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ABSTRACT

A typical situation in which a feedback system significantly loses its performance is
when a sudden and substantial change of the physical process occurs that was not
incorporated in the initial controller design. We refer to such changes as failures. The
treatment of a failure situation can usually be divided into three phases: 1) failure detection,
2) failure identification, and 3) the redesign of the original controller. In this work we have
focussed on the latter.

A systematic approach for redesigning the feedback system under various failure
scenarios is presented. More specifically, the problem of controller redesign is formulated
as a model matching problem in the presence of uncertainty. The uncertainty is a
consequence of the failure identification process itself. Analysis and synthesis methods are
derived for the failure situations where either frequency dependent, norm bounded or real
parameter uncertainty is present. A measure of the "difference” between the original and the
"failed" system is defined. Necessary and sufficient conditions for the existence of a new
controller that "recovers" the original system in the given sense are presented.

In the case of real parametric uncertainty, it is shown that performance and stability
robustness analysis based on the frequently used Riccati equation approach is no less
conservative then if the Small Gain Theorem were applied. A case where real parametric
uncertainty can be reflected at the input of the plant is presented. Examples, using a
modified model of the F-8 Aircraft, are included to demonstrate the ideas.

Thesis Supervisor : Dr. Lena Valavani
Title : Boeing Associate Professor of Aeronautics and Astronautics
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Definition 1

solution of the Riccati equation associated with the Hamiltonian
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Chapter 1

CHAPTER 1
INTRODUCTION

1.1 Motivation

Feedback system design is performed in order to obtain a desired behavior for a
physical process, i.e. plant, whose dynamics may be only partially known. A necessary
requirement for this procedure to be carried out is the initial derivation of a "simple"
mathematical description of these dynamics. Since the model is only an abstraction of the
actual process, there is inevitable discrepancy between the plant itself and the model.
Therefore, in order to more completely characterize the system for the design phase, the
nominal model should be accompanied by modelling uncertainty. If the design is
accomplished successfully, the resulting feedback system will be insensitive to certain
changes in the environment and the process itself. Unfortunately, this will hold only if the
nature and the magnitude of the uncertainty are properly anticipated and taken into account.

A typical situation when the designed control system significantly loses its performance
is a sudden and substantial change of the physical process that was not incorporated in its
mathematical model. We will refer to such changes as failures. A logical step in dealing
with such a problem is the redesign of the existing control system. However, the new
feedback system containing the failed plant and the redesigned controller will not
necessarily have the same characteristics as the original feedback system.

A treatment of a failure situation can usually be divided into three steps. These are
failure detection, failure identification and control system redesign.

It is noted that the failure detection step is critical. It is highly dependent on the process

16



Chapter 1

itself but it is not of primary interest in this thesis. The nature and location of a failure is
determined in the failure identification step. It includes modeling of the postfailure plant
dynamics which results in its nominal model and the associated uncertainty. Once
identification is done, the postfailure system is ready for evaluation and for controller
redesign if necessary.

This thesis focuses on developing systematic procedures for controller redesign. A
motivation for this is based on the fact that there is no clear answer as to how to quantify
the impact of a failure on the original system and how to choose criteria for its control
redesign, if needed.

A usual approach to this problem is to base the redesign procedure solely on the new
nominal model and uncertainty measure for the failed system. The design criterion is
usually identical to the one used for the original system. The procedure consists of varying
weighting functions as design parameters until satisfactory performance is obtained. This is
often a very tedious and time consuming process of limited practical applicability in
postfailure situations. Furthermore, the latter approach completely neglects the existence of
the original compensator that delivered the desired performance before the failure occurred.

Therefore, a systematic analysis and design methodology in dealing with the postfailure
situation has yet to emerge. An approach will be derived in order to treat the postfailure
situation after the failure detection and identification steps have been completed. Such an
approach should take advantage of the already existing design of the original, prefailure
control system and try to recover its performance as best as possible. Furthermore, it
should establish an appropriate measure of divergence of the postfailure system from the
original one. Since the available information about the failed plant might vary in its
accuracy, the derived methodology will have to guarantee certain robustness properties in

the presence of uncertainty.

