2

d . Note that such a condition on ξd has also been used in the inves-
tigation of reflection positivity in parafermion algebra to ensure that the twisted
product is well-defined [27, 28].

For d = 1, we get G1/2(a,1) = 1, which is trivial; hence, we will subsequently

restrict our attention to the nontrivial case of d ≥ 2. Note that we have two choices

for ξd when d is even, namely (i) ξd = ω2d for all even d, and (ii) ξd =−ω2d for
all even d. Since the analyses in both cases are similar, we will present only the
first case in this section, and refer the reader to Appendix C for the second case.
In other words, ξd may be expressed as follows:

ξd =

{

−ω2d = ω
(d+1)/2
d , d odd

ω2d , d even.
(8)

We will now present properties of the half Gauss sum, its relationship with the
Gauss sum, and the computational complexity of evaluating the half Gauss sum.

Proposition 3. The half Gauss sum satisfies the following properties:

(1) If d is odd, then

G1/2(a,d) = G(a(d+1)/2,d). (9)

1also referred to as the “univariate quadratic homogeneous Gauss sum". See Appendix A.
2also referred to as the “univariate quadratic homogeneous half Gauss sum”. See Appendix A.

Also, note that our definition of “half Gauss sum” differs from that used in [26].

5            
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(2) If d is even, then

G1/2(a,d) = G1/2(a(N1 +bN2),b)G1/2(aN2,c), (10)

where d = bc, gcd(b,c) = 1, 2|b, and N1 and N2 are integers satisfying

N1c+N2b = 1.

Proof.

(1) If d is odd, gcd((d + 1)/2,d) = 1 and gcd(a,d) = 1. Thus, we have
gcd(a(d+1)/2,d) = 1. Therefore, we have

G1/2(a,d) = ∑
x∈Zd

ξ ax2

d = ∑
x∈Zd

ω
a d+1

2 x2

d = G(a(d+1)/2,d).

(2) If d is even, then a must be odd since gcd(a,d) = 1. Hence,

G1/2(a,d) = ∑
x∈Zd

ξ ax2

d = ∑
x∈Zd

ωax2

2d .

Moreover, d can be decomposed as d = bc with gcd(b,c) = 1. Since
d is even, it follows that one of b and c is divisible by 2. Without loss of
generality, we assume that 2|b, which implies that c ≡ 1 (mod 2). Since
gcd(b,c) = 1, there exist two integers N1 and N2 such that N1c+N2b = 1.

By the Chinese remainder theorem, there exists an isomorphism Zd →
Zb ×Zc : x 7→ (y,z) with x ≡ y (mod b) and x ≡ z (mod c). In fact, we
can choose the map x = N2bz+N1cy, which can also be written as

x = y+N2b(z− y) = z+N1c(y− z).

Thus,

ωax2

2d = ωaN1x2

2b ωaN2x2

2c .

Moreover,

ωaN1x2

2b = ω
aN1[y

2+2bN2(z−y)+N2
2 b2(y−z)2]

2b = ωaN1y2

2b ,

where the last equality comes from the fact that 2|b, and

ωaN2x2

2c = ω
aN2[z

2+2N1c(y−z)+N2
1 c2(y−z)2]

2c

= ωaN2z2

2c ω
aN2N2

1 c2(y−z)2

2c

= ωaN2z2

2c ω
aN2N2

1 c2(y2+z2)
2c .

Since ωc2

2c = (−1)c =−1 and N1 is odd as N2b+N1c = 1, we have

ωaN2x2

2c = ωaN2z2

2c (−1)aN2(y
2+z2) = (−ω2c)

aN2z2

(−1)aN2y2

= ξ aN2z2

c (−1)aN2y2

.

Thus,

ωax2

2d = ωaN1y2

2b ξ aN2z2

c (−1)aN2y2
= ω

a(N1+bN2)y
2

2b ξ aN2z2

c

= ξ
a(N1+bN2)y

2

b ξ aN2z2

c .

6            
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Since c(N1+bN2)+b(1−c)N2 = 1, it follows that gcd(N1+bN2,b) = 1.

Thus gcd(a(N1+bN2),b) = 1. But gcd(aN2,c) = 1. Therefore, we have

G1/2(a,d) = ∑
y∈Zb,z∈Zc

ξ
a(N1+bN2)y

2

b ξ aN2z2

c

= G1/2(a(N1 +bN2),b)G1/2(aN2,c).

�

Now, any even number d can always be decomposed into d = 2mc with m ≥ 1
and c being odd. It is straightforward to see that

G1/2(a,d) = G1/2(a(N1 +2mN2),2
m)G1/2(aN2,c),

where N22m + N1c = 1. As c is odd, it can be rewritten as a Gauss sum by
Proposition 3. And so it remains for us to evaluate the half Gauss sum for d = 2m,

i.e., G1/2(a,2
m).

Proposition 4. If m ≥ 3, then

G1/2(a,2
m) = 2G1/2(a,2

m−2). (11)

Moreover,

G1/2(a,2) = 1+ ia, (12)

G1/2(a,2
2) = 2ωa

8 . (13)

Proof. First, G1/2(a,2) and G1/2(a,2
2) can be obtained by direct calculation.

Second, for m ≥ 3,

G1/2(a,2
m) = ∑

x∈[2m]

ωax2

2m+1

= ∑
x∈[2m−1]

[

ωax2

2m+1 +ω
a(x+2m−1)2

2m+1

]

= ∑
x∈[2m−1]

ωax2

2m+1

[

1+ωa2mx+a22m−2

2m+1

]

= ∑
x∈[2m−1]

ωax2

2m+1 [1+(−1)x]

= ∑
y∈[2m−2]

ω
a(2y)2

2m+1 [1+(−1)2y]

= 2 ∑
y∈[2m−2]

ω4ay2

2m+1 = 2 ∑
y∈[2m−2]

ωay2

2m−1

= 2G1/2(a,2
m−2).

�

Based on the above properties of the half Gauss sum G1/2(·, ·) and the fact that

the Gauss sum G(·, ·) can be calculated in poly(loga, logd)-time, we obtain the
following corollary:

7            
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Corollary 5. Given two nonzero integers a,d with d > 0 and gcd(a,d) = 1, the

half Gauss sum can be calculated in poly(loga, logd) time.

2.2. Multivariate case. In this section, we consider a generalization of the Gauss
sum (6) to the multivariate case:

Z(d, f ) = ∑
x1,...,xn∈Zd

ω
f (x1,...,xn)

d , (14)

where each xi is summed over a finite ring Zd , and f (x1, . . . ,xn) is a quadratic
polynomial with integer coefficients. The multivariate quadratic Gauss sum (14)
has been proved to be evaluable in polynomial time [22].

We also consider an analogous multivariate generalization of the half Gauss
sum:

Z1/2(d, f ) = ∑
x1,...,xn∈Zd

ξ
f (x1,...,xn)

d , (15)

where f (x1, ...,xn) = ∑i≤ j∈[n]αi jxix j +∑i∈[n]βixi + γ0 is a quadratic polynomial

with integer coefficients. However, Z1/2(d, f ) may not be efficiently evaluable
even for quadratic polynomials. It turns out that the existence of an efficient

algorithm depends on some periodicity condition.

