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Abstract

By around the age of 5½, many children in the US judge that numbers never end, and that it is 

always possible to add +1 to a set. These same children also generally perform well when asked 

to label the quantity of a set after 1 object is added (e.g., judging that a set labeled “five” should 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://doi.org/10.1111/COGS.12875
https://doi.org/10.1111/COGS.12875
mailto:junyichu@mit.edu


2
COUNTING TO INFINITY 

This article is protected by copyright. All rights reserved

now be “six”). These findings suggest that children have implicit knowledge of the “successor 

function”: every natural number, n, has a successor, n+1. Here, we explored how children 

discover this recursive function, and whether it might be related to discovering productive 

morphological rules that govern language-specific counting routines (e.g., the rules in English 

that represent base 10 structure). We tested 4- and 5-year-old children’s knowledge of counting 

with three tasks, which we then related to (1) children’s belief that 1 can always be added to any 

number (the successor function), and (2) their belief that numbers never end (infinity). Children 

who exhibited knowledge of a productive counting rule were significantly more likely to believe 

that numbers are infinite (i.e., there is no largest number), though such counting knowledge 

wasn’t directly linked to knowledge of the successor function, per se. Also, our findings suggest 

that children as young as four years of age are able to implement rules defined over their verbal 

count list to generate number words beyond their spontaneous counting range, an insight which 

may support reasoning over their acquired verbal count sequence to infer that numbers never 

end.

Keywords:  Count list, Infinity, Conceptual change, Successor function, Highest count, 

Decade+Unit rule

1. Introduction

Human learners draw on a finite set of experiences to acquire information about the 

world, but nevertheless acquire systems of rules that permit the generation of unbounded 

representational outputs. For example, natural language is often touted as an example of how 

humans make “infinite use of finite means”: a finite lexicon and system of combinatorial rules 

allows children to generate an unbounded number of possible utterances (Chomsky, 1965; 

Humboldt, 1836/1999, p.91). Similarly, numerate humans learn a set of symbols and 

combinatorial rules that permit an unbounded set of mathematical expressions. For example, the 

English base-10 numeral system expresses 80 numbers (from twenty to ninety-nine) by 

composing just 17 unique decade and unit words (twenty through ninety, and one through nine). 

The expressive power of this system is unbounded: to express larger numbers, one simply needs 

to learn the appropriate words representing powers of ten (e.g., hundred, thousand, million, etc.), 

and recursively compose them following the syntactic rules of numerals (Cheung, Dale, & Le 

Corre, 2016; Hurford, 1975). As we describe below, although children initially believe that 

numbers are finite – and have limited knowledge of both the structure and meaning of number 
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words – they ultimately come to believe that numbers never end. In the present study, we 

investigate how children learn that numbers are infinite, and whether the rule-governed structure 

of the verbal count list might play a role in children’s inference that numbers form an infinite 

class. 

When children first begin learning about numbers in early childhood, their knowledge is 

clearly item-based and finite. At around the age of two, English-speaking children in the US 

begin to recite a subset of the verbal count list (one, two, three, four, etc.), but often can't count 

beyond ten at this point (Fuson, 1988; Fuson & Hall, 1983; Gelman & Gallistel, 1978). 

Moreover, these number words appear to lack meanings at this early stage: When asked to give a 

number (e.g., to give one fish), children initially give a random amount (e.g. Schaeffer, 

Eggleston, & Scott, 1974; Wynn, 1990). Some months later, children appear to acquire an exact 

meaning for the word one, and can give one object when asked, while failing to reliably give two 

when asked. These children are often called one-knowers. Another 6 to 9 months later the 

children become two-knowers (and can reliably give two objects), then three-knowers several 

months after that. One by one, children add meanings to their number words in a way that 

suggests the lack of a productive logic governing these meanings (Sarnecka & Lee, 2009). 

While children initially lack a productive rule for understanding number words, a 

breakthrough appears to happen at around the age of 3 and a half or 4 (in US middle-class 

English-speaking groups), when children appear to realize that they can correctly give any 

requested number by counting and giving all objects that are implicated in their count. These 

children are often called “Cardinal Principle Knowers” or CP-knowers. While the specific time-

course may vary, the basic developmental sequence - i.e.,  of progressing through discrete 

number-knower stages and finally using the counting routine to productively generate any 

quantity within the child’s count list - has been reported for children learning a variety of 

languages around the world (Almoammer et al., 2013; Barner, Libenson, Cheung, & Takasaki, 

2009; Le Corre, Li, Huang, Jia, & Carey, 2016; Piantadosi, Jara-Ettinger, & Gibson, 2014; 

Sarnecka, Kamenskaya, Yamana, Ogura, & Yudovina, 2007). Also, in bilingual preschoolers, 

children progress through discrete number-knower stages independently in each language, but 

generally become CP-knowers at the same time in both languages (Wagner, Kimura, Cheung, & 

Barner, 2015). What remains unclear, however, is what, exactly, children learn when they 

become CP-knowers. 
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By some accounts, becoming a CP-knower not only involves mastery of an enumeration 

procedure for set sizes within one’s familiar count list, but also an inductive leap in 

understanding the meaning and structure of natural numbers. Multiple researchers have argued 

that, to learn how counting works, children construct a type of analogical mapping between the 

verbal count list and the ordered set of cardinalities that the list represents, beginning with the 

numbers one, two, and three (Carey, 2004; Gentner, 2010; Schaeffer et al., 1974; Wynn, 1992; 

for review, see Marchand & Barner, 2018). For example, Wynn (1992) argues that “in order to 

learn the counting system, children must implicitly make the analogy between the magnitudinal 

relationships of their own representations of numerosities, and the positional relationships of the 

number words.” (p. 250). Similarly, according to Carey (2004): “Children may here make a wild 

analogy– that between the order of a particular quantity within an ordered list, and that between 

this quantity’s order in a series of sets related by additional individuals. If the child recognizes 

this analogy, they are in a position to make the crucial induction: For any word on the list whose 

quantificational meaning is known, the next word on the list refers to a set with another 

individual added.” (p. 67). Following this logic, Sarnecka and Carey (2008) created a measure 

that they called the Unit Task, in which children were told, e.g., “Ok. I’m putting FOUR frogs in 

the box”, then saw 1 or 2 items added, and were then asked, “Now is it FIVE or SIX?” (trials 

included 4+1, 4+2, 5+1, 5+2). They found that children identified as CP-knowers by Wynn’s 

Give-a-Number task succeeded on 67% of trials overall, whereas subset knowers performed at 

chance. Based on this, they concluded that becoming a CP-knower involves more than acquiring 

a procedural rule, and instead marks the moment at which children acquire the successor 

function. 

On this account, the ability to accurately count objects therefore reflects the ability to link 

cardinal representations with implicit knowledge of a type of logical rule, called the “successor 

function”, described by logicians and philosophers of mathematics including von Leibniz 

(1704/1996), Peirce (1881), Dedekind (1888/1963), and Peano (1889) in efforts to construct 

axioms to define the natural numbers. One such system, commonly referred to as the Peano-

Dedekind axioms, include principles akin to those in (1), inter alia (though various notational 

variants exist):

(1) i.          1 is a natural number.

ii. All natural numbers exhibit logical equality (e.g., x=x; if x=y, then y=x, etc.).
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iii. For every natural number n, S(n) (the successor of n) is a natural number.

iv. Every natural number has a successor.

Critically, because the Peano axioms state that every natural number has a successor, they 

generate an infinite number of numbers. Consequently, a child who has implicit knowledge of 

such rules would be expected to believe that it is always possible to add 1 to a number, and also 

that numbers never end. Thus, this account predicts that becoming a CP-knower represents a 

shift from representing numbers as a finite sequence of individual words to understanding them 

as products of a rule - the successor function - that generates an infinite set of positive integers 

(for discussion, see Sarnecka & Carey, 2008). 

Does becoming a CP-knower involve learning to reason about cardinalities in terms of a 

recursive successor function? The results of Sarnecka and Carey (2008) leave open this question, 

since they don’t test whether children who succeed on the Unit task generalize this knowledge to 

all numbers in their count list, let alone to all possible numbers. Also, while they showed that 

CP-knowers outperformed subset knowers on the Unit task, they didn’t show that success on the 

Unit task, and thus the ability to reason about cardinalities in terms of successor relations, was a 

prerequisite to becoming a CP-knower. Instead, they tested only very small numbers - four and 

five - leaving open the possibility that children’s knowledge was item-based, rather than 

governed by an abstract logical rule. Also, the study left open the precise timeline according to 

which successor function knowledge is acquired.

