Nonlinear three-dimensional waves
on water of varying depth

By J: - eph Mathew

B.Tech. Indian Institute of Technology, Madras
(1984)

M.S. University of Missouri-Rolla
(1986)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the
Massachusetts Institute of Technology

June 1990

(© Massachusetts Institute of Technology 1990
All rights reserved

Signature of Author —

_Djpa-(tdlen"t lof Mechai: a Fngineering

April 24 1990

Certified by

i Padll o
. /f‘rianta.phyllos ‘Fg-k_ws
Associate Profeéso?/of Mechanical Engineering
Thesis Supervisor

Accepted by _

Ain Ants Sonin
Chairman, Departmental committee for graduate studies.

MASSACHUSET 7S INSTITUTE
OF TECHNN Ny

AUG 14 1990 1

LIBRARIES

ARCHIVES



Nonlinear three-dimensional waves
on water of varying depth

By Joseph Mathew

Submitted to the Department of Mechanical Engineering,
on April 24 1990,
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Mechanical Engineering.

ABSTRACT

Nonlinear effects in three-dimensional water waves that propagate in wide channels with
sloping sidewalls, and along the shoreline of a sloping beach, have been studied.

A theoretical model is presented for the propagation of long, weakly nonlinear water
waves along a channel bounded by sloping sidewalls, on the assumption that hgo/w <
1, where 2w is the channel width and hg is the uniform depth away from the sidewalls.
Owing to the non-rectangular cross-section, waves are three-dimensional in general, and the
Kadomtsev-Petviashvili equation applies. When the sidewall slope is O(1), an asymptotic
wall boundary condition is derived that involves a single parameter, A = A/hZ, where 4 is
the area under the depth profile; for milder slopes that are O(ho/w)'/?, the corresponding
wall boundary condition depends more seriously on the depth profile. The model is used
to discuss the development of undular bores in channels of trapezoidal cross-section with
sidewall slopes that are O(1); the theoretical predictions are in close quantitative agreement
with previous experiments and confirm the presence of significant three-dimensional effects,
not accounted for by previous theories. Furthermore, computations show that the nature of
three-dimensional upstream disturbances excited by transcritical forcing, for -1 < A < 1,
depends crucially on A, and is closely related to the three-dimensional structure of the
corresponding periodic waves of permanent form.

It is demonstrated using small-amplitude expansions that periodic edge waves, which
propagate along the shoreline of a beach and are trapped in the offshore direction according
to linear theory, can be attenuated by radiation of oblique waves out to sea owing to non-
linear self-interactions. Necessary conditions for such radiation to occur are obtained for a
few beach profiles whose edge-wave dispersion relations are known in closed form. In partic-
ular, it is shown that quadratic nonlinear interactions cause the second edge-wave mode on
a uniformly sloping beach of slope a to radiaie when -11§7r <a< %r; a detailed derivation
to find the amplitude of the radiated wave and the attendant decay rate of the edge wave
is presented, using the full water-wave theory. Also, it is pointed out that a concomitant
nonlinear mechanism can transfer energy from incoming oblique waves to subharmonic edge
waves—a plausible mechanism for the generation of travelling edge waves in coastal waters.
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Title: Associate Professor of Mechanical Engineering
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CHAPTER 1
INTRODUCTION

Water waves are among the most widely observed of natural phenomena. It is possible
to study water waves in the laboratory, and some of their varied manifestations are amenable
to detailed theoretical treatment. Yet, over the considerable span of research in this area,
there have been some discoveries that suggest that more curious and interesting phenomena
await discovery.

Water waves arise due to the restoring forces of gravity and surface tension, though the
latter can usually be neglected unless the wavelengths are small (on the order of a few cm).
The associated fluid motions are largest at the free surface and diminish with depth, the
penetration depth being of the order of the wavelength. The classical gravity-water-wave
theory neglects viscous effects, but still finds a difficult nonlinear problem. The nonlinearity
is due to the free surface being an unknown boundary of the domain whose location must
be determined as part of the solution. Accordingly, theoretical progress has been possible
largely, though not solely, in the study of small-amplitude (linear) waves.

Some characteristics of water wave propagation can be understood from the linearized
theory. For example, these are dispersive waves: linear sinusoidal wave modes that comprise
surface disturbances will each travel with a slightly different group velocity so that long
waves can be seen travelling ahead of short waves. Three-dimensionality is evident when
the water depth is varying or when there are obstacles in the path of propagation. If
the depth variation is mild, the resulting refraction may be obtained by constructing rays,
borrowing from the theory of geometrical optics, and in the presence of obstacles, waves
undergo scattering. Of particular relevance to this thesis is the uniquely three-dimensional
feature of wave trapping in the vicinity of sloping beaches.

It has long been recognized that the linear theory must be supplemented by addressing
the essentially nonlinear nature of water waves. There exist theoretical findings showing
qualitative differences due to nonlinearity, and observed phenomena, such as wave breaking,

cannot he explained by linear models. Stokes (see Whitham 1974, §13.13) found that



plane nonlinear periodic waves are possible and that the dispersion relation includes wave-
amplitude dependence; these waves are periodic but not sinusoidal in that higher harmonics
are present as in the Fourier expansion of a general periodic function. A tractable nonlinear
approximation is obtained in the shallow-water limit (Whitham 1974, §13.10) which predicts
wave steepening and the onset of breaking. Although the model has drawbacks in as much
as it predicts that all wave fronts with negative slopes steepen and eventually break, and the
modelling assumption of large wavelengths ceases to be valid for steep waves, nonetheless,
it reveals steepening to be a uniquely nonlinear effect. By assuming both wave amplitude
and water depth to be small, but finite, plane (two-dimensional) waves can be modelled
by the Korteweg-de Vries equation (KdV). The KdV equation admits periodic waves called
cnoidal waves, which have sharp crests and broad troughs and the solitary wave is obtained
in the limit that the period becomes infinite. The latter is physically unusual in that it
is a single mound of elevation, confined to a finite region, the tails decaying exponentially.
More importantly, solitary waves are extremely stable states with unusual mathematical
properties. In particular, their wave speed increases with amplitude, and a faster moving
solitary wave can overtake one of smaller amplitude without change of form—in fact, to
emphasize this particle-like behaviour of preservation during collisions, solitary waves are
also referred to as solitons. Solitons continue to appear, both in water-wave theories as well
as in other physical contexts (see Ablowitz & Segur 1981, fer examples).

Water-wave phenomena that are three-dimensional and nonlinear are more complicated,
but some theoretical understanding has been achieved. One can develop approximate theo-
ries using perturbation methods; also, as high-speed digital computers become increasingly
available, it is possible to find numerical solutions. However, direct numerical solutions are
not necessarily revealing, nor always feasible: three-dimensional grids that can adequately
resolve the smaller scales of nonlinear problems lead to large systems of equations. So,
sophisticated approaches that incorporate the expected behaviour of the solution become
necessary for efficient numerical schemes. Often, periodic waves of permanent form are

studied, or periodic boundary conditions are imposed, to restrict the computational do-



main. Still, in general, integration of three-dimensional, nonlinear initial-value problems
remains quite an expensive task, and theoretical models that can reduce the complexity of
these problems are desirable.

One area in which nonlinear three-dimensional waves have been studied with success is
the propagation of long waves in a channel. The impetus for some of the recent work (see,
for example, Wu 1987; Akylas 1988 and references given there) comes from experimental
observations of certain forced wave phenomena. The experiments involved a forcing moving
at transcritical speeds in rectangular channels. These speeds are in the neighbourhood
of the phase speed, co, of linear long waves in water of constant depth_ and the forcing
has been a model ship in a towing tank (Ertekin, Webster & Wehausen 1984), or a small
bump on the tank bed (Lee, Yates & Wu 1989). According to linear theory (Whitham
1974 §12.3), when the forcing travels at a speed U < ¢o, waves with phase speed equal to
U will appear stationary and can be found behind the forcing; when U = co, the group
velocity, which is the velocity at which the excited waves transport energy, vanishes in
the frame of reference in which the forcing is stationary and therefore, the response in
the vicinity of the forcing grows without bound (Akylas 1984); at higher speeds, U > co,
there remains no wave disturbance for long times. In no case is a disturbance expected
to propagate upstream of the forcing. Surpriéingly, in the experiments, a strong upstream
response is seen, consisting of a uniform train of waves of elevation. Furthermore, even
when the forcing is thin, hence three-dimensional, the upstream waves are two-dimensional.
Although this phenomenon has now been theoretically understood by including nonlinear
effects, it is clear that if the channel cross-section is not rectangular, even the upstream
waves must be three-dimensional. Accordingly, in chapter 2, a theory for long nonlinear
waves in wide channels with sloping sidewalls is developed in which, the effect of the depth
variation at the sidewalls is characterized by a single parametcr for wall slopes that are
O(1). Numerical studies then show that the three-dimensional structure of the upstream
waves excited by a slender pressure distribution, as well as that of the corresponding free

periodic waves, depends crucially on this slope parameter. The theory can also be used

10



to study the development of three-dimensional, undular (laminar) bores; we have obtained
results that are in close quantitative agreement with existing experimental data.

The second part of this thesis is concerned with a nonlinear effect in edge waves. Edge
waves are waves trapped by a sloping beach such that they propagate along the shoreline
and their amplitudes diminish in the offshore direction. As in the case of waves in channels
with sloping sidewalls, the three-dimensional character of edge waves arises due to depth
variation in the direction normal to that of propagation. The first known solution is due to
Stokes (1846; see Lamb 1945, §260) for the fundamental edge wave on a uniformly sloping
beach. Lamb had catalogued this solution but did not expect edge waves to occur in nature;
after all, edge waves are markedly different from the commonly observed waves on beaches.
Munk, Snodgrass & Carrier (1956) reported the first indications, from wave records, that
very long edge waves (wavelength ~ 200-400 km) could be present in coastal waters in
the aftermath of storms. More recently, field observations (Bowen & Inman 1971; Guza &
Inman 1975) and nonlinear analysis (Guza & Bowen 1976) suggest that shorter edge waves
(wavelength =~ 300 m) could be responsible for longshore periodic beach forms, such as
crescentic sand bars on the sea bed near coastlines, and beach cusps.

The effect of nonlinearity on travelling edge waves—at least for small amplitudes—has
been thought to be mild: Whitham (1976) found for the Stokes edge wave, an amplitude
dependence in the dispersion relation, similar to Stokes’s result for plane waves (Whitham
1974 §13.13), and like the linear mode, the higher harmonics were exponentially decaying,
far out at sea. Also, it was noted that the rate at which the edge wave amplitude decayed in
the offshore direction decreased with amplitude. We find, however, that in certain situations,
nonlinear self-interactions of a finite-amplitude edge wave generate higher harmonics that
are waves travelling out to sea; consequently, in these situations, finite-amplitude edge waves
are attenuated by radiation. Moreover, a concomitant nonlinear mechanism of excitation
of progressive edge waves is also possible and the details of this process are presented.

Finally, in chapter 4, a study of nonlinear shallow-water edge waves of permanent form

is presented; the mechanism of radiative damping, mentioned in the previous paragraph, is
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not exhibited by this model. For a beach whose slope decays exponentially so that water-
depth remains small compared with wavelength everywhere, a numerical integration of the
nonlinear shallow-water equations shows that the phase speed increases with amplitude,
in agreement with the predictions of a perturbation approach at small amplitudes, and
then departs uniformly with further increase in amplitude. The calculations were not very
successful as it could not be resolved is to whether the failure in the numerical solution
beyond a certain amplitude was suggestive of a physical limit: an edge wave of greatest

elevation, analogous to the known limiting form for plane waves.
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CHAPTER 2

WAVES IN CHANNELS WITH SLOPING SIDEWALLS

2.1 Introduction

In narrow channels of uniform, but arbitrary, cross-section—those in which the channel
width is comparable with water depth—waves are quasi-two-dimensional; a relatively small
spanwise variation in the wave elevation is present, but wave crests remain straight and the
KdV equation is still valid to leading order (Peregrine 1968; Fenton 1973). Peregrine (1968)
noted, however, that the KdV theory breaks down when the channel width is much larger
than the water depth; as the channel width is increased, spanwise variations become rela-
tively large, giving rise to non-uniformities in the perturbation expansion. This is consistent
with the earlier experimental observations of Sandover & Taylor (1962), who had studied
the development of undular bores in trapezoidal channels of moderately large width—about
six to seven times the water depth. They pointed attention to the three-dimensional struc-
ture of wave disturbances; in particular, the presence of wave-crest curvature across the
channel and the tendency for waves to have irregular forms (except at very low discharge)
cannot be explained by the KdV theory (Fenton 1973).

In §2.2, a theoretical model is presented for long waves propagating along a channel
of uniform non-rectangular cross-section, allowing for the presence of significant three-
dimensional effects. The channel is assumed to be wide, ho/w <« 1, where 2w is the
channel width at the undisturbed free surface and hg is the constant water depth away
from the sidewalls. The approximate governing equations and boundary conditions are
derived from the full water-wave theory, using matched asymptotic expansions: the main
body of fluid, away from the sloping boundaries, forms an ‘outer’ region where waves sat-
isfy the Kadomtsev-Petviashvili equation (KP), so that three-dimensional effects balance
with nonlinear and dispersive effects; close to each sidewall, where the depth varies, there

is an ‘inner’ region. Matching between the corresponding inner and outer expansions gives
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the appropriate asymptotic boundary condition for the KP at each sidewall, depending on
the relative size of the inner region: when the wall slope is O(1), as in the experiments
of Sandover & Taylor (1962), this boundary condition involves only a single parameter,
A = A/h%, A being the area under the depth profile; for wall slopes O(hg/w)}i, the inner
region is relatively thicker, and the appropriate boundary condition has a different form
which depends more seriously on the details of the depth profile, Finally, when the wall
slope is very gentle, O(ho/w), there is no distinction between an inner and outer region any
more, and one can use a KP with variable coefficients to account for depth variations; this
possibility has been discussed in a number of recent studies (see, for example, Kirby, Philip
& Vengayil 1987; David, Levi & Winternitz 1989) and will not be considered here.

The present theory is used, first, to discuss the development of an undular bore in
channels with trapezoidal cross-sections, modelling the experimental set-up of Sandover
& Taylor (1962). The theoretical predictions confirm the presence of significant three-
dimensional effects, and are in quantitative agreement with experiment until wave breaking,
which is not taken into account in the theory, occurs.

Next, the response to a slender pressure distribution, moving with transcritical speed
at the free surface along the channel centerline is investigated. As indicated earlier, in a
channel with vertical sidewalls, there is a strong upstream response that is two-dimensional,
and the presence of sloping sidewalls, indeed, causes the upstream disturbance to be three-
dimensional. However, quite remarkably, as the parameter A is increased (0 < A < 1), the
regular, periodic form of the upstream response found in a channel with vertical sidewalls
(A = 0 ) disappears, and then reappears, while the individual waves acquire a far more
complicated, three-dimensional structure. It seemed plausible that, despite the apparent
disorder in the upstream free-surface elevation for positive values of A < 1, some average
measure such as the wave-resistance coefficient might be nearly periodic. It turns out that
there is a certain regularity in the variations of the drag coefficient but not the uniform
periodicity found with rectangular channels. More importantly, the drag coefficient varies

over a wider range in the process of generating an upstream wave compared with its values
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for a channel of rectangular cross-section.