We say that a polynomial f satisfies the periodicity condition3 if

ξ
f (x1,...,xn)

d = ξ
f (x1(mod d),...,xn(mod d))

d , (17)

for all variables x1, ...,xn ∈ Z. This periodicity condition can also be regarded
as the well-definedness condition of Z1/2 on Zd . If d is an odd number, then

ξd = −ω2d , i.e, ξ d
d = 1, which implies that the periodicity condition can always

be satisfied for odd d. However, the periodicity condition may not be satisfied in
the case of even d.

Proposition 6. Let d be even, and let f (x1, . . . ,xn)=∑i≤ j∈[n]αi jxix j+∑i∈[n]βixi+
γ0, be a quadratic polynomial. Then, f satisfies the periodicity condition if and

only if the cross terms αi j (i < j) and linear terms βi are all even.

Proof. It is easy to verify that the quadratic polynomial f satisfies the periodicity
condition if all the cross terms αi j (i < j) and linear terms βi are even.

In the other direction, if f satisfies the periodicity condition, then ξ
f (x1,...,xn)

d =

ξ
f (x1(mod d),...,xn(mod d))

d for any x1, ...,xn ∈ Z. Thus, for any i,

ξ
αiix

2
i +βixi

d = ξ
αii(xi+d)2+βi(xi+d)
d ,

for any xi ∈Z by choosing x j = 0 for any j 6= i. Besides, ξd satisfies the conditions

ξ 2d
d = 1 and ξ d2

d = 1. Thus, ξ
βid

d = (−1)βi = 1, which implies that βi is an even

3More generally, we say that a function g : Zn →C is periodic with period d if

g(x1, . . . ,xn) = g(x1(mod d), . . . ,xn(mod d)) (16)

for all variables x1, . . . ,xn ∈ Z.

8            
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number. Since i was chosen arbitrarily, all linear terms βi are even. Besides, for

any fixed i and j with i < j, we can choose xk = 0 for any k 6= i, j:

ξ
αiix

2
i +α j jx

2
j+αi jxix j+βixi+β jx j

d = ξ
αii(xi+d)2+α j jx

2
j+αi j(xi+d)x j+βi(xi+d)+β jx j

d ,

for any xi,x j ∈ Z. This implies that αi j is even. Since i and j were arbitrarily
chosen, all the cross terms αi j are even.

�

The periodicity condition of the polynomial f plays an important in the effi-
cient evaluation of the exponential sum Z1/2. We denote the set of quadratic poly-

nomials satisfying the periodicity condition by F
p.c.
2 . For any quadratic polyno-

mial f satisfying this periodicity condition, the exponential sum Z1/2(d, f ) can

be evaluated in polynomial time given the description of f .

Theorem 7. If f ∈ F
p.c.
2 is a quadratic polynomial satisfying the periodicity

condition, then Z1/2(d, f ) can be evaluated in polynomial time.

Proof. Consider the expression

f (x1, ...,xn) = ∑
i≤ j∈[n]

αi jxix j + ∑
i∈[n]

βixi + γ0,

with the cross term αi j (i < j) and linear term βi being even. We may assume that
γ0 = 0, as it only contributes an additive constant term to Z1/2(d, f ).
Case (i): All diagonal terms αii are even. In this case, Z1/2(d, f ) = Z(d, f/2),
which can be evaluated in polynomial time [22].

Case (ii): There exists at least one diagonal term αii that is odd.

Case (iia): d is odd. Then, ξd = ω
(d+1)/2
d . Thus, Z1/2(d, f ) = Z(d, d+1

2 f ), which
can be evaluated in polynomial time [22].
Case (iib): d = 2m. Then, ξd = ω2d . Since there exists at least one diagonal
term αii that is odd, we assume that α11 is odd without loss of generality. Since
α11 is odd, it is invertible in Z2d with 2d = 2m+1. We can rewrite the quadratic

polynomial f to separate the term involving x1:

f (x1, . . . ,xn) = α11[x
2
1 + x1 f1(x̂1,x2, . . . ,xn)]+ f2(x̂1,x2, ...,xn),

where f1 is a linear function over n−1 variables {x2, . . . ,xn} with

f1(x̂1,x2, . . . ,xn) = ∑
j≥2

α−1
11 α1 jx j +α−1

11 β1,

and f2 is a quadratic polynomial with even cross terms and linear terms over n−1
variables {x2, ...,xn}. Here, the notation x̂1 means that the variable x1 is absent

from the polynomial.
Since the cross terms and linear terms are even,

f1 = 2 f ′1 = 2

(

∑
j≥2

α−1
11 α1 j

2
x j +

α−1
11 β1

2

)

.

Thus,

f = α11(x1 + f ′1)
2 + f ′,
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where f ′ is a quadratic polynomial with even cross terms and linear terms over

n−1 variables {x2, ...,xn}. Therefore,

Z1/2(d, f ) = ∑
x1,...,xn∈Zd

ξ
α11(x1+ f ′1)

2+ f ′

d = ∑
x2,..,xn∈Zd

ξ
f ′

d ∑
x1∈Zd

ξ
α11(x1+ f ′1)

2

d

= Z1/2(d, f ′)G1/2(α11,d),

where the last equality comes from the fact that the summation over x1 ∈ Zd

is independent of the value of f ′1. This reduces the evaluation of Z1/2(d, f ) to

Z1/2(d, f ′) where f ′ is a quadratic polynomial over n − 1 variables with even

cross terms and linear terms. We can repeat this step until all the diagonal terms
are even, which then reduces to Case (i).
Case (iic): d = 2mc, with c being odd and c ≥ 3. Then, ξd = ω2d . Since there
exists at least one diagonal term αii that is odd, we shall take, without loss of
generality, the first t diagonal terms αii (1≤ i≤ t) to be odd and the other diagonal

terms αii (i ≥ t +1) to be even.
Now, we can rewrite f as follows

f (x1, ...,xn) =
t

∑
i=1

x2
i + f1(x1, ..,xn),

where the coefficients of the quadratic form f1 are all even. Hence, f = ∑t
i=1 x2

i +
2 f ′1, with f ′1 = f1/2.

Since gcd(2m,c) = 1, there exist two integers N1 and N2 such that N22m +
N1c = 1. Adopting a process similar to that used in the proof of Proposition 3,
we find, using the Chinese remainder theorem, that there exists an isomorphism
Zd → Z2m ×Zc :: xi 7→ (yi,zi) with xi ≡ yi (mod 2m) and xi ≡ zi (mod c). Thus,

we have

Z1/2(d, f )

= ∑
x1,...,xn∈Zd

ξ
∑t

i=1 x2
i

d ω
f ′1(x1,..,xn)

d

= ∑
y1,...,yn∈Z2m

∑
z1,...,zn∈Zc

ξ
∑t

i=1(N1+2mN2)y
2
i

2m ξ
∑t

i=1 N2z2
i

c ω
N1 f ′1(y1,...,yn)
2m ω

N2 f ′1(z1,...,zn)
c

= ∑
y1,...,yn∈Z2m

ξ
∑t

i=1(N1+2mN2)y
2
i

2m ω
N1 f ′1(y1,...,yn)
2m ∑

z1,...,zn∈Zc

ξ
∑t

i=1 N2z2
i

c ω
N2 f ′1(z1,...,zn)
c

= ∑
y1,...,yn∈Z2m

ξ
∑t

i=1(N1+2mN2)y
2
i

2m ω
(N1+2mN2) f ′1(y1,...,yn)
2m

× ∑
z1,...,zn∈Zc

ξ
∑t

i=1 N2z2
i

c ω
N2 f ′1(z1,...,zn)
c

= Z1/2(2
m,(N1 +2mN2) f )Z1/2(c,N2 f ),

where the second-to-last equality comes from the fact that ω2m

2m = 1. This reduces
the computation of Z1/2(d, f ) to Case (iia) and Case (iib).