Several subsequent studies have suggested that, if children acquire a rule akin to the 

successor function, this likely occurs several years later than predicted by Sarnecka and Carey 

(2008). First, Davidson, Eng, and Barner (2012) tested a large group of CP-knowers with the 

Unit Task, but included a slightly wider range of numbers, extending from 4 to 25. As a proxy 

for experience with number words, Davidson et al. asked children to count as high as they could, 

and binned them into low, medium, and high counters, analyzing Unit Task performance only for 

numbers within each child’s count list. They found that almost all low counters (who could count 

up to 19) performed at chance on the Unit Task for numbers within their count range despite 

being CP-knowers, and that only the highest counters (who could count beyond 30) performed 

systematically well on small numbers. For larger numbers, all groups performed relatively 

poorly, even when those large numbers were well within their counting range. Similar results 

were found in a study of bilingual learners (Wagner et al., 2015), and in a training study which 
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found that many CP-knowers lacked successor function knowledge (though CP-knowers were 

more likely than subset knowers to show improvement over 2-3 weeks of training; Spaepen, 

Gunderson, Gibson, Goldin-Meadow, & Levine, 2018). Also, children perform still poorer when 

asked to reason about predecessors in the Unit task (though this may reflect the working memory 

challenge associated with counting backwards, rather than children’s understanding of how 

moving up and down the count list relates to number; see Kaminski, 2015; Sella & Lucangeli, 

2020). Finally, in a study of slightly older children, Cheung, Rubenson, and Barner (2017) found 

that CP-knowers did not perform reliably above chance on the Unit Task for all numbers in their 

count list until around the age of 5 and a half – up to two years after children from comparable 

populations initially become CP-knowers. In sum, these studies suggest that children learn to 

reason productively about successor relations only after a protracted period of item-based 

learning. This raises the possibility that learning about successor relations depends on some 

gradual inductive inference or additional knowledge about count words that are not captured in 

these studies.

Critically, as noted above, the successor function doesn’t merely state that for a particular 

number, n, there is a successor. Instead, it states that every number has a successor, such that 

numbers are infinite (for similar treatments of the successor function, see e.g. Decock, 2008; 

Wright, 1983). Given that knowledge of particular numbers could plausibly reflect memorized 

knowledge rather than the application of a productive successor function, Cheung et al. (2017) 

paired the Unit Task (which tested how children implement the successor function in particular 

numbers) with an infinity interview first reported by Gelman and colleagues (e.g., Evans, 1983; 

Hartnett & Gelman, 1998), which tested children’s beliefs about numbers as a class. In this 

battery, children were asked about the largest number they could name and whether it was the 

largest possible number, or whether it might be possible to repeatedly add 1 to it. This “successor 

question” tested whether children believe that numbers can be generated via a +1 rule. Children 

also answered an “endless question” about whether counting would get them to the end of 

numbers, or if numbers went on forever. Like earlier studies on this topic (Evans, 1983; Hartnett 

& Gelman, 1998), Cheung et al. (2017) found that children initially believe that numbers are 

finite, and that it’s not always possible to add 1, but that by around the age of 6 many undergo a 

transition and begin to claim that numbers never end. Further, they found that this knowledge 
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emerged shortly after children were able to reason about successor relations and pass the Unit 

task for large numbers in their count list. 

How might children learn, from knowledge of a finite count list, that numbers exhibit a 

successor function, and are infinite? Previous studies have found that children’s ability to 

identify successors for known numbers, as measured by the Unit task, is related to how high they 

can count (Cheung et al., 2017; Davidson et al., 2012). For example, Cheung et al. (2017) found 

that children who could count up to at least 80 (many of whom could count even higher) were 

able to identify the cardinal value of successors for a wide range of known numbers within their 

count list, whereas children with lower highest counts could only do so reliably for the smallest 

numbers. This observation suggests at least two mutually compatible explanations for the 

relationship between counting experience and successor function knowledge. The first possibility 

is that there is no direct link between how high a child can count and successor knowledge, and 

that these two outcomes are correlated because they both result from general exposure to 

number. The second possibility is that there is a more direct causal link between the two: that 

children’s understanding of how count words are syntactically structured might inform their 

intuitions regarding successor relations and infinity, and that this structure is only apparent after 

children have learned to count to relatively large numbers. Specifically, Cheung et al. (2017) 

noted that when children learn to count in English, they are required to learn a recursive base 10 

structure wherein they first count from one to nine, then repeat this one through nine structure 

with varying degrees of regularity for higher decades, which themselves are generated by 

multiplying 1-9 by 10 (for related proposals, see Barner, 2017; Hurford, 1987; Rule, Dechter, & 

Tenenbaum, 2015; Yang, 2016). Compatible with other cases of morphological learning (e.g., 

the past tense or plural; Pinker & Ullman, 2002), children may begin by simply memorizing 

items in their count list, but transition to a system of rules when the number of regular items is 

sufficiently large, resulting in a rule that can generate an unbounded number of exemplars (and 

in tandem, the intuition that numbers may never end). For example, after having learned to count 

to forty or fifty, a child might notice that after each decade term (twenty, thirty, forty, etc.) the 

next number can be generated using an additive decade+unit rule, by adding the words one 

through nine in order as in Table 1: 

------------------------------Insert Table 1 about here -------------------------------
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Consistent with this hypothesis, previous studies have found that children who can count 

beyond 100 are better able to decompose numbers into decades and ones, whereas children who 

can’t count as high appear to store the count list as a memorized string (Fuson, Richards, & 

Briars, 1982; Siegler & Robinson, 1982). Also relevant is that children who can’t yet count all 

the way to 100 nevertheless make errors which suggest some knowledge of rules that structure 

counting. For example, when asked to count as high as they can, many children stop at decade 

transitions (Fuson et al., 1982; Siegler & Robinson, 1982; Wright, 1994), with the most frequent 

being 29 and 39 (Gould, 2017). If children were merely reciting a memorized and unstructured 

list as they do the alphabet, we might expect the distribution of their errors to be random rather 

than at decade transitions. Instead, their errors suggest that children have memorized an initial 

list, e.g., up to 20 or 30, and use some form of morphological rule, like the one described above, 

to generate numbers up to the next decade transition (which requires memorized knowledge, 

since in English decade labels are irregular, and can’t be generated from a rule alone). Consistent 

with this, children exposed to languages with relatively transparent base-10 counting systems, 

like Mandarin or Cantonese Chinese, appear to count higher and make fewer errors than children 

learning less transparent counting systems, like English or Welsh (Miller, Smith, Zhu, & Zhang, 

1995; Miller & Stigler, 1987; for related work, see Dowker, Bala, & Lloyd, 2008). Such 

evidence suggests that children make use of the linguistic structure of their count list to learn 

rules governing counting. An open question - and the main focus of the present study - is 

whether learning that number words are compositionally structured might facilitate insights into 

the conceptual structure of numbers, such as learning the successor function and infinity.  

Critically, although the successor function logically entails that numbers are infinite, 

young children may not automatically compute the entailments of their beliefs, and may not infer 

from their successor knowledge that numbers never end. As noted by Cheung et al. (2017), many 

children in their study believed that it’s always possible to add 1 to a set but nevertheless 

believed that numbers must ultimately end (children they called Successor Only Knowers), 

whereas only a handful of children held the opposite pattern of beliefs - that you can’t always 

add 1, but that numbers are nevertheless infinite (what they called Endless Only Knowers). 

Previous studies find the same pattern but report no Endless Only knowers at all (Evans, 1983; 

Hartnett & Gelman, 1998). Cheung et al. (2017) interpreted this pattern as evidence for a 
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developmental sequence whereby children learn some kind of bounded (item-based) successor 

rule that applies to a finite list, and only later learn that numbers never end. For example, 

children may first learn that known numbers exhibit a successor relation by empirically noticing 

this relation between familiar numbers, but may make the induction that this function is recursive 

by learning that number words can be productively generated via the additive decade+unit rule 

that governs counting. On this hypothesis, experience with counting may be related to both 

learning the successor function and that numbers are infinite, but for different reasons – e.g., in 

the first instance providing opportunities for item-based observation regarding relations between 

known numbers, and in the second instance allowing children to discover rules that generate an 

unbounded set of numerical symbols. 

