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Abstract

Traditionally, for an urban rail system, the passenger dwell time at each station enroute s
often assumed a constant in scheduling and in operations. In fact, however, the dwell time
may be affected by the numbers of passengers boarding and alighting, the level of
congestion on the platform and on the train, and other unmeasurable factors. Neglecting the
dwell time factor in operations, may affect reliability of service, reduce line capacity, and
increase passenger wait time.

In this thesis, multiple linear regression models are estimated to deal with the passenger
dwell time relationships, in which dwell times may be viewed as a function of the numbers
of passengers boarding and alighting, and soine alternative variables reflecting crowding.
In order to exploit differences in the passenger boarding and alighting process between one
and two-car trains, separate models were estimated based on one and two-car train data sets.
The data, and the estimated models, relate to the Green Line light rail operation of the
Massachusetts Bay Transportation Authority, but the principles and underlying theory
apply equally well to heavy rail systems. The MBTA case study demonstrates that linear
regression models can explain about 70% of the observed variation of the dwell times by
using three explanatory variables; the crowding effect is statistically significant in both one
and two-car train models; and, in many model specifications, adding crowding variables
reflecting the congestion level on board significantly improves the explanatory power of the
models.

Models with nonlinear forms of crowding variables were also estimated to compare with
the linear forms. It appears in many cases, the models with nonlinear forms of crowding
variables are a significant improvement over those with linear forms. Lastly, checks are
made of the key linear regression assumptions to confirm that the promising models do not
violate any of these assumptions.

Thesis Supervisor: Professor Nigel H. M. Wilson
Title: Professor of Civil Engineering
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Chapter 1

Introduction

1.1 Problem Description

Urban rail and bus systems are the major forms of public transit service in urban
areas throughout the world. Generally, urban rail systems are either heavy rail or light rail
systems with one of the major difference between them being right-of-way. While heavy
rail systems have exclusive rights-of-way, light rail systems may have some shared right of
way, and indeed may not have any exclusive right-of-way. In addition, high station
platforms are most corimon in heavy rail systems in contrast with low platforms generally
used in light rail systems. Because high platforms make it easier for passengers boarding
and alighting, the passenger dwell time per passenger in a heavy rail system will generally

be shorter than that in a light rail system.

For an urban rzil system, the passenger dwell time at each station enroute is often
assumed a constant for scheduling purposes, however, because passenger dwell time may
be affected by the number of passengers boarding and alighting, the levels of congestion on
the station platform and on the vehicle, and other factors, the passenger dwell time for
different trains at stations may vary. Neglecting the variable factors affecting dwell time in

real operation, may directly affect reliability of service, and indirectly affect line capacity.



1.2 Motivation

Several studies exist in the literature analyzing the boarding and alighting process of
a mass transit vehicle berthed at a station (stop) in an urban area. But, most of these studies
were limited to predicting dwell time for buses requiring on board fare payment and were
based on counts of total passengers boarding and alighting. Little attention has been given
to dwell time for light or heavy rail systems. In most rail systems, passengers make their
fare payment at the station, which means they are not required to pay a fare when they
board or alight from the vehicle, therefore the boarding and alighting characteristics are

expected to be quite different from those of bus.

Generally, an urban rail system operates according to a timetable, but the actual
headways, defined as the time interval between two successive trains at a station, depend on
several factors and therefore are not typically constant. In real operation, the scheduled
headways are set as a function of the passenger demand rates at different time periods, that
is, the headways are shorter in the peak periods and are longer in the off-peak periods. The
actual headway at a specific station is related to the headway at the preceding station as
well as the dwell times of the preceding train at the station, the running times of both trains
from the preceding station, and the dwell time of the following train at the preceding
station. Assuming the running times for all trains from the preceding station to a specific
station are constant under the identical headways, the passenger dwell times at the specific
station for different trains may affect the actual headways implying that the headways are
no longer identical. Assuming the passenger arrival rates are uniform within a time period,
then the variable headways at the specific station are likely to result in uneven passenger
loadings for the trains and higher probability of vehicle bunching. Consequently, the
reliability of operation and line capacity are dramatically affected, and the passenger wait

times are expected to increase.
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In view of the importance of the potential impacts of passenger dwell times on
scheduling, operations, reliability, line-capacity, and service quality (e.g. reducing average
passenger wait times), it is desirable to derive appropriate dwell time functions and apply
them in the scheduling process and in operations control. However, in past studies little
attention has been given to this topic, and none has focussed on multiple car train dwell
times. To fill this research gap and to improve the aforementioned weak points in urban
rail operations, this study will be devoted to investigate possible impacts of passenger-

vehicle interaction upon passenger dwell time, for both one and two-car trains.

1.3 Literature Review

A major objective of the literature review was to identify other studies that shed light
on passenger dwell time functions. Research into the literature found studies that discuss
one quantity that will be shown to be related in this study: passenger service times. The
passenger service time is defined in the HCM (1985) as the amount of time requirement by
each boarding and alighting passenger, in contrast with dwell times which will be governed
by boarding and alighting demand, as well as other factors. Dwell times are simply the
product of boarding and/or alighting volumes and the service time per passenger. The
literature review also found that ordinary least squares regression was widely used by

several researchers to estimate dwell time relationships.

Boardman and Kraft (1970) analyzed bus passenger service time data collected in
downtown Louisville, Kentucky. These data were analyzed in the following categories:
alighting-only; boarding-only; and combined boarding and alighting. Boarding occurred
only through the front door, while alighting occurred from the front or rear door or both.
Separate linear regression equations were estimated for each category and showed that bus

stop passenger dwell times could be predicted accurately using the number of passengers
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boarding and/or alighting. Two fare systems were evaluated in Louisville, Kentucky, and
the "exact fare" system was shown to be significantly faster when passengers were

boarding.

Cundill and Watts (1973) analyzed the stop time characteristics of a variety of
different bus types, including both one and two-man-operated systems. Analysis showed
that on an urban route with an average of 3 people boarding and 3 people alighting at each
stop, the average stop-time of a traditional two-man-operated bus with an open-rear-
platform would be about 8 seconds, whereas on the same route the average stop-time of
one-man-operated buses would be from 11 to 20 seconds. For some bus types, a significant

portion of stop-time was taken up by door operation.

Kraft and Bergen (1974) investigated the effects on passenger service time of various
vehicles, different methods of fare collection, combinations of boarding and alighting
through the front and rear doors, and time of day. The method of ordinary least squares
regression was used to develop equations to predict passenger dwell time based on the
number of passengers boarding and alighting. The exact-fare method of fare collectior
resulted in lower passenger service times than did the traditional cash-and-change method.
Trolleybuses with double doors had lower service times than did those with single doors.
In addition, intercity passenger service times were found to be greater than those for local

transit service.

Kraft (1975) developed the term PVI (Passenger Vehicle Interface), measured in
terms of passenger service time, to denote the interaction between passengers and transit
system elements while passengers board or alight. Seven factors were labelled as either

affecting PVI or being in turn affected by PVI, as shown in Table 1.1.
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Table 1.1

FACTORS AFFECTING PASSENGER VEHICLE INTERFACE (PVI)

Human

type of passenger
physical attributes
passenger preferences
baggage

passenger demand

. Modal

type of vehicle
service
physical characteristics

Operating Policies

vehicle procurement
fare structure

Operating Practices

type of fare
driver practice variations

Mobility

different system users affect service times,
system costs, and travel times

Climate/Weather

varying composition of system users with varying
mobility potentials

Other System Elements

orderliness of the queue
terminal arrangements



-13-

Kraft was not able to test the influence of all factors on PVI, but was able to test the
presence and impact of PVI on both bus and light rail modes under several service
conditions, such as: time of day; whether a particular observed vehicle had only alighting,
or boarding passenger, or both boarding and alighting; type of fare collection system; type

of passenger; and varying door geometries.

The major methodology employed in Kraft’s paper was multivariate regression.
Independent variables used to predict total passenger service time included not only those
used previously in British studies, counts of boarding and alighting passengers, but also
included a cross-term for interactive effects. The latter term, occuring only for mixed
processing calibrations of total bcarding plus alighting service time, is designed to quantify

either or both of the following:

-- the overlap between passengers being serviced in
opposite directions simultaneously (a negative
coefficient is possible if overlap occurs).

-- the interaction between boarding and alighting
passengers at the same doorway area (positive
coefficient likely).