�

10            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      
CLASSICAL SIMULATION OF QUANTUM CIRCUITS BY HALF GAUSS SUMS 11

Here, we have shown the existence of efficient algorithms to evaluate half

Gauss sums with quadratic polynomials that satisfy the periodicity condition.
We note, however, that if we omit either the periodicity or quadraticity condi-
tion, these sums become hard to compute (under a plausible complexity-theoretic
conjecture). We will return to a discussion of this in Section 4.

Finally, we note here that there is a nice relationship between half Gauss sums
Z1/2(d, f ) and the number of zeros of functions of the form f (x)− k (mod d) or

(mod 2d). We explore this further in Appendix D.

3. m-QUDIT CLIFFORD CIRCUITS

In this section, we apply our results on the half Gauss sum to Clifford circuits.
Let d ≥ 2 and m ≥ 1 be integers. The m-qudit Clifford group is the set of opera-
tions (called Clifford operations) on m qudits that are generated by the following
gates: X ,Y,Z,F,G,CZ [28–31].

Here, X ,Y and Z are the d-level Pauli matrices defined by

X |k〉= |k+1〉 , Y |k〉= ξ 1−2k
d |k−1〉 , Z |k〉= ωk

d |k〉 , (18)

F is the Fourier gate defined by

F |k〉= 1√
d

d−1

∑
l=0

ωkl
d |l〉 , (19)

G is the Gaussian gate defined by

G |k〉= ξ k2

d |k〉 , (20)

and CZ is the controlled-Z gate defined by

CZ |k1,k2〉= ωk1k2
d |k1,k2〉 . (21)

Note that the gates X ,Y,Z are the qudit generalizations of the qubit Pauli gates

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

, (22)

and the F , G and CZ gates are the qudit generalizations of the Hadamard gate
1√
2
(X +Z), the phase gate diag(1, i), and the controlled-Z gate diag(1,1,1,−1),

respectively, on qubits.
It is straightforward to check that the gates (18)–(21) satisfy the following

algebraic relations [28, 30]:

Xd =Y d = Zd = F4 = G2d = (FG)3q−1
d = I,

XY X−1Y−1 = Y ZY−1Z−1 = ZXZ−1X−1 = ωd ,

XYZ = ξd , FXF−1 = Z, GXG−1 = Y−1,

where

qd =
1√
d

d−1

∑
j=0

ξ
j2

d .

11            
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From the above identities, it is easy to see that the X and Y gates can be expressed

in terms of the other gates, and so the following gate set suffices to generate the
Clifford group: C = {Z,G,F,CZ}. An m-qudit Clifford circuit is a circuit with
m registers and whose gates are all Clifford operations. We shall assume that
the Clifford circuit is unitary, i.e. there are no intermediate measurements in the

circuit4.
Without loss of generality, we will assume that (i) each register of the Clifford

circuit C begins with an F gate and ends with an F† gate, and that (ii) the internal
circuit (i.e. the full circuit minus the first and last layers) consists of only gates in

C . In other words, C is of the form

C = (F†)⊗mC′F⊗m, (23)

where the internal circuit C′ comprises only gates in C . This loses no generality

because any Clifford circuit can be transformed into a circuit of the above form,
first, by inserting 4 F gates at the start of each register and the pair F†F at the end
of each register, and second, by compiling the internal circuit using only gates in

C .
For each m-qudit Clifford circuit, we adopt the following labeling scheme:

divide each horizontal wire of the internal part of C into segments, with each
segment corresponding to a portion of the wire which is either between 2 F gates,

or between an F gate and an F† gate. It is easy to verify that the total number
of segments is given by n = h−m, where h is the total number of F or F† gates

(including those in the first and last layers) in C. Label the segments x1, . . . ,xn.
We will also use the following terminology. The leftmost labels on each reg-

ister are called inceptive indices. The rightmost labels on each register are called
terminal indices. All other indices are called internal indices. For a set of indices
I = {i1, . . . , is}, we use xI to denote the tuple (xi1, . . . ,xis).

Definition 8. Let C be a Clifford circuit with labels {x1, . . . ,xn}. The phase

polynomial5 of C is the polynomial

SC(x1, . . . ,xn) = 2 ∑
γ∈Γ

∏
i∈Iγ

xi + ∑
g∈G

∏
j∈Ig

x2
j , (25)

where Γ is the set of internal F,Z,CZ gates, and G is the set of G gates in C.

We now show that if C is a Clifford circuit, then its phase polynomial SC is a
quadratic polynomial that satisfies the periodicity condition.

4Note that the results in this section do not hold if the Clifford circuit contains intermediate

measurements whose outcomes affect which gates or measurements are performed next. These

circuits are called adaptive Clifford circuits, and their amplitudes are #P-hard to compute in

general [32, 33].
5This definition is chosen specifically so that both Proposition 9 and Eq. (28), which will be

stated later, hold. Note that there are examples of Clifford circuits C and phase polynomials SC for

which Eq. (28) holds but Proposition 9 does not. For example, consider the single-qubit Clifford

circuit HSH, where S =∑x∈{0,1} ix |x〉〈x| is the phase gate. Since x = x2 for all x ∈Z2, the all-zero

amplitude of C can be written as a half-Gauss sum in two different ways:

〈0|C |0〉= Z1/2(2,S) = Z1/2(2,S
′) (24)

where S(x) = x and S′(x) = x2. While S′ satisfies the periodicity condition (for d = 2), S does not.

12            
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Proposition 9. If C is a Clifford circuit, then SC ∈ F
p.c.
2 .

Proof. Since each gate in C is incident to at most 2 segments, the degree of the
polynomial is at most 2. The only terms which can have odd coefficients are
terms of the form x2

i . The remaining terms, which are all either linear and cross

terms, have even coefficients, which implies that SC ∈ F
p.c.
2 . �

The reverse direction is also true: for every polynomial S ∈ F
p.c.
2 , there exists

a Clifford circuit C such that S = SC, as the following proposition shows:

Proposition 10. Let A be the class of Clifford circuits. The function

Θ : A → F
p.c.
2 (26)

C 7→ SC (27)

is surjective.

Proof. Let

S = ∑
i≤ j∈[n]

αi jxix j + ∑
i∈[n]

βixi ∈ F
p.c.
2 ,

i.e. αi j is even for i < j and βi is even for all i. Construct the circuit C =

(F†)⊗nC′F⊗n, where C′ is defined as follows:

(1) for each i ∈ [n], apply the gate G αii times.
(2) for each i < j ∈ [n], apply the gate CZ αi j/2 times.
(3) for each i ∈ [n], apply the gate Z βi/2 times.

Then,

SC = ∑
i∈[n]

αiix
2
i +2

(

∑
i< j∈[n]

αi j

2 xi j + ∑
i∈[n]

βi

2 xi

)

= S,

which implies that Θ is surjective. �

We now show that the amplitudes of Clifford circuits can be expressed in terms
of half Gauss sums.