While previous studies have shown that how high a child can count is related to their 

ability to identify successor relations of specific numbers (Cheung et al., 2017; see also Davidson 

et al., 2012), they have not tested whether knowledge of productive counting rules is related to 

the belief that numbers are endless, independently of the belief that every number has a 

successor. This is important, because learning rules that govern the structure of number words 

may allow children to make a broad inference about numbers – e.g., by learning that number 

words can be decomposed into decades and ones, children may realize that such rules can 

generate an infinite set of number words, which may in turn form the basis for the belief that 

numbers are infinite. Notably, although this relation between counting and infinity might hinge 

on first acquiring knowledge of successor relations, this needn’t necessarily be the case. For 

example, children might learn that it’s possible to generate indefinitely many numbers based 

purely on the syntax of the count list, and thereby infer that numbers must be infinite, even 

without yet understanding how this recursive rule relates to the possibility of adding 1. Given 

this possibility, it’s important to test how children’s knowledge of the structure of counting 

relates both to learning that it’s always possible to add 1 to a number, and separately to learning 

that numbers are infinite. 

In the present study, we had two goals. First, we sought to measure children’s acquisition 

of the “decade+unit” rule to determine when such knowledge emerges, and how it is related to 

general counting experience (e.g., highest count). Second, we asked whether knowledge of such 

a rule was related to both acquisition of successor function knowledge and the belief that 

numbers are infinite. To do this, we presented 4- and 5-year-old children with three tasks. 
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We first assessed children’s counting productivity using the “Highest Count” task. A 

critical difference between this study and previous work is how we evaluated children’s highest 

count. Specifically, in previous studies of successor function knowledge, a child’s highest count 

was defined as the highest number to which they could count before their first error. While this is 

likely a good first-pass measure of how much training children have received, it leaves open 

whether a particular child has acquired a productive rule or has simply memorized their count 

sequence. For this reason, we explored not only how high children could count without error, but 

also which number they stopped on, and what they did when provided with the next number. As 

already noted, previous studies find that children’s highest counts are not randomly distributed, 

and that instead their most common first error occurs at decade transitions, compatible with 

having learned a decade+unit rule. To test whether children count up to decades (e.g., up to 29, 

39, or 49) by exploiting such a rule, we provided children who stopped at a decade transition 

with the next decade term (e.g., 30, 40, or 50) and asked whether they could then continue 

counting. We reasoned that children who have acquired a productive decade+unit rule should be 

able to count higher once decade terms are provided - i.e., they should know that for any decade 

label N-ty, the next number in the counting sequence should be N-ty-one, followed by N-ty-two, 

etc. 

Next, as an alternative test of whether children have acquired a productive rule for 

generating numbers, we used the Next Number task, in which children were told a number (e.g., 

“fifty-seven”) and asked to generate the next number in the count sequence (i.e., “What comes 

next?”). We reasoned that children who understand the decade structure of counting should not 

merely represent the count list as a single memorized string but should be able to generate the 

next number for any decade - i.e., they should exhibit knowledge of how the verbal count list 

implements the successor function. Based on this, we reasoned that productive knowledge of 

counting as measured by the Highest Count task should be correlated with performance on the 

Next Number task. 

Finally, we tested children on a qualitative Infinity Interview and asked whether either of 

the two tests of counting productivity predicted children’s intuitions about infinity. It is 

important to ask children questions that are not tied to specific numbers, because a child might 

be able to label the next number for a finite list of words, but not know the successor function - 

i.e., that every number has a successor. In particular, we tested how our counting measures were 
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related to children’s belief that it’s always possible to add 1 (i.e., successor function knowledge), 

and that numbers never end. Multiple past studies have reported ceiling performance on this task 

by age 6-7 years (Cheung et al, 2017; Evans, 1983; Hartnett & Gelman, 1998); thus, by studying 

younger children (ages 4 and 5) we investigated what factors contribute to variability in the 

acquisition of infinity knowledge. 

To our knowledge, this is the first investigation linking children’s productive counting 

ability to their beliefs about the successor function and infinity – beliefs which develop slowly 

but are integral components of number understanding. Consistent with previous studies of 

counting, we expected that a significant portion of our sample would have productive knowledge 

of the decade+unit rule. Finding that counting productivity predicts children’s beliefs about the 

successor function and infinity would support the hypothesis that learning to count helps children 

to learn the successor function and suggest a specific connection between learning morphological 

rules of counting and discovering that numbers are infinite. Alternatively, if counting 

productivity does not predict either set of beliefs about infinity, we might interpret previous 

reports linking children’s counting ability and successor function understanding as resulting from 

other shared factors, such as more generalized exposure to numbers, rather than a specific 

inference about the structure of the count list. 

2. Method 

2.1 Participants

We tested 122 4- and 5-year-old children (M = 5;0, SD = 7 months, range = 4;0 to 5;11, 

58 male) recruited from preschools and museums in the San Diego metropolitan area. Although 

we did not collect demographic information from each participant, our sample was drawn from a 

population with the following statistics: White (75.5%), Black (5.5%), Asian (12.6%), American 

Indian or Alaska Native (1.3%), Pacific Islander (0.6%), Multiracial (4.5)%.1 All participants 

spoke English as a primary language. A stopping rule was defined such that 30 children were 

tested in each 6-month age bin within this range of ages. An additional 25 children participated 

but were excluded for the following reasons: their primary language was not English (n = 4), 

1 For detailed demographic information regarding San Diego residents, see 
https://www.census.gov/quickfacts/fact/table/sandiegocountycalifornia,CA/PST045218
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they did not complete the tasks (n = 10), parental interference (n = 1), experimenter error (n = 3), 

or failing the practice trials on the Next Number Task (n = 9).

2.2 Stimuli and Procedure

2.2.1 Highest Count Task. We used the Highest Count task to measure children’s 

spontaneous counting ability, and to classify children as either Productive or Non-Productive 

Counters based on their ability to recover from errors on decade transitions. Below, we describe 

procedures in detail. Fig. 1 shows a simplified decision tree describing the protocol and 

classification rules for determining productive counting knowledge.

To test children’s knowledge of the counting sequence up to 99, we first asked each child 

to count as high as they could. If the child failed to respond, the experimenter said, “Let’s count 

together! One...” with rising intonation to encourage the child to continue counting alone. We 

allowed children to count until they stopped naturally, and recorded errors made along the way. 

Each skipped number (e.g., “12, 13, 15”), skipped sequence of numbers (e.g., “18, 19, 30, 31”), 

or substitution error (e.g., “4, 9, 6”) was counted as one error. Children were also allowed to self-

correct or restart counting with no penalty (e.g., if a child counted “1, 2, 4, no, 1, 2, 3, 4, 5”, 3 

would not count as an error). To avoid underestimating children’s counting ability due to lapses 

in attention, we always reminded children of the last number they had said whenever they 

stopped counting. For instance, a child who stopped at 25 was prompted with, “So what’s after 

25?” Children were allowed to continue counting and receive as many reminders as necessary; 

these pauses and reminders were not considered errors. Using this method, we obtained 

children’s Initial Highest Count (IHC), which was the highest number children counted to before 

making any errors, either on their own or with reminders. We also obtained children’s Final 

Highest Count (FHC), which was the highest number children ever counted to that was part of a 

3-number consecutive sequence. We allowed for up to 10 errors, with at most 3 errors in a single 

decade. For some children, their Final Highest Count also included experimenter-provided 

decade prompts, as described below.

------------------------------Insert Figure 1 about here -------------------------------

In this study, we were especially interested in testing whether children have a productive 

decade+unit rule for counting, as measured by their ability to either (a) count to 99 on their own 

with minimal errors, or (b) extend their count sequence when provided with decade labels 

beyond their initial highest count. To measure the latter ability, during testing we first identified 
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instances where children’s first or second error occurred at a decade transition (e.g., stopping at 

29, substituting ‘30’ with ‘twenty-ten’, or skipping 30 altogether). We called these Decade-

Change Errors and provided children with a corrective decade prompt. For instance, a child who 

made an error after 29 was told, “After 29 is 30. Can you keep counting? 29, 30...” Children who 

successfully counted-up were provided with decade prompts for any subsequent Decade-Change 

errors they made, with decade prompts ranging from 20 to 90. Children who made no Decade-

Change Errors did not receive any decade prompts and were simply allowed to continue counting 

until they stopped naturally.2 The task ended whenever a child reached 99 or if they said they 

could not continue counting, whichever was earlier. 