17
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1.2 Previous Work and Related Literature

There is an extensive literature covering failure situations in various technical systems.
It is usually highly specialized to the type of system it treats.

The failure detection and identification is probably the most widely covered aspect of
the failure treatment in dynamic systems. One of the most frequently cited references is
[Willsky76] where a survey of design methods for failure detection is presented. This work
is followed by a series of reports on the development of a detection methodology for
system failures [LIDS77 - 81], [CW80] and finally [MVW89]. Further contributions are
made by Walker [Walker83] and Pattipati et al [Patt84].

An area where the failure detection and identification has been of much interest is in
aeronautics, more specifically flight control [Jones73], [Mont82], [Hall85], [LIDS80-83].
A relatively simple redesign approach was proposed by Vander Valde [VV84] in the case of
failed sensors and actuators. It is based on the pseudo inverse of the "failed" output and
input matrices in the state space description of the system. For the general class of systems,
a method for matching the eigenstructure of the prefailure and postfailure systems was
introduced. Stability under sensor and actuator failures is also treated in [DG88] and
[GK&89].

A complex study of failure situations in aircraft, from the control system point of view,
is performed by Looze et al [LKWBES85], [WL85]. The possible approaches to the
postfailure situations are divided into reconfigurable and restructurable scenarios. The
reconfiguration stands for the cases where the failures are anticipated and the suitable
control actions are prepared in advance. Once the actual failure occurs, the "failed system"
controller is substituted with the one designed for that particular situation. On the other
hand, for random failures, the whole procedure has to be done on-line. It is defined as

restructurable control action. The failures treated in these papers are restricted to control
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surfaces only. The original design was assumed to be done by the LQG/LTR methodology
[DS81], [SA87] which was also used for obtaining the postfailure control system. The
design parameters were weighting matrices associated with the LQG problem. They had to
be varied until the design obtained resembled the original system characteristic. A
somewhat different approach was undertaken in [Wagner88]. An advisory system was
designed in order to assist pilots of control-impaired aircraft. The aspects of failure-tolerant
control that lead to utilization of inherent control redundancy among different controls were
discussed.

The approach undertaken in this thesis is based on the criterion that the characteristics
of the postfailure compensated system should match those of the original one as closely as
possible. The main difference from the above approaches is that the existence of the
original compensator is used in the design of the new control system. In this thesis,
restructuring is posed as a model matching problem where the error signals of two systems
are minimized in a specified sense. Furthermore, the procedure is capable of handling both
dynamic and real parameter uncertainties.

The treatment of the dynamic, norm bounded uncertainty is based on the works of
Doyle, Stein and others [Doyle82,83,85], [DS81], [DWG82]. Some of the references that
have provided efficient methods for designing robust multivariable systems by using state
space techniques are [Doyle84], [Fran83], [CDL86], [Fran87]. The "H.." design
methodology based on two Riccati equations that is used herein is due to Doyle et al
[DGKF88]. This will be used extensively throughout the thesis since performance of the
postfailure system will be defined as the value of the "Hoo" norm of the difference between
transfer function of interest of the original and postfailure systems.

Real parameter perturbations are very important in stability and performance analysis
and synthesis. The existing approaches for analysis are classified according to the

representation of the system. Hence, there are polynomial approaches among which the
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best known result is Kharitonov's Theorem [Khar78]. It establishes the conditions on the
coefficients of the characteristic polynomial, which are assumed to be independently
varying, so that it remains Hurwitz.