Theorem 11. Let C = (F†)⊗mC′F⊗m be an m-qubit Clifford circuit with h F or

F† gates and n = h−m labels x1, . . . ,xn. Then,

〈0|⊗m
C |0〉⊗m =

1√
dh

∑
x1,...,xn∈Zd

ξ
SC(x1,...,xn)
d

=
1√
dh

Z1/2(d,SC). (28)

Proof. Apply the sum-over-paths technique [9, 14] to the Clifford circuit C. �

Theorem 11 can be easily generalized to also allow us to compute amplitudes
of Clifford circuits with arbitrary computational-basis states as inputs or outputs:

Proposition 12. Let C = (F†)⊗mC′F⊗m be an m-qudit Clifford circuit with h F

or F† gates and n = h−m labels x1, . . . ,xn. Let a,b ∈ Zm
d . Then,

〈b|C |a〉= 1√
dh

Z1/2(d,SC +2a · xI +2b · xF), (29)

where I and J are the inceptive and terminal indices (written in order) of C re-

spectively.

13            
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Proof. We start by writing

〈b|(F†)⊗mC′F⊗m |a〉= 〈0m|(X†)b(F†)⊗mC′F⊗mXa |0m〉
= 〈0m|(F†)⊗m(Z†)bC′ZaF⊗m |0m〉 .

Note that C∗ = (F†)⊗m(Z†)bC′ZaF⊗m is itself a Clifford circuit, and we could

apply Theorem 11 to it:

〈b|C |a〉= 1√
dh

Z1/2(d,SC∗),

where

SC∗(x1, . . . ,xn) = Sc(x1, . . . ,xn)+2a · xI +2b · xF .

�

A corollary of the above result is that we can express the probabilities of out-
comes of qudit Clifford circuits in terms of half Gauss sums even when only a

subset of registers is measured. This was previously shown to hold for quopit
Clifford circuits [34], i.e., qudit Clifford circuits, where d is an odd prime.

Theorem 13. Let C = (F†)⊗mC′F⊗m be an m-qudit Clifford circuit with h F or

F† gates and n = h−m labels x1, . . . ,xn. Assume that C′ contains at least one

F gate on each register. Let I be the inceptive indices, J be the internal indices,

F be the first k terminal indices, and E be the last m− k terminal indices. Let

a ∈ Z
m
d and b ∈ Z

k
d . Then the probability

P(b|a) = || 〈b|1..kC |a〉a..m ||2 (30)

of obtaining the outcome b when the first k qudits of C |a〉 are measured is given

by

P(b|a) = 1

dn+k
Z1/2(d,φ), (31)

where

φ(xI,yI,xF ,yF ,xJ,yJ,wE) = Sc(xI,xJ,xF ,wE)−Sc(yI,yJ,yF ,wE)

+2a · (xI − yI)+2b · (xF − yF). (32)
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Proof.

P(b|a) = || 〈b|1..kU |a〉a..m ||2

= ∑
β∈Zm−k

d

|〈bβ |C |a〉|2

= ∑
β∈Zm−k

d

∣
∣
∣
∣

1√
h

Z1/2(d,SC +2a · xI +2(b,β ) · (xF ,xE)

∣
∣
∣
∣

2

=
1

dh ∑
x,y∈Zn

d

ξ
SC(x)−SC(y)+2a·(xI−yI)+2b·(xF−yF)
d ∑

β∈Zm−k
d

ω
β ·(xE−yE)
d

=
1

dh−m+k ∑
xI ,yI∈Zn

d

∑
xF ,yF∈Zk

d

∑
xJ ,yJ∈Zn−2m

d

∑
wE∈Zm−k

d

ξ
φ(xI ,yI ,xF ,yF ,xJ,yJ ,wE)
d

=
1

dn+k
Z1/2(d,φ). (33)

where in the fifth line, we used the property that

∑
β∈Zm−k

d

ω
β ·(xE−yE)
d = dm−kδxE ,yE

. (34)

�

Since half Gauss sums can be computed efficiently, the above proof gives an
alternative proof of the Gottesman-Knill Theorem [18] for all qudit Clifford cir-
cuits:

Corollary 14. (Gottesman-Knill Theorem—strong version) Qudit Clifford cir-

cuits acting on computational basis input states can be efficiently simulated (in

the strong sense [35]) by a classical computer.

Since strong simulation implies weak simulation [36], Corollary 14 implies
that there is an efficient classical algorithm that samples from the output distri-
butions of qudit Clifford circuits. Note that such an efficient classical simula-
tion algorithm exists even in the case when there is a logarithmic number of T

gates [37].

4. HARDNESS RESULTS AND COMPLEXITY DICHOTOMY THEOREMS

In this section, we show that extending the class of periodic quadratic half

Gauss sums in various ways leads to intractable exponential sums. See Table 1
for a summary of our results.

4.1. Degree-3 polynomials with periodicity condition. We shall show, under
plausible complexity assumptions, that if we omit the quadraticity condition (while

possibly keeping the periodicity condition) from Theorem 1, then there is no ef-
ficient algorithm that can compute the exponential sum Z1/2(d, f ) on all inputs

(d, f ). More formally, consider the following problem.
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(A ) Input: f , where f : Zn → Z is a polynomial function of degree ≤ 3

that satisfies the periodicity condition

Output: Z1/2(2, f ) = ∑x∈Zn
2
i f (x).

Our goal is to show that (A ) is #P-hard to compute. To this end, we consider the
following problem.

(B) Input: g, where g : Zn → Z is a polynomial of degree ≤ 3

Output: gap(g) = ∑x∈Zn
2
(−1)g(x).

It is well-known that (B) is a #P-hard problem (see Theorem 1 of [24]). Hence,
to show that (A ) is also #P-hard, it suffices to show that there is an efficient re-
duction from (B) to (A ). Indeed, such a reduction is provided by the following
chain of equalities:

gap(g) = ∑
x∈Zn

2

(−1)g(x) = ∑
x∈Zn

2

i2g(x) = Z1/2(2,2g). (35)

Since 2g satisfies the periodicity condition6 for d = 2, it follows that gap(g) can
be efficiently computed given an efficient algorithm for A .

Combining these results with Theorem 7 gives the following theorem.

Theorem 15. The following computational problem is #P-hard:

(C ) Input: (d, f ), where d ∈ Z≥2 and f : Zn → Z is a degree-3 polyno-

mial function that satisfies the periodicity condition

Output: Z1/2(d, f ) = ∑x∈Zn
2
i f (x).

4.2. Degree-2 polynomials without periodicity condition. We shall show, un-

der plausible complexity assumptions, that if we omit the periodicity condition
(while keeping the quadraticity condition) from Theorem 1, then there is no ef-
ficient algorithm that can compute the exponential sum Z1/2(d, f ) on all inputs

(d, f ).
To see this, we first consider the following problem:

(D) Input: f , where f : Zn → Z is a polynomial function of degree ≤ 2

Output: Z1/2(2, f ) = ∑x∈Zn
2
i f (x).

Note that the inputs of (D) are allowed to be any arbitrary polynomial of de-

gree ≤ 2, including those that do not satisfy the periodicity condition. We will
now show that (B) reduces to (D).

Theorem 16. There exists a polynomial-time reduction from (B) to (D).

Proof. Assume that there exists an oracle OD for the problem (D). We will use
it to construct a polynomial-time algorithm TB for (B) as follows. Let g denote
the input to the algorithm TB, i.e. g : Zn → Z is a polynomial of degree ≤ 3.