In order to develop simulation models to evaluate the street transit operations,
distributions of passenger service times through bus doors (the rates at which passengers
entered, passed through, and departed from the bus) have been analyzed by photographic
studies and simulated by an Erlang function. Kraft and Deutschman (1977) applied these
mathematical expressions to simulate the passenger rates of flow entering and departing
from a bus and compared them with the observed times, finding that the differences were

not significant at 5 percent significance level.

Fritz (1981, 1983) did research on boarding and alighting times of passengers on light

rail vehicles based on sampling rush-hour operations on the Presidents’ Conference
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Committee (PCC) vehicles of the Massachusetts Bay Transportation Authority’s (MBTA)
Green Line, a high-volume, light rail subway-surface line. Linear regression relations were
calibrated between the number of passengers boarding per unit time and concurrent
passenger counts (or density) on board the vehicle and on the platform. These models
reflected the trends in the raw data that the boarding rates declined markedly under
increasing passenger congestion, especially as the space per standee fell below the often
used nominal standee space level of 2.7ft?/standee and approached crush-capacity density
of l.5ft2/standee. On the other hand, at freer circulation levels, those models provided
predictions quite similar to predictions from constant-service-time models frequently

formulated in earlier research.

Levinson (1983) analyzed bus transit speeds, delays and dwell times based on
surveys conducted in a cross section of U.S. cities. He found that bus dwell times
(including door opening and closing) were approximatly 5 seconds plus 2.75 times the
number of passengers, in addition, both fare-collection policies and door configurations and

widths were important determinants of dwell time, especially along high-density routes.

Guenthner and Sinha (1983) examined two causes of bus delay: the delay from the
stopping and starting at passenger stops, and the dwell time as the passengers boarded and
alighted from the bus. Their evaluation of data on the number of passengers boarding and
alighting at stops along a route showed that the negative binomial is a good descriptor of
this distribution. Additional data were used to determine dwell time per passenger as a

function of the number of passengers boarding and alighting.

The HCM (1985) shows that dwell time may be govemed by boarding demand (e.g.,
when a relatively empty bus arrives at a heavily used stop), or by alighting demand (e.g., at
a major transfer point on the system). In all cases, dwell times are proportional to boarding
and/or alighting volumes times the service time per passenger. Suggested service times for

typical operating conditions -- single door loading, pay on bus-- are: boarding, 2.6 seconds
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for sinigle coin; 3.0 seconds for exact fare; 3.5 seconds for exact fare with standees on bus;

alighting, 1.7 to 2.0 seconds.

Zografos and Levinson (1986) observed passenger service times for a no-fare bus
system and tried to find how the service time per boarding passenger varied with the size of
the boarding group and the number of passengers already on the bus. Those relationships
were developed for two different occupancy conditions: (a) when the number of passengers
on the bus before reaching a stop was less than or equal to the seating capacity of the bus
(about 30), and (b) when the number of passengers on board was greater than the seating
capacity of the bus (over 30). Simple and multiple regression analyses were performed to
examine the effects of bus occupancy and the rank of boarding passengers on the service
time per passenger. Both factors were found to influence passenger boarding times when
the number of passengers on the bus exceeded the seating capacity, with a service time of
more than 2 seconds per passenger. When the number of passengers already on the bus was

less than the seating capacity, the service times was approximately 2 seconds per passenger.

Koffman et al. (1984) collected two Boston light rail line data sets (on the Riverside
Line and the Boston College Line) on the Green Line service operated by the Massachusetts
Bay Transportation Authority (MBTA), and the San Diego Trolley to estimate dwell time
model using ordinary least squares regression. In all the medels estimated, the dependent
variable was dwell time, and total boardings, total deboarding, and total passengers on-
board for each car at each stop were used as independent variables. The summary of
boarding time statistics used in their regression analysis is shown in Table 1.2. They found
that the marginal times for boarding, alighting, and on-board crowding are: 0.67, 0.59, and
0.034 on San Diego Trolley; 0.65, 0.61, and 0.040 on the Riverside Line; and 0.84, 0.52,
and 0.029 on Boston College Line. The intercepts for their models are 8.14, 3.04, and 2.96
seconds on San Diego Trolley, the Riverside Line and Boston College Line respectively,

and the R? values for these models ranged from 0.43 to 0.84.
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Table 1.2 Summary of Boarding
Time Statistics (a)

Loading Time Passengers Passengers Passengers

(seconds) Boarding Deboarding On-board
San Diego (SSFC)
Mean 15.7(b) 34 35 4383
Std. Dev. 77 5.0 48 245
n=1,078
Boston Outbound
(Fare Free)
Mean 10.0(c) 3.1 6.3 46.7
Std. Dev. 6.7 45 6.5 27.2
n=211
Boston Inbound
(Conventional)
Mean 15.4(d) 4.0 0.8 419
Std. Dev. 15.7 43 1.5 26.1
n =550
Notes:

(a) Excludes data not used in regression analysis due to missing values for any variable.

In particular, ends of the line are not included. Also excludes the driver relief point

in San Diego.

(b) Time from first door open to last door shut. Data from front and back cars combined.

(c) Maximum of measurements of duration of passenger boarding and deboarding at
each of three doors. Excludes time door open but without passenger activity.

(d) Duration of passenger boarding and deboarding activity at single driver-operated

door.
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1.4 Approach to Be Taken

The approach to be taken in this research includes three major aspects, which are
briefly stated below. First, to collect a appropriate data set for model estimation. The data
will be used first for preliminary analysis of dwell time relationships based on several key
factors and then for model estimation. Second, to develop theory that can explain the dwell
time relationships for urban rail systems based on a set of specific assumptions about the
relationships between dwell times and the explanatory variable. Third, to integrate the
available data and the developed theory to formulate model specifications. It is hoped that

the resulting models can be applied for dwell time prediction purposes.

1.5 Thesis Contents

In Chapter 2 a mathematical formulation of the rail dwell time problem is presented.
Chapter 3 presents a case study in which multiple linear regression is applied to one and
two-car dwell time observations collected on the Masschusetts Bay Transportation
Authority Green Line. Chapter 3 also discusses a number of issues that arise in applying
multiple linear regression including key assumptions in using any linear regression model
and in adopting specific model forms. Chapter 4 summarizes the thesis results and

recommends future research needs in this area.
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Chapter 2

Mathematical Model

2.1 Introduction

For a transit system, basic operating units and composition of trains are determined
by several factors, such as: train sizes, number of driver control sets per car, passenger
demand, and so forth. While one to four-car trains are common in light rail systems, heavy
rail systems may have four to ten-car trains in operation. Traditionally, there are four to
eight doors in any rail car, that is two to four doors in each side, which provides two to
eight doors for passenger alighting and boarding at any station, depending whether the

station has a single or double platform configuration.

The dwell time of any train at any station may be affected by several factors,
including the congestion level on the station platform, type of fare collection, number of
passengers alighting and boarding, and passenger crowding level on board. Kraft (1975)
developed seven key categories of factors affecting passenger vehicle interface (PVI), as
presented in Table 1.1. The key factors that may affect dwell time of urban rail systems are

discussed in the following section.

2.2 Key Factors Affecting Dwell Time

The number of passengers alighting and boarding are assumed to affect the dwell
time most crucially since it takes time for each alighting and boarding passenger. Apart
from these two factors, the following factors may affect dwell time: the arriving passenger

load (APL) reflecting the passengers crowding on board; passenger density on station
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platforms reflecting the congestion level on station platforms; the number, width, and
configuraiion of doors used and type of station platform reflecting the ease of passengers
boarding and alighting; the fare collection system reflecting the time required for each

passenger alighting or boarding; the operator behavior; and passenger characteristics.

Assuming the fare collection system, rail car design, and station platform type are
identical in an urban rail system, then the variable factors affecting dwell time are reduced,
however, there still exist practical difficulties in observing all these remaining factors
simultaneously that almost always prevent us from formulating a model specification using
all these variables. Thus, the only feasible approach is to collect data on the key factors for

further analysis.

Among the stated factors, the number of passengers alighting (OFFS) and boarding
(ONS), and arriving passenger load (APL) are assumed most likely to affect the dwell time,
furthermore, these quantitative data could be obtained simultaneously at any station by a
team of data collectors. In the following sections, underlying ¢well time models are
expressed in both general and detailed formulations, using these three aforementioned

explanatory variables.