Besides the Kharitonov result, the other group of methods for checking the stability of the
perturbed characteristic polynomial are those based on the "zero exclusion criterion." They
exploit the fact that the roots of polynomials are continuous functions of their coefficients.
The assumptions are that the nominal system is stable and that the coefficients of the
characteristic polynomial depend on the independent, magnitude bounded, parameters.
Then, stability is guaranteed if the polynomial has no roots on the imaginary axis for any
value of the varying coefficients. Based on the above criterion, de Gaston and Safonov
[DGS88] have defined a nonconservative measure for the largest stability hyperbox in the
parameter space. They have used the convexity properties of the image of the hyperbox
vertices mapped into the complex plane through the characteristic polynomial of the
perturbed system. A more general result was presented by Saeki [Saeki86], where the
uncertain parameters could be frequency dependent.

Another group of approaches deal with the presence of real parameter perturbation in
the state space representation of a system. They are based on the concept of Lyapunov
stability. A similar classification obtains for the system design problem in the presence of
real parameter perturbation. The results, except in special cases, are usually ad hoc and
Very conservative.

A very detailed survey of the literature on parametric uncertainty can be found in
[Bhat87] and [Siljak89]. We will mention only those results that deal with real parameter
perturbation in state space models. Special attention will be given to the results on robust
performance of perturbed systems when the performance is associated with the infinity
norm of a particular transfer function.

A sufficient condition for robust stability in the presence of real parameter perturbations

in the state space was originally presented in [CP72] and [PTS77]. The "A" matrix of the
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perturbed system was given by its nominal value Ao and the associated error matrix E(t)
that could be time varying. The corresponding Lyapunov equation for the nominal system
is Aoc'P+PAo+2Q=0 (1.1)
where Q > 0 and Ao is stable. It was shown that the system remains stable if the
maximum singular value of the error matrix E is strictly smaller than the ratio between the
smallest singular value of Q and the largest singular value of P. This ratio represents the
upper bound on the "two" norm of the admissible perturbation matrix E and it is clearly
dependent on the choice of the matrix Q. It was shown by Patel and Toda [PT80] that the
best choice for Q in (1.1) is the identity matrix. Furthermore, the structure of the
perturbation matrix E was taken into account by checking the largest magnitude of its
elements against the scaled ratio defined above.

The structural information was further taken in consideration by Yedavalli in
[Yed85a,b]. It was shown in [YL86] that this approach depends on state space
representation of the system. An algorithm for improving the stability bounds based on the
state space similarity transformation with diagonal scaling matrices was introduced.

The stability hypersphere in the parameter space of a system given by its state space
representation was treated by Keel et al [KBH88]. An assumption was made that the
uncertain parameters enter the "A" matrix of the system linearly. Sufficient conditions in the
form of upper bounds on the "two" norm of the perturbation vector were derived in order
to guarantee stability of the perturbed system. A "robustification" algorithm was introduced
where the stability radius was gradually increased by changing the original controller.

For the magnitude bounded time varying and time invariant parameter perturbation, a
Riccati equation synthesis approach for linear control systems was developed by Peterson
and Hollot [PH86], [Peter87a). It requires that the uncertain parameters enter the state
space representation of the system linearly and that certain "matching” conditions be

satisfied. Then, a solution to the introduced Riccati equation exists and the stability of the
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closed loop system is guaranteed for the given range of perturbation. This holds since it can
be shown that the latter is an upper bound for all Riccati equations corresponding to any
point in the perturbation space. Hence, it is said that it contains a Peterson-Hollot bounding
function.

In [Peter87b] was shown that the same Riccati equation guarantees the bound on the
"Hoo" norm of the obtained system. Combining these two results led to the disturbance
attenuation problem in the presence of real parameter perturbation. For stability analysis
only, the different bounding functions are discussed in [BH88]. Synthesis approaches
based on Bernstein and Haddad's "H2/H.." design methodology [BH89], were
introduced by [MHB88] and [YBBH89]. The conservatism of these methods is discussed
in Chapter 6.