6This can be verified directly by using the definition of periodicity. Alternatively, this also

follows immediately from Theorem 25 in Appendix E, where we fully characterize the set of

periodic polynomials with degree ≤ 3 when d = 2.
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For 1 ≤ i < j < k ≤ n, let ai jk,ai j,ai,a ∈ Z2 be the coefficients of the polynomial

g (mod 2), viz.

g(x1, . . . ,xn) = ∑
1≤i1<i2<i3≤n

ai1,i2,i3xi1xi2xi3 + ∑
1≤i1<i2≤n

ai1,i2xi1xi2

+
n

∑
i=1

aixi +a (mod 2). (36)

Note that the ability to represent g (mod 2) as a multilinear polynomial arises

from the identity x2 = x for x ∈ Z2. The motivation for expressing g in the above
form comes from the fact that the desired output gap(g) of TB depends on only
values g(x)(mod 2).

Next, we exploit the circuit-polynomial correspondence [13] to construct an
IQP circuit C over the gate set {Z,CZ,CCZ} whose circuit amplitudes can be
expressed in terms of the gap of g. Let C = H⊗nC′H⊗n be an IQP circuit whose
internal circuit C′ is constructed as follows:

(i) Place a Z gate on the ith wire if ai = 1.
(ii) Place a CZ gate between the ith and jth wires if ai j = 1.

(iii) Place a CCZ gate between the ith, jth and kth wires if ai jk = 1.

Then, the amplitude of measuring the all-zero string when the circuit C is ap-
plied to the all-zero state is given by

〈0|C |0〉= 1

2n
gap(g−a) =

1

2n ∑
x∈Zn

2

(−1)g(x)−a =
1

2n
(−1)agap(g). (37)

Now, construct the circuit CG that performs the same unitary operation as C,

but which consists of only gates in G , where G is the strictly universal7 gate set
G = {H,Z,CS}, where CS = diag(1,1,1, i) is the controlled-phase gate satisfy-

ing CS |xi,x j〉= ixix j |xi,x j〉. To achieve this, we replace all the CZ and CCZ gates
in C by circuit gadgets comprising only H and CS gates. This may be achieved
by making use of the following circuit identity (which follows from Lemma 6.1
of [40]):

• • • •
• = • •
• S S† S

(38)

as well as the following identities:

CZ = (CS)2, (39)

C(S†) = (CS)3, (40)

CX12 = H2CZ12H2, (41)

which allow the gates CCZ and CZ to be expressed completely in terms of H and
CS. Note that by construction, each register in CG begins and ends with a H gate,
i.e. CG = H⊗nC′

G
H⊗n for some circuit C′

G
over the gate set G .

7Note that Z is not needed for universality, since {H,CS} is already universal (see [38] or

Theorem 1 of [39]).
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Next, mirroring the labeling scheme for Clifford circuits described in Section

3, we construct the phase polynomial f corresponding to CG as follows:

Divide each wire of the internal circuit C′
G

into segments, with each seg-
ment corresponding to a portion of the wire between two H gates. Label
the segments x1, . . . ,xN , where the total number of segments is N := h−n,

where h is the total number of H gates in CG .

Define the phase polynomial of CG to be

f (x1, . . . ,xN) = 2 ∑
γ∈Γ

∏
I∈Iγ

xi + ∑
g∈G

∏
i∈Ig

xi, (42)

where Γ is the set of internal H gates and G is the set of CS gates.
Then, the following all-zero amplitude of CG may be written as

〈0|CG |0〉= 1√
h

Z1/2(2, f ) =
1√
h

∑
x∈ZN

2

i f (x). (43)

Since 〈0|CG |0〉= 〈0|C |0〉, it follows from Eqs. (37) and (43) that

gap(g) =
2n

√
h
(−1)aZ1/2(2, f ). (44)

Next, feed f into the oracle OD to get Z1/2(2, f ). Finally, use Eq. (44) to

calculate and output gap(g).
Since each step of the above reduction TB takes polynomial time, the entire

reduction runs in polynomial time.
�

Since (B) is #P-hard, it follows from the above reduction that (D) is also

#P-hard. Combining this results with Theorem 7 gives the following theorem.

Theorem 17. The following computational problem is #P-hard:

(C ) Input: (d, f ), where d ∈Z≥2 and f : Zn →Z is an aperiodic degree-

2 polynomial function

Output: Z1/2(d, f ) = ∑x∈Zn
2
i f (x).

4.3. Other incomplete Gauss sums: In this section, we restrict our attention to
d = 2, and consider incomplete Gauss sums of the form:

Z1/2k(2, f ) = ∑
x1,...,xn∈Z2

ω
f (x1,...,xn)

2k+1 (45)

with k ≥ 2. For k = 2, the exponential sum

Z1/4 = ∑
x1,...,xn∈Z2

ω
f (x1,...,xn)

8 ,

with no requirement on the periodicity of the polynomial f , corresponds to the
gate set {H,T,CZ}, which is universal, and it can be shown that computing such

sums is #P-hard. However, for quadratic polynomial f satisfying the period-
icity condition, we can reduce the evaluation of Z1/4(2, f ) to the evaluation of

Z1/2(2, f ′), for some quadratic polynomial f ′ satisfying the periodicity condition,
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which in turn can be evaluated in poly(n) time. More generally, for any k ≥ 2, if

f is a quadratic polynomial satisfying the periodicity condition, the incomplete
Gauss sum Z1/2k(2, f ) can be reduced to Z1/2(2, f ′).

Lemma 18. Let d = 2, and let f = ∑i≤ j αi jxix j +∑i βixi be a quadratic polyno-

mial. Then f satisfies the periodicity condition

ω
f (x1,...,xn)

2k+1 = ω
f ((x1mod 2),...,(xnmod 2))

2k+1 , (46)

if and only if 2k−1|αii, 2k|αi j (i< j) and 2k|βi. Thus, Zk+1
1/2

(2, f )= Z1/2(2, f/2k−1),

where f/2k−1 satisfies the periodicity condition for ω2 =
√
−1.

Proof. It is easy to verify that the quadratic polynomial f satisfies the periodicity
condition if 2|αii, 4|αi j (i < j) and 4|βi.

For any i,

ω
αiix

2
i +βixi

2k+1 = ω
αii(xi+2)2+βi(xi+2)

2k+1

for any xi ∈ Z, which implies that 2k−1|αii and 2k|βi.
Moreover, for any fixed i and j with i < j, we can choose xk = 0 for any k 6= i, j

to get

ω
αiix

2
i +αiix

2
j+αi jxix j+βixi+β jx j

2k+1 = ω
αii(xi+2)2+αiix

2
j+αi j(xi+2)x j+βi(xi+2)+β jx j

2k+1

for any xi,x j ∈ Z. This implies that 2k|αi j. Since i, j were arbitrarily chosen, it

follows that all cross terms αi j satisfy 2k|αi j.
�

4.4. Complexity dichotomy theorems. In 1979, Valiant introduced the com-
plexity class #P to characterize the computational complexity of counting prob-

lems [41], and ever since then, this has been a subject of much research.
Among the many important results arising from this research are the com-

plexity dichotomy theorems, which have attracted considerable attention [42–48].
These theorems state, roughly, that for certain classes of counting problems, each

problem in the class is either efficiently computable or #P-hard. (See [49] for an
overview.)

These dichotomy theorems have applications to the study of exponential sums.
An example of such a theorem was provided by [22], which proved that com-
puting Gauss sums Z(d, f ) can be performed efficiently when deg( f ) ≤ 2 and

is #P-hard when deg( f ) ≥ 3. Note that the polynomials considered by [22] all
satisfy the periodicity condition. Hence, if we combine these #P-hardness re-
sults with Theorem 7, we arrive at a new dichotomy theorem: if deg( f )≤ 2, then
the exponential sum Z1/2(d, f ) is computable in polynomial time. Otherwise, if

deg( f )≥ 3, then computing Z1/2(d, f ) is #P-hard.