2.3 General Formulation

To formulate the dwell time problem, first, the dwell time for each car is defined as
the time periods between the first door opening and the last door closing. Thus, the dwell

time for an n-car train can be taken as the longest dwell time for cars 1, 2, .....n. Thus:

DT, = max (DT,, DT,, ..... ¢y DTy, ovunn... , DT,) (2.1)

where
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DTi: dwell time for the ith car of the n-car train, 1 <i<n, and i and n are integers.

This assumes that doors open at the same time on all cars, although this is not always

true.

Similarly, the dwell time for any car i is the longest door open time for doors 1, 2, ...,

m of that car, that is,

DT; = max (DOT,, DOT,, ..... , DOT

1

., DOT,) (2.2)

where

DOTJ- : the door open time for the jt door.

Based on Egs. (2.1) and (2.2), the dwell time for an n-car train is taken as the longest door

open time for that train.

As stated earlier, for a given rail car design and fare collection system, the number of
alighting and boarding passengers, and arriving passenger load are believed to be the main
factors affecting the dwell time. Thus the relationships between these variables can be

expressed as the general form:
DT = £ (ONS, OFFS, APL) (2.3)

where
ONS: the number of boarding passengers.
OFFS: the number of alighting passengers.

APL: arriving passenger load.

Several altemative forms can be derived, according to different definitions of the
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number of alighting and boarding passengers, and arriving passenger load. For example:

treating the train as an entity, the relationships between these variables is:

n n
DT =f (3, ONS, 3 OFFS,, APL (24)

i=1 i=1

train)

Similarly, dwell time for a single car can be defined based on the number of
passengers alighting and boarding, and passenger crowding level of that car. Then,
applying equation (2.1), the train dwell time will be based on the single car with the largest

dwell time (LDT), and the relationship between these variables can be expressed as:
DT = £(ONS,,,, OFFS_,,, APL,,.) (2.5)

Similarly, dwell time for a single door can be defined based on the number of
passengers alighting and boarding, and passenger crowding on that car. Then, applying
equation (2.2), the train dwell time will be based on the door with the longest door opening

time (LDOT), and the relationship between these variables can be expressed as:

DT = £(ONS;;,., OFFS;;n, APL_  .) (2.6)

These three approaches all related to the dwell time but require different data both for
estimation and application. Therefore, the core problem of applying these model forms is
the data available and the accuracy of the resulting model estimation. For example: the
APL; po is difficult to measure because of the difficulty of identifying the APL close to
the door with the LDOT; and there may be no passenger alighting and/or boarding through
the single door with the LDOT resulting in lacking of accuracy of model estimation.
Finally the problems of using such a model for forecastiﬁg even if it could be estimated,

appear in surmountable.
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2.4 Detailed Formulation

Based on the preceding general formulation, Eq. (2.6) can be developed at a detailed

level by deriving each of the independent variables.

The passengers wait to board at any station r (ONS,) can be expressed as:

n m

ONS, = 3> ONS,;
i=1j=1
= fiH,)

t nm
= 3 3 RxH xP,xP,g 2.7

s=r+li=1j=1

where

ONS, : passengers wait to board at station r.

ONSﬁj : passengers boarding through the jth door of the ith car of that train.

H,, : the previous headways (minutes) of trains operating between stations r and s.
R, : passenger arrival rate per minute at station r.

P

rs - percentage of all passengers boarding at station r who travel to station s.

szij : percentage of passengers travelling from r to s who board through the j‘h door
of the ith car.

Similarly, passengers alighting at station r (OFFS,) can be expressed as follows:
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n m
OFFS, = ) 3 OFFS,;
i=1j=1
= fAPL, P))

=f(fH,), P)

r-1n m

=¥y ONS,;;% P,

p=li=1j=1
r-1n m

-!,212;‘12 RyXHy X Pp X Pyt X Py (2.8)
—1i=

where

OFFSﬁj : passengers alighting from the jth door of the ith car of at station r.

APL : arriving passenger load.

ONSpij : passengers boarding from the jth door of the ith car at previous stations p.
P, : percentage of on board passengers alighting at station r.

Hp : the previous headway (minutes) of train at preceding station p.

Pprij : percentage of passengers boarding from the jth door of the ith car at previous

station p, and alighting at station r.
Rp : passenger arrival rate per minute at station p.
Hps : the previous headway (minutes) of train operating between stations p and s.
Pps : percentage of all passengers boarding at station p who travel to station s.
Ppsij : percentage of passengers travelling from p to s who board through the jth door

of the it

Substituting Egs. (2.7) and (2.8) into Eq. (2.6), then
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OFFS

rji

rjiv

APL)

t n m

=f( Z Z 2 R, XH, XP, XP, .,
s=r+li=1 j=1
r-1 n m

2 2 ZRPXHPSP ps ™ Ppsij* Pprijs

p=l i=1 j=1
r-1 r-1
D, ONS,;i— > OFFS,) (2.9)
p=l p=l+1

where
ONS;; : passengers boarding through the j? door of the ith car at station p.

OFFS;; : passengers alighting from the j™ door of the ith car at station p.

As indicated by the above expressions, it is more difficult to utilize the detailed
formulation than the general formulation since a unreasonable amount of data would be
required for dwell time analysis based on the detailed formulation. Therefore, it appears
that the general formulation of dwell time relationships with several explanatory variabies

is more feasible.

The preceding knowledge is reflected in a set of specific assumptions about the
relationships between the dwell times and the explanatory variables. To explain or predict
the dwell time using these variables, multiple linear regression method is applied (multiple
linear regression is discussed in detail in Greene (1990), Johnston (1984) and Never et al.

(1983)).
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Chapter 3

Model Estimation -- MBTA Green Line Case

In this chapter dwell time functions are estimated for one and two-car trains on the
MBTA Green Line, a light rail line operating with articulated light rail vehicles. Because
of the heavy ridership, close station spacing, and high frequencies of trains, the dwell time
function is particularly important in determining both Green Line capacity and operating
performance, and is a critical element in developing both the operations plan and operations
control options. Moreover, no dwell time function has been developed for the Green Line,
or for any similar high frequency and high ridership light rail system using articulated
vehicles. The analysis described in this chapter focusses on estimating dwell time

functions, based on a set of disaggregate dwell time observations.

3.1 MBTA Rail Transit Network

The MBTA rail transit network, excluding commuter rail, consists of four lines, the
Red, Orange, Blue, and Green, with a total length of 69 miles and 126 stations of which 4

are central transfer stations (CTS) between the lines (see Figures 3.1 and 3.2).
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Figure 3.1 MBTA Subway System
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Figure 3.2 Downtown Subway System
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Two different rail technologies co-exist in the MBTA rail transit system. The Red,
Orange and Blue Lines are Rail Rapid Transit lines, with a total length of 41 miles and 60
stations, using conventional steel wheel on steel rail technology operating on an exclusive
right-of-way with third rail power pickup, while the Green Line uses Light Rail technology
over a branching network of 28 miles and 70 stations. Although portions of the Green Line
right-of-way include at-grade crossings, most of the line is fully grade separated, including
the central portion which operates in a tunnel. In fact the original section of Boston’s Light
Rail system operates in the nation’s oldest subway (the first two stations opened in 1897).
Today, the Green Line is made up of four routes (see Figure 3.3), B, C, D, and E, which
join in one central subway tunnel ( from Lechmere Station to Kenmore Station) with trains
from all four routes operating on the same tracks. Within this section, fares are paid upon
entering a station rather than on board the train, which is the rule on the surface branches of

the line.

In the 1970’s, The President’s Conference Committee (PCC) cars were the major
vehicles to run on the Green Line; they have given way to the new Light Rail Vehicles
(LRVs) (see Figure 3.4) today. All LRVs of the Green Line have 52 seats, 35-inch high
non-slip floors, highlighted stair edges, hand/grab rails, and priority seating decals which
encourage passengers to offer a seat to disabled and elderly persons. There are 6 doors per
car, 3 in each side, the middle and rear doors are 35-inch wide while the front door is 32-
inch wide. The great majority of trains are composed of either one or two cars, depending
on passenger demands in the peak and off-peak periods. However, some three-car trains
are also in daily operation. Therefore, there are three doors available for passengers
alighting and boarding in any one-car train while it dwells at any single (low) platform
station, while there are six doors available in any two-car trair. In addition, these LRVs

have a public address systems over which destinations and stops are announced.



.29.

