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Thermochemistry Prediction and Automatic Reaction

Mechanism Generation for Oxygenated Sulfur Systems:

A Case Study of Dimethyl Sulfide Oxidation

Ryan J. Gillisa, William H. Greena,∗

aMassachusetts Institute of Technology, 50 Ames Street, Cambridge, MA 02139, U.S.A

Abstract

Automatic mechanism generation is a powerful approach to understanding
complex chemical mechanisms. Here we describe the expansion of an open
source mechanism creating software, the Reaction Mechanism Generator or
RMG, to oxygenated sulfur systems. This principally involved the expansion
of thermochemistry estimation techniques for higher valence oxygenated sul-
fur molecules.

As a demonstration of this new tool, we present an automatically gen-
erated mechanism describing the oxidation of dimethyl sulfide. This mech-
anism is then compared to several experimental studies of dimethyl sulfide
oxidation. This case study provides insight into the transformation of sulfur
species in the atmosphere, especially the formation pathways of sulfoxides,
sulfones, and sulfur dioxide. However, the applications of the newly enhanced
mechanism generation tool extend far beyond this single system with obvi-
ous use in understanding a variety of atmospheric, petrochemical, and other
industrial chemistries.

1. Introduction

Chemical systems often resist simplification because the number of impor-
tant species and reactions far exceeds anyone’s definition of simple. However
in spite of the inherent complexity, understanding the detailed chemistry
of reacting systems is crucial in a wide variety of pursuits, both academic
and commercial. Entwined within this detailed chemistry lie key combustion
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characteristics such as the ignition delay[1], extinction strain rate[2], octane
number[3], or flame speed[4]. Other natural systems are also better under-
stood with a knowledge of the chemistry, including the formation pathways
and fates of species in the atmosphere[5]. Similarly, biological systems are
often described in complex reaction networks[6] that attempt to predict or de-
scribe the behavior of feedback loops [7] that control the behavior of cells and
organisms. Industrially, the conditions leading to desired products, such as a
biocrude from biomass[8], and the conditions that lead to unwanted products,
such as particulate matter[9] within a furnace or combustion engine, can be
clarified with the detailed chemistry. These are just a few examples of the
very practical knowledge that come from detailed chemical mechanisms.

Automatic reaction mechanism generation is a powerful tool to under-
stand complex reactive systems and describe the detailed chemistry. The
Reaction Mechanism Generator (RMG) software[10] is an implementation of
this concept that allows the user to create detailed kinetic models for use in
the design, optimization, or understanding of reactors, engines, or fuels.[11]

Sulfur chemistry is an area that is not well explored by automatic mech-
anism generation. There are many inherent challenges when modeling sulfur
systems including their variable oxidation and valence, the unique reactions
in which they participate, and the only limited experimental characterization
of the kinetics and thermodynamics of sulfur species, especially radicals. Pre-
vious efforts have allowed for the modeling of low valence sulfur species,[12]
[13] but many important systems involve highly oxidized, high and changing
valence, sulfur species.

Automatic mechanism generation methods require rapid evaluations of
the thermochemistry of individual molecules. Accurate quantum chemical
calculations are far too time intensive to be practical in this setting, requir-
ing other methods of predicting thermochemistry. An older relatively simple
solution is to use a linear model known as Benson group additivity[14]. This
method assigns each heavy atom thermochemical values based on its char-
acteristics and the characteristics of the atoms to which it is bonded. A
molecule’s thermochemistry is then predicted by summing over each heavy
atom. Newer, more nuanced machine learning methods promise greater pre-
dictive power, albeit with less transparency[15] [16].