Furthermore, for the class of aperiodic exponential sums, our results imply
another new complexity dichotomy theorem: if deg( f )≤ 1, then the exponential
sum Z1/2(d, f ) is computable in polynomial time, otherwise if deg( f ) ≥ 2, then

computing Z1/2(d, f ) is #P-hard. For a summary of these results, see Table 1.
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5. TRACTABLE SIGNATURE IN HOLANT PROBLEM

In this section, we will apply our results about half Gauss sums to an important
framework called the Holant framework, which we will now describe. Let F

be a set of functions, where each element f ∈ F : Zn
d → C. A signature grid

Ω = (G,F ) is a tuple, where G = (V,E) is a hypergraph and each v ∈ F is
assigned a function fv ∈ F with arity equal to the number of hyperedges incident
to it. A Zd assignment σ for every e ∈ E gives an evaluation ∏v fv(σ |E(v)), where

E(v) denotes the edges incident to v. Given an input instance Ω, we are interested

in computing

HolantΩ = ∑
σ :E→Zd

∏
v

fv(σ |E(v)). (47)

Affine signatures over Z2 and Z3 were defined in [48, 50]. In this section, we
give a definition of affine signtures over Zd , for d ≥ 2.

(1) Affine signature over Zd : Let f be a signature of arity n with inputs

x1, ...,xn over the domain Zd , then f is affine if it has the following form

λ χA~x=0ξ
g(x1,...,xn)
d

(48)

where λ ∈ C, ξd is a chosen square root of ωd = exp(2πi/d) such that

ξ d2

d = 1, A is a matrix over Zd , χ is a 0–1 indicator function such that
χA~x=0 = 1 if and only if A~x = 0, and g(x1, , , .xn) ∈ Z[x1, ...,xn] is a qua-
dratic polynomial with even cross and linear terms. Let A to be the set of
all affine signatures. It is straightforward to check that A is closed under

multiplication.
(2) Degenerate function on n variables Let

D = {⊗i[ fi(0), fi(1), ..., fi(d−1)] | fi( j) ∈ C} (49)

be the set of functions that can be expressed as the tensor product of unary
function.

(3) The set P: Let P be the set of functions that can be written as the
composition of unary functions and the binary equality relation =2, where
=2(i, j) is equal to 1 if i = j and 0 otherwise.

Theorem 19. Given a class of functions F , if F ⊆A or F ⊆P , then Holant(F )

is computable in polynomial time.

Proof. (1) If F ⊆ P , then following [48], we can group the variables into con-
nected components if these variables are connected by the binary equality relation
=2. In any connected component, let us start with a variable that takes a value in

Zd , and follow any edges labeled by the binary equality relation. There is at most
one extension of this assignment, i.e., each variable in this connected component
must take the same value as the value that was taken at the beginning. Then we
can easily compute the value of the Holant by simply multiplying all the values.

There are at most d values, as we have d choices at the starting edge.
(2) If F ⊆ A , then the method in [48] may not work, as Gaussian elimination

may not be applicable for general Zd . To get around this, we consider the inner
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product representation of the Holant problem Holant(F ), which can be written

as

Holant(F ) = (⊗e 〈GHZe|)(⊗v | fv〉), (50)

where |GHZe〉 denotes the GHZ state on (Cd)
⊗|e|, where |e| denotes the number

of vertices incident to the edge e. For example, if |e| = {1,2,3}, then |GHZe〉 is

|+〉= ∑d−1
i=0 |i〉, |Bell〉= ∑d−1

i=0 |ii〉 and |GHZ〉= ∑d−1
i=0 |iii〉, respectively.

Since fv ∈ A ,

| fv〉= ∑
x1,...,xk∈Zd

χAv~x=0ξ
gv(x1,...,xk)
d |x1, . . . ,xk〉 , (51)

where gv is a quadratic polynomial with even cross and linear terms, and k denotes
the arity of fv. If we omit the term χAv~x=0 in the above expression, then the
remaining expression represents a stabilizer state, which we denote as |STAB〉v.

Now consider ∑k
i=1 A1,ixi +A1,k+1 = 0 (mod d) that is given by the first line of

A~x = 0. We can add an ancilla qudit with 〈0|∏ j(CX)A1 jXA1,k+1 |0〉 with control

qudit being j = 1, . . . ,k. Then, | fv〉 can be written as

| fv〉= 〈0|⊗mv ∏
i, j

(CX)Ai jXAi,k+1 |STAB〉v |0〉⊗mv , (52)

where mv is the number of rows in Av. Therefore,

Holant(F ) = (⊗e 〈GHZe|)(⊗v 〈0|⊗mv)(⊗v ∏
i, j

(CX)Ai jXAi,k+1 |STAB〉v |0〉⊗mv),

which is just a product of two stabilizer states. It can be computed in polynomial
time by the Gottesman-Knill theorem [18].

�

While Theorem 19 addresses the question about which functions lead to tractable
Holant problems, we leave open the question about which functions lead to in-
tractable Holant problems: for which classes of functions F does it hold that (i)
F is neither in P nor A and (ii) Holant(F ) is #P-hard?

6. CONCLUDING REMARKS

In this paper, we found a larger (compared to previous results) class of qua-

dratic exponential sums whose evaluation we proved to be tractable. In particu-
lar, we studied the periodic, quadratic, multivariate half Gauss sums, and gave
an efficient algorithm to evaluate these incomplete Gauss sums. We showed
that without either the periodicity or quadraticity condition, these exponential

sums become intractable under plausible complexity assumptions. These results
demonstrate the importance of a periodicity condition, which has not been ex-
plored in previous works. Moreover, we show that these tractable exponential
sums can be used to express the amplitudes of qudit Clifford circuits, thereby

providing an alternative proof of the Gottesman-Knill theorem for qudit Clifford
circuits. Last but not least, we provided a tractable affine signature in arbitrary
dimensions in the Holant framework.
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APPENDIX A. EXPONENTIAL SUM TERMINOLOGY

In this appendix, we summarize some of the terminology used in the main text.
An exponential sum is a sum of the form

∑
x∈A

e f (x), (53)

where A ⊆ V is a finite set, V is an arbitrary set, and f : V → C is a complex-
valued function.

The exponential sums used in this paper are all incomplete Gauss sums8, which

are sums of the form

ZI(d,b, f ) = ∑
x1,...,xn∈Zd

ω
f (x1,...,xn)

b (54)

where d,n,b ∈ Z
+ satisfy d ≤ b and f is a polynomial with integer coefficients.

Two special cases of incomplete Gauss sums are the Gauss sum, defined as

Z(d, f ) = ZI(d,d, f ) = ∑
x1,...,xn∈Zd

ω
f (x1,...,xn)

d . (55)

and the half Gauss sum, defined as

Z1/2(d, f ) = ∑
x1,...,xn∈Zd

ξ
f (x1,...,xn)

d . (56)

With this terminology, note that Gauss sums are a special case of half Gauss

sums, which are in turn a special case of incomplete Gauss sums.
When f is quadratic, Z(d, f ) and Z1/2(d, f ) reduce to the (multivariate) qua-

dratic Gauss sum (14) and (multivariate) quadratic half Gauss sum (15) respec-
tively. When n = 1 and f is a homogeneous quadratic polynomial (i.e. f (x) =
ax2), the sums Z(d, f ) and Z1/2(d, f ) reduce to the univariate quadratic homo-
geneous Gauss sum (6) (which is usually just referred to as a Gauss sum [25])
and univariate quadratic homogeneous half Gauss sum (7) respectively. Note that
univariate quadratic Gauss sums are also called Weil sums [23].