The loss and reappearance of uniformity in the upstream response seems to be related to
the three-dimensional structure of periodic nonlinear waves of permanent form—-numerically
obtained solutions over the range (0 < .A < 1) are discussed in §2.5. Also, a perturbation
study for small A suggests that three-dimensional waves, which correspond to the KdV
solitary waves when A = 0, are no longer localized because there are small, but finite,
oscillatory tails consisting of channel cross-modes.

The parameter A is negative when the cross-sectional area of the channel is greater
than that of a similar channel whose depth remains the same constant value ho even near
the sidewalls. The problems studied in §§2.4, 2.5 are re-examined in §2.6 for -1 < A < 0;
the shape of the waves is now quite different from that obtained for A > 0, and also, the

upstream wavetrain is more nearly uniform over the entire range of values studied.
2.2 Theoretical model

Consider an infinitely long channel of uniform cross-section. Cartesian coordinates are
chosen such that y is directed vertically upward, z is along, and z is across the channel.
The undisturbed free surface is at y = 0, 0 < z < Zw, where 2w is the channel width
and the rigid bottom is at y = —h(z/B). The cross-section is assumed to be such that the
undisturbed water depth is a constant ho everywhere, except in the vicinity of the sidewalls
where it decreases from ho to zero over a distance O(B) with B « w (see figure 2.1).

In setting up this asymptotic theory, it is most convenient to consider the generation of
long waves by a pressure distribution moving with transcritical speed along the channel at
the free surface; the propagation of free waves can then be formulated as a special case. In
the frame of reference following the applied pressure p, a uniform current of speed U exists in
the water. Assuming inviscid, irrotational flow, gravity waves are described in terms of the
free-surface elevation y = 7(z,2,t) and the velocity potential & = Uz — -%U% + é(z,y,2,1).

The velocity potential satisfies Laplace’s equation in the fluid
Bop+ By + B, =0 (—h(%) <y<n 0<z<2w), (2.1)
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FicURE 2.1 Channel cross-section.
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subject to the kinematic and dynamic boundary conditions at the free surface
N+ P +8:m:=2, (y=n), (2.20)

O +1|Ve|>+gn=-p/p (y=n) (2.2b)

and the kinematic condition on the channel bed and sidewalls
Vé.n=0 (y= —h(%)); (2.3)

here g is the gravitational acceleration, p is the pressure in excess over the atmospheric
pressure, p is the water density, and n is the direction normal to the channel walls and bed.
Using a typical wavelength L, a typical wave amplitude a, and the linear long-wave speed,
co = (gho)'%, for water of uniform depth hg, all quantities are cast in dimensionless form

(primed variables),

z=1Lz', y=hoy, z=ho?, t= (ci) t', n=an’, h=hoh,
0

¢ = (af:(’) ¢, p= (a—;‘:’)—p) P,

and then, for convenience, the primes are dropped. Equations (2.1)-(2.3) then read

“2¢zz + by + 622 =0 (-h(Bz)<y<en, 0<2z< 20),

e+ (F + €dz)n: + %dwz = %d', (y = en),
$+ Fo- +n+ %;‘5(#2452 +ei+el)=—ep (y=en),
Vé-n=0 (y=—h(B2).
Note that, apart from the Froude number F' = U/co, the long-wave parameter u = ho/L,
and the nonlinearity parameter € = a/hg, two additional independent dimensionless param-
eters arise:

b ke,

- = y

B "W
B is a measure of the slope of the channel sidewalls, while o measures the channel width
relative to the water depth and, as will be seen shortly, also controls three-dimensional

effects.
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Attention is now focused on weakly nonlinear, long waves propagating along a wide
channel; thus, the parameters ¢, z and o are taken to be small (¢,u,0 < 1). Moreover, as
already indicated, it is assumed that the channel cross-section is such that depth variations
are confined close to sidewalls (¢/8 = B/w € 1), which then suggests the use of matched

asymptotic expansions.
2.2a QOuter ezpansion

The main part of the channel, away from the sloping boundaries (1/8 € 2z <« 2/0 - 1/8)
forms an outer region where the water depfh is uniform. Katsis & Akylas (1987a) have
developed an asymptotic theory for long waves excited by a pressure distribution moving
at transcritical speed on water of uniform depth; as the analysis in the outer region follows
closely that of Katsis & Akylas (1987a), only the main results will be highlighted here.

At transcritical Froude number, F = 1 + Au? (A = O(1)), waves evolve on the ‘slow’
time T = p?t owing to weak nonlinear, dispersive and three-dimensional effects, which are
taken to be equally important. To include nonlinearity and dispersion at the same order,
the choice ¢ = p? is made; furthermore, a balance with three-dimensional effects is achieved
by introducing the stretched (outer) spanwise variable Z = €z, so that waves propagate
predominantly along the z-direction. Based on these scalings, three-dimensional effects are
expected to become appreciable when the channel is sufficiently wide, such that the extent
of the outer region, in terms of Z, is O(1):

w

0=0() or W=c¢
ho

= 0(1). (2.4)

Now, in terms of the scaled coordinates, Laplace’s equation for ¢ and the bottom

boundary condition at y = —1 give
€ 2 €’ 4 e 9
¢($’ZaT; y) = f(z’ZaT) - a(y + 1) fz:z + Zi(y + 1) fxr:r:r - ?(3} + 1) fZZ + -+, (2.5)
The free-surface boundary conditions at y = en then imply that f is related to 7 through

n= _fl‘ + € (—P + %fxrz - fT - ’\fr - %fg) + 0(62)a (2°6)
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and 7 satisfies the forced KP equation:

Nz + AMzz — %(7]2)::: - '(l.;nzz'zz - %QZZ = %P:u: (0< Z <2W). (2.7)

In order to complete the formulation in the outer region, one needs to supplement (2.7)
with boundary conditions at Z = 0, 2W. The appropriate boundary conditions will be
obtained by matching the flow near the sidewalls with the outer flow. In preparation for
this matching, it follows from (2.5) and (2.6) that the inner limit of the outer flow as Z — 0%
is

¢ ~ f(2,0,T) + € [2fz — (3 + 1)* fuz] + O(%), (28a)
N~ —f2(2,0,T) + € [} fozz — 2foz — fr — Mz = 3£2]1+ O(E%); (2.8b)

for simplicity, it has been assumed that p(z, Z) is localized close to the channel centerline

(Z = W), and, thus, makes no contribution to 7 in (2.8b).
2.2b Inner erpansion

It turns out that the form of the inner expansion and the resulting boundary conditions
depend on the magnitude of the slope parameter 3. When 8 = O(1), the extent of the
inner region is O(ho), which is small compared with both the channel width 2w and the
typical wavelength L. On the other hand, if § = O(e%), the extent of the inner region is
now comparable with L (but still small compared with 2w); so, on physical grounds, one
would expect that in the latter case, the outer flow will be affected more seriously by the
details of the depth variation close to the wall, and this should show up in the corresponding
boundary conditions. First, the wall boundary condition for 8 = O(1), which is appropriate
for comparing with the experiments of Sandover & Taylor (1962), will be derived. The case
8 = O(e?) will follow in §2.2c¢.

For 8 = O(1), the appropriate inner spanwise variable is z in the region close to the

sidewall where Z — 0%. The governing equation is Laplace’s equation
€Pzz + by + #2: =0 (=h(z)<y<0, z>0), (2.9)
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subject to the free-surface boundary conditions, correct to O(e),

¢y = 6(77:!: + ¢.n. — ¢yy77) (y = O)a (2'10‘1)

b + 1+ 3(¢82 + 62) = —elbr + Aps + 303 + n(¢) + 62)y + 19z) (¥ =0), (2.100)
the bottom boundary condition

¢y +het: =0 (y=-h(2)), | (2.11)

and the matching conditions (2.8 a, b) as z — oo. (In (2.9), the depth variation is specified
as y = —h(z), rather than y = —h(Bz2), since 8 = 0(1).)

By expanding ¢ and 7 in powers of ¢,
p=dot+epr+e¥dp+--, N=To+em+eEnt -,

and substituting into equations (2.9)-(2.11), a hierarchy of linear problems is obtained.
To O(1), taking into account (2.8a, b), it is readily found that ¢o = f(z,0,T), mo =

—fz(2,0,T). Proceeding to O(¢), we write

hr=2fz-3y+ 1) fer+u (Z=0), (2.12)
so that u satisfies
Uy + 2 =0 (-h(2)<y<0, 2>0), (2.13)
u, =0 (y=0) (2.14a)
uy+hou, = (1= h)fez — b fz (y=—h(2)), (2.14b)

and, in view of (2.12), the matching condition (2.8 a) becomes
©—0, (z— 00). (2.15)

The boundary-value problem for u, consisting of Laplace’s equation (2.13) subject to the
Neumann conditions (2.14) and the matching condition (2.15), has a solution if the com-

patibility condition
fz:r/ (l_h)dz—fZ/ h.:dz2=0 (Z=0),
0 0
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which follows from Green’s theorem, is satisfied; or, in terms of n = — fz 4+ O(¢),
nz = Anzz (Z =0), (2.16)

where
A= [Ta-me
(i

is the difference in cross-sectional areas near the sidewall, between a channel of constant
unit depth everywhere and a channel whose depth varies as y = —h(z). So A can be
positive or negative depending on the relative magnitudes of these cross-sectional areas.
Note that the outer flow is insensitive to the exact geometry of the sidewalls; of course, if
the sidewalls are vertical, A = 0 and the familiar no-flux boundary condition used by Katsis
& Akylas (1987a) is recovered. Condition (2.16) ensures that matching between the inner
and outer flow is possible and this completes the formulation of the outer flow; it consists of
the forced KP equation (2.7) subject to the boundary condition (2.16) at the two sidewalls,
Z=0,2W.

It is worth noting that the propagation of long waves along a sloping beach (with
B = O(1)) can be discussed as a special case of the present formulation; the KP equation
(2.7) applies in Z > 0 and the boundary condition (2.16) holds at Z = 0. In particular,

linear sinusoidal wave modes (in the absence of forcing, p =0, A = 0),
n = E(Z) expli(kz + wT)),
satisfy Ezz+PE=0 (Z>0),
2 1.3
I° = 2k(w + Ek )y
subject to the boundary conditions
Ez = -kK*AE (Z=0)

and E bounded as Z — oo. This boundary-value problem for E has two kinds of solutions:

for

k3 )
w=-=(+4%, (2.17a)
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and A > 0, there is an edge-wave mode (E — 0 as Z — 00),
E = exp(—k’AZ); (2.17b)

for w > —%k" there is a continuous spectrum representing waves that are the obliquely

incident and reflected waves at the beach,

. l _
E =sinlZ - mcoslz. (2.18)

The dispersion relation (2.17a) is in agreement with the earlier work of Grimshaw
(1974), who studied linear long edge waves in an ocean of finite depth; in chapter 3, the edge-
wave mode (2.17) will be used to illustrate radiative damping and excitation of progressive

edge waves.
1
2.2 ¢ Wall boundary condition for 8 = O(€?)

When g3 = O(e% ), the analysis presented in §2.2b needs to be modified. Here the main steps

in the inner expansion which lead to the modified wall boundary condition are presented.
The wall slope being smaller, the inner region is now described in terms of a new

spanwise coordinate Z = e%z, and the rigid bottom is at y = —h(Z). In terms of the inner

variables, the governing equations, correct to O(¢), are

€(Pzr+ Ps:)+ Gy =0 (-h<y<0, 2>0), (2.19)

&y = €(nz — ¢yyn) (y=0), (2.20a)

b + 1+ 362 = —e(dr + Moz + 162 + ndydyy +10z) (¥ =0), (2.205)
¢y = —€hsp:  (y = —h(2)), (2.21)

together with the matching conditions (2.84, b) as # — o0o. To solve this problem we write
¢ =x(z,%,T) - ev(z,y,2,T)+ -+,
and upon substitution into (2.19)-(2.21), it is found that v satisfies
Vyy = Xzz + X3z (-h<y<0, 2> 0), (2.22)
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vy, = Xzz (¥ =0), (2.23)
v, = hsx; (v = —h(2)). (2.24)
In addition, the matching condition (2.8 a) implies

x~f+etif; (Z2=0, 5— o), (2.25)
v 3y + 1) ee = 15222 (2=0, 2 o). (2.26)
The solution of (2.22)-(2.24), consistent with (2.26), is
v =3y + 1)?xzz + 307 xsz — 372 f22,
subject to the compatibility condition
(hxz)s 4+ (h=Dxzz =0 (2> 0). (2.27)

Note that h = 0 at the shoreline = 0, so that in general, solutions of (2.27) are expected to
be singular there; requiring that x is regular at Z = 0 and imposing the matching condition
(2.25) determine the desired boundary condition at Z = 0 for the outer flow. The details
depend on the specific depth profile h(Z); here, the particular case of exponential depth

variation,

h(3)=1-e"%, (2.28)
is worked out. Taking Fourier transforms in z, the solution of (2.27) is
00 ' .
Y= / £(k: 3,T) €= dk,
-00

where x satisfies

(hx:): + K21 -R)x =0 (2> 0). (2.29)

Now, for the exponential depth profile (2.28), the solution of (2.29) that is regular at Z =0
can be related to hypergeometric functions (Ball 1967; see also §4.2a), and its asymptotic

behaviour as z — oo is found to be
X~ D(1-K(k)z) (22— o0), (2.30)
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where D is, as yet, an unspecified constant and

1
27 + ¥(ay) + ¥(a-)’

here ® is the digamma function (Abramowitz & Stegun 1964, p. 258), 7 is Euler’s constant,

K(k) =

and

1
ay = 3 £ 3(1+4K%)2.

Comparing (2.30) with (2.25), matching is achieved if
1. .
e2fz+K(k)f=0 (Z=0), (2.31)
or, equivalently in terms of n = — f; + O(¢), if
1 o0 .
€2nz + K(k)je**dk=0 (Z =0). (2.32)

So, when § = O(e% ), the wall boundary condition takes the integral-differential form (2.32).
Note that dropping the O(e%) term in (2.31), (2.32) is inconsistent close to the zeroes of
K(k) at

k=4(mm+1)? (m=1,23,..)

these are the cut-off wavenumbers of edge-wave modes found by Ball (1967). The form of
the boundary condition (2.32) remains valid for any depth variation h(Z), but the function

K (k) will depend on the particular depth profile.
2.3 Undular bore

Suppose that in an infinitely long, uniform channel there is a gate that separates water
at two different levels on either side. If the gate is suddenly removed, water advances into
the region of lower depth forming a bore. It has been observed experimentally that, when
the ratio of initial water depths exceeds a threshold value (of about 1.28), the resulting bore
is short and turbulent, while below this threshold, it is laminar and consists of undulations
(see, for example, Lighthill 1978, §2.12). In the latter case, one can use long-wave theory

to describe the development of a bore because the undulations are long compared with the
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- water depth. In a channel with rectangular cross-section, where the waves are straight-
crested, KAV theory predicts that an undular bore ultimately develops into a train of
cnoidal waves of slowly varying amplitude and period, the leading wave being a solitary
wave (Peregrine 1966; Fornberg & Whitham 1978). Three-dimensional hores were studied
in the laboratory by Sandover & Taylor (1962) in channels with trapezoidal cross-sections.
Here, data from their experiments are used to make some comparisons with theoretical
predictions based on the asymptotic theory developed in the previous section for wall-slope
parameter 8 = O(1).