This work describes the expansion of the RMG software to higher valence
sulfur species, with an emphasis on thermochemistry prediction for high va-
lence sulfur molecules. This focus involves the creation of a sulfur species
database, and the implementation of a simple prediction method to estimate
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the thermochemistry for an arbitrary molecule. The paper closes with a case
study demonstrating the new functionality, examining the partial oxidation
of dimethyl sulfide. The validity of the automatically generated model was
tested by comparing the model to experimental work that measured the con-
centration of major species during the hydroxyl radical initiated oxidation of
dimethyl sulfide.[17]

2. Methods

2.1. Quantum Chemical Calculations and Dataset Creation

First, 47 sulfur species with experimentally measured enthalpies of for-
mation were used to test the accuracy of the calculation methods.[18] [19]
[20] [21] [22] [23] [24] [25] The molecules in this validation set were selected
because they both had experimental measurements for enthalpy of forma-
tion and were comprised of 10 or fewer heavy atoms. An approach using
b3lyp/CBSB7 for the geometry optimization, frequency calculation, and hin-
dered rotor scans along with CBS-QB3 for the energy calculation was se-
lected. The thermochemistry and rate calculations were performed using the
rigid-rotor harmonic oscillator (RRHO) approximation with corrections for
internal rotors, using the Arkane software in the RMG package[10]. Each
rotating dihedral within the molecule was treated as a 1-dimensional inde-
pendent rotor and stepped in 10 degree increments through the full rotation.
An optimization constrained by the stepped dihedral was performed at each
of these steps. Additional details on the hindered rotor treatment can be
found in the work of Sharma et al[26]. Rate calculations were performed
using conventional Transition State Theory (TST) with Eckart tunelling
corrections.[27] Constraints on computational resources required the use of
different versions of Gaussian for these calculations. The majority of the
calculations used Gaussian03[28], with several exceptions noted in detail in
the Supporting Information.[29][30] Bond additivity corrections (BAC) were
determined with a least squares fit to the 47 validation molecules for C-S,
S-S, S-H, S-O, and S=O bonds. All other BAC corrections came from the
work of Paraskevas et al.[31]

The validated procedure was then used to calculate 255 oxygenated sulfur
molecules. These 255 molecules were combined with 185 moloecules from
Class[32] and Vandeputte[8]. This combined list of 440 molecules was used
to derive group additivity values for the prediction of the thermochemistry
of sulfur containing molecules.
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Figure 1: The molecules in the validation set.

2.2. Mechanism Generation

The second section of the work uses the Reaction Mechanism Generator
software with the augmented thermochemistry predictions to create a de-
tailed kinetic model. The RMG software creates kinetic models by iteratively
adding species and reactions, starting from user specified initial conditions.
The reactions are automatically generated using known reaction templates
and their corresponding kinetics are estimated using a hierarchical tree of
rate estimation rules. The thermochemistry of each species is estimated us-
ing a combination of published libraries and group additivity methods. A
detailed description of the algorithm can be found in the work of Gao. [10]

The detailed chemical mechanism was created based on the conditions
studied by Barnes et al.[17]. Specifically, a concentration of 25 ppm hydrogen
peroxide and 15 ppm dimethyl sulfide in a bath of artificial air at 1 bar total
pressure and a temperature of 298K was used in model generation. The input
file annotated to include the RMG-Py and RMG-database version numbers
used in mechanism generation is supplied in the supporting information.
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3. Results

3.1. Benchmarking of the Calculation Procedure

Before creating a dataset, we validated our methods for oxygenated sulfur
molecules. This was done by comparing calculated enthalpies of formation
to experimentally measured enthalpies for 47 molecules. The lack of experi-
mental data precludes similar comparisons to entropies and heat capacities.

First, bond additivity corrections (BACs) for C-S, S-S, S-H, S-O, and
S=O bonds were calculated using a least squares fitting from these 47 molecules.
These BAC values were combined with those suggested by Paraskevas[31] for
molecules containing carbon, hydrogen, and oxygen. The BAC corrections
and their effect on the accuracy of the test set is shown in Tables 1 and 2.

Table 1: Bond additivity corrections fit from the 47 molecules in the validation set (all
values in kcal

mol )

Table 2: Deviations between the calculated (CBS-QB3) and experimental enthalpy of
formation values with and without the newly calculated sulfur BACs (all values in kcal

mol )

Naturally, the newly fit BACs lowered the deviation between calculated
and experimental values. However, they also noticeably corrected a persis-
tent overprediction of the enthalpy in oxygenated sulfur compounds by the
CBS-QB3 method. A histogram of deviations between the calculations and
experiment is shown below in Figure 2. A detailed list of the deviation be-
tween each experimental and calculated value is included in the Supporting
Information.