Green Line Subway and Branch Lines

Figure 3.3
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Figure 3.4 General Arrangement of the LRV
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3.2 Data Collection

As discussed earlier in Chapters 1 and 2, there are many factors which might affect
dwell times, including the number of passengers boarding and alighting, congestion on the
station platform and in vehicles, passenger and operator behavior and vehicle design.
Among these factors, the number of passengers boarding and alighting are expected to be
the most important determinants of dwell time, and these data can be obtained by direct
observation. For this analysis, a special detailed data set was gathered, with each
observation including the following data: the number of passengers boarding and alighting
through each door, the time the front door was opened and closed for each car, and the
departing passenger load for each car. Because of the unusual level of detail required, it
was necessary to have a two person team per car, or a four person team for a two car train,

to collect the data.

One-car train data was collected in the westbound direction at the Copley and
Arlington Stations by teams of two data collectors. Each collector had responsibility for
one half of the train. Recordings were made of the number of passenger boarding and
alighting through each door as well as of the time the front door was opened and closed. In
addition, the departing passenger load was estimated by each collector for his half of the

train. Lastly, each train was identified according to its route and the number of its first car.

Two-car train data similar to the one-car train data was collected in the westbound
direction at Arlington Station by a team of four data collectors. Once again each collector

had responsibility for one half of a car.

These data was collected in April of 1988 and 1989, and resulted in 122 observations

of one-car train dwell times and 51 samples of two-car train dwell times.
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3.3 Preliminary Analysis

The purpose of the preliminary analysis was to examine whether the dwell time is
related to the number of passengers boarding and alighting as well as to the leaving
passenger load. The dwell time for the two-car train data set was taken as the longer of the

dwell times for each car (LDT), as described in Chapter 2.

Because both the number of passengers boarding and alighting and passenger load
may be expected to affect the dwell time, two preliminary analysis were conducted based
on the sum of boardings and alightings (ONOFFS) and on leaving passenger load (LPL),

both defined on a per car basis.

3.3.1 One-Car Train Observations

The one-car train data set was coliected from two stations (Copley and Arlington).
Because the main purpose of the study is to determine if dwell time is a function of
passenger load and the numbers of passengers alighting and boarding, a dummy variable
was used in the regression analysis to include the station variable in model formulations.
As will be shown later it appears appropriate to perform further analysis based on the
pooled data. The pooled data permitted model estimation with the largest possible sample

size, to produce the best possible models.

There are 52 seats in each car and it was expecred that increasing the numbers of
standees in a car would likely result in increased dwei! time due to interference effects
between standees and passengers attempting to board and alight. Accordingly, observations
were classified into four groups for the preliminary load analysis, based on the following
ranges for LPL: LP1.<53, 53<LPL<81, 81 <LPL<109, and LPL2>109. The larger the LPL,

the more significant the crowding impact was expected to be.



-33-

From Table 3.1, it can be seen that the mean dwell times are 16.8, 20.6, 24.0 and 36.0
seconds for the four groups implying that the mean dwell time is positively related to the
LPL. The standard deviations of the dwell times for these four groups are 5.65, 8.35, 6.68,
and 13.31 seconds respectively implying the variability of the dwell time aiso increases
with LPL. Analysis of variance is applied to test the null hypothesis that the mean dwell
time is equal for these four groups. As indicated by the F-statistics and P-values shown in
Table 3.2, the null hypothesis is rejected at 0.05 significance level. Therefore, the mean

dwell time appears significantly related to LPL.

Similarly, it was expected that increasing the number of passengers boarding and
alighting would result in increased dwell time due to the fact that each passenger boarding
and alighting affects the dwell time. Accordingly, observations were classified into four
groups for the boarding and alighting analysis, based on the following ranges for ONOFFS:
ONOFFS <9, 9<ONOFFS <17, 17<ONOFFS £25, and ONOFFS>25.

As indicated by Table 3.1, the mean dwell times are 15.8, 20.0, 27.1, and 41.0
seconds, with standard deviations of 6.65, 6.32, 5.90, and 14.96 seconds for the four groups
implying that the mean dwell time increases with the OMOFFS count. It also appears that
the variability of the dwell time increases significantly when ONOFFS is greater than 25.
Once again, analysis of variance is used to test the statistical significance of the mean dwell
time between the four groups. The null hypothesis is that the mean dwell time is no
different between the four groups. As indicated by the F-statistics and P-values shown in
Table 3.3, the null hypothesis is rejected, which implies, as expected, that the mean dwell

time appears positively related to the ONOFFS variable.

In conclusion, the mean dwell time is positively related to both LPL and ONOFFS,

for the one-car train observations.
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Table 3.1 One-Car Train Dwaell Times

Total Standard

Sample: n=122 Mean = 23.31 Deviation = 11.41

a) Analysis based on LPL

LPL <53 53-80 81-108 > 108
Sample Size 41 37 16 28
Mean LPL 32 65 84 132
Mean ONOFFS 10 15 20 21
Mean ( Owell Time) 16.83 20.60 24.00 36.00
Std. Dev. ( Dwell Time) 5.65 8.35 6.68 13.31
b) Analysis based on ONOFFS

ONOFFS <10 10-17 18-25 >25
Sample Size . 37 39 30 16
Mean LPL 47 75 89 101
Maan ONOFFS 6 13 21 32
Mean ( Dwell Time) 15.81 20.03 27.10 41.56
Std. Dev. ( Dwell Time) 6.65 6.32 5.90 14.98
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Table 3.2 F Test for Mean Dwell Time

on One-Car Train (Based on LPL)
SOURCE DF SS MS F P
GROUP 3 6511.4 21705 27.73 0.000
ERROR 118 9234.7 783
TOTAL 121 157462

Note: Critical F Value = F(0.05,3,118) = 2.68

Table 3.3 F Test for Mean Dwell Time
on One-Car Train (Based on ONOFFS)

SOURCE DF SS MS F P
GROUP 3 8262.9 27543 43.43 0.000
ERROR 118 7483.3 63.4

TOTAL 121 157462

Note: Critical F Value = F(0.05,3,118) = 2.68
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3.3.2 Two-Car Train QObservations

A similar preliminary analysis was conducted for the set of two-car train dwell times
based on the ONOFFS and LPL variables. The values of the ONOFFS and LPL variables

were taken as the ONOFFS and LPL for the car with the larger dwell time.

First, the observations were classified into the same four groups for the load analysis
as in section 3.3.1. Table 3.4 presents the mean dwell times of 20.4, 23.2, 27.5, and 35.5
seconds with standard deviations of 5.68, 7.39, 6.81, and 6.31 seconds for the four groups.
It appears that the mean dwell time increases as the mean LPL increases but the variability
of the dwell time does not differ significantly. Analysis of variance is applied to test the
null hypothesis that the mean dwell time is equal for these four groups. As indicated by the
statistics shown in Table 3.5, the null hypothesis is rejected at 0.05 significance level

implying that the mean dwell time is positively related to the LPL.

Second, the observations were analysed based on the ONOFFS variable. Table 3.4
presents the mean dwell times of 19.3, 22.8, 28.7, and 34.9 seconds with standard
deviations of 5.69, 4.87, 6.81, and 6.56 seconds respectively for the four groups. It appears
that, as expected, the mean dwell time increases with ONOFFS and the variability of dwell
time does not differ significantly between groups. To test the statistical significance of the
mean dwell time between groups, analysis of variance is applied. As indicated by the F
statistic and P-value shown in Table 3.6, the null hypothesis is rejected at 0.05 level, which

implies that the mean dwell time is positively related to ONOFFS.
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Table 3.4 Two-Car Train Dwell Times

Total Standard

Sample: na=51 Mean = 26.57 Deviation = 8.40

a) Analysis based on LPL for LDT car

LPL <53 5380 81-108 > 108
Sample Size 11 13 16 11
Mean LPL 41 69 98 132
Mean ONOFFS 11 15 21 27
Mean ( Dweli Time) 20.36 23.15 27.50 35.46
Std. Dev. ( Dwell Time) 5.68 7.39 6.81 6.31
b) Analysis based on ONOFFS for LDT car

ONOFFS <10 10-17 18-25 >25
Sample Size 12 14 11 14
Mean LPL 61 74 97 109
Mean ONOFFS 6 14 21 32
Mean ( Dwell Time) 19.33 22.79 28.73 34.87
Std. Dev. ( Dweli Time) 5.69 487 6.81 6.56
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F Test for Mean Dwell Time

on Two-Car Train (Based on LPL)
SOURCE DF SS MS F P
GROUP 3 14575 4858 11.02 0.000
ERROR 47  2073.0 441
TOTAL 50  3530.5