1.3 Contribution of Thesis

The main contributions of this thesis are the rigorous mathematical formulation of the
postfailure control system redesign problem and the derivation of analysis and synthesis
methods for its treatment. These are based on the information about the postfailure plant
that is assumed to be obtained in the failure detection and identification steps. In general, it
consists of the "failed" plant nominal model and the associated modeling uncertainty. Two
different kinds of uncertainty will be studied in this thesis. They are the frequency
dependent, norm bounded uncertainty and the real parameter uncertainty. Once the
information about the postfailure plant is obtained, the impact of the failure can be assessed
and the controller redesign performed if needed.

In this thesis, the basic analysis tools are developed for postfailure control systems.
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The impact of a failure is quantified as the "distance" between the "failed" system and the
nominal prefailure system. This distance is associated with a suitable measure of the error
signal between corresponding outputs of two systems when they are subjected to the same
input. We study the case where the input and the output signals of both systems are in La.
Therefore, the impact of the failure is given as the "Hoo" norm value of the difference
between the transfer functions corresponding to signals of interest of the original and
postfailure systems. It is shown that this approach can be extended to situations where a
failure results in loss of an input or output channel of the original plant. In general, this
distance has to be evaluated over the uncertainty associated with the model of the
postfailure plant.

The criterion whether to redesign the original controller after the failure is then posed as
the problem of checking if the obtained performance level denoted as y exceeds some
previously set bound. When redesign is necessary, it is defined herein as the search for a
compensator that stabilizes the postfailure plant in the presence of the modeling uncertainty
and minimizes or brings the performance index below the previously set value.

The lower bound for the achievable value of the performance index is associated with
the nominal model of the postfailure plant with no modeling uncertainty being present.
Necessary and sufficient conditions for the "perfect” recovery of the nominal prefailure
system in this case are derived. Situations where the postfailure plant is square or
nonsquare are treated separately. Special attention is paid to the case where the failure is
located only in part of the original plant.

Furthermore, an algorithm for controller redesign in the presence of frequency
dependent uncertainty is presented. The algorithm is based on the "D-K" iteration
[Doyle83], whose steps are substantially modified. It can be used for minimizing the
performance index when the bound on the modelling uncertainty is known. In the case of

anticipated failures, it can be used to maximize the uncertainty bound for the fixed value of
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the performance index. The importance of this result is based on the fact that the proposed
procedure tries to enlarge the bound on the uncertainty with fixed performance specification
as much as possible without changing the block diagonal scaling "D" used in the first step
of the "D-K" iteration. Therefore, we can possibly achieve the desired value of the above
bound without going through approximation of "D" with a stable real rational function and
thus there is no need to enlarge the order of the resulting compensator. The characteristics
of the algorithm are based on the properties of certain minimization problems with respect
to change in the bound of uncertainty.

The application of the algorithm is presented using the augmented model of the F-8
Aircraft. The complete analysis and interpretation of the obtained results is given.

A complete analysis methodology in the state space of the postfailure system with real
parameter uncertainty is presented. The latter is assumed to enter the elements of the state
space representation linearly and is of bounded magnitude. The significance of this result is
that it extends the Lyapunov equation approach of Horisberger and Belanger [HB76] for
the stability analysis only, to the stability/performance condition given in the form of a
Riccati inequality. Furthermore, it allows the perturbation to enter all the elements of the
state space representation of the postfailure system by linearizing the quadratic terms in the
Riccati inequalities. Two possible linearization methods are introduced. The linearization
based on the properties of positive matrices is used herein in a less conservative way than,
for example, in Yeh et al [YBBH89]. The resulting criterion is based on the existence of a
matrix P that simultaneously satisfies a set of Riccati inequalities corresponding to all the
vertices of the hyperbox in the parameter space.

Furthermore, a simple transformation is presented for obtaining an equivalent
performance condition which is linear in the matrix P that satisfies the corresponding
Riccati inequality. This result is important because it shows that there is no need for

constructing a new system whose passivity condition guarantees performance of the
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presented for finding the largest hyperbox in the parameter space where stability and
performance specified by the desired value of Y are satisfied.