This set of 47 molecules excluded 2 potential experimental data sources.
Divinyl sulfoxide and methane sulfenic acid each had only a single exper-
imental enthalpy measurement source[33] [34] and the measured value for
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Figure 2: A histogram sorting the deviations between experiment and calculation for 49
sulfur and oxygen containing molecules. The two outliers were excluded when determining
the BAC values.

each deviated wildly from our calculated values (8.33 and 10.15 kcal/mol off
respectively). This could be due to a weakness of our calculation method or
it could be from inaccurate experimental numbers. Either way, these values
were excluded from the least squares fit for bond additivity corrections.

3.2. Dataset

Content with the accuracy of the method, we selected 255 primarily oxi-
dized and high valence sulfur molecules to supplement existing sulfur species
thermochemistry data. When considering what molecules should be included
in this dataset, we balanced representation of typical highly oxygenated sul-
fur molecule motifs with very unstable, semi-randomly generated, molecules.
The emphasis on unstable molecules might seem odd. However, thermo-
chemistry prediction from a dataset is inherently limited by the nature of
the molecules in the training data, and both experimental and computa-
tional studies often focus on relatively low energy molecules. In contrast,
automatic mechanism generation, in combinatorial fashion, generates a wide
range of structures, from the stable to the extremely unstable. If the datasets
used to predict thermochemistry are disproportionally filled with low energy
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molecules, then the predictions for the energy will necessarily skew low. Thus,
there is an important, and largely unfilled, gap in knowledge about the ther-
mochemical nature of high energy and high valence sulfur species. For this
reason, about 150 molecules that we calculated for this study were randomly
generated, usually creating high energy structures. This was done by start-
ing with a structure such as a sulfur atom double bonded to an oxygen atom
and iteratively adding atoms in a semi-random manner.

Once a list of molecules was selected , their geometries, frequencies, hin-
dered rotor scans, and CBS-QB3 energies (including BACs) were computed .
The thermochemical descriptors (enthalpy, entropy, and heat capacities) were
then calculated using the Arkane software as described in the Methods sec-
tion. We combined these 255 molecules (240 stable, 15 radical) with the low
valence sulfur thermochemistries calculated by Class[32] and Vandeputte[12]
to create a dataset with 440 molecules (368 stable, 72 radical). Using this
combined dataset a group additivity scheme was created and implemented in
the Reaction Mechanism Generator software. T he thermochemical descrip-
tors of all 440 molecules in the dataset are found in Supporting Information.
Additionally, the 255 molecules that were calculated as a part of this work
have their geometries, frequencies, and zero-point energies reported.

3.3. Thermochemistry Prediction

After compiling a dataset of sufficient size, we turned to the problem of
predicting thermochemistry from this information. In this work we fit the
data to a group additivity scheme, not because we believe it is the most
accurate prediction method, but rather because it integrates well with the
automated mechanism generating software that we will use in the creation of
a dimethyl sulfide oxidation mechanism. However, the information provided
could and should be integrated into more sophisticated prediction schemes.
The 368 stable species were fit by adjusting 200 sulfur containing group addi-
tivity values.[35] Non-sulfur containing groups present in the molecules were
were assigned values according to the RMG-database used in mechanism
generation. The 200 group values are included in the Supporting Informa-
tion along with the anticipated uncertainties for their enthalpy component.
Summary and fitting statistics are included in Table 3. The quality of the fit
is emphasized in the parity plots comparing the calculated and fit enthalpy
and entropy of formation shown in Figure 3.

T he 72 radical species were used to generate hydrogen bond increment
(HBI) corrections as defined by Lay et al.[36] This information is organized
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Table 3: Summary statistics for the GAV fit to the calculated values (units of kcal
mol ,

cal
mol K )

Figure 3: Parity plots comparing the calculated thermochemical value and the linear model
prediction

in a tree structure in the version of RMG used in mechanism generation and
conveniently accessible through the Molecule Search Tool at rmg.mit.edu.
Together the stable species group additivity scheme and hydrogen bond in-
crement corrections allow thermochemistry prediction for a variety of sulfur
species.