8Here, we generalized the definition of “incomplete Gauss sums” used in [51, 52] to the mul-

tivariate case.
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APPENDIX B. PROPERTIES OF GAUSS SUM

In this section, we give some basic facts about the Gauss sum G(·, ·) [25].
Given two nonzero integers a,d with d > 0 and gcd(a,d) = 1,

G(a,d) = ∑
x∈Zd

ωax2

d .

The Gauss sum satisfies the following properties:
(1) If d is odd, then

G(a,d) =
(a

d

)

G(1,d), (57)

where
(

a
d

)
is the Jacobi symbol. Moreover,

G(1,d) =

{√
d, d ≡ 1 (mod 4)

i
√

d, d ≡ 3 (mod 4).
(58)

(2) If d = 2k, then for k ≥ 4,

G(a,2k) = 2G(a,2k−1). (59)

(3) If d = bc with gcd(b,c) = 1, then

G(a,bc) = G(ab,c)G(ac,b). (60)

APPENDIX C. HALF GAUSS SUM FOR ξd =−ω2d WITH EVEN d

In the main text, we chose ξd = ω2d for all even numbers d. Note that in the
case when d is even, ξd can be chosen to be ±ω2d . Here, we consider the case

ξd = −ω2d for all even numbers d. To distinguish these two cases, we define
G1/2(a,d)+ for the case when ξd = ω2d and G1/2(a,d)− for the case when ξd =
−ω2d for even d. Thus, we have the following two properties for G1/2(a,d)−.

Lemma 20. If d is even, then

G1/2(a,d)− = G1/2(a(N1 +bN2),b)−G1/2(aN2,c), (61)

where d = bc, gcd(b,c) = 1, 2|b and integers N1 and N2 satisfy N1c+N2b = 1.

Proof. Following the approach in the proof of Proposition 3, we obtain

ξ ax2

d = (−1)ax2
ωaN1x2

2b ωaN2x2

2c = (−1)ay2
ωaN1y2

2b ξ aN2z2

c (−1)aN2y2

= (−ω2b)
a(N1+bN2)y

2

ξ aN2z2

c

= ξ
a(N1+bN2)y

2

b ξ aN2z2

c ,

which completes the proof of the lemma. �

Lemma 21. If m ≥ 3, then

G1/2(a,2
m)− = 2G1/2(a,2

m−2)+. (62)
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Proof. For m ≥ 3,

G1/2(a,2
m)− = ∑

x∈[2m]

(−ω2m+1)ax2

= ∑
x∈[2m−1]

[

(−ω2m+1)ax2
+(−ω2m+1)a(x+2m−1)2

]

= ∑
x∈[2m−1]

(−ω2m+1)ax2
[

1+(−ω2m+1)a2mx+a22m−2
]

= ∑
x∈[2m−1]

(−1)ax2
ωax2

2m+1 [1+(−1)x]

= ∑
y∈[2m−2]

ω
a(2y)2

2m+1 [1+(−1)2y]

= 2 ∑
y∈[2m−2]

ω
4ay2

2m+1 = 2 ∑
y∈[2m−2]

ω
ay2

2m−1

= 2G1/2(a,2
m−2)+.

�

APPENDIX D. RELATIONSHIP BETWEEN HALF GAUSS SUMS AND ZEROS OF

A POLYNOMIAL

In this appendix, we explore the relationship between half Gauss sums Z1/2(d, f )
and the number of zeros of functions of the form f (x)− k (mod d) or (mod 2d).
We start with the following theorem.

Theorem 22. Let f : Zn
d → Z.

(1) If d is even, then

|{x ∈ Z
n
d : f (x) = j mod 2d}|= 1

2d

2d−1

∑
k=0

ξ
−k j
d Z1/2(d,k f ). (63)

(2) If d is odd, then

|{x ∈ Z
n
d : f (x) = j mod d}|= 1

d

d−1

∑
k=0

ξ
−k j
d Z1/2(d,k f ). (64)

Proof.

(1) If d is even, then ξd = ω2d and ξ 2d
d = 1. Hence,

Z1/2(d,k f ) = ∑
x∈Zn

d

ξ
k f (x)
d

=
2d−1

∑
j=0

ξ
k j
d |{x ∈ Z

n
d : f (x) = j mod 2d}| . (65)

By taking the inverse Fourier transform, we obtain Eq. (63).
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(2) If d is odd, then ξ d
d = 1. Hence,

Z1/2(d,k f ) = ∑
x∈Zn

d

ξ
k f (x)
d

=
d−1

∑
j=0

ξ
k j
d |{x ∈ Z

n
d : f (x) = j mod d}| . (66)

By taking the inverse Fourier transform, we obtain Eq. (64).

�

This allows us to write the number of zeros of a function f : Zn
d → Z mod d

in terms of half Gauss sums:

Theorem 23.

|{x ∈ Z
n
d : f (x) = 0 mod d}|= 1

d

d−1

∑
l=0

Z1/2(d,sdl f ), (67)

where sd = 2 if d is even and 1 if d is odd.

Proof. When d is odd, setting j = 0 in Eq. (64) gives Eq. (67).
Next, let d be even. Then,

|{x ∈ Z
n
d : f (x) = 0 mod d}|= |{x ∈ Z

n
d : f (x) = 0 mod 2d}|

+ |{x ∈ Z
n
d : f (x) = d mod 2d}|

=
1

2d

2d−1

∑
k=0

Z1/2(d,k f )+
1

2d

2d−1

∑
k=0

ξ−kd
d Z1/2(d,k f )

=
1

2d

2d−1

∑
k=0

(

1+(−1)k
)

Z1/2(d,k f )

=
1

d

d−1

∑
l=0

Z1/2(d,2l f ), (68)

where we used ξ d
d =−1 in the third line.

�

APPENDIX E. CHARACTERIZATION OF PERIODIC POLYNOMIALS OF DEGREE

≤ 3 FOR d = 2

In this appendix, we give a characterization of polynomials with degree ≤
3 that satisfy the periodicity condition for d = 2. We will use the following
notation: let mod2(x) be the unique integer y ∈ Z2 for which x ≡ y mod 2.

We start by proving the following identity.

Lemma 24. Let a,b,c,x,y ∈ Z. If a, b and c have the same parity (i.e. if a, b and

c are either all even or all odd), then

ax2y+bxy2 + cxy ≡ a mod2(x
2y)+b mod2(xy2)+ c mod2(xy) (mod 4) (69)

= (a+b+ c)mod2(xy) (mod 4). (70)
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Proof. Write x = 2q+u and y = 2r+ v, where q,r ∈ Z and u,v ∈ Z2.

Then the RHS of Eq. (69) is

RHS = a mod2(x
2y)+b mod2

(
xy2
)
+ c mod2(xy)

= a mod2

[
(2q+u)2(2r+ v)

]
+b mod2

[
(2q+u)(2r+ v)2

]

+ c mod2[(2q+u)(2r+ v)]

= a mod2

(
u2v
)
+b mod2

(
uv2
)
+ c mod2(uv)

= auv+buv+ cuv

= (a+b+ c)uv

= (a+b+ c)mod2(x)mod2(y)

= (a+b+ c)mod2(xy).