The formulation of the bore problem follows as a special case of the discussion in §2.2.
As there is no forcing, p and ) are set equal to zero in (2.7); furthermore, assuming that the
channel is symmetric, it suffices to consider half the channel, 0 < Z < W, and in addition

to the boundary condition (2.16) at Z = 0, impose a symmetry condition at Z = W:

Mz — %(7)2):: - %nzzzz - %1722 =0 (-o<z<o0, 0<Z<W), (2.33)
nz = Anzz (Z = 0), (2.34 a)
nz=0 (Z=W). (2.34b)

The appropriate initial conditions are
Wz,Z,T=0)=0 (z<0), n(z,2,T=0)=1n% (z20), (2.35a)
while far upstream and downstream the conditions
=0 (x——-00, T>0), n—1n (z—o00, T>0), (2.35b)
apply, where 7 is the initial difference in water levels.

2.3a Numerical method

The numerical integration of th initial-boundary-value problem (2.33)-(2.35), was per-

formed using the explicit, conditionally stable finite-difference scheme of Katsis & Akylas
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(1987 a). Spatial derivatives were approximated by centred, second-order difference formu-
lae, except for the derivative with respect to Z in the wall boundary condition (2.34a)
which was represented by a first-order difference formula. The algorithm is described in
Appendix A, but for a detailed study, the reader should consult Katsis (1986). It is noted
here that Katsis (1986) had tested the scheme against an analytical, similarity solution of
the KP.

Special care was taken that the necessarily finite extent of the computational domain
did not affect the results presented here. The upstream boundary, z = r_, presents no
difficulty—the domain can be extended to include any disturbance of appreciable ampli-
tude. It is not feasible to extend, on the other hand, the downstream boundary of the
computational domain, z = z, to include at all times the entire region wherein an ap-
preciable disturbance exists; however, the simple device of holding 7 fixed at the end of a
suitably large region was found to be sufficient previously (Katsis & Akylas 1987 a), as long
as the study was confined to the upstream waves: it was observed that there were large
errors near the downstream boundary but that these errors reraained in the neighbourhood
of the downstream boundary. In the present calculations too, this same boundary treat-
ment was found to be adequate; a graph showing the extent of the contamination—quite
small—due to the artificial downstream boundary condition is included in the discussion of
the algorithm in Appendix A.

In addition, it is possible to derive an integral constraint from (2.33) and (2.34) together

with mass conservation:

[ n@2.1)- @27 =0) & =0. (2.36)

The above integral is independent of the spanwise position Z and can be interpreted as a
mass conservation statement along lines of constant Z. This constraint is useful for checking
solutions (see Appendix A for details).

All the results presented below are from computations on a grid with Az = 0.07,
AZ = 0.021 and time step AT = 0.5 x 10~*; the downstream boundary was located at

Too = 17.5.
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2.3b Comparison with ezperiment

Sandover & Taylor (1968) conducted their experiments in channels with trapezoidal cross-
sections, keeping the width at the bed constant at 12 in. while the sidewalls were supported
at various angles 8 to the vertical; also, the still-water depth was kept constant at 3 in.

Thus, in terms of 8, the parameter A is given by
A=1ltané. (2.37)

Wave-height measurements were taken for a range of different discharges, using gauges
which were located at several points across the channel at a distance of 48 ft. from the
inlet. The initial discharge Q, as measured in the laboratory, made dimensionless with

cohd, is related to the parameters 7, A, W and € through
Q = 2W (N + 3enl,) — encoA. (2.38)

The parameter ¢ is specified by normalizing the dimensionless channel width at the free

surface, 2W, to be equal to unity; from (2.4) and the cross-section geometry, one then has

1

€= mn—o) (2.39)

.

-

Numerical computations were carried out for two sidewall inclinations 6 = %w,
Using (2.37) and (2.39), it is found that the corresponding values of A are 0.5, 0.866 and
those of € are 0.167 and 0.134. Figures 2.2a and 2.2 b, respectively, show perspective views
of the computed free surface for § = %w with 7. = 1.08, and for 8 = -§7r with 7., = 1.13,
which correspond to the same value of @ = 1.13 (this gives a discharge of 90 gals/min),
according to (2.38). In both cases, these snapshots are taken as the leading crest of the
bore crosses the streamwise position at which the gauges were placed in the experiment;
the corresponding times turn out to be T = 12.5, 9.5, respectively.

Initially, the step-shaped free surface fissions into a series of undulations, the extent
of which increases with time. An individual wave undergoes the more rapid changes, as

it matures, until the trough separating it from its downstream neighbour is at nearly the
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same elevation as the undisturbed region far upstream; after this point, the changes occur
slowly. The rate at which these waves mature increases with 7, as also the wave steepness.
In these respects, the development of the bore in a channel with sloping sidewalls is similar
to that in a channel with vertical sidewalls, but, as can be seen in figures 2.2a and 2.2,
a considerable three-dimensional structure is now present: wave crests are curved across
the channel and steeper close to the sidewalls, where wave breaking is more likely to occur;
some of the individual wave undulations tend to form a double-hump structure, having
two crests separated by a shallow trough in the middle. There is, at least qualitatively, a
resemblance to the photographs from the experiments of Sandover & Taylor (1962). Also it
is interesting to note that changing A from 0.5 to 0.866 causes the wave pattern to become
more uniform; this feature will be discussed more thoroughly later (see §2.5), in connection
with waves of permanent form.

Turning now to a quantitative comparison cf theory with experiment, figure 2.3 shows a
plot of the leading-wave-crest height at the channel centerline as a function of Q. For both
values of @, the theoretical predictions are in good agreement with experiment, until Q is
large enough for wave breaking to occur in the experiment, which is, of course, not taken
into account in the theory; wave breaking was first observed at Q = 1.5 for § = %ﬁ and at
Q =~ 1.15 for 6 = i, as is evident from the sudden dip of the experimental data points in
figure 2.3, near those values of Q. Figures 2.4 a and 2.4 b show comparisons of the theoretical
with the experimental profiles of the Jeading wave crest along the channel centerline, for
0= -}1r, %11', respectively, and at the same Q = 1.13. Again, the agreement between theory
and experiment is very good; in fact, this provides a rather severe test of the theory because,
as ie clear from experimental observations, changing 6 from %11' to -:'37r alters the wave profile
quite significantly. It should also be kept in mind that, in the experiments of Sandover &
Taylor (1962), the channel geometry does not suggest a very thin boundary region with a
wide core region, as postulated in the model—the values of € are only moderately small.
On the other hand, the good agreement between theory and experiment indicates that the

channel is wide enough for three-dimensional effects to be important.

30



1.5 T T T T
14 o =
. D
a b
» ...D -
o
1.3 ]
5 o]
+ i ]
-y
12 -
X |
1.1 | ﬁ
1.0 1 ] 1 |
0 1 2

FIGURE 2.3 Variation of wave height of the leading crest (at the centerline) of undular bores
with discharge; comparison of theory with experiments of Sandover & Taylor (1962), for
two sidewall inclinations 8; ------ : theory, § = 7 /4; O: experiment, § = m/4; ——: theory,

6 = m/3; o: experiment, 6 = 7/3.

31



£

2.0

1.5

1.0

0.5

0.0

(a)

FIGURE 2.4 a (for caption, see following page)

32



(6)

2.0 || LE ' | ] L

:

FIGURE 2.4 Profiles of leading waves (along the centerline) of undular bores; comparison
of theory with experiments of Sandover & Taylor (1962); ——: theory,—&—: experiment.
(a)0=3%m,T=125;(b)8=1ir, T=95

33



2.4 Upstream response due to transcritical forcing

Consider now the wave pattern generated by a pressure distributi  moving at trans-
critical speed (F = 1). As remarked in chapter 1, this is an intriguing phenomenon and,
for a channel with vertical sidewalls, it is now known (see Wu 1987, Akylas 1988) that,
regardless of the shape of the forcing, there is a strong upstream response which consists of
a uniform train of straight-crested KdV solitary waves. These waves are supercritical and
travel ahead of the forcing; they are also localized, and after one separates from the forcing
the state of the upstream free surface is very nearly like the initial undisturbed state so that
the process can repeat continuously. Of course, it is the presence of vertical sidewalls that
allows these particular waves to form—KdV solitary waves have no spanwise variations, so
the channel sidewalls have to be vertical—and in the context of the present model, it is
of interest to examine the extent to which the upstream disturbance is affected by sloping
sidewalls.

The pressure distribution is assumed to move along the channel centerline and is taken

to have a Gaussian form along z and to be localized in the spanwise direction:
p(z,2) = w%po exp(-z2)6(Z - W), (2.40)

where py is a constant proportional to the total force exerted by the applied pressure and
6 is the Dirac delta function. (The characteristic area covered by the pressure distribution
(2.40) is 7, and por is the total force exerted by the distributed pressure over an infinite
plane.) Assuming, furthermore, that the channel is symmetric and the forcing is turned on
impulsively, equations (2.7), (2.16) and (2.40) then lead to the following initial-boundary-

value problem:

Mz + Mzz — 3(0P)zz = dMezer — 022 =0 (-0 <z <00, 0<Z<W), (24]1)

nz = Anz (2 =0), (2.42a)
nz = %w% po(exp(—z2))zz (Z = W), (2.42b)
n=0 (T=0) (2.43)
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The above problem is solved numerically using the method of Katsis & Akylas (1987a)
with the same resolution as in the bore problem discussed in §2.3, and by normalizing the
channel width 2W to unity. Again, the constraint (2.36), which ensures mass conservation,
was satisfied to within a few percent (see Appendix A, for details).

Computations show the development of the upstream response to follow a simple (over-
all) pattern: initially, the upstream free surface rises in an arc swept back about the forcing
that has been applied along the chanrel centerline, and spreads continuously until the
channel sidewalls are met. Then, the sidewalls appear to support the further growth of the
upstream disturbance into, almost, a wave of elevation which eventually separates from the
forcing. This process repeats and a wave train can be seen travelling upstream, while a
continuously elongating trough appears immediately behind the forcing corresponding to
the mass that has been transferred to form the upstream waves.

Several parameters alter the specific appearance of the upstream response, some more
profoundly than others. As the objective of the present study was to understand how
sloping sidewalls affect the upstream response, the dependence of the new parameter .A—
quite significant—will be discussed in detail below, but the influence of other parameters
is worth noting. (The details of the excitation mechanism are complicated, but a few
qualitative observations can be made.) The intensity of the forcing, po, affects both the
rate at which upstream waves are generated as well as their amplitudes. This can be
understood as follows: we can think of the excitation process as consisting of the forcing
transferring mass upstream and the latter forming into, more or less, a free wave that can
travel faster than the forcing. Lowering the intensity of the applied pressure lowers the rate
at which mass is transferred upstream, so the rate of wave generation decreases. At the
same time, the waves that form can have lower speeds, be of smaller amplitudes, and still
separate from the forcing; in the calculations reported here, po = 10.

The Froude number F is the speed of the forcing, and since upstream waves are those
that travel faster than the forcing, wave speed and simultaneously wave amplitude is seen

to increase with F'; also, it takes longer for a wave of larger amplitude to form and detach.
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The considerable changes in the upstream disturbance that result with changes in A are not
gensitive to the exact value of the Froude number or its equivalent in the present formulation,
). However, as can be seen from linear theory, the phase speed of long waves decreases as
A is increased; therefore, maintaining a constant value of A, say A = 0, causes the resuiting
upstream waves to be increasingly steeper with some possible loss of accuracy, since this
corresponds to the more severe supercritical forcing. Accordingly, the speed of the forcing
was prescribed as the phase speed of linear long waves; when the non-rectangular shape of
the channel cross-section is accounted for, the long-wave speed, measured in the laboratory

reference frame, can be written as (Lamb 1945, §169 )

1
. eA\2 _ €A 3
é= (1 - W) =1-grt. (2.44)

- It follows then that, setting F' = é and normalizing the channel width 2W to unity gives
A= —-A

Numerical solutions suggest that the nature of the upstream response depends crucially
on the value of A. For small A (% 0.1), the individual upstream waves remain straight wkile
wave crests climb and troughs dip near the sidewalls, as expected from the wall boundary
condition (2.42a). On increasing A further, the upstream wave disturbance loses its periodic
appearance entirely and becomes quite disordered. Figure 2.5a shows the response for A
= 0.5 (A = —0.5) at T = 4. Note that the individual waves are quite different from each
other and that there are large spanwise variations. Quite remarkably, as A approaches 1,
consecutive pairs of upstream waves appear to coalesce at the sidewalls and the uniformity
of the wavetrain is regzined. As shown in figure 2.5b for A = 1 (A = —1) at T = 4, each
of the upstream waves has sharp crests at the walls that split into two humps towards the
centerline, and the troughs are nearly flat and broad with very little interaction between
neighbouring waves. A similar tendency for the wave pattern to become more regular can
be observed in the development of a bore also, when A is changed from 0.5 to 0.866 (figures
2.3a and 2.3b). In the following section, it will be shown that this change in wave pattern

is related to the shapes of periodic waves of permanent form.
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Despite the seemingly disordered appearance of the upstream disturbance that results
for intermediate values of A, as can be seen in figure 2.5a, it seemed plausible that soine
average measure such as the wave resistance might be regular and periodic. The wave

rosistance D,,, is the integral
D, = - / pk - dS,

where dS is an area element on the free surface with the normal directed out of the fluid, and
% is the unit vector along the z-axis. A wave-resistance coefficient, Cp can be defined by
normalizing D,, with pc3Lho, since L and hg are the characteristic lengths of the assumed
pressure distribution. Using (2.40) and transferring the integration over the free surface to

integration over the projected area in the zZ-plane gives
o0
Cp= —cgw%po/ exp(—zz)@ dz. (2.45)
oo oz

Figures 2.6 @ and 2.6 b show the variation of the wave resistance coefficient with time T
for A = 0.5 (A = —0.5) and A = 1 (A = —1) respectively. In each figure, as a reference, the
curve corresponding to channels with vertical sidewalls, A = 0 (A = 0), has been included;
however, as the variation in Cp is very nearly sinusoidal when A = 0, only a few cycles have
been shown. When A = 0.5, a fundamental period can be seen, but the modulation follows
no simply discernible pattern. On the other hand, when A = 1, a pattern of repetitive
changes in Cp can be observed easily, though it is far from being simple. It is concluded
that this average measure is not significantly more ordered than the appearance of the
upstream disturbance. There is, however, a more important observation: as can be seen in
figures 2.6 a and 2.6 b the wave resistance fluctuates by two to three times that experienced

in a channel with vertical sidewalls; the mean value decreases, but only slightly.
2.5 Waves of permanent form

As remarked earlier, in a channel with vertical sidewalls, there is a close relation between
the development of an undular bore and periodic waves of permanent form (cnoidal waves),

which, in fact, can be used to construct approximate solutions based on modulation theory
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(Gurevich & Pitaevskii 1974; Fornberg & Whitham 1978); this also turns out to be the
case for the upstream response due to near-resonant forcing, as pointed out recently by
Smyth (1987). Accordingly, in order to gain some insight into these wave phenomena in
the presence of sloping sidewalls—in particular the crucial dependence on A noted in §§2.3,
2.4—here we look for periodic waves of permanent form. To this end, 7 is assumed to
depend on £ = z + cT, c being the phase speed, and on using (2.7) (with p = 0, A = 0),

(2.16) and taking the channel to be symmetric, one has

—cnge + 20 )ee + Ingeee + Inzz =0 (b <€ < b, 0<Z< W), (2.46)
nz = Ange (Z=0), (247a)
nz=0 (Z=W), (2.47b)

where 2&p is the period; furthermore, the water depth is fixed by setting n(§ = §,Z = 0) =
0. When A = 0, cnoidal waves with no Z-variations are solutions of the above system, and
the KdV solitary wave is obtained as a limiting case as the period is increased. Our goal

here is to examine the effect of A on these known wave solutions.
2.5a Numerical results

Equations (2.46), (2.47) are solved numerically using a combination of spectral and finite-
difference methods. Assuming that waves are symmetric about £ = 0, Fourier, spectral
differentiation is used to calculate derivatives with respect to £, while derivatives with
respect to-Z are approximated by second-order finite differences. Thus for given values
of the speed c, slope parameter A, and half-period &, equation (2.46) and the boundary
conditions (2.47) yield a nonlinear algebraic system for the unknown values of 7 at the grid
points, which is solved through Newton’s method. As a check, these numerical solutions were
verified against results obtained independently from a second technique, using a shooting
procedure. The basis for discretization is the same as in the first method—TFourier expansion
in £ and second-order, finite differences in Z; but the desired solution is found by starting

with guessed values for 7 at the centerline Z = W, where (2.47b) is applied, and then

42



marching along lines of constant £ towards the sloping wall at Z = 0. The assumed values
of n at Z = W are systematically corrected through Newton iteration and the marching
procedure is repeated until the wall condition (2.47 @) is also met. Furthermore, for periodic

waves, the constraint analogous to (2.36) is that

o
[, e 2

is independent of Z; the numerical solutions were checked against this constraint (see Ap-
pendix B for further details).