We also used the Highest Count task to classify participants as Productive or Non-

Productive Counters, following criteria developed in a previously published, pre-registered 

report (Schneider et al., 2020). We reasoned that if a child has a productive decade+unit rule, 

then they should be able to count up to decade labels, but may not know what those decade 

labels are. These children should be expected to make errors on decade transitions (e.g., 39 to 

40), but should also be able to continue counting once decade labels are provided. We therefore 

classified children as Productive if (1) they counted to 99 with three or fewer errors, or (2) they 

could count at least two decades beyond their initial Decade-Change Error without making more 

than three errors in those two decades, including any decade-transition errors that elicited a 

decade prompt. This three-error criterion was developed because it allowed for two decade-

transition errors and at most one mid-decade error. For example, a child whose initial error was 

at 29 but continued counting with decade prompts to 49 or higher was classified as a Productive 

Counter, but if they continued to only 39 or made too many errors before getting to 49, they were 

classified as a Non-Productive Counter.3 Note that although alternative criteria are possible, we 

resisted exploring the full space of results that might result from different cut-offs. Still, in 

2 Upon coding the data, we noticed that some counting errors were not detected during the experiment, 
such that some children (n = 10) received a decade prompt despite making mid-decade errors before their 
first Decade-Change Error. We classified these children as Non-Productive Counters irrespective of their 
subsequent counting progress, since they should not have received a decade prompt. Any counting past 
the erroneously provided decade prompt was excluded from our analyses.
3 Because we consider skipped sequences as single errors, this classification allows for the possibility that 
children improve by two decades with a single error that skips most of that sequence (e.g. “29, [prompt 
30], 48,49”). Post-hoc checks confirmed that no participants were classified as Productive Counters due 
to this loophole; all Productive Counters counted-up correctly from decade prompts (i.e. “[prompt 30], 
31”).
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response to a reviewer request, in the Supplemental Materials we provide one example of how a 

more conservative threshold (allowing just 1 error to Productive Counters) affects analyses. We 

show that this criterion generates a similar pattern of results, with only 5% of children classified 

differently (see Supplemental Materials D for details).

2.2.2 Next Number Task. In this task, children were provided with a number and asked, 

“What comes next?”. Children received two practice items (one, five) to ensure they understood 

the task, and corrective feedback was provided on these practice items if needed. For example, 

when asked, “Five. What comes next?”, children who answered four were invited to count and 

figure out the correct answer (e.g., “No, four comes before five. What comes after five? Can you 

count and find out?”). All children in the final dataset successfully answered these practice 

questions before continuing.

Since we were interested in individual differences between children, all children received 

the same test items in a fixed order, ranging from 20 to 90: 23, 40, 62, 70, 37, 29, 86, 59. These 

test items were designed to cover the range of counting abilities up to 99 and to utilize the decade 

rule for forming number words. No feedback was provided during the test trials.

2.2.3 Infinity Interview. Following the protocol of previous studies of infinity 

knowledge (Cheung et al., 2017; Evans, 1983; Evans & Gelman, 1982; Hartnett & Gelman, 

1998), we also assessed children’s understanding of infinity by probing two types of belief: (1) 

that there is no biggest number (“Endless Knowledge”), and (2) that it is always possible to add 1 

to any number (“Successor Knowledge”). To probe this, we asked six questions as follows:  

1. “What is the biggest number you can think about?” If the child did not answer, the 

experimenter probed them by asking how high they could count.

2. “Is that the biggest number there could ever be?”

a. If yes, move on.

b. If no, “Can you think of a bigger number? Is that the biggest number there could 

ever be?” The experimenter repeated this exchange up to 4 times or until the child 

affirmed that they had produced the biggest number.

3. “If I keep counting, will I ever get to the end of numbers, or do numbers go on forever? 

Why?”
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4. “If we thought of a really big number, could we always add to it and make it even bigger, 

or is there a number so big we couldn’t add any more? Why / Why not?”

5. “You said the biggest number you know is X. Tell me, is it possible to add one to X, or is 

X the biggest number possible? Why?” For this question, X was the largest number the 

child had stated in the entire testing session.

6. “Could I keep adding one? Why / Why not?”

a. If yes, “What would happen if I kept adding one?”

We assigned each child a binary classification for both aspects of infinity understanding. 

Classifications were assigned by the first author and a coder blind to the hypotheses. The coding 

scheme was consistent with previous studies (Cheung et al., 2017; Evans, 1983; Hartnett & 

Gelman, 1998) and is provided in the Supplemental Materials (A), along with example 

transcripts. Initial agreement was 84.0% for Endless Knowledge coding (Cohen’s Kappa = .63, p 

< .001), and 80.9% for Successor Knowledge coding (Cohen’s Kappa = .62, p < .001). 

Disagreements were resolved through consulting a third coder.

To assess Endless knowledge of infinity, we coded whether children believed that there 

was a highest number, such that numbers must end, or whether they believed that numbers go on 

forever. This coding was based on responses to questions 1-3 and 5. For example, in response to 

question 3, one child coded as lacking Endless knowledge claimed that 100 was the biggest 

number possible, and if we kept counting, it would get “long and get to one hundred”. In 

contrast, another child with Endless knowledge of infinity responded “Forever, [because] there’s 

lots of numbers in the world”. To assess Successor knowledge of infinity, we coded whether the 

child believed that it was always possible to add 1 to any number according to their responses to 

questions 4 and 6. Children who claimed it was impossible to keep adding 1, for instance 

because “it would get too big” or “it already has one”, were coded as lacking Successor 

knowledge of Infinity. Finally, we identified children as “Full Infinity knowers” if they endorsed 

both aspects of infinity understanding.

 3. Results

Compatible with the first goal of this study, our first set of analyses examined children’s 

acquisition of the productive decade+unit rule using data from the Highest Count and Next 

Number tasks. Second, compatible with our second goal, we analyzed children’s performance on 

the Infinity interview, and asked how their responses to the Successor Knowledge and Endless 
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Knowledge items were related to counting experience and productive knowledge of the 

decade+unit rule. 

All analyses were conducted in R (version 3.6.0, R Core Team, 2019). Regression models 

were constructed using either the R base stats package or, for models containing mixed effects, 

using lme4 (Bates, Mächler, Bolker, & Walker, 2014). For ease of interpretation, predictor 

variables were mean-centered for analyses.4 To test for the significance of specific independent 

variables, we conducted Likelihood Ratio Tests comparing models with and without particular 

effects of interest. For analyses containing within-subject measures, we constructed mixed-

effects models containing random intercepts for all relevant grouping units (e.g., subject, item).

3.1 Characterizing Decade+Unit Productivity

3.1.1 Productivity and Counting ability. Fig. 2 presents the distribution of children’s 

Initial Highest Count by productivity classification. Overall, 73 children were classified as 

Productive Counters (Mage = 5;3, SD = 6 months) and 49 were classified as Non-Productive 

Counters (Mage = 4;7, SD = 5 months). Thirty-two children reached 99 on their Initial Highest 

Count and were therefore classified as Productive Counters (IHC ≥ 99). Of the remaining ninety 

participants, 49 children (54%) made a Decade-Change error on either their first error (n = 37) or 

second error (n = 12) and thus received Decade Prompts. Of these, 32 (65%) continued counting 

two decades further with fewer than 2 additional errors, and were classified as Productive, while 

17 did not, and were classified as Non-Productive. Another 9 children were classified as 

Productive for counting past their Initial Highest Count to reach 99 with up to three errors, 

without receiving any Decade Prompts. Note that this pattern of results is similar if a more 

conservative criterion of just 1 error is adopted. Using this criterion, 6 participants (5% of our 

sample) are reclassified from Productive to Non-Productive (for details, see Supplemental 

Materials D).