Note: Critical F Value = F(0.05,3,47) = 2.80

Tabie 3.6 F Test for Mean Dwell Time
on Two-Car Train (Based on ONOFFS)
SOURCE DF SS MS F P
GROUP 3 1841.6 613.9 17.08 0.000
ERROR 47 1688.9 35.9
TOTAL 50 3530.5

Note: Critical F Value = F(0.05,3,47) = 2.80
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3.3.3 Comparisons between One-Car and Two-Car Train Observations

From Tables 3.1 and 3.4, as indicated by the statistics shown based on the LPL, it can
be seen that in the three less-crowded groups, the mean dwell time for the two-car train data
set, with 20.4, 23.2, and 27.5 seconds respectively, appears larger than that for the
corresponding one-car train data set, 16.8, 20.6, and 24.0 seconds. For the heaviest
passenger load group with LPL2>109, the mean dwell time for two data sets was virtually
the same at about 36.0 seconds. The t-test is applied to test the statistical significance of the
mean dwell time difference between the two data sets for the same LPL groups. The null
hypothesis is that the mean dwell time is equal between the two data sets for each group
with the same range. Table 3.7 shows that the t-statistics are less than the critical t-values,
therefore it is concluded that at 0.05 level there is insufficient evidence to reject the null

hypothesis from these observations.

Similarly, as indicated by the statistics based on ONOFES (see Tables 3.1 and 3.4),
the mean dwell times are 15.8, 20.0, 27.1, and 41.6 seconds for the one-car train data set
versus 19.3, 22.8, 28.7, and 34.9 seconds for the four groups of the two car data set. The
dwell times appear longer for the two-car train data set than for the one-car train data set for
the lowest three ONOFFS groups. Once again, the t-test is applied to test the null
hypothesis that the mean dwell times are equal for the two sets of data with the same
ranges. The t-statistics in Table 3.8 show that the test is insignificant at 0.05 level implying

there is insufficient evidence to reject the null hypothesis in all cases.



Table 3.7 t test for Mean Dwell Time

between One-Car and Two-Car
Trains (Based on LPL)
Group DF t Critical
t-value
LPL<53 50 184 2.01
53<=LPL<81 48 0.97 2.01
81<=LPL<109 30 1.47 2.04
LPL>=109 37 -0.13 2.03

Table 3.8 t test for Mean Dwell Time
between One-Car and Two-Car

Trains (Based on ONOFFS)
Group DF t Critical
t-value
ONOFFS<=9 47 1.65 2.01
9<ONOFFS<=17 51 1.48 2.01
17<ONOFFS<=25 39 0.75 2.02

ONOFFS>25 28 1.32 2.05
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3.3.4 Summary

From the preliminary analysis, the following conclusions can be drawn:

(1) Mean dwall time is positively related to both LPIL
and ONOFFS for the two sets of data for one-car

and two-car train observations at the 0.05 levsl.

(2) There is no significant difference in the mean
dwell times between the one-car and two-car data
sets for groups with the same ranges of LPL and

ONOFFS at the 0.05 leval.

3.4 Model Variables and Estimation Procedure

Based on the preliminary analysis, two major factors, the number of passengers
boarding and alighting, and the effect of crowding on board, were expected to enter into the
dwell time function. However each factor can be represented in different forms and may
interact in different ways. Accordingly a series of linear regression models of passenger
processing were estimated to identify the strongest functional form. In the following
discussion of the estimation results, the significant variables that were used to explain the

variation in the dependent variable DT (dweli time measured in seconds) are as follows:

ONS: number of passengers boarding per car
OFFS: number of passengers alighting per car
ONOFFS: sum of ONS and OFFS

AS: number of arriving standees per car
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Ls: number of departing standees per car
ABAS: product of ONOFFS and AS, i.a. ONOFFS*AS
ABLS: product of ONOFFS and LS, i.e. ONOFFS*LS

MAXASLS: maximum of ABAS and ABLS, i.e. MAX(ABAS, ABLS)
OFFAS: product of OFFS and AS, i.e. OFFS*AS
ONLS: product of ONS and LS, i.e. ONS*LS

SUMASLS: sum of OFFAS and ONLS

As discussed in Chapter 2, the dwell time for a one-car train is the maximum door

open time for doors 1, 2 and 3 of that car, i.e.

DT = max {boarding/alighting time through door 1,
boarding/alighting time through door 2,

boarding/alighting time through door 3}

Similarly, the dwell time for a two-car train is the longer of the dwell times for car 1

and car 2 of that train, i.e.

DT = max {dwell time for car 1, dwell time for car 2}

Because the number of passengers boarding and alighting for each car of a two-car
train will not generally be the same, and because the processes are different as shown
above, separate models were estimated for the one-car train data set and the two-car train

data set.

The statistical packages SST (1986) and MINITAB (1989) were used for the

regression analysis, as well as for checking the results. The resulting models shown below
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include (t-statistic), [p-value] (defined as the significance level at which the hypothesis test
procedure changes conclusions, that is, the level at which the test becomes significant),
corrected coefficient of determination (R2), and Durbin-Watson statistic (DW) (this statistic
ranges from zero to four, with a value near zero indicating strong positive autocorrelation
and a value close to four meaning that there is a significant negative autocorrelation. A
value near two indicates that there is very little autocorrelation -- the ideal situation). The
t-statistic and p-value are used to determine the contribution of each variable used in model
estimation; the corrected R? is used to measure how well the model estimation fits the
sample data; and the Durbin-Watson statistic is used to test for autocorrelation in the

regression residuals. An example with these statistics is shown below:

DT=9.07+1.15*0ONS+0.63*0FFS, (R2=0.48)
(5.96) (8.46) (5.58) (DW=1. 69)
[0.00] [0.00] [0.00]

All coefficients are strongly significant as indicated by the t-statistics and p-values.
The t-statistics for these variables are 5.96, 8.46, and 5.58 respectively, while p-values are
all approximately zero. The corrected coefficient of determination (R2) for the model is
0.48, while the Durbin-Watson statistic (DW) is 1.69. The DW statistic is used later to

check the assumption of independent residuals for the most promising models.

3.5 One-Car Train Models

Since the one-car train data set was collected from two stations, a dummy variable is
introduced in the regression analysis below to include the qualitative station variable. If the
coefficient of the dummy variable is not statistically significant, then it is possible to omit it

to produce the best possible models.
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The models were estimated based on three approaches: all data together, the data set
with ONS being equal to, or greater than, OFFS (ONS 2> OFFS) and that with OFFS being
greater than, ONS (OFFS>ONS). The available sample points for these three approaches
are 122, 83, and 39 respectively. In the following analysis, model estimations are
conducted based on these three approaches, and named One_M1, One_M1la, and Cne_MIb

models in the subsequent sections.

3.5.1 Correlation Analysis

Appendix A presents the relationships between the dwell time and the key potential

independent variables, all of which appear to show some correlation.

The correlation coefficients (r) between all variables used are shown in Appendix
B. It is clear from Tables B.1 to B.3 that except for the dummy variable, all other variables
are highly correlated with the dependent variable dwell time (DT) as well as with some
other independent variables. In any multivariate linear regression estimation, it is desirable
to avoid strong correlations between independent variables. The highest correlations
among the independent variables are between those reflecting crowding, suggesting that

these variables should not be included together in any model formulation.