Siarting with the known cnoidal-wave solution at A = 0, continuation in A was used
to compute solution families for A > 0 and for a range of phase speeds, 0.5 < ¢ < 2.5
(the upstream waves shown in figure 2.5 b travel with a speed of, approximately, 2.5). The
channel width 2W is normalized to unity in all cases discussed below, though the waves seem
to be relatively insensitive to changes in W. The period 2§, is taken to be 27; cnoidal waves
having this period and 0.5 < ¢ < 2.5 appear essentially as a series of KdV solitary waves,
with very little interaction between individual crests. Numerical computations indicate
that, as the speed c is increased for fixed A, the wave structure remains qualitatively the
same but, as one would expect, wave crests become steeper and three-dimensional features
such as crest curvature, both in plan and elevation, become more pronounced. Ca the
other hand, varying A gives rise to more dramatic effects: for small values of A > 0, there
appear small oscillatory tails and the crest acquires a depression near the centerline. Figure
2.7 a shows a perspective view of the free surface corresponding to ¢ = 2.5 and A = 0.5, at
which point these effects have become quite strong and the wave has a fairly complicated
three-dimensional structure. With further increase in A, however, the oscillations at the
tails tend to subside resulting in broad, nearly flat troughs for values of A around 1, as
shown in figure 2.7b. These computations were carried out using a resolution of 33 grid
points in 0 < £ < ; in the spanwise direction, 0 < Z < 0.5, 31 grid points were used in the
first case, and 21 points in the second case.

Based on the above numer cal calculations of steady waves, it is now possible to explain

certain features of the unsteady wave patterns noted earlier. In particular, there is a strik-
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FIGURE 2.7 a (for caption, see following page)
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FIGURE 2.7 Periodic waves of permanent form of period 2§y = 2x, speed ¢ = 2.5 and channel
width 2W = 1. (a) A = 0.5; (b) A = 1.0.
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ing similarity between the waves with the double-hump structure found in the upstream
response for A = 1 (see figure 2.5b), and the steady waves shown in figure 2.7} for the
same value of A. Figure 2.7 b also suggests that there is little interaction between waves in
neighbouring periods, so that each of these waves is expected to propagate more or less as
a separate entity; the upstream response shown in figure 2.5b, which consists of a series of
these waves, seems to support this claim. On the other hand, the relatively non-uniform
appearance of the upstream response for A = 0.5 (see figure 2.5a) is probably due to the
large spanwise variations at the tails of the steady waves shown in figure 2.7 a, which cause
individual waves to interact in a complicated way. The same reasoning also seems to pro-
vide an explanation for the more uniform appearance of the undular bore for A = 0.866 as
compared to that for A = 0.5 (figures 2.2a and 2.2b).

A question that has not been addressed so far, is whether solitary waves exist for A > 0.
Assuming that solitary waves can be obtained from periodic waves in the limit that the wave
period becomes large, one could use continuation in & to search for possible solitary waves
numerically; this is a computationally expensive task and will not be pursued here. Another

approach is to use perturbation theory for A < 1, as discussed below.
2.5b Perturbation theory for A K 1
Assuming that A < 1, n is expanded in powers of A:
n(,2) = 19€) + A€, 2) + APnNE 2) + -+, (2.48)
where 7(% is the KdV solitary wave,
7\® = ag sech?aé (2.49a)

with a=(2ap)f, c=a/2 (2.19b)
Upon substitution of (2.48), (2.49) into (2.46), (2.47), it is found that 5{!) satisfies a linear

inhomogeneous problem. It proves convenient to write

21V tZ
M- 22,0 .12 15
n — Mg SIN 5y + (&, 2),
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so that ) satisfies a problem with homogeneous boundary conditions:
(=cii + 3099 + didee + 312z = R, (2.50)

iz=0 (Z=0,W), (2.51)

2
R={en® + 1JV—sm— 3(ng (0))2 (L) 7© :
2W €

The solution of (2.50), (2.51) is posed as a Fourier series

. e nrZ
7= Z_; G™(€) cos —— W

where

which meets the boundary conditions (2.51) automatically. The Fourier coefficients are to

be determined by solving a sequence of ordinary differential equations:
[ CG(") + -n(O)G(") + lG(n)] (‘V) G(r) _ R('n) (n = 0’ 1’2‘ . .)’ (2-52)

where

R(O) [ 2 ( (0))2 Wﬂ(O)]CC ’

and

n r 2
RO = s [‘3""”” + () "‘°’] (= hnde)
&

Furthermore, for 1 to remain localized in the z-direction, we require
G"(E) =0 (£ — too) (2.53)

for all n.
Now the solution of (2.52) subject to (2.53) can be readily found for n = 0 :

GO = %‘:iag(ss‘ -25%) + %(S’ - afRS?), (2.54)

where S = secha, R = tanh af. The last term in (2.54) is secular and makes the expansion

(2.48) non-uniform as £ -~ toc; however, noting that
i(4'1052) = §% - afRS?
an ’
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this non-uniformity can be interpreted as a slight change in the amplitude, ao, of the KdV
solitary wave (2.49). On the other hand, we argue that, in general, one cannot find a solution

of (2.52) that satisfies (2.53) for n > 1: as |¢| — oo, the four homogeneous solutions of (2.52)

behave like
exp(+gf), exp(&irf), (2.55)
2 % 2 %
where F=3c+ [0+ 3377, 2= -3+ [0 +3(H)°)

and only one of these solutions is consistent with (2.53). Accordingly, in order to find a
smooth solution of the inhomogeneous equation (2.52), one needs to include a contribution
from the homogeneous solutions (2.55) with oscillating behaviour as well, thus violating
(2.53). Therefore, it is concluded that no solitary waves are possible for A < 1; this
seems to be consistent with our numerical calculations which indicate that small-amplitude
oscillations, owing to cross modes corresponding to n > 1 in (2.52), appear at the tails
when A is small. It is interesting to note that, in this respect, there is an analegy with
long-wave propagation in a slowly rotating channel: solitary waves do not seem to exist in
this case either, owing to the radiation of Poincaré waves which are the corresponding cross
modes (Katsis & Akylas 1987 b, Melville. Tomasson & Renouard 1989). Of course, as the
perturbation theory is expected to be valid only for A < 1, it is still possible that solitary
waves may exist for other parameter values; for example, figure 2.7 b suggests that perhaps

such waves could be found for values of A around 1.
2.6 The case A <0

Now that different aspects of wave propagation in channels with cross-sections charac-
terized by A > 0 have been discussed, the corresponding studies for A < 0 can be presented
briefly.

The wavetrain that develops at the head of undular bores is similar to the disturbance
that appears upstream of a forcing travelling with transcritical speeds in a channel; so,
for negative values of A, only the latter initial-value problem, equations (2.41)—(2.43), was

studied. As in the previous case (§2.4), we choose A = —A and pp = 10 and the response
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is computed over the range —1 < A < 0. For small negative values of A, the upstream
response consists of a train of waves of elevation with wave crests that dip and troughs
that climb at the sidewalls as expected from wall boundary condition (2.42 a); with further
decrease in A, the spanwise curvature of these waves become more exaggerated. In figure
2.8a, the upstream response for A = —0.5 at T = 4, is seen to exhibit some lack of
uniformity and successive crests differ slightly from one another. However, these variations
are mild compared with the disordered appearance of the free surface for positive values
of A (see figure 2.5a). In figure 2.8b for A = —1 (T = 4), even the small irregularities of
the wavetrain have completely disappeared. Note that the wavetrain is quite uniform but
the troughs are not flat and though there may be interactions at the tails between waves
in successive periods, the uniform development of the upstream waves is not disrupted. It
would appear then that localized solutions (solitary waves) are not essential for a strong
and uniform response to occur.

As the changes in the response discussed above were mild compared with those for
positive values .A, the wave resistance results were not surprising. Figure 2.9 shows the
variation of the wave resistance coefficient, Cp, defined in (2.45), for A = 1.

Periodic waves were computed over the range —1 < A < 0, similar to the solutions of
§2.5; here, the period 2§o = 2, phase speed ¢ = 1.5 and channel width 2W = 1. The
change in wave shape over this range is gradual; the strong variations that develop for
positive values of A (figure 2.7 a) do not occur. Figure 2.10 shows the solution at A = —1.
Note that the wave is not very steep, even though a wave of the same phase speed and period
at A = 0 resembles a solitary wave, having a relatively sharp, narrow crest and a broad flat
trough. The decrease in steepness suggests a lessening of the effect of nonlinearity which
can be understood as follows. Long, linear, two-dimensional periodic waves in channels
with A = —1 and 2W = 1 would have a phase speed ¢ = 1 according to (2.44). So as
A decreases, to obtain steep nonlinear waves, it is necessary to increase the phase speed
as well. By choosing « larger phase speed, say 3.5, it should be possible to reproduce a

periodic wave of shape similar to the individual waves in the upstream response shown in
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FIGURE 2.8a (for caption, see following page)
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(6)

FIGURE 2.8 Upstream waves excited by transcritical forcing in channels with sloping side-
walls,at T =4 and pp = 10. (a) A=-05,1=05,(b) A=-1,A=1.
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FIGURE 2.9 Variation of wave-resistance coefficient Cp with time T for po = 10;
—_— A=0—: A=-1(A=1).

52



t s re
PR LL27 7oL

FIGURE 2.10 Wave of permanent form of period 2§, = 27, speed ¢ = 1.5, channel width
2W =1and A = -1.
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figure 2.8b. However, our goal in computing the periodic waves was less an end and more
to understand the upstream response, so these calculations were not pursued further.
Finally, we note that Sandover & Taylor (1962) raised the concern, based on their
experiments in channels with trapezoidal cross-sections (where A was positive), that the
large spanwise variations in wave elevation require channel depth to be significantly larger
than the mean water depth. In view of the appearance of the response in figure 2.9, it is
perhaps of interest in channel design that waves travelling in a channel whose cross-section

is characterized by A < 0—a simple criterion—are less likely to spill over the sidewalls.
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CHAPTER 3

RADIATION DAMPING OF
FINITE-AMPLITUDE PROGRESSIVE EDGE WAVES

3.1 Introduction

Edge waves are trapped waves that propagate along the shoreline of a beach and whose
amplitude decays in the offshore direction. The first known solution is due to Stokes (1846;
see Lamb 1945, §260) for a beach of uniform slope. Later, Ursell (1952) pointed out that
additional edge-wave modes are possible depending on the slope angle a; a new mode
appears as o drops below certain critical values. More recently, Whitham (1976) studied
nonlinear effects in the Stokes edge wave using perturbation expasnsions in the amplitude.
Carrying out the expansion up to third order, he found the main effect of nonlinearity to be
the usual amplitude dependence in the dispersion relation, and the corrections to the edge
wave to be exponentially decaying far from the shore. The fundamental mode (the Stokes
edge wave), however, turns out to be exceptional: generally, weakly nonlinear periodic edge
waves are expected to be attenuated by radiating oblique waves out to sea. This mechanism
of radiation from travelling edge waves due to nonlinear self-interactions and the consequent
radiation damping is the subject of this chapter.

To understand how edge waves can radiate oblique waves owing to finite-amplitude
effects, it is useful to discuss in qualitative terms the asymptotic form far out to sea of
nonlinear corrections to a linear periodic edge wave, according to a small-amplitude expan-
sion. As usual, at each order in the expansion, a linear inhomogeneous problem needs to be
solved. The forcing arises due to nonlinear interactions of the fundamental harmonic and
in general includes higher barmonics which move with the wave phase speed. Accordingly,
nonlinear corrections have the same harmonic behaviour as the forcing along the shoreline;
to determine the offshore dependence, one then has to solve a forced boundary-value prob-

lem for each harmonic, where the forcing is trapped in the offshore direction. Far from
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the shoreline, the corresponding solution, in general, consists of a particular integral that
is likewise trapped, and a homogeneous solution. So the behaviour out to sea of nonlin-
ear corrections to an edge wave depends on whether free waves, with the phase speed and
longshore wavenumber of each harmonic comprising the forcing, are evanescent or propagat-
ing in the offshore direction; in tke latter case, the nonlinear corrections represent oblique
waves propagating away from the shoreline. Conditions under which this can be expected
to occur can be readily determined by examining the dispersion relation for edge waves and
that for free waves far from the shoreline. In §3.2, a few examples are considered for which
edge-wave dispersion relations are known in closed form, and the appropriate cenditions
for radiation are derived. Of course, these are only necessary conditions and one has to
examine the corresponding boundary-value problems in detail, in order to establish that
radiation indeed takes place. In particular, for the Stokes edge wave on a uniformly sloping
beach, studied by Whitham (1976), the forcing of the second and third harmonics, due to
quadratic and cubic nonlinear interactions, happens to vanish, and therefore radiation does
not occur up to third order. However, for the second edge-wave mode, quadratic nonlinear
interactions lead to non-zero second-harmonic forcing and radiation occurs for the range of
beach slopes fgr <a< -};r. In §3.3, the amplitude of the radiated oblique wave and the
decay rate of the edge wave are calculated explicitly for beach slopes in this range.