------------------------------Insert Figure 2 about here -------------------------------

Productive Counters had, on average, a higher Initial Highest Count (Mean = 69.2, SD = 

28.8, Median = 65) than Non-Productive Counters (Mean = 22.6, SD = 14.9, Median = 15). This 

4 Continuous variables were mean-centered and scaled by 1 standard deviation. Categorical variables (all 
binary in this paper) were also mean-centered and weighted by their group counts (i.e. weighted effect 
coding, see Grotenhuis et al., 2017). This allows regression coefficients to be interpreted as standardized 
main effects and to be compared across models.
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difference remained if we considered only Productive Counters with Initial Highest Count below 

99 (Mean = 46.0, SD = 15.3, Median = 49). However, some Productive Counters (n=9) had an 

Initial Highest Count of 29 or lower.

Next, we analyzed precisely how far children could count past their initial error. Fig. 3 

shows participants’ Initial Highest Count, Final Highest Count, any errors made, and provided 

decade prompts, if any. While our classification criteria for productive counting only required 

children to count past their Decade-Change errors by two decades, most of the Productive 

Counters were able to count several decades further, and many of them reached 99 (Mean 

number of prompts = 3.5, SD = 1.6, Range = 1 to 7). Almost half of the Productive Counters 

(n=32) received decade support on the Highest Count Task, and the remaining children (n=41) 

counted to at least 99 without assistance and without making more than three errors. Productive 

Counters had a median Final Highest Count of 99 (M = 96.4, SD = 9.5, Range = 49 to 99), which 

was 34 numbers higher than their median Initial Highest Count of 65. About a third of Non-

Productive counters (n=15) received decade support (Mean number of prompts = 1.2, SD = 0.4, 

Range = 1 to 2), and the remaining children (n=34) initially made mid-decade errors and 

therefore did not receive decade prompts. Non-Productive Counters had a median Final Highest 

Count of 29 (M = 32.0, SD = 17.6, Range = 5 to 99), which was only 14 numbers past their 

median Initial Highest Count of 15. This difference is of course not surprising, since the ability 

to count at least 2 decades past the experimenter’s first prompt was what defined the difference 

between Productive and Non-Productive children.

------------------------------Insert Figure 3 about here -------------------------------

In summary, we found that between the ages of 4-and-a-half and 5-and-a-half, many 

children in our study exhibited evidence of having learned a productive decade+unit rule. 

Overall, the average age of Productive Counters was 5 years, 3 months. Though some of these 

children (n=41) were classified as Productive on the basis of having counted up to 99 with 

minimal errors, many received this classification because, upon stalling on a decade transition, 

they were able to recover once provided with a decade label, compatible with the use of a rule. 

These data not only provide evidence that children who stop on decade transitions do likely 

count using productive rules, but also suggests that a child’s initial highest count may not 

provide the best measure of their mastery of counting. Even many children who had quite low 
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initial counts (e.g., below 30) were able to recover when provided a decade prompt, suggesting 

that some children may memorize only a small subset of the count list (e.g., less than 30) before 

extracting a rule.

3.1.2 Productivity and Next Number performance. The Productivity classification, 

above, was one of two measures of decade+unit rule knowledge that we explored in this study. 

We also tested this using the Next Number task. Here, we asked how our two candidate measures 

of decade+unit rule knowledge were related to one another. 

First, we found that Productive Counters (71% correct; SD = 27%) significantly 

outperformed Non-Productive Counters (28%; SD = 26%) on the Next Number task (t(120) = -

8.76, p < .001). However, recall that Productive Counters included children who could count to 

99 on their own (IHC ≥ 99) and those who could not (IHC < 99). As shown in Fig. 4, Productive 

Counters with IHC ≥ 99 performed close to ceiling on the Next Number task (M = 91%, SD = 

15%), likely because all the items tested were within their familiar count sequence. To obtain a 

stronger, more conservative test of our hypothesis that Productive Counters could utilize a 

decade rule to succeed on this task, we excluded Productive Counters with IHC ≥ 99 from the 

following analyses. Additionally, because Productive Counters have higher Initial Highest Count 

and age than Non-Productive Counters, we deployed a regression strategy to include those two 

covariates. 

------------------------------Insert Figure 4 about here -------------------------------

Our second analysis thus used a mixed effects logistic regression predicting trial-level 

accuracy from Productivity, Initial Highest Count, age, and a Productivity by Initial Highest 

Count interaction (with random intercepts for subject and item magnitude). Although accuracy 

was twice as high among Productive Counters (IHC<99) (M=56%, SD=26%) compared to Non-

Productive Counters (M = 28%, SD = 26%), this difference did not meet the threshold of 

statistical significance (β = 0.84, OR=2.31, 95% CI= [1.01, 5.30], �2(1) = 3.00, p = .08), though 

there was a significant effect of Initial Highest Count (β = 0.90, OR=2.47, 95% CI= [1.61, 3.78], �2(1) = 14.9, p < .001). Age was also not a significant predictor (�2(1) = .0001, p = .99). 

However, these effects are qualified by a significant Productivity by Initial Highest Count 

interaction (β = -1.07, OR=.34, 95% CI= [.16, .76], �2(1) = 7.01, p = .008). Inspection of simple 
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slopes within Productivity group found that while Initial Highest Count positively predicted 

accuracy among Non-Productive Counters (β = 1.39, OR=4.01, 95% CI= [2.22, 7.24]), there was 

no effect for Productive Counters (β = 0.32, OR=1.38, 95% CI= [0.78, 2.43]).5

This second analysis suggests the Next Number task and children’s ability to count-up 

from counting errors (i.e., our Productivity classification), capture different aspects of counting 

knowledge. Whereas Initial Highest Count was a strong predictor of Next Number performance 

for Non-Productive Counters, it was not related to accuracy for Productive Counters. This was 

not because Productive Counters had a limited range of Initial Highest Counts (indeed, some 

were as low as 29). Instead, one likely reason is that the Next Number and Productivity measures 

reflect performance on different ranges of the count sequence. Specifically, the Next Number 

task tests knowledge on both small and large numbers (e.g., from 23 to 86), whereas to be 

classified as Productive, a child might be tested with only relatively small numbers (e.g., 

counting up to 49 from an initial error on 29, see Fig. 3). Also, the Next Number task may place 

greater working memory demands on children – since it requires counting up from arbitrary 

points in the count list – potentially making a more strongly routinized count list more valuable, 

requiring less working memory resources for the retrieval of numbers. 

We further explored how the two tasks are related by conducting a post-hoc analysis 

testing whether Productive Counters (IHC<99) show a selective advantage on the Next Number 

task for Mid-Decade items, where a productive decade rule (“N-ty-one, N-ty-two, …”) would be 

most beneficial, compared to decade transitions, where this rule would be less beneficial. 

Including this Item Type variable (Mid-Decade or Decade Transition) significantly improved 

model fit (�2(1) = 12.4, p < .001). This model found a significant main effect of Item Type (β = 

2.27, OR=9.67, 95% CI = [4.03, 23.20], �2(1) = 25.79, p < .001), with greater accuracy on Mid-

Decade items (M = 49%, SD = 50%) than on Decade Transition items (M = 17%, SD = 37%). 

Adding a Productivity by Item type (Decade transition/Mid-decade) interaction did not 

significantly improve model fit (�2(1) = 0.29, p = .59), indicating that both Productive Counters 

and Non-Productive Counters found mid-decade items easier than decade transition items.6 

5 We obtain similar results when all Productive counters are included: there was a significant effect of 
Initial Highest Count, but not Productivity or Age. However, the interaction of Productivity and Initial 
Highest Count was no longer significant, likely because Productive Counters (IHC≥99) performed at 
ceiling. Full analysis results are reported in Supplemental Materials (B).
6 Again, we obtain similar results when all participants are included in the analysis. 
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Next, we reasoned that, if a memorized count list is what allows children to generate 

successors on the Highest Count and Next Number tasks, then children should perform better on 

items within their Initial Highest Count than beyond it. If, instead, children have acquired a rule 

that generates the decade structure, then we might find an interaction between Productivity 

Group and Item Range, such that Productive Counters perform well both within and beyond their 

Initial Highest Count, while Non-Productive Counters are only able to generate successors 

within their Initial Highest Count. To test this prediction, we conducted a logistic mixed effects 

regression predicting trial-level accuracy from Productivity, Item Range (Within/Beyond IHC), 

Initial Highest Count, age, and the interaction of Productivity and Item Range, with random 

intercepts for subject and item magnitude. For this analysis, we excluded children with Initial 

Highest Count ≥ 99 because all numbers tested on this task would be within their counting 

range7. Model comparison by Likelihood Ratio Test found no significant main effect of either 

Productivity (p = .07) or Item Range (p = .89). Critically, there was a significant interaction 

effect of Productivity and Item Range (β = 1.16, OR= 3.20, 95% CI = [1.11, 9.21], �2(1) = 4.67, 

p = .031). Planned contrasts indicate that performance on numbers within children’s Initial 

Highest Count was similar for Productive Counters (IHC<99) (M = 61%) and Non-Productive 

Counters (M = 61%; p = .99 by t-test) whereas accuracy for numbers beyond their Initial Highest 

count was significantly greater among Productive Counters (M = 56%) than among Non-

Productive Counters (M = 27%; t(88) = 4.98, p < .001; see Fig. 5).