3.5.2 Model A: DT = f(ONS, OFFS)

This model assumes that only the numbers of passengers boarding and alighting
affect the dwell time, so there is no effect of passenger crowding on board. Since the one-
car train data set was collected from two stations, a dummy variable is introduced in the
model estimation below to include the qualitative station variable, one is set for the

observations from Copley Station and zero for the observations from Arlington Station.
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The resulting models based on the three approaches discussed in section 3.5 are expressed

by 1, 1a, and 1b respectively in the specifications below:

Model AlP:

DT=9.33+1.14*0ONS+0.64*OFFS-0.44*DUMMY, (R2=0.48)
(5.22) (8.01) (5.48) (-0.28) (DW=1. 69)
[0.00] [0.00] [0.00] [0.78]

Model AlazP:

DT=8.61+0.90*ONS+1.41*OFFS+0.10*DUMMY, (R2=0.51)

(3.46) (3.97) (5.24) (0.05) (DW=1.52)
[0.00] [0.00] [0.00] [0.96]
Model AlbP:
DT=12.67+0.81*ONS+0.47*OFFS-1.27*DUMMY, (R2=0.64)
(7.26) (3.73) (3.69) (-0.68) (DW=1.97)
[0.00] [0.00] [0.00] [0.50]

The coefficients for the variable DUMMY are insignificant in all three models, as
indicated by the t-statistics and p-values, implying there is no significant difference
between the two sets of data due to station-specific factors. Therefore, the variable

DUMMY is dropped from these (and subsequent) models, producing the following models:

Model Al:

DT=9.07+1.15*0NS+0.63*0OFFS, (R2=0.48)
(5.96) (8.46) (5.58) (DW = 1.69)
[0.00] [0.00] [0.00]

Model Ala:
DT=8.67+0.90%*ONS+1.41*OFFS, (R%=0.52)

(3.91) (4.03) (5.28) (DW=1.52)
[0.00] [0.00] [0.00]



Model Alb:

DT=11.98+0.88*ONS+0.43*%0FF3, (R2=0.64)
(8.51) (4.61) (3.82) (DW=1.90)
[0.00] [0.00] [0.00]

The coefficients of the variable ONS is about twice that of variable OFFS in models
Al and Alb implying that the marginal dwell time for boarding is almost twice that for
alighting, while that for boarding is about 0.6 times that for alighting in model Ala. All
coefficients are very strongly significant in all three models, as indicated by their t-statistics
and p-values, with coefficients of determination (corrected R2) of 0.48, 0.52, and 0.64 in

model Al, Ala, and Alb respectively.

It appears from these results, that models Ala and Alb using two data sets based on

the relative magnitude of ONS and OFFS are a significant improvement over Al.

3.5.3 Model B: DT = f(ONS, OFFS, ONOFFS * Standees)

This model recognizes the effect on dwell time of crowding on board as well as the
number of passengers boarding and alighting. The crowding effect was examined using
three alternative variables: MAXASLS, ABLS, and ABAS, assuming movement of
boarding and alighting passengers would be affected by arriving standees and departing

standees respectively. The resulting models are:

Model B1l:

Bl-1 DT=12.59+0.55*0NS+0.22*OFFS+0.0076*MAXASLS, (R2=0.62)
(8.87) (3.66) (1.89) (6.49) (DW=2.05)
[0.00] [0.00] [0.06] [0.00]

Bl-2 DT=12.34+0.67*ONS+0.20*OFFS+0.0072*ABAS, (R%=0.61)
(8.64) (4.76) (1.65) (6.20) (DR=1.99)
[0.00] [0.00] [0.10] [0.00]
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Bl-3 DT=12.28+0.53%ONS+0.33*0FFS+0.0075*ABLS, (R2=0.62)
(8.89) (3.57) (3.10) (6.76) (DW=2.07)
[0.00] [0.00] [0.090] [0.00]

It is clear that adding any of these three variables to reflect the effect of crowding on
board significantly improves the explanatory power of the One_MI model. There also
appears to be little to choose between the MAXASLS, ABAS and ABLS forms, although
the ABLS form is slightly preferred since all coefficients are significant at 0.05 level. This
implies that the on board crowding term is more related to departing passenger load than

arriving passenger load.

Compared to model Al, the constant for the model B1 is larger, with lower marginal
dwell times for boarding and alighting. The coefficient of the variables ONS and OFFS is
0.55 and 0.22 respectively in model B1-1, which is about 70 times and 30 times that of the
variable MAXASLS implying that the marginal dwell time for boarding is about 2.5 times
that for alighting, as well as 70 times that for MAXASLS.

Similarly, model One_M1la was estimated based on the MAXASLS variable, since

this is the only relevant crowding variable for this model form:

Bla DT=12.08+0.52*%0ONS+0.26*0FFS+0.009*MAXASLS, (R?=0.64)
(6.00) (2.53) (0.81) (5.36) (DW=1.93)
{0.00] [0.01] [0.42] [0.00]

It is clear that the coefficient of OFFS is insignificant in model Bla suggesting the

variable OFFS can be dropped from the model, producing the following results:

DT=12.43+0.54*ONS+0.01*MAXASLS, (R2=0.64)
(6.33) (2.65) (8.12) (DW=1.93)
[0.00] [0.01] [0.00]

As indicated by the t-statistics and p-values, all coefficients are significant at 0.05
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level, with R? about 0.64. It is clear that using the variables ONS and MAXASLS, to
reflect the effect of crowding on board is a significant improvement over model Ala. The
coefficients of the variables ONS and MAXASLS are 0.54 and 0.01 respectively in model
Bla implying that the marginal dwell time for a single boarding is equivalent to about 50

additional standees.

Model estimations for form One_M1b produced the following results:

Blb DT=12.47+0.67*ONS+0.39%OFFS+0.002*MAXASLS, (R2=0.64)
(8.47) (2.51) (3.34) (1.11) (DW=2.08)
[0.00] [0.02] [0.00] [0.28]

The coefficient of the variable MAXASLS, is less significant than in model Alb,
implying that adding this crowding variable does not significantly improve the explanatory

power of the model.

These results suggest that the on board crowding effect is most important when the

boarding process dominates alighting.

3.5.4 Model C: DT = f(ONS, OFFS, ONLS, OFFAS)

This model recognizes that movement of alighting passengers would be affected by
arriving standees, while movement of boarding passengers would be affected by departing
standees. Therefore, the crowding effect may be represented by three alternative variables:
OFFAS, ONLS, and SUMASLS, and can be represented in several different forms. Similar
to model B, this model assumes the effect on dwell time of crowding on board as well as
the number of passengers boarding and alighting. The first form of this model introduces
the variable SUMASLS to express the marginal effect on the dwell time from the crowding

on board, which is the sum of OFFAS and ONLS with the following resuits:
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Model Cl-1:

DT=12.50+0 .55%*ONS+0.23*OFFS+0.0078*SUMASLS, (R2=0.62)
(8.94) (3.76) (2.03) (6.70) (DW=2.06)
[0.00] [0.00] [0.04] [0.00]

All coefficients are strongly significant in C1-1 model with an R? of 0.62. Therefore,
similar to model B1, adding the variable SUMASLS to reflect the effect of crowding on
board significantly improves the explanatory power of the model. All coefficients are very

similar to those in the MAXASLS form of model B1.

Model Clal:

DT=12.01+0.54*ONS+0 .24*OFFS+0.009*SUMASLS, (R2=0.64)
(6.02) (2.65) (0.76) (5.49) (DW=1.93)
[0.00] [0.01] [0.45] [0.00]

As indicated by the t-statistics and p-values, once again, the coefficient of the
variable OFFS is insignificant in this model, therefore the variable OFFS can be removed to

produce the following results:

DT=12.32+0.56*ONS+0.01*SUMASLS, (R2=0.65)
(6.33) (2.78) (8.25) (DW=1.93)
[0.00] [0.00] [0.00]

All coefficients are significant at 0.05 level with an R2 of 0.65 which implies that
adding the variable SUMASLS to reflect the effect of crowding on board is a significant
improvement over model Ala. The coefficients of the variables ONS and SUMASLS are
0.56 and 0.01 respectively implying that the marginal dwell time for boarding is about 55
times greater than that of the SUMASLS.
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Model Cilb1l:

DT=12.46+0.65%ONS+0.39*CFFS+0.002*SUMASLS, (R2=0. 65)
(8.60) (2.43) (3.43) (1.25) (DW=2.10)
[0.00] [0.02] [0.00] [0.22]

Similar to model B1b, the coefficient of the variable SUMABSLS reflecting crowding
effect on board is less significant in this model. As indicated by the corrected R2, it is clear

that adding the variable SUMASLS does not significantly improve the explanatory power.