A very important result is presented in terms of a stability/performance condition based
on a single Riccati equation with the suitable bounding function. When the real parametric

uncertainty is contained in the "A" matrix only and when the Peterson-Hollot bounding

"Small Gain Theorem" [Zames65] is for the same problem. Therefore, the real uncertainty
is treated as frequency dependent in this case.

Furthermore, when the perturbation appears in all elements of the State-space
representation of the postfailure system, it is shown that the obtained criterion is even more
conservative than if the "Small Gain Theorem" is applied.

The significance of this result becomes even bigger in discussing the conservatism of
the proposed synthesis methods, as in [YBBH89], that would result in a compensator that
satisfies a single Riccati €quation criterion introduced above. Hence, previously presented
design methodology for frequency dependent uncertainty applied to the real parameter
perturbation design problem can possibly be less conservative than if the single Riccati
€quation criterion is used.

In Chapter 7, a controller redesign method is proposed for the situations when the
perturbed parameters can be reflected to the plant input.

It is important to note that some results obtained in studying the postfailure controller
redesign can be extended to a broader class of control problems. The algorithm presented in
Chapter 4 can be used in any situation with structured uncertainty where the bound on a
single uncertainty is left as a design variable. The stability /performance analysis in based
on Riccati equation approach holds for all problems with parametric and frequency

dependent uncertainties bein £ present simultaneously.
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1.4 Organization of Thesis

This thesis is organized into eight chapters. In Chapter 2, the necessary mathematical
background for the postfailure control system redesign is provided. The conditions for the
existence, uniqueness and definiteness of a solution to the general Riccati equation are
presented in detail. The notion of the structured singular value and properties of the "p"
function are introduced as well as the conditions for nonexpansitivity of a given system. An
algorithm for "He," norm minimization based on two Riccati equations developed by Doyle
et al [DGKF88] is presented and its individual steps are outlined.

The control redesign problem is formally introduced in Chapter 3. It is shown the the
latter can be transformed into a robust model matching problem with structured uncertainty.
Performance of the postfailure system is defined. The nominal case, where the model of the
failed plant is known exactly, is treated separately. The conditions for perfect recovery of
the original system are established for square and nonsquare postfailure plants.

Chapter 4 and Chapter S present the control redesign in the presence of the frequency
dependent, norm bounded uncertainty. An algorithm for the maximization of the stability
margin with fixed performance requirement is introduced in Chapter 4. Properties of the
algorithm and a proof of its convergence are presented in the same chapter.

An application of the algorithm is shown in Chapter 5. Augmented model of the
longitudinal dynamics of the F-8 Aircraft [SHH77] is used as the benchmark for the
evaluation of the latter under the assumption that there was a failure at one of the two
actuators.

The postfailure control system analysis in the presence of real parameter perturbation is
presented in Chapter 6.

Evaluation of the maximum stability and performance margin of the perturbed system

based on the Riccati equation approach is presented. The tradeoff between the numerical
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complexity and the conservatism of different approaches is discussed. It is shown that the
very frequently used analysis and synthesis methods based on the single Riccati equation
and the Peterson-Hollot bounding function [PH86] are in general as conservative as the
"Small Gain Theorem" [Zames65].

In Chapter 7, a postfailure redesign method for real parameter perturbations that can be
reflected at the input of the plant is presented. Its application is shown at the model of the
longitudinal dynamics of the F-8 Aircraft.

Finally, concluding remarks are given in Chapter 8.
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CHAPTER 2
MATHEMATICAL BACKGROUND

2.1 Introduction

This chapter presents background theory necessary for the postfailure system redesign.
The parameterization of all stabilizing controllers for a given plant and Nehari's theorem,
which will be used in Chapter 3, are briefly introduced and the specific references are cited.
The parameterization will be used for obtaining the postfailure controller that will satisfy
stability and performance requirement. Nehari's theorem will provide the conditions for
perfect "recovery" of the original system in the sense that will be defined.