It is worth noting that, instead of the full water-wave formulation, the simpler shallow-
water equations have frequently been used in previous studies of edge waves on a uniformly
sloping beach on the physical grounds that these waves are confined to the vicinity of the
shore where, indeed, the water depth is small. Comparisons with results from the full theory
have usually supported this view; for example, even though there are discrepancies in the
behaviour of nonlinear corrections far from the shore, where the water is not shallow, the
amplitude dependence in the dispersion relation, predicted by the two approaches for the
Stokes edge wave, is the same in the small-beach-slope limit, a < 1 (Whitham 1976). Also,
energy transfer from standing edge waves to waves propagating normally away from the

shore, which occurs for all beach slopes, has been demonstrated in shallow water-theory
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(Guza & Bowen 1976; Rockliff 1978) and validated in the full theory (Minzoni & Whitham
1977). On the other hand, as shown in §3.2, radiation of oblique waves from progressive
finite-amplitude edge waves is possible only for certain ranges of finite beach slopes, and
cannot be discussed using the shallow-water equations; this is an important limitation of
shallow-water theory.

Earlier work (Bowen & Inman 1969; Guza & Bowen 1976; Minzoni & Whitham 1977)
has demonstrated, both theoretically and experimentally, that normally incident and re-
flected waves on a beach are unstable to subharmonic standing edge-wave perturbations;
this instability is closely related to the radiation damping of standing edge waves, mentioned
above, and has been proposed as a mechanism for the generation of standing edge waves in
coastal waters, which ip turn lead to longshore periodic beach forms. Along similar lines,
it is pointed out here that a nonlinear mechanism, reciprocal to that involved in the rad:-
ation damping of finite-amplitude edge waves, can feed energy from obliquely incident and
reflected waves to progressive subharmonic edge waves. In §3.4, the details of this process

are given within the framework of a shallow-water model for seas of finite depth.

3.2 Condition for radiation

A Cartesian coordinate system is chosen such that z is the offshore, y is the vertically
upward and z is the longshore coordinate. All quantities are cast in dimensionless form
using a typical wavelength L as the length scale, and (L/g)% as the time scale, g being the
gravitational acceleration. The water depth, h = h(z) varies in the offshore direction only
and tends to a constant hg as  — 0o. Assuming that a linear edge-wave mode exists, the

corresponding velocity potential takes the form
F(z,y) expli(kz — wt)] + c.c., (3.1)

where k is the longehore wavenumber, w is the frequency and c.c. denotes ‘complex con-
jugate.” The dispersion relation for this trapped mode, w = w(k), depends on the details

of the particular beach profile; however, far out to sea (z — 00), the edge-wave mode must
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also satisfy asymptotically the water-wave equations for constant depth and in particular

the dispersion relation

W? = (K + ¢%)} tanh(k? + ¢%)? ho; (3.2)

here g is the offshore wavenumber, and, since this is a trapped mode, ¢ is imaginary and
w? < ktanh kho. In addition to edge waves, there is also a continuous spectrum, consisting
of waves that propagate far from the shoreline (z — 00), so that the corresponding offshore
wavenumber is real and w? > ktanh kho.

Now consider the problem of finding nonlinear corrections to the edge wave (3.1) by
perturbation expansions in the amplitude. As noted earlier, a sequence of linear inhomoge-
neous boundary-value problems arises. The corresponding forcing terms are generated by
nonlinear self-interactions of the edge wave and are proportional to some harmonic of the
linear phase, kz — wt; for example, at second order, quadratic nonlinear interactions give
rise to a second harmonic term, proportional to exp[i(2kz — 2wt)]. The solutions of these
inhomogeneous problems have the same longshore phase as the corresponding forcings so

that, for the nth harmonic, say, the appropriate forced solution can be written as
St (z,y) explin(kz — wt)] + c.c..

Moreover, since the forcing is trapped close to the shoreline, this solution also has to satisfy

as z — 0o (where the water depth is uniform) a dispersion relation of the form (3.2):
(nw)? = ((rk)? + ¢7)} tanh((nk)? + ¢*)? ho. (33)

So, the necessary condition for radiztion to occur at the nth order of the perturbation
expansion (where the nth harmonic first appears) is simply that the offshore wavenumber
g in (3.3) be real or, equivalently, ¢° be positive.

We now turn to a few specific examples for which analytical edge-wave solutions are

known and the above conditicu for radiation can be made more explicit.
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3.2a Uniformly sloping beach

For the classical problem of a uniformly sloping beach, Ursell (1952) found the edge-wave

dispersicn relation to be
w? = ksin(2m + 1)a, (m=0,1,2,...), (3.4)

where a is the beach slope and the mth mode is possible if

x

a< m (3'5)
In this case, the water depth is large out to sea, so that (3.3) becomes
(w)? = ((nk)? + ¢*)2. (36)

Therefore, combining (3.4)-(3.6). it is concluded that the nth karmonic is propagating in

deep water (¢ > 0) when the beach slope is in the range

sin~1(1)
—_n_2m+1 <a< —2(2m+1)' 3.7

According to (3.7), for any given edge-wave mode and beach slope, radiation is possible at
some order in the expansion. However, as a is decreased for fixed mode number m, the
order of the harmonic that first leaks energy out to sea increases and the effect is weaker.
On the other hand, given a, however small, a certain harmonic can be made to radiate by
increasing m. This explains the difficulty of shallow-water theory, which is expected to be
a useful approximation as a — 0 for m fixed, in describing this radiation phenomenon.

It is important to note that (3.7) provides only a necessary condition for radiation. In
particular, (3.7) indicates that the second harmonic (n = 2) of the fundamental edge wave
(m = 0) can radiate to deep water when i < a < ir but, as already remarked, the
corresponding forcing term in the perturbation expansion vanishes and the same happens
to be true for the third harmonic as well (Whitham 1976); so the Stokes edge wave remains
trapped up to third order. On the other hand, for the second edge-wave mode (m = 1),
(3.7) suggests that the second harmonic can radiate when &7 < a < &, and this is

demonstrated in detail in §3.3.
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3.2b Shallow water

When the water depth remains finite and shallow everywhere such that kho — 0, Minzoni
(1976) has shown that the difficulties associated with shallow-water theory for a uniformly
sloping beach are no longer present. There is a finite, discrete spectrum of edge waves and
a continuous spectrum corresponding to waves of oblique incidence. Furthermore, he shows

that edge-wave frequencies are bounded:
w? < k2h,. (3.8)
In the shallow-water limit, (3.3) reduces to
(nw)? = ((nk)? + ¢*)ho

and, in view of (3.8), the offshore wavenumber ¢ is always imaginary (g2 < 0) so that
all harmonics are trapped. Therefore, in uniformly shallow seas, assuming that dispersive

effects can be neglected altogether, finite-amplitude edge waves do not radiate.
3.2¢ Finite small depth

When the water depth is finite but small, kho < 1, dispersive effects are weak and (3.3)

can be approximated as
(nw)? = ((nk)? + ¢%)he [1 = §((nk)? + ¢*)h])]. (3.9)

Grimshaw (1974) showed that the dispersion relation for long edge waves in oceans of finite

depth, including leading-order dispersive effects, takes the form
w? = k2ho[1 — (A* + 1)k?A]), (3.10)

1 00
where A= 71_3'/0 [ho — h(z)] dz

is the area under the beach profile and is assumed to be O(1). A is the same quantity that
appears in the wall boundary condition (2.16), obtained by extending this long-wave model

to include nonlinear effects. (The difference in form is due to the use of a single length scale
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L in this chapter.) If now the edge-wave dispersion relation (3.10) is substituted into (3.9),

it follows that radiation of the nth harmonic is possible (g2 > 0) if

n?-1

3

Al < (3.11)

Note that this condition is qualitatively similar to (3.7) which was obtained for a uniformly
sloping beach: larger values of A correspond physically to smaller slope angles, and for
any given beach (fixed .A) radiation can occur at some order in the expansion. Radiation
of oblique waves and the reciprocal mechanism of excitation of progressive edge waves by
incident oblique waves will be demonstrated in detail for this case in §3.4, using the nonlinear

model derived in §2.2
3.3 The second edge-wave mode

The discussion is now confined to the second edge-wave mode on a uniformly sloping
beach of slope a. Assuming inviscid, irrotational flow, the governing equations, correct to

second order in wave amplitude, for the velocity potential ¢®(z,y, z,1) read

&, +®,+®::=0 (z20,—ztana<y< 0), (3.12)
O, + By =—¢ |V} +c[(®y + 2u)®e], (y=0), (3.13a)
& sina+ Py cosa=0 (y=-ztana), (3.13b)

where € (€ 1) is a measure of wave amplitude.
In linear theory (¢ = 0), wave solutions of the form ¢ = ¥(z,y)exp[i(xz - wt))] satisfy

the eigenvalue problem

Vor+ ¥, —k’¥ =0 (z20,-ztana <y<0), (3.14)
U, -w?¥ =0 (y=0), (3.15a)
V,sina+ ¥, ,cosa=0 (y=—-rtana), (3.15b)

where & is the longshore wavenumber and w is the frequency. It is known (see Whitham 1979,

for details) that there are two kinds of eigensolutions: first, there is a discrete spectrum
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consisting of a finite number of edge waves, determined by condition (3.5) on the beach
slope, that satisfy the dispersion relations (3.4); the corresponding eigenfunctions can be
expressed as finite sums of exponentials that decay out to sea (Ursell 1952). In particular,

the second edge-wave mode for x = k takes the form & = F(z,y)expli(kz — wt)] + c.c.,

where
tan?a — 1

F(z,y) = ot [exp(—kz cos 3 + kysin 3a) + exp(—kz cos a — kysin a)]
+m exp(—kz cos a + kysin a) (3.16)

and obeys the dispersion relation w? = ksin 3a with o < %w; here F(z,y) has been normal-
ized so that the amplitude of the free-surface elevation at the shoreline, 2w F(0,0), is unity.
Apart from the edge waves, there is also a continuous spectrum of waves that are obliquely

incident and reflected at the shoreline with
w? = (k2 +I2)% (0 <1l < 00);

relatively simple expressions for the eigenfunctions in the continuous spectrum are known

only for slope angles that are fractions of 1.
3.3a Solution for the seccnd harmonic

In order to study finite-amplitude effects on the second edge-wave mode, the corresponding

velocity potential is expanded in a perturbation series
&(z,y,2,t) = {A(T)F(z,y)e®’ + cc.} + {AX(T)S(z,y)e® + c.c.} + -+

whose leading-order term is proportional to the linear eigensolution (3.16); here 6 = kz—wt,
and A(T) anticipates the evolution on a ‘slow’ time scale T = €2t owing to finite-amplitude
effects. Proceeding to O(¢), S(z,y) satisfies an inhomogeneous boundary-value problem

which consists of equation (3.14) with k = 2k, subject to the forced free-surface condition

Sy, —4w?S = R(z) (y=0), (3.17)
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where

. k2% cos2a

R(z) = T e {3 exp(—2kz cos @) + (2 — 5cos 2a) exp[—kz(cos a + cos 3a)]}, (3.18)

and to the bottom boundary condition (3.15b); the forcing R(z) derives from quadratic
interactions of the fundamental harmonic. This problem is solved by posing S(z,y) as
an expansion in terms of the eigenfunctions of the discrete (¥,m(z,y)) and the continuous

spectrum (¥;(z,y)) of the eigenvalue problem (3.14), (3.15) for & = 2k:

R 00
Sz,) = Limbm(@ ) + [ atizy) b (3.19)
m
thus, (3.14) and (3.15b) are satisfied automatically, and it remains to determine the coeffi-
cients ém, ¢; such that (3.17) is met as well. To this end, R(z) is expanded in terms of the
reduced eigenfunctions {¥(z,0), ¥,(z,0)}:
R(z) = ¥ fm¥m(z,0) + / rn¥(z,0) di; (3.20a)
0
m
using Green’s theorem, it can be shown that these eigenfunctions form an orthogonal set,
00 - - ~
/ ¥ om(2,0)¥;(2,0) dz = Prbim;,
0
w -
/0 ¥(2,0)¥;(z,0) dz = Pi6(l - j).
w -~
/ ¥, (2,0)¥(z,0) dz = 0,
0
P., P being normalization constants, so that
. 1 [ - 1 [
Fn = — / R(z)¥m(z,0)dz, =~ / R(z)¥(z,0)dz.  (3.20b)
P, Jo P Jo

Thus, substituting (3.19) and (3.20) into (3.17) and equating coefficients, ém, ¢; are deter-

mined, and a formal expression for S(z,y) is obtained:

-

- i'm‘l’m(z'»y) /00 T(‘I’l(l‘, y)
S(z,y) = ;%sin(zm i Da—i2 th Gt - dl. (3.21)

Attention is now focussed on the above solution in order to discuss the asymptotic

behaviour of S(z,y) out to sea (z — oo0). To begin with, it is important to note that the

integrand in (3.21) can have a pole on the real l-axis at
I = lo = 2k(4sin? 3a — 1)t
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when (4k? + 1?)} = 4u? = 4ksin3a

and this is possible if a > '113‘" which is precisely the condition, derived in §3.2a, for the
second harmonic of the second edge-wave mode to radiate. Assuming then that a > &,
the path of integration in (3.21) has to be suitably deformed around the pole at I = lq so that
energy is radiated away from the shoreline. The choice of integration path, consistent with
this radiation condition, is made by considering the asymptotic form of the eigenfunctions
of the continuous spectrum, ¥;(z,y), as z — oo. As already indicated, for a = 7f, there
is a relatively simple expression for ¥;(z,y) in terms of contour integrals (Whitham 1979;

§7.6) and, using the residue theorem, one has

N
Vi(z,y) = Z'HJ* exp(aj*z + rfy) + c.c., (3.22)
J=1
N
where 'HJ* = :i:('\—;;}”—,

. J
with

N
D¥ = 4lw? T[] (v’ - w”) [A(w’ - wP) £ (v’ + wh)|

p=1
P#)

A=(4k2+12)%, w=ei1r/N’

a*:—;\sinﬁiilcos]” r*:—/\cosﬂ?ilsinﬂ.

3 N N N N
Here ¥/(z,y) has been normalized so that ¥;(0,0) = 1 and the superscript + indicates that

both kinds of terms are to be included in the sum in (3.22). Therefore,
Vi(z,y) ~ [Hy + (H})") exp(ilz + Ay) + c.c. (2 — 00).

Now, returning to (3.21), to ensure causality, the path of integration is indented below the
pole at | = lg, and, making use of the above asymptotic formula for ¥,(z,y), the residue

theorem yields

4ksin3a

5(z,0) ~ 2ri[Hy + (HE)] 716 o exp(iloz) (z — oo); (3.23)

when combined with the phase function exp[2i(kz—wt)], (3.23) indeed represents an oblique

wave radiating to deep water. We remark here that the radiated wave is directed at an
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angle tan~!(4sin? 3a - l)* to the shoreline, which is, curiously enough, independent of
the longshore wavenumber. For more general depth variations, the direction of radiation
is expected to depend on the wavenumber; for example, this is the case for the shallow-
water model of §3.2¢ (see §3.4). An explicit expression for the amplitude of the free-surface
elevation of the radiated wave in deep water, ea = 4ew | S(z — 00,0) |, can be found by

combining (3.18), (3.20b), (3.22) and (3.23):

N
a = 32(ksin3a)i N3C ”—l('—°)—| (3.24)
0

[a-=n¥MNa-p))

where C=
A+ (-1D)NpN)1 + p)
. Ao -1 1
with =22 =GR+,
and

™y = /o ” R(z)¥(z,0) dz

k? (2 - 5cos2a) & HE
- i F s2 J ..
"% " tan’a ;k(cosa+cos3a)—af e

(The expression for R(z) in (3.18) consists of two exponential terms but the first of them
is proportional to the first edge-wave mode of wavenumber 2k, Wo(z,0), and does not
contribute io IN(I) since the eigenfunctions are orthogonal.) Table 1 lists values of a for
beach slopes in the range k7 < a < i, corresponding to 8 > N > 4, for k = 1; a is
proportional to k. For a = km (N = 9), the radiated wave is at cut-off conditions (lp =0
so that the group velocity in the offshore direction vanishes) and, owing to a resonance
phenomenon, a is infinite accordirg to (3.24); of course, this difficulty can be remedied by
allowing for slow variations of the radiated wave in the offshore direction, but the details
will not be pursued here. Also, for a = %r (N = 3), the second edge-wave mode is at cut-off
and a separate theory is needed in this case as well.