3.4. Dimethyl Sulfoxide Oxidation

3.4.1. Experiment and Motivation

As a test for our new thermochemistry estimation scheme, we selected the
OH initiated oxidation of dimethyl sulfide. This system was chosen because
the primary products of the reaction span a wide range of highly oxygenated
sulfur structures, from sulfoxides to sulfones to carbonyl sulfide and more.
Further, this is an important system for understanding the formation of
sulfuric acid in the atmosphere. Thus, this test case itself provides value and
insight for pollutant formation. Finally, there are many experimental studies
on this system which provide ample experimental validation and comparison
for the system. [37] [17] [38] [39] [40] Among these the work by Albu, Barnes
et al.[17] will be most rigorously compared, because they provide the largest
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amount of quantitative information about a variety of products across a range
of temperature conditions. A review of the system by Barnes et al. provides
a convenient aggregation of known kinetic and thermodynamic parameters
of the system as well as a general reaction scheme with which to compare
our automatically generated mechanism.[41]

While dimethyl sulfide oxidation seems an ideal comparison system, it
does have challenges. Because the oxidation is at low temperatures small
errors in estimates of transition state energies have large effects on the es-
timates of the rate constants. Further, there is some uncertainty about the
efficiency of the hydrogen peroxide photolysis by the lamps used in the ex-
periments. The lamp forces the reaction as it continuously creates hydroxyl
radicals from hydrogen peroxide. To model this behavior the concentration
of hydroxyl radical was held fixed while solving the concentration profiles.
This precludes any validation of the time scale of reaction (dependent on
the intensity of the lamps), but still allows product profiles and selectivities
to be tested. This also creates uncertainty as the photolyzing lamps could
have affected the chemistry of more than just the hydrogen peroxide species.
The Supporting Information has detailed information about the kinetic in-
formation, from literature or newly calculated, supplied in the mechanism
generation process.

3.4.2. Dimethyl Sulfide Reaction Mechanism

The automatically generated mechanism contains 43 species and 122 re-
actions (included in full with the Supporting Information). A limited set of
the major reaction pathways are illustrated below in Figure 4. Consistent
with previous studies the model identifies two primary pathways by which
the dimethyl sulfide reacts. They differ in importance based on temperature,
with low temperature conditions favoring the addition pathway and its pro-
duction of dimethyl sulfoxide, and the high temperatures favoring hydrogen
abstraction leading to sulfur dioxide products.

3.4.3. Experimental Validation

The selectivity of the four major species observed and quantified by Albu,
Barnes et al.[17] (dimethyl sulfoxide, dimethyl sulfone, sulfur dioxide, and
methyl thiolformate) were compared to the model’s predictions in Figure 5.
Relatively good agreement is found between the experimental results and
the model predictions for 3 of the 4 major species. The remaining sulfur-
containing species that were observed but not quantified by Albu, Barnes et
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Figure 4: A diagram of the key reaction pathways for the oxidation of dimethyl sulfide by
hydroxyl radicals. CH3S(O)OH, OCS and CH2O were observed but not quantified in
the experiments[17][41].

al.[17] also appeared in the model, e.g. carbonyl sulfide and methyl sulfinic
acid. Many of the non-sulfur compounds observed but not quantified in
the experiment also appeared in the model, including formaldehyde, methyl
hydroperoxide, and carbon dioxide. The temperature dependence of the
branching between the sulfur dioxide and dimethyl sulfoxide formation path-
ways also seems to be well captured by the model.

4. Discussion

4.1. Discrepancies between the Model and Experiment

There are some aspects in which our automatically generated model does
not agree with experiments. Most notably the model fails to predict sig-
nificant formation of dimethyl sulfone (DMSO2), one of the major (2 − 4%
selectivity) products. Many pathways to form dimethyl sulfone were explored
in the model, but none proved to have a low enough barrier to lead to the
level of dimethyl sulfone formation reported in the experiments. The path-
ways to dimethyl sulfone that appear in the model are illustrated in Figure
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Figure 5: A. Comparison of the experiment and model at 280K and 1 bar of synthetic air
over the course of the experiment.
B. Comparison of the terminal selectivities of the experiment and model at 260K, 270K,
280K, 290K, and 298K.