Since the postfailure system robustness analysis and synthesis methods that will be
presented in this thesis are based on the properties of Riccati equations, their properties are
discussed in detail. This specially holds for the existence and uniqueness of solutions to a
Riccati equation. They will be used in the formulation of the nonexpansitivity conditions
for a given system that are also presented herein.

The algorithm for minimization of the "Ho," norm in the state space based on the two
Riccati equations and the notion of the structured singular value is introduced. It will be

used in Chapters 4 and 5.
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2.2 Parameterization of all Stabilizing Compensator for G(s)

Lemma 2.1 [Fran87]
For each proper real-rational matrix G(s) there exist eight RH,, matrices satisfying the
equations

G(s) = M'IN = Nm! 2.1

2
=
<
o

-N M N X 2.2)

These equation constitute a doubly-coprime factorization of G(s) where N and M are said to
be right-coprime and N and M are said to be left-coprime. Furthermore, M and M can

always be chosen as inner matrices.

Lemma 2.2 [Fran87]

Let G(s) be stabilizable. The set of all compensators K(s)e RL.. internally stabilizing

G(s) is parameterized by the formulas
K(s)=-[Y-MQI[X-NQI"'=-[X-QN] [ Y- QM]", Q(s)e RH,, (2.3)
||

2.3 Nehari's Theorem - The Distance from Re Lo to Hoo [Fran87]

The distance from some Re Loo t0 Hoo defined as
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dist { R, Hoo } =inf IR-X Il 2.9)
X€ Hoo
is bounded from below by the norm of the Hankel operator I'g associated with R(s), i.e.
dist { R,Hoo } 2 I TR Il 2.5)

Theorem 2.1 [Fran87]
There exists a closest Hoo matrix X to a given Loo matrix R, and IR, Hoo Il = I IRl
n
The time domain interpretation states that the distance from a given noncausal system to
the nearest causal one equals the norm of its Hankel operator which, therefore, is a measure

of noncausality.

2.4  Riccati Equation

In this section we discuss the existence, uniqueness, and properties of solutions to
Riccati equations. This is important since the Riccati equation approach is used in the
analysis and synthesis of the postfailure robust control systems with both real parameter

perturbations and unstructured uncertainties.

Definition 2.1
Let the matrices A, R=R' and Q = Q' belong to R™" | Furthermore, let R =R'be
either positive semidefinite (R = 0 ) or negative semidefinite (R <0 ). Then, the matrix

He R™2 defined as
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Q -A (2.6)

is called Hamiltonian matrix.

Definition 2.2
If there exists a matrix P=P'e R™? st

[P -ITH[I PI'=A'P+PA+PRP-Q=0 2.7
then (2.7) represents the Riccati equation corresponding to the Hamiltonian matrix H. The

matrix P is its solution, i.e. P = Ric (H). (2.8)

Lemma 2.3
The spectrum of a Hamiltonian matrix H is symmetric with respect to both the

imaginary and real axis.

Proof :

Let the spectrum of H be defined as A( H ), meaning that every eigenvalue A of H
belongs to A( H ). Furthermore, let an orthogonal matrix J € RZ2® gt J'=J1=_7J be

defined as

I 0 | 2.9)
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Then, it is easy to see that the similarity transformation J H J' is equal to (-H)". Therefore,

if an eigenvalue A € A(H) then (-A) e A(H). This ends the proof.

The Riccati equation presented in (2.7) can now be rewritten as :
[I P]JH[I P1'=0 (2.10)

This observation is very important because it leads to the necessary and sufficient
conditions for a matrix P to be the solution to a Riccati equation. The following lemma

presented in [Wil71] establishes these conditions.

Lemma 2.4
A matrix P=P' is a solution to the Riccati equation (2.10) if and only if
HIm{[I P]}eIm{[I P]} (2.11)
The equivalent condition is the existence of a matrix Le R™™ s.t.
H[IP] =[IP]L (2.12)

Proof :
A proof was given in [Pot66] and generalized in [Wil71].