For a > -1151, when radiation is possible, the asymptotic behaviour of S(z,y) is domi-
nated by the contribution from the cortinuous spectrum (the integral in (3.21)), since the

trapped modes comprising the sum in (3.21) decay exponentially out to sea. On the other
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a ax 10 px 103
ix 0.920 0.71
&* 0.962 1.19
&7 0.895 119
Ax 0.827 1.01
L 0.814 0.80

|

i
TABLE 1. Amplitude of radiated wave a, and decay rate , for k = 1.
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hand, according to the shallow-water theory, there is an infinite number of trapped modes
(Eckart 1951) which form a complete set so that S(z,0) — 0 as z — oo, precluding radi-
ation for any beach slope. Of course, for fixed beach slope, the higher-order shallow-water
trapped modes are not uniformly valid out to sea, and this theory cannot be used to discuss

the radiation of oblique waves.
3.3b Decay of edge-wave amplitude

The finite-amplitude edge wave will be attenuated as energy is radiated out to sea. The
associated decay rate can be determined by continuing the perturbation procedure to O(€?).
The velocity potential at this order satisfies a linear inhomogeneous problem with forcing
proportional to both the first and third harmonics. The solution to the third harmonic can
be obtained in a manner similar to that employed for S(z,y); radiation is now possible for
still smaller slopes, a > 1sin~!(1), which condition is automatically met when the second
harmonic radiates (a > {51'). Denoting the O(¢€?) correction to the first harmonic of the
velocity potential as e2{A?A* F(?)(z, y) exp(if) + c.c.}, F(?)(z, y) satisfies an inhomogeneous

boundary value problem

F;(-Z-) + FJ:) - k2F?) =9 (z >0,-ztana < y < 0), (3.25)
FPsina+ FPcosa=0 (y=-ztana) (3.26 b)

The forcing G(z,T) consists of three kinds of terms resulting from the slow evolution of
the amplitude A7, quadratic interactions of the basic edge-wave mode with the second
harmonic, and cubic self-interactions of the edge-wave mode. In particular,

2iw
A2A-
+iw[F(Syy — 4?S,) — 25(F,, — w*F,) + RF,} + C{F}, (3.27)

G(z,T) = ArF + 2iw[F:S: + F,S, + 2k*FS]

where C{ F} represents terms resulting from cubic interactions.
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The forced problem (3.25)~(3.26) has a homogeneous eigensolution, F(z, y), and, there-
fore, the forcing G(z,T) has to satisfy an appropriate solvability condition for F® to be
bounded as z — oo. Applying Green’s theorem to the functions F(z,y), F®)(z,y) in the

wedge z > 0, —z tana < y < 0, this condition is found to be
/o“' G(z,T)F(z,0) dz = 0, (3.28)

and, using (3.27), leads to an evolution equation of the form
AT+ (p+iv)A’A" =0 (3.29)

for the edge-wave amplitude A(T'), where p, v are real constants. If the second harmonic
does not radiate energy to deep water as in the Stokes edge wave studied by Whitham (1976),
p = 0, and v determines the dependence of the linear dispersion relation on amplitude, but
| A| remains constant. On the other hand, in the presence of radiation p is expected to be

positive and the amplitude will decay according to
-2 -%
|A(T)| = (28T + | A(0)] ) *. (3.30)

Though a complete description of the evolution requires that both » and p be evaluated,
the decay of the amplitude of the edge wave is dependent on 4. only. In order to evaluate
p, note that the solution (3.21) for S(z,y) is imaginary as long as the integrand in (3.21)
does not have a pole on the real l-axis because R(z) in (3.18), and consequently 7., 7 in
(3.20b), are imaginary, so that the terms involving S in (3.27) are real. Furthermore, the
terms resulting from cubic interactions, C{F}, in (3.27) turn out to be real as well, implying
that = 0 in the evolution equation (3.29). On the other hand, when there is a real pole
and radiation occurs, the integral in (3.21) (with the integration path indented below the

pole at | = lp) may be split into

ot n¥(z,y) . 4ksin3a
P / dl dksinday ), 3.31
o @t T D b(z.9) (3.31)

where P denotes the principal value of the integral. The first term in (3.31) is imaginary,

but the second term which is the contribution from the pole is real (r;, is imaginary) and
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gives rise to a non-zero value for p. So, for the purpose of calculating g, it suffices to take
into account only the contribution of the pole in (3.31) to terms involving S(z,y) in (3.27),
and carry out the integration in (3.28). Since u is proportional to kg, in table 1 values of
p for &7 < a < 1x are given for k = 1. Indeed, s turns out to be positive, consistent with
the fact that the edge-wave amplitude decays by radiating oblique waves out to sea.

We remark here that the values of g in table 1 are of the same order of magnitude as
those found by Minzoni & Whitham (1977) for decay rates of standing Stokes edge waves.
So, radiation damping of progressive edge waves can be expected to be about as significant
as that of standing edge waves. In laboratory experiments, Yeh (1986) observed that viscous
dissipation of standing edge waves completely overwhelms the expected radiation damping
by nonlinear interactions; in fact, measured damping was significantly larger than that
expected from theoretical considerations of viscous effects alone. A flux due to radiation
was observed and moreover, Yeh (1986) notes that the damping rate diminishes gradually,

suggesting that radiation contributes to damping during the initial stages of decay.
3.4 Shallow-water edge waves

We now return to the model for long waves in seas of finite depth, referred to in §3.2¢,
and give details for the radiation damping of edge waves and the related mechanism of
edge-wave excitation by cbliquely incident waves.

The sea bed is assumed to have constant depth hg everywhere except in the vicinity
of the shore. Weakly nonlinear, weakly dispersive waves that are essentially propagating
along the shoreline may then be modelled by the Kadomtsev-Petviashvili equation (KP),
as shown in §2.2, and, in a reference frame moving at the linear-long-wave speed in the

longshore direction, the free-surface elevation 7(z, z,1) satisfies
Mz + %(nz)u + %nzzzz + %7’11‘ =0 (I > 0) (332)

When the beach slope is O(1), the following boundary condition takes into account the

effect of depth variation in the nearshore region:
= An.: (z=0), . (3.33)
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where A is the area under the depth profile, defined in §2.3. Here variables have been
scaled such that weak effects—nonlinearity, dispersion and three-dimensionality—are of
equal importance. (See §2.2a, 2.2b for derivation. The difference in the sign of the first
term in (3.32) and (2.7) is due to the choice of reference frames: in this instance, the
reference frame travels at the linear-long-wave speed in the longshore direction; in §2.2 the
reference frame is travelling at the same speed, but ia the opposite direction.)

The system (3.32), (3.33) admits two kinds of linear-wave solutions of the form

n = H(z)exp[i(kz — wt)]. There is a single edge wave
H = f(z) = exp(—k*Az), (3.34)

with the dispersion relation

w=-1k (1 + ,42) . (3.35)

In addition, there is a continuous spectrum of linear, obliquely incident and reflected waves

2

H = fi(z) = coslz - -k% sinlz, (3.36)

with wk=-3kt4+ 12 (0<i<oo) (3.37)
The dispersion relations (3.35), (3.37) are consistent with (3.10), (3.9) respectively, for
slightly three-dimensional waves, propagating along the shoreline in a reference frame mov-

ing with the linear-long-wave speed.
3.4a Radiation damping
Following the perturbation procedure of §3.3, the free-surface elevation is expanded as
7= e{A(T)f(z)e + c.c.} + e2{A%s(z)e? + c.c.} + -+ -. (3.38)

The leading-order term is the linear edge-wave solution (3.34), (3.35) and, as before, A(T)
allows for evolution on the ‘slow’ time T = €1, ¢ being a small amplitude parameter. At
the next order, collecting terms proportional to exp(2i8), it is found that s(z) satisfies an

inhomogeneous boundary-value problem:

2
:—I‘E + 4k (1 — A?)s = 6kZexp(—2k*Az) (z > 0), (3.39)
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ds _ 2 _
a-; = —4Ak"s (Z = 0) (340)

with s(z) bounded as z — oo. The appropriate solution to this problem is readily found to

be

s(z) = —3—exp(—-2k2.A=) + 34 exp[—2ik?(1 - A2)§z].

2k? 2k2[i(1 — A2)} — 24]
The first term is a particular integral with the same decaying behaviour as the forcing in
(3.39) and the second term, which is a homogeneous solution, is added so that the boundary
condition (3.40) is also met. This second term decays exponentially and the second harmonic
remains trapped if A > 1; otherwise, when combined with exp[2i(kz — wt)], it represents
an oblique wave propagating out to sea at an angle tan~![kho(1 — .A2)%] to the shoreline.
(Note that kho < 1 in this theory and the radiated wave propagates at a very small angle
to the shoreline, consistent with the assumption of weakly three-dimensional waves.) So the
second harmonic radiates when A < 1; this condition agrees with (3.11), which was deduced
in §3.2 ¢ from heuristic arguments. Furthermore, unlike the radiation from edge waves over
a uniformly sloping beach, the direction of the radiated oblique wave now depends on the
longshore wavenumber k.
The evolution equation for A(T') again takes the form (3.29). The coefficients p, v are

determined by considering the inhomogeneous problem for the O( €3) correction to the first

harmonic, and imposing a solvability condition. In particular, the corresponding forcing is

9(z,T) =i

e ATI(@) + $61(2)s(2)

and the appropriate solvability condition, analogous to (3.28), is

/0 " o(2.T)f(z) dz = 0;

carrying out the integration yields

oA -An: 914 AT 2
F=2k" 347 +1 ' T T8 3A2+1

Note that, if A < 1, u > 0 and | A(T')| decays according to (3.30); on the other hand, if

(3.41)

A > 1, p is imaginary,
__ 9 A -
T 4k 3A24+1
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and, combined with iv, determines the amplitude correction to the linear dispersion relation

(3.35), while | A| remains constant.
3.4b Ezxcitation of edge waves

As already noted, previous theoretical and experimental work (Bowen & Inman 1969; Guza
& Bowen 1976; Minzoni & Whitham 1977; Rockliff 1278) has pointed out that normally
incident and reflected waves on a beach are unstable to subharmonic standing edge-wave per-
turbations, and this provides a nonlinear mechanism for the generation of finite-amplitude
standing edge waves. Here it is shown that, through a very similar nonlinear-interaction
mechanism, an obliquely incident and reflected wave can generate a finite-amplitude sub-
harmonic travelling edge wave. This is possible in general when the condition for radiation
from 2 progressive edge wave, discussed in §3.2, is met, but it is easiest to work out the
details in the context of the present shallow-water model.

Assuming that A < 1, an obliquely incident and reflected wave of the form (3.36) having
longshore wavenumber 2k and frequency 2w, where w, k are related through the edge-wa 2
dispersion relation (3.35), turns out to be unstable to a travelling edge-wave perturbation
of wavenumber k and frequency w. At the initial stage of the instability, the edge-wave
amplitude grows exponentially, but eventually this growth is limited by finite-amplitude
effects and a steady state is reached; in particular, if the incoming-wave amplitude is O(€?),
the steady-state edge-wave amplitude turns out to be O(¢). Accordingly, in order to trace
the evolution of the edge wave, the expansion (3.38) is modified to include the O(€?) incident

and reflected wave:
n = e{A(T)f(z)e' + c.c.} + E{[A%s(z) + Bfi(z))e® +cc} +---, (3.42)

where B = O(1) is constant, and fi(z) is given by (3.36) with I = 2k?(1 - .A’)% so that
(3.37) is satisfied. With this change, when the perturbation procedure is carried out, the

evolution equation for A(T) takes the form of (3.29) with an additional term:
AT +i3A%BA™ + (n +iv)A%A" = 0, (3.43)
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where u, v are still given by (3.41). The second term in (3.43) represents the interaction of
the incident and reflected wave with the edge wave, and accounts for the initial instability:
for | A |€ 1, the third term in (3.43) may be neglected and it is found that the edge-
wave perturbation grows exponentially with growth rate %A’kB by extracting energy from
the incoming and reflected wave. Eventually, as the edge wave grows to finite amplitude,
radiation of oblique waves out to sea comes into play, and a steady state obtains:

1
A] = 3_A%B \*
T \2lu+iv])
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CHAPTER 4
NONLINEAR SHALLOW-WATER EDGE WAVES

4.1 Introduction

Stokes used perturbation expansions in wave amplitude to show that nonlinear plane
periodic waves are distorted by the presence of harmonics, and that their dispersion relation
is amplitude dependent. He computed solutions correct to third order for water of finite
depth and up to fifth order for water of infinite depth. Moreover, he argued that the
limiting case of a wave of maximum amplitude would have a sharp crest with included
angle 47 (see Whitham 1974, §13.13). In recent times, it has become possible to obtain
very accurate descriptions of periodic waves of almost the limiting amplitude (d/! = 0.14; d
is the trough-to-crest height and / is the wavelength) using numerical methods. The stability
of these waves to two-dimensional (Longuett-Higgins 1978; Tanaka 1985; Saffman 1985) and
three-dimensional (McLean 1982) disturbances has been studied extensively and unexpected
bifurcations of these symmetric waves into new kinds of superharmonic, asymmetric waves
have been detected (Chen & Saffman 1980) at large wave amplitudes. It seemed of interest
then, to study a pure three-dimensional wave of finite amplitude.

The edge wave, introduced in the previous chapter, is a suitable candidate for study-
ing the combined effects of nonlinearity and three-dimensionality. Although it is a three-
dimensional wave, the edge wave is trapped close to the shore where the water depth is
small, and the simpler shallow-water theory is applicable. This has been demonstrated by
comparative studies of nearshore wave phenomena using both the shallow-water and full
water-wave theories (Whitham 1976; Guza & Bowen 1976; Minzoni & Whitham 1977).
There is also some indication that on increasing amplitude, edge-wave shape should un-
dergo changes different from that predicted by perturbative solutions for small amplitudes:
as has been noted earlier in §3.2, linear phase speeds for edge waves are less than that of

plane waves propagating in the region far out at sea; so, if the phase speed continues to
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increase with wave amplitude as suggested by the leading-order correction in the perturba-
tion theory, eventually it will reach the long-wave speed. Simultaneously, the exponential
decay far out at sea will vanish and there will no longer be an edge wave. I that case, far
out at sea there should be a nonlinear shallow-water wave in water of constant depth, but,
such a wave cannot remain of permanent form. It is of interest then, to determine whether
edge waves merely cease to exist with some limiting amplitude without the phase speed
reaching the long-wave speed, or whether, perhaps, there are turning points that allow the
amplitude at the shoreline to grow while the phase speed retreats to smaller values. It is
known (Whitham 1976) that a three-dimensional nonlinear wave that is not trapped (its
elevation tends to a finite value far out at sea) can exist when the beach face is almost
vertical. So a smooth transition of the nonlinear edge wave at large enough amplitudes to
a similar non-trapped wave is plausible.