6 and the sensitivity analysis in Fig. 7. The transition states and kinetic
details for each of the computed reactions along these pathways can be found
in the Supporting Information. Due to the low temperature of the reaction
system, dimethyl sulfone formation is especially sensitive to barrier heights.
Which, if any, of these paths to dimethyl sulfone is the significant pathway
remains an ongoing question.

Additionally, the model predicts the formation of significant amounts of
thioformaldehyde. This is a product that is not observed in any of the ex-
perimental works. [17] [37] [41] The sensitivity analysis (Figure 8) suggests
that perhaps the hydrogen abstraction of methylthiyl radicals by O2 is be-
ing significantly over-predicted. Alternatively, the reactivity of the CH2S
species could be underpredicted or the species could have been missed by the
experimental analysis technique.

Finally, there are several minor discrepancies between the experiments
and the model. For example, some experiments have suggested that sulfur
dioxide is produced by both the hydroxyl addition and hydrogen abstrac-
tion pathways.[37] This is not reflected in our model, with the overwhelm-
ing majority of the sulfur dioxide formed through the hydrogen abstraction
pathway. The missing addition pathways are thought to occur through the
formation and decomposition of methanesulfinic acid.[41] Experiments per-
formed in the absence of oxygen[17] are also not accurately represented by
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Figure 6: Pathways for dimethyl sulfone formation in the model. None fully explained the
dimethyl sulfone formation observed in the experiments.

the model presented here as many of the crucial model oxidation pathways
require molecular oxygen.

4.2. Sensitivity Analysis of Major Species

As has been seen with thioformaldehyde, sensitivity analysis provides in-
sight into what kinetic parameters and species thermochemistries have the
largest effects on the concentrations of model species. In Figures 9 and 10,
sensitivity analysis reveals the most important species and kinetic factors
for the highest concentration observable species, dimethyl sulfoxide and sul-

fur dioxide, respectively. T he reactions and species on these lists of most
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Figure 7: Top three most sensitive kinetic and thermodynamic parameters for dimethyl
sulfone formation. Thermodynamic sensitivities are reported in units of mol

kcal .

Figure 8: Top three most sensitive kinetic and thermodynamic parameters for thio-
formaldehyde formation. Thermodynamic sensitivities are reported in units of mol

kcal .
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sensitive parameters have either experimentally determined or explicitly cal-
culated kinetics and thermochemistry. As such, we believe the uncertainties
in their parameters to be relatively small.

Figure 9: Top three most sensitive kinetic and thermodynamic parameters for dimethyl
sulfoxide formation. Thermodynamic sensitivities are reported in units of mol

kcal .

5. Conclusion

Methods for estimating thermochemical parameters for a wide range of
C/H/O/S species were incorporated into the Reaction Mechanism Generator
(RMG) software suite. These results illustrate that RMG is now capable
of automatically creating reasonable kinetic models for systems containing
highly oxidized sulfur species. Further, this work illustrates how automatic
mechanism generation software could be further expanded to other systems
of interest.

A detailed kinetic model of dimethyl sulfide oxidation was also created
and analyzed. While generally validated by experimental observations, a few
discrepancies were observed. These discrepancies invite the creation of mod-
els of even further complexity, especially exploring the low temperature gen-
eration of dimethyl sulfone.
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Figure 10: Top three most sensitive kinetic and thermodynamic parameters for sulfur
dioxide formation. Thermodynamic sensitivities are reported in units of mol

kcal .
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Graphical Abstract

Here we present a thermochemistry prediction scheme for oxygenated
sulfur molecules and the application of this scheme in the automatic cre-
ation of a reaction mechanism describing the oxidation of dimethyl sulfide.
Keywords: Automatic Mechanism Generation, Computational Chemistry,

Dimethyl Sulfide, Kinetics, Thermochemistry
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