------------------------------Insert Figure 5 about here -------------------------------

Collectively, analyses contrasting children’s highest count behaviors and their 

performance on the Next Number task suggest that these measures capture slightly different 

phenomena. Both require children to draw on knowledge of the numeral sequence, but only the 

Next Number task requires children to generate number sequences from arbitrary points in the 

count list, without the benefit of the “momentum” afforded by the count routine for small and 

large numbers. Previous work finds that children’s ability to count-up from an arbitrary position 

in the count list is significantly affected by an experimenter verbally rehearsing preceding 

7 We do not perform this analysis including all participants, because Productive counters with Initial 
Highest Count ≥ 99 did not receive any trials outside their Initial Highest Count
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numbers, and thereby providing momentum (e.g. Fuson, Richards, & Briars, 1982; Siegler & 

Robinson, 1982). In this sense, the Next Number task is a more difficult task, and perhaps a more 

stringent test of children’s knowledge of the decade+unit rule. 

3.2 Characterizing Infinity Knowledge

In the next set of analyses, we report children’s successor function knowledge and beliefs 

about infinity. In the following section, we then probe how these are related to children’s 

performance on the Highest Count and Next Number tasks. 

We coded whether children thought every number has a successor (“Successor” 

knowledge) and separately, whether they thought numbers never end (“Endless” knowledge). 

Following previous work (Cheung et al., 2017), we also identified children who endorsed both 

beliefs as having “Full Infinity” knowledge (though we should note that, naturally, there is much 

more to fully grasping the notion of infinity than these two pieces of knowledge). 

------------------------------Insert Table 2 about here -------------------------------

Table 2 reports the frequency of these outcome classifications. About half of our sample 

(48%, n = 59) demonstrated no knowledge of infinity, claiming that there was a biggest number 

and that it was not possible to keep adding one. Non-Productive counters were more likely to fall 

in this category than Productive counters (67% of Non-Productive vs. 36% of Productive 

counters, �2(1) = 10.58, p = .001). A smaller fraction of our sample (19%, n = 23) exhibited full 

knowledge of infinity, claiming that there was no biggest number and that we could always keep 

adding one. Productive counters were more likely to exhibit Full Infinity knowledge than Non-

Productive counters (27% vs. 6%, �2(1) = 7.34, p = .007). The remaining children (33%, n = 40) 

had partial knowledge of infinity – claiming either that you could always add one (n = 29) or that 

there was no biggest number (n = 11), but not both. The distribution of infinity knowledge 

categories is comparable to previously reported results (e.g., Cheung et al., 2017; Evans, 1983; 

Hartnett & Gelman, 1998), although our sample consists of slightly younger participants.

3.3 Predictors of Infinity Knowledge

In this section we address how our measures of counting and productivity knowledge 

(Initial Highest Count, Productivity Group, Next Number task) were related to beliefs about 
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infinity. Because the two components of infinity knowledge might develop independently, as 

indicated by the partial knowers who have one component knowledge but not the other, we 

conducted separate analyses to predict children’s belief that every number has a successor 

(Successor Knowledge) and belief that numbers never end (Endless Knowledge). This allowed 

us to identify possible similarities or differences in relevant factors for acquiring each component 

of infinity knowledge. We also predicted children’s status as Full Infinity Knowers, following 

Cheung et al. (2017). 

Once again, our analyses excluded Productive Counters with IHC ≥ 99, so as to obtain a 

stronger, more conservative test of our hypothesis that Productive knowledge of counting might 

relate to beliefs about infinity.8 Thus, we compared Productive Counters with IHC < 99 against 

Non-Productive Counters (total N = 90). 

For our initial models, predictors included Initial Highest Count, Productivity Group 

(Productive vs. Non-Productive Counters), and Next Number accuracy (proportion correct). Any 

predictor in these initial models that significantly predicted the outcome variable relative to a 

base model (with age as the only predictor) was added to a final model, to allow comparison 

among the predictors. Additionally, because Initial Highest Count was significantly correlated 

with both Productivity Group (χ2(1) = 40.27, p < .001) and Next Number accuracy (r(88) = .59, 

p < .001), whenever these latter two variables were entered in the final model we also included 

Initial Highest Count and its interaction in order to test for the role of decade+unit rule 

knowledge above and beyond rote counting ability. Models were constructed hierarchically, with 

model comparisons performed at every step using a Likelihood Ratio Test, and with models 

selected on the basis of a significant chi-squared statistic and reduced AIC value. For details 

about model fits and model comparison results, see Tables 3-5.

------------------------------Insert Tables 3-5 about here -------------------------------

8 Analyses incorporating the full sample are included in the Supplemental Materials (C). Those analyses 
qualitatively mirror the results presented here, though with some differences: None of the counting 
productivity measures were predictive of Successor knowledge. All three measures, however, were 
predictive of children’s Endless knowledge, with Productivity group showing the largest effect. No single 
counting measure remained significant when entered into a full model predicting Endless knowledge, 
suggesting that the three measures explain overlapping variance. Finally, Next Number performance 
explained significant additional variance in predicting Full Infinity Knowledge, but the coefficient was 
not significantly different from 0 (p = .059), suggesting overlapping variance with age.
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Interestingly, in predicting children’s Successor Knowledge (Table 3), none of the three 

predictors explained a significant proportion of additional variance compared to the base model. 

In contrast, for models predicting children’s possession of Endless Knowledge (Table 4), 

Productivity Group explained significant additional variance relative to the base model (�2(1) = 

5.52, p = .019; AIC = 84.9), though other measures of counting ability (Initial Highest Count, 

Next Number accuracy) did not explain additional variance when controlling for age. This final 

model thus included only Productivity Group and age as predictors, and estimated that 

Productive counters were more likely than Non-Productive Counters to have Endless Knowledge 

(β = 1.63, p = .03, OR = 5.08, 95% CI=[1.30,23.50]), while Age was not a significant predictor 

(β = .02, p = 0.94). The effect of Productivity Group remained significant when controlling for 

Initial Highest Count, although these more complex models did not explain any additional 

variance. Finally, we constructed models predicting children’s status as Full Infinity Knowers 

(Table 5). None of our counting measures (Initial Highest Count, Productivity group, or Next 

Number accuracy) improved model fit compared to the base model with only age as a predictor. 

In summary, we found that children who were classified as Productive, based on the 

Highest Count task, were significantly more likely than Non-Productive children to believe that 

numbers never end. Other measures, such as Initial Highest Count and Next Number 

performance, were not as strongly related to infinity knowledge. In addition, none of our 

measures of counting knowledge were related to children’s Successor Knowledge as measured 

by the infinity interview. Thus, in this study we find that one measure of children’s productive 

counting rules predicts a belief that numbers are endless, but none of these measures predict the 

belief that it’s always possible to add +1 to a number. This suggests that children may learn 

successor relations between numbers independent of learning productive counting rules – e.g., 

that this +1 rule describes the finite set of that they know, but that a morphological decade rule 

may explain why children believe that numbers never end – i.e., because number words can be 

productively generated.