In §3.2b, it was shown that, according to shallow-water theory, radiative damping of
edge waves does not occur when the beach remains shallow everywhere and dispersive effects
are neglected altogether out to sea. Therefore, it is meaningful to search for periodic finite-
amplitude shallow-water edge waves of permanent form on such a beach; here the beach with
exponentially decaying slope, for which Ball (1967) found an analytical linear solution is
used. In §4.2, the problem is formulated and the perturbation solution for small amplitudes
is derived, and in §4.3 the results of a numerical study for higher amplitudes are presented.
The numerical study was not completely successful as it could not be established that
the failure in the computations, beyond a certain amplitude, occurred close to a physical

limiting edge wave. This study preceded those presented in chapters 2 and 3.
4.2 Analytical results

A Cartesian coordinate system is chosen with z as the longshore, y as the vertically
upward, and z as the offshore coordinate. A description of the flow field is sought in terms of
a two-dimensional velocity potential ¢(z, z,¢)—in the shallow-water limit, it is assumed that

the vertical component of fluid velocity is relatively small—and the free-surface elevation
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y = 1(z, 2,1), on a beach of depth h(z). The shallow-water equations are

e+ [(h + n)éz]z + [(h + n)é:): =0, (4.1)

and
¢+ 1ot + 362 +n=0; (4.2)
here the length scale L and time scale (g/L)%, where 27 L is the wavelength and g is the
gravitational acceleration, have been used to make (4.1) and (4.2) dimensionless. Linear
edge waves are found as eigenfunctions of the linearized form of (4.1) and (4.2), by requiring
that the solutions be regular at the shoreline z = 0, and vanishing as z — oo.
It is important, for the nonlinear calculations that follow, to note that the shoreline is
not the straight line z = 0; rather, the instantaneous shoreline is located at z = {(z,1), and

this location can be determined by observing that the water depth vanishes at the shoreline:
h(z) + n(z,2,8) =0 (2 =£(z,1)), (4.3)
from which it follows readily, in linear theory, that
£(z,t) = S (2z=0).
' dh/dz

In formulating the nonlinear problem, the zero-thickness condition (4.3) is included with
the field equations (4.1), (4.2) and the instantaneous shoreline is required to satisfy the

kinematic boundary condition
E+ 6= ¢ (2=E(x,0)) (4.9)
The exponential beach profile
h(z) = H(1 — exp(—02)] (4.5)
is defined by two parameters
H=ho/L, o=BJL,

ho being the water depth far from the shore attained over a distance O(B); here o0 = O(1),

and shallow-water theory remains valid as 2 — oo if H € 1.
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4.2a Linear solution

The linear edge-wave modes for the exponential beach (4.5) were given by Ball (1967). We
begin by mapping the semi-infinite region 0 < z < co on to a finite strip0 < s < 1 according

to

s=1-exp(-o02z), (4.6)

so that the shoreline is at s = 0 and s — 1 as z — oo, and look for periodic waves ¢(s,8),
7(s,0) that have a phase # = z — cot with a phase speed co. Equations (4.1) and (4.2) are
linearized assuming ¢ and 7 to be small, and combined by eliminating 7 to obtain, in the

transformed variables
2 1 ‘-'(2)
3(1 = 8)°Pas + (1 — 8)(1 — 28), + -(;2-(8 “H )dee = 0. (4.7)

The solution to (4.7) that remains bounded at the shore (s = 0) and vanishes as s — 1 is

&(s,0) = (1 — 8)PG(s)siné, (4.8a)
with p= % (1 - 51_1«3) g (4.8)

G(s) satisfies a standard hypergeometric equation whose solution that is regular at s = 0

is (Abramowitz & Stegun 1964 p. 563)

G(s) = F(ay;a-;1;3),

2p+1 4 1
as = o= 231+ ),

and a physically acceptable solution (G(s) bounded at s = 1) requires that
a.=-n (n=0,1,2,...).

Each n labels an edge wave mode and there are but a finite number of modes for a given
o, such that p > 0. Here, only the fundamental mode (n = 0, G(s) = 1) is needed which,
on reverting to physical space, is

#(z,2,1) = exp(—poz)sin(z — cot), {4.94a)
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7(z,z,t) = —coexp(—poz)cos(z — cot), (4.98)

with phase speed ¢z = Ho?p (4.9¢)
4.1
and p= ;(1+~6—2)z -1 (4.94)

4.2b Weakly nonlinear solution

As mentioned in chapter 3, weakly nonlinear effects in the fundamental edge wave over a
uniformly sloping beach were studied by Whitham (1976) using both shallow-water theory
and the full theory. The discrepancies noted in the shallow-water solutions were then shcwn
to disappear by Minzoni (1976) for general beaches that remain shallow everywhere. Here,
the main steps in obtaining finite-amplitude corrections to the fundamental edge wave (4.9)
are presented, specializing Minzoni’s (1976) analysis to the exponential beach (4.5). To

begin with, let

¢(290) = €¢(1)(29 0) + €2¢(2)(Z, 0) + (3¢(3)(Z’0) +ey (4100)
n(z,0) = enM)(z,0) + En(z,0) + S (2,0) + - -, (4.10b)
and c=co(l+e€2e2+--+) (4.10¢)

where, € (€ 1) is a measure of wave amplitude. The O(¢) correction term to the phase speed
in (4.10¢) is omitted as it is eacily shown to be absent, while the run-up variable £(z,t) can
be found, once ¢ and 7 are known, using Taylor expansions of (4.3); since the solutions are
perturbations to the linear problem, the domain remains 0 < s < 1 and corrections to § do
not affect ¢ and 7.

The expansions (4.10) are substituted into (4.1) and (4.2) and, as usual, a sequence
of linear problems is extracted; at each stage the pair of equations may be reduced to one
for ¢ by eliminating the corresponding n™. The leading order terms (¢"),7{!) are
taken to be the fundamental edge-wave mode {4.9a, b). At the next order, ¢(?) satisfies an

inhomogeneous problem with forcing proportional to the second harmonic; a solution of the
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same form can be found,

¥ (z,0) = S(z)sin 26,

where 5(2) satisfies
(hS:)s + 4(c3 — h)S = 3[1 - (po)?*]exp(—2poz) (0 < z < ). (4.11)

The solution §(z) was found numerically, but the details will be postponed to the next
section. It is pointed out that, for radiation (discussed in chapter 3) to occur, the homoge-
neous solutions of (4.11) should be oscillatory as z — oo; here ¢3 < H (p is real in (4.8))
and radiation does not occur.

Proceeding to O(€?), the inhomogeneous problem for (3 is forced by terms proportional
to both the fundamental and third harmonics. The part of the solution proportional to the

fundamental harmonic will be secular unless the forcing satisfies an orthogonality condition:

./ooo R(z;¢3)exp(—poz)dz = 0. (4.12)

The forcing proportional to the first harmonic at this order, R(z;c2), contains the free
parameter ¢, which ensures that condition (4.12) is satisfied, and this gives anticipated
amplitude correction to the phase speed.

The perturbation method becomes increasingly difficult beyond this point, but it has
been taken far enough to know how the nonlinear solution should behave at small am-
plitudes, as well as provide a non-singular starting point for the nonlinear calculations.
There is one additional feature of these three-dimensional waves that must be noted here.
The solution to ¢® that is proportional to the fundamental harmonic will be nonuniform as
z — o0o; Whitham (1976), and Minzoni (1976) for uniformly shallow beaches, point out that
this non-uniformity can be remedied by recognizing the O(¢?) correction to the fundamental
mode as a Taylor expansion which can then be reversed to give a slight amplitude-dependent
modification to the exponential decay. This decay rate can, however, be predicted directly
from the phase speed correction: far out at sea, since the solutions are exponentially decay-

ing, linear theory is sufficient, but waves travel at the nonlinear phase speed. For the linear
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edge wave (4.9), the exponer.tial decay rate is

po=(1- %)%; (4.13)

the decay rate, correct to O(e?), for the nonlinear problem is found by substituting the

nonlinear phase speed ¢ (from 4.10¢) in (4.13):

¢t 1 coc?
plo=(1- )%= po(l - HLP"}B), (4.14)

where the pV is the nonlinear counterpart of p.
4.3 Numerical results

The nonlinear edge wave :s found as the trapped periodic solution of (4.1)-(4.4) for the
beach (4.5). A suitable form of the governing equations will be solved numerically by fixing

some measure of wave amplitude, leaving the phase speed as an unknown quantity.
4.3a Coordinate transformation

The functions ¢ and 7 are periodic with a phase 8 = z — ct, where c is the phase speed of
the nonlinear wave. So it is natural to turn to a Fourier spectral method to describe the
dependence on 8 since this would allow for the expected increase in participation of higher
harmonics with increasing wave amplitude. While spectral methods may be devised for
taking derivatives with respect to z also, it is simpler to use finite-difference methods. The
exponential decay of the linear solution in the offshore direction indicates that a uniform
grid in z is far from efficient; an efficient distribution would follow the solution more closely,
with more grid points in the region of the more rapid changes. Furthermore, the offshore
region is infinite in extent, §() < z < oo, and has an unknown left boundary. Therefore, a

coordinate transformation of the type
s =1-exp[-p°o(z - £(0))], (4.15)

which is more general than (4.6), is very attractive; here p* is a free parameter that allows

some control over the mapping. The region is now finite and fixed: 0 < s < 1. Also, if {(0)
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is dropped from the transformation (4.15), which is consistent in linear theory (infinitesimal

waves), the linear edge-wave mode (4.8) becomes
#(3,0) = (1 — s)P/™G(s)sind.

If p* = p, this solution varies linearly with s and any finite-difference discretization will
obtain the solution accurately. We choose p* to be slightly smaller than p, which is obtained
from (4.9d). Then the linear solution in terms of s has a finite derivative as s — 1 and, as
long as the behaviour of the nonlinear wave is not very different, finite differences can be
expected to represent the solution accurately.

The eigenvalue ¢p whose exact value is known from the analytical solution could be
computed very accurately using the mapping (4.15) (omitting £(8)) and centred, second-
order finite-difference formulae over a uniform grid. The mapping (4.15) with a uniform
grid was then used to integrate (4.11) and subsequently (4.12), to determine the leading
phase-speed correction as well as the initial guess for the full nonlinear calculations that

follow.
4.3b Discretization

As indicated above, it is natural to turn to a Fourier spectral method to describe the periodic
longshore behaviour, while, in the transformed coordinates, finite differences can be used in
the offshore direction. The method is therefore quite similar to that used for periodic waves
of the KP (§2.5) and is discussed in Appendix B. First, equations (4.1)-(4.5) are written
in terms of the new coordinates 6 and s. Then, 7 is eliminated from the mass conservation
equation (4.1) and the zero-thickness condition (4.3), using the momentum equation (4.2)
and its derivatives. We look for symmetric waves over one-half the period (0 < 8 < 7) and
fix the phase by specifying ¢ to be an odd function of 8; £ and 7 are then even functions of
0.

On discretizing, there results a system of nonlinear algebraic equations consisting of a

field equation at interior grid points 0 < 8, < v (1 =0,1,...N),0< s; <1(3=0,1,... M),
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the zero-thickness condition (4.3) and kinematic condition (4.4) applied at shoreline grid
points 0 < 8; < «x, and the condition ¢ = 0 at s = 1. This last cordition can be incorporated
into the field equations to reduce the number of unknowns. Alternately, since these are
trapped waves and the amplitude is small as s — 1, the exponential decay with rate pNo
given by (4.14) can be used to apply an asymptotic boundary condition at s = 1 — As,

instead of the field equations:
#(0;,1 — As) = ¢(6;,1 — 288)27°" /7",

Both types of offshore boundary conditions were tried and found to give similar results.

A modification was introduced in order to locate a few grid points far from the shore-
line, since the offshore behaviour had exhibited non-uniformities in the analytical solutions.
Accordingly, the computational region was divided into three regions with different intervals

between grid points, As;, As; and Asjz given by

As‘=ﬁl{ (0<s;<1-As, j=0,1...M),
A32=x"l‘; (1-As <8, <1-Asy, j=1,2... M),
A83=—82— (1—A82<SJ‘SI, ji=12... M)

M;
An additional equation specifying some measure of wave amplitude is also needed. In
the weakly nonlinear solution (§4.25), the amplitude of the fundamental harmonic of the
velocity potential, at the shoreline, is €; here, this quantity ¢ is held fixed and ¢, £ and the

phase speed c are obtained using Newton’s method.
4.3 ¢ Results

According to the results for weakly nonlinear waves, the phase speed increases with wave-
amplitude and the leading-order correction, from (4.10¢), is proportional to ¢%. Beginning
with this solution as an initial guess, numerical solutions for edge waves of higher ampli-
tudes were calculated by Newton iteration and continuation in €. At small amplitudes, the

number of grid points in the #-direction, N, can be small. At higher amplitudes, as higher
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harmonics begin to participate, N must be increased to obtain an acceptable solution—one
that remains smooth and does not change appreciably on increasing N.

Nonlinear edge waves were computed for two beach profiles, o = 0.5 and 0.1, with H
get to 0.1 in order to be consistent with the assumption of shallow beaches. Figures 4.1a
and 4.1 b show the variation in phase speed as the amplitude is increased for o = 0.5 and
0.1 respectively; the straight lines (dotted) are the perturbation solutions correct to O(é%)
and the continuous lines are the results of the numerical calculations. in both cases, there is
agreement at small amplitudes, vindicating the numerical scheme, and a smooth departure
with increasing amplitudes. The graphs show the maximum amplitudes upto which smooth
solutions could be obtained; for o = 0.5, this maximum amplitude is € = 5.37 X 10-2
obtained using N = 25, M; = 30, Mz = 10, M3 = 5, and for o = 0.5, it is is € = 3.18 x 1072
with N = 24, M, = 30, M, = 10, M5 = 5. The free-surface elevation 7 corresponding to
these maximum amplitudes are shown in figures 4.2a and 4.2b by drawing intersections of
the wave with planes of constant s (these are not planes of constant z) at equal increments
As;, for one-half the period, 0 < 8 < =; only a few such profiles, beginning with that at
the shoreline, s = 0, have been shown. Clearly, the sharpening of crests and broadening
of troughs, anticipated from observations of similar distortions for plane waves (Schwartz
1974), have occurred, the distortions being greatest at the shoreline where wave amplitudes
are the largest. It could not be established, however, whether these solutions were close to
an edge wave of maximum elevation analogous to the known limiting form for plane waves.
Augmenting the algebraic system of equations with a pseudo-arc-length equation (Keller
1977) and continuation in the arc-length variable was not cufficient to negotiate past the
point at which the computations failed to give a smooth solution.