The second form of model C presents the separate effects of crowding on alighting
and boarding passengers with two variables OFFAS and ONLS. The variable OFFAS
represents the interaction between alightings and arriving standees while the variable ONLS
reflects the interaction between boardings and departing standees. The model with the

OFFAS and ONLS form produces the following results:

Model C1-2:

DT=12.33+0.49*0NS+0.33*OFFS+0.0044*OFFAS+0. 010*ONLS, (R2=0.62)
(8.75) (3.07) (2.16) (1.21) (3.53) (DW=2.10)
[0.00] [0.00] [0.03] [0.24] [1.00]

The coefficient of OFFAS is not significant as indicated by the p-value of 0.24. This
may result from the multicollinearity of the variables. The correlation coefficient for the
variables OFFAS and ONLS was 0.737 while that for the variables OFFAS and OFFS was
0.684 (see Table B.1). As previous discussed in section 3.5.1, it is desirable to avoid high
correlations between independent variables. The rather high correlation between the
variables OFFAS and ONLS which both reflect crowding, suggests that these variables
should not be included together in any model formulation. One way of dealing with this

problem is to introduce either variable ONLS or OFFAS to represent the crowding effect.
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Model Cla2:
DT=11.78+0.85%0ONS-0.33%0FFS+0.025*OFFAS
(6.07) (3.58) (-0.85) (3.64)
[0.00] [0.00] [0.40] [0.00]
-0.00014*ONLS, (R2=0.66)
(-0.03) (DW=1.84)
[0.98]

As indicated by its t-statistics and p-values, the coefficients of OFFS and ONLS are
insignificant and negative, implying that marginal dwell time is negatively related to the
OFFS and ONLS which doesn’t make sense. This may result from high correlation
between independent variables. The correlation coefficient for the variables OFFS and
OFFAS was 0.834 while that for the variables OFFAS and ONLS was 0.869 (see Table
B.2).

Model Clb2:

DT=11.66+0.42*ONS+0.57*OFFS-0.003*OFFAS+0.012%ONLS, (R%=0. 66)
(7.58) (1.38) (3.34) (-0.78) (1.68) (DW=2.14)
[0.00] [0.17] [0.00] [0.44] [0.10]

The coefficients of the variables ONS and OFFAS are insignificant in model C1b2.
The negative coefficient of the variable OFFAS implying that the marginal dwell time is
negatively related to the OFFAS which is not reasonable. Thus, the variable OFFAS can be
dropped for further model estimation.

The variable ONLS or OFFAS is introduced in the third form of model C which
assumes that either the departing standees affect the passengers boarding or the arriving

standees affect the passengers alighting with the following results:
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Model Cl1-3:

DT=11.94+0.45*ONS+0.47*OFFS+0.013*0ONLS, (R2=0.62)
(8.70) (2.88) (4.66) (6.64) (DW=2.12)
[0.00] [0.01] [0.00] [0.00]

As indicated by the t-statistics and p-values, all coefficients are strongly significant
with an R2 of 0.62. The coefficients for the variable ONS and OFFS are 0.45 and 0.47
respectively, while that for ONLS is 0.013 implying the marginal dwell times for boarding
and alighting are similar and about 35 times greater than the crowding variable ONLS.
Similar to the first form of model Cl, it is clear that adding the variable ONLS to reflect the
effect of crowding on board significantly improves the explanatory power of the model.

The constant is about 12 seconds in this model.

Since the coefficients of the variables OFFS and ONLS are insignificant and negative

in model Cla2, it is possible to omit these variables with the following results:

Model Cla3:

DT=11.43+0.80*ONS+0.022*OFFAS, (R2=0.67)
(6.15) (4.51) (8.84) (DW=1.85)
[0.00] [0.00] [0.00]

All coefficients are highly significant in model Cla3 with an R? of 0.67. The
coefficient of the variables ONS and OFFAS are 0.80 and 0.022 respectively implying that
the marginal dwell times for boarding is about 35 times greater than for the variable
OFFAS. It also appears that adding the variable OFFAS to reflect the effect of crowding on
board is a significant improvement over the the model Ala. The constant is about 11

seconds in this model.

The third form of model C1b is to drop the variable OFFAS from model C1b2 and

produce the following results:
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Model Clb3:

DT=12.19+0.48*0NS+0.47*OFFS+0.007*ONLS, (R2=0.66)
(8.86) (1.61) (4.23) (1.74) (DW=2.17)
[0.00] [0.12] [0.00] [0.09]

As indicated by the t-statistics and p-values, the coefficients of the variables ONS and
ONLS are only marginally significant. In this model, the coefficients of the variables ONS,
OFFS, and ONLS are 0.48, 0.47, and 0.007 respectively, implying that the marginal dwell
time for boarding and alighting is about 65 times greater than the ONLS. The constant is

about 12 seconds in model C1b3.

In conclusion, it is clear from these model estimations that adding either the variables
SUMASLS, or ONLS in model C1 to reflect the effect of crowding on board significantly
improves the explanatory power of the model. There also appears to be little to choose
between these two forms. However, because the SUMASLS form includes possible effects
of both AS on OFFS and LS on ONS, it appears better able to reflect all possible crowding
effects. Based on this viewpoint, the SUMASLS form is preferred among these three

model forms.

Similarly, in model Cla, adding either the variables SUMASLS and OFFAS to
reflect the crowding effect is a significant improvement over model Ala which does not

include the effect of passenger crowding on board.

As to model C1b, the marginal dwell time using the variable SUMASLS to reflect the
effect of crowding is negligible, while that from the variable ONLS is only marginally

significant.
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3.5.5 Model D: DT = f(ONS, OFFS, AS, LS, SUMASLS)

This model assumes the effect on dwell time of crowding on board as well as the
number of passengers boarding and alighting. The crowding effect was examined using

three independent variables: AS, LS, and SUMASLS, with the following results:

Model D1-1:

DT=10.93+0.52*ONS+0.44*0FFS-0.11*AS+0.17*LS
(6.69) (3.36) (3.20) (-1.70) (2.75)
[0.00] [0.00] [0.00] [0.09] [0.01]

+0.0051*SUMASLS, (R2=0.64)
(1.93) (DW=2.15)
[0.06]

As indicated by the t-statistics and p-values, the coefficient of the variable AS is
insignificant at the 0.05 level and is negative, implying that marginal dwell time is
negatively related to the AS which is not reasonable. Once again, this unexpected result
may be due to multicollinearity between independent variables. Table B.1 shows the
correlation coefficients between the variables AS, LS, and SUMASLS are between 0.87

and 0.92, implying that these variables should not be included together in any model.

Model Dlal:

DY=10.35+0.51*ONS+0.56*OFFS-0.097*AS+0.155%LS
(4.55) (2.35) (1.64) (-1.20) (2.20)
[0.00] [0.02] [0.10] [0.25] [0.03]

+0.006*SUMRSLS, (R2=0.66)
(1.74) (DW=2.05)
[0.08]
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As indicated by the t-statistics and p-values, the coefficients of the variable AS is
insignificant and negative, implying that marginal dwell time is negatively related to the AS
which doesn’t make sense. As discussed in earlier D1-1 model, the variable AS should not

be included in further model estimation.

Model D1bl:

DT=10.20+0.79*0ONS+0.56*OFFS+0.057*AS+0.074*LS3,

(5.48) (2.36) (2.76) (0.24) (0.32)
[0.00] [0.02] [0.01] [0.81] [0.76]
-0.004*SUMASLS, (R2=0.66)
(-1.07) (DW=2.16)
[0.29]

The coefficients of the variables AS, LS, and SUMASLS are insignificant in model
Dibl. Once again, this may be due to high correlation between these variables. The
correlation coefficients for the variables AS and LS, AS and SUMASLS, and LS and
SUMASLS were 0.978, 0.891, and 0.836 respectively (se= Table B.3), once again, which

suggests that this model form is not worth persuing.

Because the coefficient of the variable AS is not reasonable and insignificant in the
first form of model D1-1, the variable AS is dropped from the model to produce the

following model:

Model D1-2:

DT=10.60+4+0.62*0ONS+0.39*0FFS+0.10*LS3
(€6.48) (4.18) (2.90) (2.14)
[0.00] [0.00] [0.00] [0.03]

4+0.0032*SUMASLS, (R3=0.63)
(1.33) (DW=2.10)
[0.19]
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As indicated by its t-statistic and p-value, the coefficient of the variable SUMASLS is
insignificant in the second form of this model implying it contributes little to the prediction
of the dwell time, given that the variable LS is included in the model. Therefore, it appears

possible to drop the variable SUMASLS for further model estimation.

Similarly, the variable AS is omitted from model Dlal producing the following

results:

Model Dla2:

DT=9.96+4+0.60*ONS+0.44*0FFS+0.11*LS

(4.41) (2.96) (1.35) (1.84)
[0.00] [0.01] {0.18] [1.84]
+0.0043*SUMASLS, (R2=0.65)
(1.38) (DW=1.97)
[0.17]

As indicated by the t-statistics and p-values, the coefficients of the variables OFFS
and SUMASLS are less significant in this model suggesting that it is possible to omit these

variables for further model estimation.