4. Discussion

Given only finite experience with discrete quantities, number words, and counting, how 

do children learn that every natural number has a successor, and that numbers are endless? In this 

paper, we had two goals. First, we sought to characterize children’s acquisition of productive 

morphological rules, and when this knowledge emerges in development. Second, we asked how 
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such knowledge might be related to (a) their knowledge of the successor function (i.e., that it’s 

possible to add +1 to any number), and (b) their beliefs regarding infinity (i.e., that numbers 

never end). Prior research suggests that how high children can count is related to their ability to 

identify successor relations for known numbers (e.g., Cheung et al., 2017), leading to the 

suggestion that counting experience causes children to notice the recursive base-10 structure of 

the count list, which in turn provides a basis for learning about successor relations and for 

generating unbounded number words (Barner, 2017; Cheung et al., 2017; Rule et al., 2015; 

Yang, 2016). Thus, learning a rule that generates successive number words might lead children 

to the belief that all numbers have successors, and that numbers never end. Our study found 

multiple pieces of evidence that some 4- and 5-year-old children, but not others, use a productive 

rule when counting. Also, we found that Productive counters differed from Non-Productive 

counters with respect to their understanding of numerical infinity, though, interestingly, not their 

successor function knowledge, per se. 

Several results provide evidence that some, but not all, 4- and 5-year-old children use a 

productive decade rule when counting. First, when asked to count as high as they can, many 

children stopped at decade transitions, with about half making a decade-transition error as their 

first or second error. Whereas a memorized sequence predicts that errors should be randomly 

distributed over the count list, a decade rule predicts that they should occur disproportionately 

for irregular words that are not generated by a rule, such as decade labels (e.g., twenty, thirty, 

fifty). Furthermore, we found that when provided with decade prompts, many (65%) of the 

children who made decade transition errors could continue counting, often counting two or more 

decades further. Second, when tested on the Next Number task, some children correctly 

generated successors for numbers beyond their Initial Highest Count, whereas some children did 

not, and could only name next numbers for items within their initial count. This, too, suggests 

that while some children’s count list was purely memorized, unabetted by a decade rule, other 

children benefited from a rule that allowed them to identify next numbers on trials outside their 

familiar count routine. Third, we found some evidence that these two measures of productivity 

were related to one another, though imperfectly so. Although Productive Counters had higher 

average accuracy on the Next Number task than Non-Productive Counters, the strongest 

predictor of Next Number performance was children’s Initial Highest Count, not their 

Productivity classification. Also, whereas Productive and Non-Productive children performed 
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similarly on the Next Number task for numbers within their Initial Highest Count, Productive 

children performed significantly better than Non-Productive children for numbers outside their 

Initial Highest Count, compatible with the use of a productive rule. The fact that Initial Highest 

Count was a stronger predictor of Next Number performance than Productivity suggests that, 

though in their own ways compelling measures of children’s decade rule knowledge, these tasks 

draw on different constructs, perhaps because only the Next Number task requires children to 

count-up from arbitrary numbers without the benefit of momentum afforded by the count routine, 

and requires knowledge of both small and large numbers (Fuson et al., 1982; Siegler & 

Robinson, 1982).

In addition to characterizing several measures of counting productivity, our second goal 

was to explore how such measures might be related to children’s intuitions about infinity. 

Overall, we found that children’s belief that numbers never end was predicted by Productivity 

classification, but not other measures of counting proficiency, suggesting that children’s ability 

to count-up from a decade label provided by the experimenter is the best predictor of whether 

they think numbers never end. Interestingly, we also found that no measures of counting 

proficiency were related to children’s successor function knowledge, as measured by the infinity 

interview. Specifically, children’s judgment that it’s always possible to add 1 to a number didn’t 

appear to be related to how high they could count, whether they could readily count-up from a 

decade label, or whether they could identify the next number in an arbitrary position in the count 

list. While previous studies have found that children with full infinity knowledge often have a 

highest count around 100 (e.g., Cheung et al., 2017; Hartnett & Gelman, 1998), the present study 

is the first to investigate how counting proficiency relates to successor and endless knowledge of 

infinity separately. This combination of results suggests that children’s knowledge of successor 

relations may be acquired separately from their intuition that numbers never end, either because 

the successor function is not necessarily the basis by which children learn about infinity, or 

because successor function knowledge is initially defined over a finite set of numbers, and only 

later rendered fully recursive – e.g., by learning that recursive morphological rules of generate an 

infinite set of number words, and thus that the successor function can also be infinitely applied.

A starting point for this work was the observation in previous studies (Cheung et al., 

2017) that children’s acquisition of generalized successor function knowledge appears to be 

related to how high children can count. Critically, however, Cheung et al. only tested how 
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counting abilities are related to children’s reasoning about specific numbers, as measured by the 

Unit task (Sarnecka & Carey, 2008), but not whether counting was related to the two beliefs 

about how numbers behave in general. Our work tested whether counting – specifically learning 

a productive decade rule – might explain more general intuitions regarding the successor 

function and infinity. We reasoned that counting might be related to such intuitions in two broad 

ways. First, it might be the case that, as children are increasingly exposed to numbers, they 

acquire more knowledge about how those numbers operate (including but not restricted to 

successor relations), which they may generalize to all numbers, without making a specific 

connection between learning morphological rules of counting and discovering that numbers are 

infinite. An alternative, however, is that counting abilities might relate to knowledge of infinity 

specifically because the morphological rules that govern counting provide rules for generating 

ever larger numbers. Such rules might provide the basis for the belief that numbers never end. 

That is, learning the morphological rules may allow children to reason that number words can be 

productively generated, and thus conclude that numbers are endless. On this view, counting may 

be separately related to the belief that every number has a successor and to the belief that 

numbers are endless. 

Our data are compatible with this distinction between successor function and infinity 

knowledge. Children may learn item-based successor relations early on, and may even believe 

that all numbers have a successor, despite believing that only a finite number of numbers exist – 

i.e., they think the +1 function is bounded to a finite count list. About a quarter of our sample 

held such beliefs. Alternatively, children may have beliefs about numbers that support certain 

logical inferences, but not be aware of the entailments of these beliefs – e.g., that a fully 

recursive function necessitates that numbers never end. As evidence for this, Harnett and Gelman 

(1998; see also Hartnett, 1991) note that children’s beliefs about whether or not numbers are 

infinite can change over the course of a single testing session, simply by asking them what the 

highest number is, and whether it’s possible to add 1 to it repeatedly. For instance, some children 

in their study were able to recognize the inconsistency between their belief that there was a 

largest number and their belief that it is always possible to add one, and by the end of the testing 

session, had given up on either of these beliefs.  

Our finding that children may acquire a productive counting rule by the time they have 

memorized a count list as short as 29 (see Figs. 2 and 3) presents a challenge to current 
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computational models of number word learning. For example, Yang (2016) developed a 

“Tolerance Principle” which states that children invoke rules for explaining regularities in 

linguistic input when the number of exceptions or irregularities are below some threshold. 

According to his model, if there are N different linguistic tokens in the input, then a regular rule 

will be preferred only if the number of exceptions is below N/ln(N). In English, the early number 

words from 1-20 are exceptions to the decade rule, so the Tolerance Principle predicts that 

children would have to acquire a count list of at least length 72 before inducing a regular rule. 

Similar estimates in the 60-70 range were obtained by Rule et al. (2015) using a Bayesian 

architecture for inferring word to quantity mappings. However, our data suggest that some 

children can acquire a productive counting rule with much less data: the median Initial Highest 

Count of Productive Counters was only 49 (ignoring those who reached 99 on their own). Future 

work should reconcile these empirical findings within computational models of number word 

learning. 

Future work might also explore how intuitions regarding infinity may come from sources 

beyond the count list. One possible source, for example, is exposure to mathematical talk about 

infinity and explicit teaching about related ideas. Learning about formal mathematical operations 

like addition, or the recursive addition of zeros in Arabic notation, could help children appreciate 

ways of generating endlessly more quantities. For example, Singer and Voica (2008) describe 

how a group of 5th and 6th-graders explained that rational numbers are infinite, because infinitely 

many digits could be added after the decimal point. Another possible source of intuitions is by 

analogy to quantities other than number, such as space, time, or geometry. One early study by 

Evans (1983) found that knowledge about infinity in number, time, and space developed 

similarly between Kindergarten and 3rd Grade (e.g., from bounded to unbounded), but this 

research did not test if such beliefs were correlated within individual children (see Hartnett & 

Gelman, 1998, for similar findings). Current studies in our labs are exploring this possibility. 