The breakdown of the computations are signalled by the appearance of oscillations in
the solutions at the shoreline grid points, which is known to occur when spectral schemes
attempt to represent discontinuous functions (Gibb’s phenomenon). This could occur, for
example, as a cusp develops as in the case of plane waves, or when there is a discontinuity

in the derivative which is suggested by the solution shown in figure 4.2a.
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FIGURE 4.1a (for caption, see following page)
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FiGURE 4.1 Variation of phase speed ¢ with amplitua. ¢ of nonlinear edge waves;
------ . analytical (weakly nonlinear), ——-: numerical. (a) ¢ = 0.5; (b) 0 = 0.1.
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FIGURE 4.2a (for caption, see following nagc)
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FIGURE 4.2 Intersections of the free-surface elevation of the computed nonlinear edge wave
with planes of constant s. (a) /I = 0.1, ¢ = 0.5, ¢ = 5.37 X i0~2;(b) H = 0.1, 0 = 0.1,
€=3.18x 1072
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CHAPTER 5
CONCLUDING REMARKS

A study has been undertaken to understand some of the ways in which nonlinear, three-
dimensional waves that arise in water of varying depth distinguish themselves from their
simpler counterparts: nonlinear, two-dimensional and linear three-dimensional water waves.

A relatively simple theoretical model was developed to discuss the propagation of waves
in wide channels with sloping sidewalls, in the special limit that weak nonlinear, dispersive
and three-dimensional effects attain a balance. In this limit, the full water-wave theory is
reduced to a simpler problem (KP) with boundary conditions that prescribe the effect of
depth variation at the sidewalls. In particular, when sidewall slopes are O(1), the theory
states that the ensuing waves are insensitive to the details of sidewall depth variations; a
single parameter, A, which is obtained from the cross-sectional area, is sufficient to charac-
terize the effect of depth variations.

The theory was tested against previous experimental studies of undular bores and found
to predict qualitative wavetrain features (such zs the plateau formation near the centerline
as A increases, and crest curvature) and to be in close quantitative agreement in the com-
parisons of the leading crest. Furthermore, the theory assumes channel width to be large
compared with water depth and the region near sidewalls where water depth varies to be
thin compared with channel width. In the experiments, the channel widths were but six
to seven times the water depth and changes in depth occurred over a region that is one
third to slightly less than one half the channel width. Yet, remarkably, the predictions of
the theory are gquite good, making it useful and indicating that three-dimensicnal effects
become important even in channels of moderate width.

In channels of rectangular cross-section, a strong response upstream of a forcing travel-
ling at transcritical speeds had been observed in several earlier experimental and theoretical
studies. It has been supposed that the continual growth of the upstream disturbance owes
to the existence of solitary waves (stable and localized solutions) of the KdV which can

be supported by vertical sidewalls. Computations using the present theory show that even
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in the absence of solitary wave solutions (from perturbation theory for A < 1) a strong
upstream response is present. Moreover, the nature of these disturbances (as well as that at
the head of undular bores) depend crucially on A; in particular, the upstream disturbance
loses its uniformity as A is increased and then regains it as A approaches 1. However,
the individual waves for A = 1 are quite novel in appearance, having crests that split into
a double hump towards the channel centre and possessing broad and nearly flat troughs.
These changes in the response turn out to be closely related to the structure of the corre-
sponding waves of permanent form. Also, the rather flat, broad trough of the long-period
wave of permanent form for A = 1 suggests that a three-dimensional solitary wave might
exist for some special combination of channel width and phase speed with A = 1.

Clearly, the theory developed here is a suitable basis for experimental studies of nonlin-
ear three-dimensional water waves. It would be of interest, for example, to examine whether
the rather sharp change in waveform that occurs as A approaches unity can be observed.

Although the wall boundary condition for milder slopes (8 = 0((12')) was derived, the
solutions for this case were not studied. The form of the boundary condition is intriguing.
According to (2.31), the spectral components 7j(k, Z = 0) are small as ¢ — 0 unless k is close
to the zeroes of the profile function A'(k). This is in contrast to the boundary condition
(2.16) for O(1) sidewall slopes, where no component ij(k,Z = 0) is, a priori, vanishingly
small.

Of engineering interest in the design of open channels could be the simple criterion of
ensuring that A remains negative for the cross-section over the expected range of flows.
When A = —1, wave crests are much higher at the centerline. and since it is the integral
A that influences wave shape and not the precise slope at the walls, structurally sound
cross-sections with A < 0 can be achieved by, for example, making the water depth at the
sidewalls slightly larger than that in the central part of the channel.

From previous studies, it has been established that finite-amplitude standing edge waves
are attenuated by the radiation of a second harmonic component directed normally out to

sea. In the present study, it was shown using finite-amplitude expansions that progressive
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edge waves can be attenuated by radiation of oblique waves out to sea, provided that a
certain condition is met. According to this condition, for the case of a uniformly sloping
beach, however small the beach slope, radiation from any particular edge-wave mode can
occur at a sufficiently high order. So, even though the Stokes edge wave remains trapped
up to third order, at the fourth or higher order radiation is expecied to occur. On the other
hand, radiation at a particular order, say the second order for which the effect is strongest,
can occur for a sufficiently high edge-wave mode. This was demonstrated in detail for the
second edge-wave mode. Radiation damping of progressive edge waves is, in this respect as
well, a more complicated mechanism than in the case of standing edge waves.

In laboratory experiments of damnping of standing edge waves (Yeh 1986), it was ob-
served that the damping rates far exceeded the expected rates from theoretical considera-
tions alone. Nonetheless, the mechanism was shown to be present from measurements of the
associated flux. As mentioned in §3.3 a, the flux associated with radiation from progressive
edge waves or a uniformly sloping beach is directed at an angle that is independent of the
longshore wavenumber. It is presumed, therefore, that it will be possible to detect the flux
from finite-amplitude progressive edge waves even though the attenuation is likely to be
masked by viscous dissipation.

It was also demonstrated explicitly, using the KP model for long edge waves on beaches
that remain shallow everywhere, that a mechanism reciprocal to that involved in radiation
damping can lead to the excitation and growth of a travelling subharmonic edge wave by
waves obliquely incident and reflected on the beach. It should be possible to detect this in
the laboratory and perhaps, in field experiments also.

The mechanism of radiation owing to self-interactions of a travelling trapped wave is
not necessarily restricted to edge waves on beaches. It could arise in other contexts where
there is a mixed spectrum of trapped and continuous modes and harmonics of the trapped
mode are resonant with propagating modes. It is then useful to note that the possibility
of radiation damping can be diagnosed easily from the linear dispersion relations for the

trapped mcde and that of waves far out at ‘sea.’
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APPENDIX A
NUMERICAL SCHEME FOR THE INITIAL-VALUE PROBLEMS

The initial-boundary-value problems of chapter 2 for the development of an undular bore
and the excitation of upstream waves by an applied pressure, equations (2.33)-(2.35) and
(2.41)~(2.44), respectively, were integrated numerically using a Lax-Wendroff-type scheme
used previously by Katsis & Akylas (1987a) for channels of rectangular cross-section. The
essential difference here is in th¢ treatment of the wall boundary condition. We begin by

writing «{z, Z;T + AT) as a Taylor expansion
AT?
n(z,2:T + AT) = n(2,Z;T) + ATnr(z, Z:T) + - mrr(z, 5T) + -, (A1)

and then use the differential equation to represent nr and nrr in terms of spatial derivatives
alone, evaluated at T, so that (A.1) is an explicit formula for n(z,Z;T + AT). In order to
find nr, the KP (2.41) is integrated once with respect to z,
mr= =Mz + §(0%)e + d0eec + 4 ; nzz(21,Z,T) dz, (A.2)
using the conditions that far upstream (7 -+ —o0) there are no disturbances for all T > 0.
Next, by differentiating (A.2) with respect to T and then using (A.2) to eliminate nr in
the resulting equation, nrr can be written in terms of spatial derivatives. Centred, second-
order finite-difference formulae were used to represent these spatial derivatives of 7, and the
integrals, such as the one in (A.2), were evaluated using the trapezoidal rule. At all interior
grid points, (A.1) is applied to obtain the solution at T + AT, and this solution is used to
update the boundary values at Z = 0, W to complete the cycle of calculations at each time
step.
The centerline boundary conditions (2.34b) and (2.42b) were represented using one-

sided, second-order finite-difference formulae:

n(W,T + AT) = % {4n(w ~AZ,T)-n(W -2AZ.T) + x po[exp(—:r2)]z:AZ} ., (A.3)
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setting po = 0 for (2.34b). However, the wall boundary condition (2.34 a) required a slightly

different treatment. Since,
fee(Z = 0) = ee(Z = AZ) - AZne2(Z = AZ) + 0(AZ?)
it is consistent to write the boundary condition (2.34a) as
=z = 82) - 07 = 0)] = Ane(Z = A2), (A4)

where 5 and 7. at the interior points Z = AZ are known at T + AT from the discrete
interior equations, and the truncation error is O(AZ). Equation (A.4) can then be used
to update boundary values n(Z = 0). Implementing the wall boundary condition in a
manner analogous to (A.3) led to unstable growth of the solution. For the linearized interior
equations, from von Neumann analysis, Katsis & Akylas (1987 a) find stability requirements

to be

AT AT Az

2 <0 g

< 0(1),

and this is a good estimate for the nonlinear computations too.
A.1 Undular bore

As noted in §2.3 a, the upstream boundary that exists owing to the finite extent of com-
putational domain presents little difficulty, while the ad hoc treatment of the downstream
boundary—holding 7 fixed as ,,—was deemed adequate because the resulting contamina-
tion appears to be confined to a small region close to the downstream boundary. Katsis
(1986) reached this conclusion based on comparisons of numerical solutions with analytical
solutions; here, a representative example from the study of undular bores is given.

The calculations used to compare theory with experiments of Sandover & Taylor (1962),
in §2.3 b, were obtzined with the downstream boundary located at z = 17.5. In figure A.1,
the change in solution, A7 that results when this boundary is located at z = 26.25 is shown
for a typical case: A = 0.5,n, = 1.0,T = 5. Clearly, significant errors remain confined

close to the downstream boundary so that the comparisons of leading-crest properties are
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FIGURE A.1 Contamination at the downstream boundary at T = 5 for A = 0.5 and 7, = 1.
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A oo T € X 102 €2 X 102

0.5 0.75 13 6.5 0.5
0.5 1.08 12.5 1.1 0.5
0.866 0.75 10 19 0.9
0.866 1.13 9.5 4.4 1.0

TABLE 2. Variation of I; across channel
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valid; for the case shown, the second crest occurs at z = 7.35. Moreover, the solutions were

checked against the integral constraint (2.36). Let

I=[" nz,2,T)dz (A.5)

Lo

and Iy = I(T = 0). If 244 are chosen to be very large, then it follows from (2.36) that
I — Iy must remain small for all time and be independent of Z. In the computations, since
the domain was held fixed, eventually I — Iy will grow large. In table A.1, this quantity,

normalized suitably by defining

- o {752}
€1 = o<Z<wW J7
0
is listed for a few of the cases used for the comparisons with experiments (§2.36). Though

e; is not very small, its variation across the channel does remain very small. Table A.1 lists

a second quantity that measures this variation,

Ima: - Imin
e = —m—

£
Imu‘

where the subscripts max and min denote the maximum and minimum values that I takes

across the channel.
A.2 Forced upstream waves

Ia the study of waves excited upstrean by a forcing travelling at transcritical speeds,
once again. errors arising from the artificial downstream boundary conditions—setting 0
and its derivatives o« .al to zero at z = z,,—do not significantly contaminate the upstream
soluticn. The solutions consist of upstream waves of elevation connected by a trougk,
corresponding to the mass transferred upstreain, to trailing small-amplitude waves (in the
two-dimensional case these are mudulated cnoidal waves). So, the ¢~ mputational d~ nain
must include at least a portion of the trailing waves as weli. A criterion based on mass
conservation was used to extend the downstream bouncary, £ = z.,. Since, initially, the
free-surface elevation 7 is everywhere zero, the integral of  over the entire domain should

vanish always. Beginning with a threshold value of 10~* and checking every 100 time steps,
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T Was increased by 2Ar each time the integral of 1) exceeded the threshold value by more
than 1%: the threshold value was then reset to the higher value. While this procedure is
somewhat arbitrary, it was found to be adequate.

In this case, as the domain is extended during the course of the computations, one can
expect the integral (A.5) to remain small. A slightly different measure of the error is now
defined, since Ij is zero. We take

- (1)
i
where | = I{(r,. = 0)so that | consists of the upstream disturbances present at time 7". For

the cases discussed in §2.4, ¢ = 3 x 10-2 (A=05T=4)and 3.4 x 10-2 (A=10.T = 1).
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APPENDIX B
NUMERICAL SCHEME FOR PERIODIC WAVES

The periodic waves of the KP discussed in §2.5 and the shallow-water edge waves (§4.2)
were computed using variants of 2 mixed Fourier spectral and finite difference scheme. In
each case, the velocity potential and free-surface elevation are defined over a finite region in
the spanwise coordinate Z (or s in §4.2) and is periodic in the other coordinate { (or 8) (in
the discussion here, the period is assumed to be 2x for convenience). Second-order centred
finite-difference formnulae were used for derivatives with respect to Z and Fourier spectral
methods for derivatives with respect to 8. The solutions were obtained over one half the
period by assuming waves to be symmetrical and the phase was fixed by prescribing, for

example, 7 to be an even function of £&. Denoting the restriction of 7 on the grid as

ni; = (&, Z;)
with & =.—1%-1r (i=0,1,...N),
Z;i=Lw (j=0,1,..0),

M
derivatives with respect to £ at §, can be written as

9n e
a—E(Eij) = E_: Dy inij
i=0
where DS; is an (N + 1) x (N + 1) matrix constructed from trigonometric relations; the
superscript ‘e’ indicates that the matrix operates on an even function. Similarly, a matrix
D° can be constructed to obtain derivatives of odd functions. Higher-order derivatives
can be taken with corresponding matrices derived directly or from suitable products of D°
and D°. For example, the matrix D¢ that is used to compute second derivatives of even
functions is given by
D} = D;Dj,.
Two methods were used to compute the periodic waves of the KP. Using the matrices
defined above and second-order, centred finite-difference formulae, a nonlinear algebraic

system of equations was obtained from the discretization of the KP at each interior grid
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pointin0<£{<x,0<Z<Wor0<i<N,1<j<M-1, the wall boundary condition
(247a)at Z=Cor0<i< N—-1,j5=0and the centerline condition (2.47b) at Z = W or
0< i< N, j= M. The reference level is fixed by setting n =0 at £ = 7, Z = 0. In order
to solve the equations by Newton's imethod, the Jacobian was evaluated numerically. The
calculations were begun from the cnoidal waves of the KdV, which are exact solutions when
A = 0 and can be computed accurately using a Runge-Kutta integration; continuation in A
then gives the other solutions. The shooting procedure used to verify these solutions uses
the same kinds of discretizations but, instead of the matrices (D¢, D° ...), fast Fourier
transforms were used for computing derivatives.

The basic difference between the scheme described above and that used for the shallow-
water edge wave of chapter 4 is tha., in implementing Newton iteration for solving the
nonlinear system, which results from discretization, the Jacobian was constructed analyti-
cally. This is, of course, the chief reason for using the matrices, D and D?, rather than

fast Fourier transforms.
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