The previous lemma establishes the necessary and sufficient conditions for a given
matrix P to be a solution to the Riccati equation (2.10) but it doesn't guarantee its existence.
We will now establish the conditions on the matrix H for the existence of a solution P to

(2.10) that satisfies (2.12).

According to Lemma 2.3, if a Hamiltonian matrix He R 2" has no pure imaginary
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eigenvalues, then it has "n" stable and "n" unstable eigenvalues. Therefore, its spectrum

can be partitioned as H_ with stable and H, with unstable eigenvalues. Then, the

eigenvector space of H can be expressed as the direct sum of the following two subspaces :
X_(H) as the span of all real, possibly generalized, eigenvectors corresponding to
eigenvalues of Hin H_

and
X (H) as the span of all real, possibly generalized, eigenvectors corresponding to
eigenvalues of Hin H .

In order to say something more about these subspaces we will look at the Jordan

decomposition of a Hamiltonian matrix H. Let the Jordan decomposition of H be given as :
HT=TD, T,DeR™® (2.13)

where D is a diagonal matrix with Jordan blocks as its entries and T is a similarity
transformation matrix.

Let the matrix D be partitioned as
D =diag{ D_,D_ } (2.14)

where D_e R™" corresponds to the stable and D, e R™" to the unstable eigenvalues of

H. The matrix T can be partitioned in the same manner as
T=[T.,T,] (2.15)

where T_, T, € R2nxn span X_ and X respectively. In the case of real, nonrepeated
eigenvalues of H, the Jordan decomposition of H will be equal to the eigenvalue
decomposition and X_ and X will be spanned by the corresponding real eigenvectors. In
the general case, when H has either complex-conjugate or repeated real eigenvalues, X_
and X are spanned by the real generalized eigenvectors from T_ and T,.

From the above partition and according to (2.13), we have the following relationship:
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HT.=T_D._ (2.16)

or, equivalently,
H[T' T2’]'=[T1" T2']'D_ (2.17)

where T_=[T1' T2']' and Ti, T2 € RMX0,

If the matrix T1 is invertible, the expression in (2.17) can be rewritten as
H[I (T2Tih)T =1 (T2Tr')T (T1D.T1h (2.18)

By letting (T1D_Til)=L , (T2 T1) =P and, after checking its symmetry, we can
see that (2.18) is equivalent to (2.12) in Lemma 2.3. Therefore, by requiring that H have
no eigenvalues on the imaginary axis and that T1 be invertible and assuming that (T2T1™})
is symmetric, we have shown that (T2 T1™!) = P is a solution to the Riccati equation (2.7).

These conditions are formally formulated by the following lemma [ Pot66] and [Mart71].

Lemma 2.5

Let H , formulated in (2.6), have no eigenvalues on the imaginary axis and let
T1,T2e R™! be obtained as in (2.17). Then
1) Ti'T2=(T1'T2)
2)if Ti! exists, then
i) P=T2Til=p
ii)) P =Ric (H) and it is unique

iii) [ A + RP ] is stable matrix

Proof :

According to (2.16), we have HT_=T_D_. By multiplying from the left with T_'J,
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we have
TJHT.=T.JT_D._ (2.19)
Since JH=(JH)', itis obvious that T'JHT. is symmetric. Therefore, the right hand
side term in (2.19), T_'JT_D_ , is also symmetric. Its transpose is given as :
(TIJT.D.))=D_TJT =
=-D'TJT. (2.20)
Now we have :

0=TIJT.D_-(T.JT_D_) =

=(TJT.)D_+D_(T.)JT.) (2.21)

The expression in (2.21) is nothing more than a Lyapunov equation. Since D_ has no
eigenvalues on the imaginary axis, the above expression holds iff T_.'J T_ = 0. This
proves the claim in 1).

For the claim i)in 2),let P =T2Ti1\. Then P T1= T2 or, equivalently, T1'P'=
T2'. By multiplying it with T1 from the right, we get T1' P' T1 = T2' T1. Since the right
hand side term is symmetric, so is T1' P' T1. Therefore, P = P'.