More recently, Smith, Solomon and Carey (2005) found that 1st and 2nd graders’ intuitions 

matter being infinitely divisible preceded their intuitions about the infinite divisibility of rational 

numbers. Numbers can be infinite in many ways (Monaghan, 2001); correspondingly, there is 

much room for future research into children’s intuitions about infinity in different conceptual 

domains.
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Much remains to be discovered about how children acquire rule-like knowledge of the 

count sequence and such knowledge helps shape beliefs about the logical structure of natural 

numbers. One limitation of the present work is that all tasks used real, attested, numbers.  

Although our productivity analyses were meant to use errors as an indication of rule use, it 

remains possible that children’s errors on decade terms were nevertheless affected by differences 

in rote memory for decade terms vs. other count words (e.g., that somehow children’s memory 

trace of “forty” is weaker than their memory trace of “forty-one” or “forty-two”). Any study that 

tests children’s knowledge of attested number words faces this type of challenge. A stricter - and 

possibly more onerous - test of understanding the decade+unit rule might involve unfamiliar or 

made-up numbers. For instance, a child with productive knowledge might be able to judge that 

the successor of “a billion one” is “a billion two” and that the successor of “daxy-five” is “daxy-

six”. Recent work testing this prediction has found that children’s ability to count up from these 

less familiar or novel numbers is correlated with the measures of productivity used here, and is a 

strong predictor of their performance on a task assessing successor function knowledge 

(Schneider, Sullivan, Guo, & Barner, in prep).  

In addition to the factors we tested, it is likely that other domain general capacities play a 

role in children's ability to succeed at our experimental tasks, including the ability to hold 

numbers in working memory, and the more general ability to extract patterns - or rules - from 

linguistic data. Such differences may help explain why some children with low Initial Highest 

Counts were able to count higher using provided decade labels, whereas other children with 

higher Initial Highest Counts were not. However, previous studies suggest that domain general 

limits are unlikely to fully explain individual differences in count list proficiency. In one cross-

cultural study of successor function knowledge, English-speaking US children outperformed 

children in India learning morphologically complex count lists in Hindi and Gujarati, even when 

controlling for working memory, age, and Initial Highest Count (Schneider et al, 2020). Thus, 

while domain-general cognitive abilities are likely recruited in these tasks, they are importantly 

deployed over language-specific inputs that a child receives.

In conclusion, we suggest that sometime around 5 years of age (although surely variable 

by socioeconomic status and language), children learn to generate number words beyond their 

spontaneous counting range by implementing a recursive base-10 rule defined over their verbal 

count list. This insight may support an inductive inference over their acquired verbal count 
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sequence, which facilitates conceptual insights into the infinite nature of the natural numbers. 

Consistent with recommendations from early childhood educators (Frye et al., 2013), the present 

results demonstrate another way that forward counting ability (i.e., counting up from one) may 

provide children with a useful foundation for learning more abstract natural number concepts 

such as cardinality, the successor function, and arithmetic. Our results suggest that understanding 

the logic of natural numbers is closely related to understanding the syntactic logic of the verbal 

numerals, suggesting one route by which learning language can impact learning about number 

concepts.
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Figure 1. Decision tree for Productivity Classification based on Highest Count Task. Participants started 

counting from 1 and were classified as either Non-Productive, Productive (IHC<99), or Productive (IHC 

 99) counters.

Figure 2. Distribution of children's Initial Highest Count by Decade Productivity.

Figure 3. Highest count profiles for (a) Productive Counters and (b) Non-Productive Counters. Each line 

represents highest counts achieved by an individual child. Initial Highest Count (green dots) show highest 

number counted to before any error. Final Highest Count (purple dots) show highest number counted to as 

part of a consecutive 3-number sequence, allowing for up to 10 total errors and not more than three errors 

in a single decade. Errors include counting mistakes made on single numbers (orange dots and triangles) 

or over continuous intervals (orange lines). Decade Prompts (orange triangle) show decade terms 

provided by the experimenter after an error at a decade transition (e.g. stopping at 39). Black lines 

represent absolute gain from Initial to Final Highest Count.

Figure 4. Average proportion of correct response on Next Number task by item and Decade Productivity 

status. Error bars indicate standard error about the mean.

Figure 5. Average proportion correct for each participant on the Next Number task by Decade 

Productivity Status (between subjects) and Item Range (within subjects). Within IHC: correct answer is 

within a particular participant’s Initial Highest Count; Beyond IHC: correct answer is greater than that 

participant’s Initial Highest Count. Error bars show bootstrapped 95% confidence intervals about the 

mean. The largest number tested on this task was 86, thus, all trials were within IHC for productive 

counters with IHC ≥ 99.

Table 1

Decade label Unit label Decade+Unit Label Cardinal value

(defined by successor function)

thirty one thirty-one 31 = 30+1

two thirty-two 32 = 31+1

three thirty-three 33 = 32+1

four thirty-four 34 = 33+1
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 Example of 

Decade+Unit Rule for “thirty” and “xty” and corresponding cardinalities

Table 2

Frequency of infinity knowledge in productive and non-productive counters 

n thirty-n 3n = 3m+1

… … …

xty n xty-n xtyn = xtym+1

Classification Non-

Productive 

Counters

(N = 49)

Productive 

Counters,

IHC < 99

(N = 41)

Productive 

Counters,

IHC ≥ 99

(N = 32)

Total

(N = 122)

No Infinity Knowledge 33 (67%) 18 (44%) 8 (25%) 59 (48%)

Only Successor Knowledge 12 (24%) 10 (24%) 7 (22%) 29 (24%)

Only Endless Knowledge 1 (2%) 4 (10%) 6 (19%) 11 (9%)

Full Infinity Knowledge 3 (6%) 9 (22%) 11 (34%) 23 (19%)
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Table 3

Regression models for predicting Successor Knowledge on the Infinity Interview (Participants IHC <99, 

N=90)

Coefficient Estimates (ß)  Summary statisticsModels

Age IHC Next Number

accuracy

Productivity 

Group

Loglikelihood a AIC R2
Nagelkerke

Base Model

Age 0.296 -58.75 121.51 0.027

Initial Models

Age + IHC 0.598* -0.520 -57.05 120.10 0.077

Age + Next Number accuracy 0.358 -0.155 -58.55 123.09 0.034

Age + Productivity Group 0.157 0.496 -58.32 122.64 0.040

Notes. Coefficients were compared against 0 using t-tests. Model comparisons done using Likelihood Ratio Tests. 

a Each initial model was compared against the base model.

* p < 0.05

Table 4. 

Regression models for predicting Endless Knowledge on the Infinity Interview (Participants IHC <99, 

N=90)

Models Coefficient Estimates (ß)  Summary statistics
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Age IHC Next Number

accuracy

Productivity 

Group

Loglikelihood a AIC R2
Nagelkerke

Base Model

Age 0.451 -42.22 88.44 0.049

Initial Models

Age + IHC 0.261 0.349 -41.63 89.26 0.070

Age + Next Number accuracy 0.287 0.466 -41.04 88.07 0.090

Age + Productivity Group 0.025 1.625** -39.46* 84.92 0.142

Final Models

Age + Productivity Group + IHC 0.012 0.044 1.586** -39.45 86.91 0.142

Age + Productivity Group * IHC 0.009 0.105 1.555** -39.40 88.79 0.144

Notes. Coefficients were compared against 0 using t-tests. Model comparisons done using Likelihood Ratio Tests. 

a Each initial model was compared against the base model.

* p < 0.05, ** p < 0.01

Table 5. 

Regression models for predicting Full Infinity Knowledge on the Infinity Interview (Participants IHC <99, N=90)

Models Coefficient Estimates (ß)  Summary statisticsA
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Age IHC Next Number

accuracy

Productivity 

Group

Loglikelihood a AIC R2
Nagelkerke

Base Model

Age 0.527 -33.91 71.81 0.058

Initial Models

Age + IHC 0.481 0.084 -33.88 73.76 0.059

Age + Next Number accuracy 0.417 0.307 -33.51 73.03 0.073

Age + Productivity Group 0.207 1.229 -32.71 71.43 0.104

Notes. Coefficients were compared against 0 using t-tests. Model comparisons done using Likelihood Ratio Tests. 

a Each initial model was compared against the base model.
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