On the other hand, the LHS of Eq. (69) is

LHS = ax2y+bxy2 + cxy

= a(2q+u)2(2r+ v)+b(2q+u)(2r+ v)2+ c(2q+u)(2r+ v)

= a
(
4q2 +4qu+u2

)
(2r+ v)+b(2q+u)

(
4r2 +4rv+ v2

)

+ c(4qr+2qv+2ur+uv)

≡ au2(2r+ v)+b(2q+u)v2+ c(2qv+2ur+uv) mod 4

= 2au2r+au2v+2bqv2 +ubv2 +2cqv+2cur+ cuv

= 2aur+auv+2bqv+ubv+2cqv+2cur+ cuv ∵ u,v ∈ {0,1}
= 2(a+ c)ur+2(b+ c)qv+(a+b+ c)uv

≡ (a+b+ c)uv mod 4,

where the last equivalence holds because a,b,c have the same parity, i.e. a+ c

and b+ c are even.

�

Theorem 25. Let n ∈ Z+ and let

g(x1, . . . ,xn) = ∑
16i16i26i36n

ai1i2i3xi1xi2xi3 + ∑
16i16i26n

ai1i2xi1xi2 +
n

∑
i=1

aixi +a

be a polynomial of degree ≤ 3 with coefficients that satisfy ai jk, ai j, ai and a ∈ Z

for all i 6 j 6 k ∈ {1, . . . ,n}. Then, g satisfies the periodicity condition for d = 2

if and only if for all distinct i, j,k ∈ {1, . . . ,n},

(i) ai, aiii and ai jk are even,

(ii) ai j, ai j j and aii j have the same parity.

Proof.

(⇒) Assume that g satisfies the periodicity condition for d = 2. Then for all
x1, . . . ,xn ∈ Z,

ig(x1,...,xn) = ig(x1 mod 2,...,xn mod 2) (71)

⇐⇒ g(x1, . . . ,xn)≡ g(x1 mod 2, . . . ,xn mod 2) mod 4. (72)
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Denote

g̃(x,y,z) = g(x,y,z,0, . . . ,0) (73)

= a111x3 +a222y3 +a333z3

+a112x2y+a113x2z+a122xy2

+a223y2z+a133xz2 +a233yz2 +a123xyz

+a11x2 +a22y2 +a33z2

+a12xy+a13xz+a23yz

+a1x+a2y+a3z+a. (74)

Then, Eq. (72) implies that for all x,y,z ∈ Z,

g̃(x,y,z) = g̃(x mod 2,y mod 2,z mod 2) mod 4. (75)

We will now use Eq. (75) repeatedly to find necessary conditions that
the coefficients of the polynomial g must satisfy.

First, Eq. (75) implies that

g̃(0,0,0) = g̃(2,0,0) mod 4 (76)

=⇒ 0 = a11123 +a1122 +a12 mod 4

= 2a1 mod 4, (77)

which implies that a1 is even. By symmetry between 1 and i for i ∈
{1, . . . ,n},

ai is even ∀i ∈ {1, . . . ,n}. (78)

Second, Eq. (75) implies that

g̃(1,0,0) = g̃(−1,0,0) mod 4 (79)

=⇒ a111 +a11 +a1 =−a111 +a11 −a1 mod 4 (80)

=⇒ 2a111 +2a1 = 0 mod 4. (81)

By Eq. (78), a1 is even, and so 2a1 = 0 mod 4. Hence,

2a111 = 0 mod 4, (82)

which implies that a111 is even. By symmetry between 1 and i for i ∈
{1, . . . ,n},

aiii is even ∀i ∈ {1, . . . ,n}. (83)

Third, Eq. (75) implies that

g̃(0,1,0) = g̃(2,1,0) mod 4

=⇒ a222 +a22 +a2 = a1118+a222 +a1124+a1222

+a114+a22 +a122+a12+a2 mod 4

=⇒ 2a1 +2a12 +2a122 = 0 mod 4.

By Eq. (78), a1 is even, and so, 2a1 = 0 mod 4. Hence,

2(a12 +a122) = 0 mod 4, (84)
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which implies that a12 + a122 is even, i.e. a12 and a122 have the same

parity.
By symmetry,

ai j,ai j j,aii j have the same parity ∀i < j ∈ {1, . . . ,n}. (85)

Fourth, Eq. (75) implies that

g̃(0,1,1) = g̃(2,1,1) mod 4

=⇒ a222 +a333 +a223 +a233 +a22 +a33 +a23 +a2 +a3

= a1118+a222 +a333 +a1124+a1134+a1222+a223

+a1332+a233 +a1232+a114+a22 +a33 +a122

+a132+a23 +a12+a2 +a3 mod 4

=⇒ 2(a122 +a133 +a123 +a12 +a13 +a1) = 0 mod 4.

By Eq. (83), a122+a12 and a133+a13 are both even, and hence 2(a122+
a12) = 0 mod 4 and 2(a133 +a13) = 0 mod 4. Also, Eq. (78) implies that
a1 is even, and so, 2a1 = 0 mod 4. Therefore,

2a123 = 0 mod 4, (86)

which implies that a123 is even. By symmetry,

ai jk is even ∀i < j < k ∈ {1, . . . ,n}. (87)

Together, Eqs. (78), (83), (85) and (87) imply the consequent of the
logical biconditional in Theorem 25.

(⇐) Assume that (i) and (ii) in Theorem 25 hold. Then,

g(mod2(x1), . . . ,mod2(xn))

= ∑
16i16i26i36n

aiii2i3mod2(xi1)mod2(xi2)mod2(xi3)

+ ∑
16i16i26n

ai1i2mod2(xi1)mod2(xi2)+
n

∑
i=1

aimod2(xi)+a

= ∑
16i16i26i36n

aiii2i3mod2(xi1xi2xi3)

+ ∑
16i16i26n

ai1i2mod2(xi1xi2)+
n

∑
i=1

aimod2(xi)+a

= ∑
i

aiiimod2(x
3
i )

︸ ︷︷ ︸

1

+∑
i< j

[
aii jmod2(x

2
i x j)+ai j jmod2(xix

2
j)+ai jmod2(xix j)

]

︸ ︷︷ ︸

2

+ ∑
i< j<k

ai jkmod2(xix jxk)
︸ ︷︷ ︸

3

+∑
i

aiimod2(x
2
i )

︸ ︷︷ ︸

4

+∑
i

aimod2(xi)
︸ ︷︷ ︸

5

+a (88)

To evaluate 1 , 3 and 5 mod 4, we use the identity

2a mod2(x)≡ 2ax (mod 4) ∀a,x ∈ Z (89)
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Since aiii, ai jk and ai are even, it follows that

1 = aiiix
3
i mod 4 (90)

3 = ai jkxix jxk mod 4 (91)

5 = aixi mod 4 (92)

To evaluate 3 mod 4, we use the identity

a mod2(x
2)≡ ax2 (mod 4) ∀a,x ∈ Z (93)

which gives

4 = aiix
2
i mod 4 (94)

To evaluate 2 mod 4, we use Lemma 24, which implies that

2 = aii jx
2
i x j +ai j jxix

2
j +ai jxix j mod 4 (95)

Substituting Eqs. (90), (95), (91), (94) and (92) into Eq. (88) gives

g(mod2(x1), . . . ,mod2(xn)) = g(x1, . . . ,xn) (96)

which means that g satisfies the periodicity condition.

�
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