The proof for ii) that P = Ric( H ) is identical to the procedure presented in (2.17) and
(2.18). We will prove the uniqueness by contradiction. Assume that, besides P, there is

some P1 s.t. P1 = Ric (H). Then, according to (2.7) we would have

A'P+PA+PRP-Q=0

and A'P1+P1A+P1RP1-Q=0 (2.22)

By subtracting these two expressions, we get

[ A+RP]'(P-P1)+(P-P)[A+RP1]=0 (2.23)
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which is a Sylvester equation.

Since P and P1 are stabilizing solutions, then the matrices [A + R P] and [A + R P1] are
stable. Therefore, Re[ Ai{ (A+RP) }+ Aj{ (A+RP1) } ]#0 forall i,j=1:n, which is the
iff condition for the existence of the unique solution to (2.23) [Bell70]. In this case the
solution is equal to zero, implying that P = P1.

To prove iii) it is enough to multiply (2.18) with [T 0] on the right. We get :
A+RP=Ti1D_Ti’

Since D_ is stable so is [ A + R P]. This ends the proof.

As we have seen, the condition on the eigenvalues of a Hamiltonian matrix and the
invertibility of T1 are sufficient for the existence of a unique, symmetric and stabilizing
solution to (2.7). The necessary as well as sufficient conditions are formulated by the

following lemma [Kucera72].

Lemma 2.6
Let R =BB' or R = - BB' without loss of generality. Then, the stabilizability of (A,B)
and the requirement that H have no pure imaginary eigenvalues are both necessary and

sufficient conditions for the existence of the unique P = Ric{ H } that stabilize [A+R P].

Proof :
Necessity :
If P is a unique stabilizing solution to (2.7), then there is a similarity transformation that

transforms H into
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A+RP R
0 -[A+RP] (2.24)

Since [A + R P] is stable, then it is obvious that H doesn't have eigenvalues on the
imaginary axis. Furthermore, (A, B) is stabilizable since [A + (+ BB') P] is stable.
Sufficiency:

It is enough to prove that stabilizability of ( A, B ) guarantees existence of T1"l. We
first show that the kernel of T1 is invariant with respect to D_.

From (2.17), after multiplying it by [ I 0] on the left, we have :
ATi+RT2=T1D_ (2.25)
Let xeKer Ti. Then
RT2x=T1D_x (2.26)
After a simple algebraic manipulation, we get
X' T2’RT2x=x"T2'T1 D_x (2.27)

where the term on the left hand side is symmetric, and thus the term x' T2' T1 D_ x will be

also. Then, since T2' T1 = T1' T2 from Lemma 2.5, we have

XT2RT2x=x'"T2’T1 D_x =

=x'D'T2’Tix=0 (2.28)

which implies that B'T2x=0 and TiD_x=0. (2.29)
Therefore, if xeKer Ti,then D_xe Ker T1 also. It is obvious that Ker T1 is "D_"
invariant, and that it is spanned by the subspace of the eigenvectors of D_. Then there exists
apair (A, v)s.t. D.v=Av, A<0 and veKerTi. (2.30)
From (2.17), after multiplying with [ 0 1] on the left, we have
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QTiwv- A'Tav=T2D.v (2.31)
or, equivalently,
(A'+AL)T2v=0 (2.32)

Therefore, ( -A ) is an unstable eigenvalue of A and w = T2v is a corresponding

eigenvector. Then, by using (2.29), we have
(T2v) [A'- (A Bl=0 (2.33)

implying that (-A ) is uncontrollable. This is a contradiction because ( A, B ) was assumed
to be stabilizable. Hence, Ker T1 is empty and T1! exists. This concludes the proof.

||
Corollary 2.6.1

If R=-BB' and Q =-CC, the necessary and sufficient conditions for P = Ric(H) is the
stabilizability of ( A, B) and detectability of (C, A). T