In the third form of model D, either LS and AS is introduced to reflect the effect of
crowding on board. The variable SUMASLS is dropped from model D1-2 producing the
following form of model D1:

Model D1-3:

DT=9.24+0.71*0ONS+0.52*0FFS+0.16*LS, (R%=0.63)
(7.19) (5.40) (5.35) (6.98) (DW=2.10)
[0.00] [0.00] [0.00] [0.00]
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As indicated by the t-statistics and p-values, all coefficients are strongly significant in
the LS form, with an R? of 0.63. The constant is about 9 seconds in this model, with
coefficients of 0.71, 0.52, and 0.16 for the variables ONS, OFFS, and LS, which imply the
marginal dwell time for boarding is approximately 1.4 times that for alighting, and 4.4

times that for leaving standees.

The variables SUMASLS and OFFS are dropped from the model D1a2 producing the

following results:

Model Dla3:

DT=8.10+4+0.88%0ONS+0.22*LS, (R?=0.62)
(4.13) (4.65) (7.61) (DW=1.98)
[0.00] [0.00] [C.00]

Similarly, all coefficients are strongly significant in this model, with an R? of 0.62.
The coefficients of the variables ONS and LS are about 0.88 and 0.22 respectively,
implying that the marginal dwell time for boarding is about 4 times that for leaving

standees. The constant is about 8 seconds.

As discussed earlier in model D1bl, the variables AS, LS, and SUMASLS should not
be included together in any model. In the final form of model D1b, the variable LS is

introduced to reflect the effect of crowding, producing the following results:

Model D1b3:

DT=11.46+90.60*ONS+0 .48*0OFFS+0.066*LS, (R2=0.67)
(8.37) (2.64) (4.38) (2.09) (DW=2.20)
{0.00] [0.01] [0.00] [0.05]

All coefficients are significant at 0.05 level with an R? of 0.67 implying that adding
the variable LS reflecting the crowding effect does improve the explanatory power of the

model. The coefficients of the variables ONS, OFFS, and LS are 0.60, 0.48, and 0.066
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respectively which imply that the marginal dwell time for boarding is about 1.2 times that

for alighting, and about 9 times greater than the leaving standees.

In conclusion, it is obvious that adding the variable LS in these three models to
reflect the effect the crowding on board significantly improves the explanatory power of the
models. However, if there were standees, but no passengers boarding and alighting, the
number of standees should have no significant impact on the dwell time. Further, the
coefficient for the variable LS is rather large compared with that of the SUMASLS and
MAXASLS forms. Therefore, in the above situation, the model may not accurately predict
the dwell time. For example, provided the passengers on board are close to the LRV’s
capacity, and no passenger boarding and alighting occurs, then the prediction of the dwell
time may be dramatically affected by the marginal contribution from the LS t=rm. Based
on this standpoint, models B1-1 and Blal with the MAXASLS form and models C1-1 and
Clal with the SUMASLS form may be preferred over this LS model form.

Finally, the equality of individual parameter from the two data sets (ONS > OFFS,
and OFFS>ONS) was examined by t-statistics. The test results for Ala-Alb, Blal-Blbl,
Clal-Cibl, and D1a3-D1b3 model pairs are presented in Table 3.9, which shows that
estimates for the variable OFFS from daia set la are significantly different from those for
data set 1b when only the variables ONS and CFFS are included in the model. It also
appears that the estimates for the variables reflecting the crowding effect are significantly
different between two data sets, while the parameters of the constant and ONS are

insignificant at the 0.05 level.



Table 3.9 { test for Equality of individual Coefficient
between One-Car Train Data Sets
( t-statistics shown)

Variable Ala&A1b Bla&Bib C1at1&C1b1 D1a3&Dib3

models models models models
Constant -1.26 -0.02 -0.08 -1.39
ONS 0.07 -0.39 0.27 0.30
OFFS 3.38* - - -
MAXASLS - 3.67 - -
SUMASLS - - 3.74°* -
LS - - - 2.54*

* significant at 0.05 level.
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3.5.6 Model Estimation with Alternative Forms

The previous model estimations, have assumed the effect on dwell time of crowding
is linear, however, it may well be nonlinear. To investigate this possibility, a nonlinear
form for the variables reflecting crowding is introduced in the following model
formulations. As discussed in the sections 3.5.3-3.5.5, the crowding effect is examined
with respect to five alternative variables: MAXASLS, SUMASLS, ONLS, OFFAS and LS.
Two examples with the MAXASLS and ONS*LSE forms are presented below:

DT = b, + b;*ONS + b,*OFFS + b,* (MAXASLS)E

DT = b, + b;*ONS + b,*OFFS + b,*ONS*LSE

These models were estimated by changing the value of the exponent (E) over the
range of 0.0 to 5.0. Surprisingly, there are wide ranges for optimal values of E in these

models.

A. One_M1 Model:

Figures 3.5 to 3.9 plot the corrected R? values as a function of the exponent of the
variables MAXASLS, SUMASLS, ONLS and LS for model estimations for each model
form. As indicated in Figure 3.5, the corrected R? is a maximum with E in the range of 1.0
to 1.3 in model B1-1 with the MAXASLS form. Corresponding ranges of E for maximum
R? values are 0.8-2.0, 0.8-1.3, 2.5 and 2.5-3.0 respectively in the model with the
SUMASLS, ONLS, ONS*LSE and LS forms.
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Figure 3.5 R—SQUARE vs. E of MAXASLS
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Figure 3.7 R—SQUARE vs. E of ONLS
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One_M? Model D1-3
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The wide ranges for E imply that different exponential forms of the variables can be
applied in each model. Because the explanatory power is similar with ranges of E of
1.0-1.3, 0.8-2.0, and 0.8-1.3 respectively for the models B1-1, C1-1, and C1-3, but the
linear model is more easily interpreted, it is suggested that the models B1-1 , C1-1, and C1-3
discussed in sections 3.5.3-3.5.4 are appropriate to explain variations in dwell time. Model
C1-3 with ONS*LSE form with E of 2.5 and model D1-3 with nonlinear form of LS with E
in the range of 2.5 to 3.0, do offer better explanatory power, implying that the variables
reflecting on board crowding for these two models are more related to departing passenger
load with an exponent of 2.5. However, the LS form still has the drawback discussed in the
section 3.5.5. The estimated models C1-3 and D1-3 with an exponent of 2.5 for the LS

term are presented below:
Model C1-3(B) :

DT=11.43+0.69*ONS+0.48*0FFS+1.35%10 5*ONS*LS2-5, (R2=0.65)

(8.78) (5.38) (4.99) (7.41) (DW=2.16)
[0.00] [0.00] [0.00] [0.00]

Model D1-3:

DT=10.05+0.78*ONS+0.50*0Fk'S+2.0*10"4*L82-5, (R2=0.68)
(8.32) (6.70) (5.51) (8.50) (DW=2.10)
[0.00] [0.00] [0.00] [0.00]

B. One_MIla Model:

Figures 3.10-3.14 plot the corrected R2 values as a function of the exponent of the
variables MAXASLS, SUMASLS, OFFAS, and LS for estimations for each model form.
As indicated in Figure 3.10, the corrected R? is highest over the range of E from 0.8 to 1.4
in the model Blal with the MAXASLS form. Corresponding ranges of E for ﬁlaximum
corrected R? values are 1.0-1.2, 1.2-1.8, 1.6-2.7, and 2.5-3.0 respectively in the models with
SUMASLS, OFFAS, OFFS*ASE and LS forms (see Figures 3.11-3.14).
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Figure 3.11 R—SQUARE vs. E of SUMASLS
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Figure 3.13 R—SQUARE vs. E of AS
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The wide ranges for E suggests that different exponential forms of the variables can

be applied in each model. As indicated by these results, models Blal and Clal discussed
earlier are appropriate to explain variations in dwell time. But model C1a3 in the OFFAS
form with E of 1.2-1.8 and in the OFFS*ASE form with E in the range of 1.6-2.7 does offer
a better explanatory power. Similarly, the model D1a3 with nonlinear form of LS with E in
the range of 2.5-3.0 offers improvement over the linear model. The estimated models Cla3
and Dla3 with an exponent of 1.5, 2.0, and 2.7 respectively for the OFFAS, AS, and LS

terms are presented below:

Model Cla3 (A):

DT=12.0+0.83%*0ONS+6.32*10 ¢*OFFAS’-5, (R2=0.68)
(6.52) (4.81) (9.13) (DW=1 . 90)
[0.00] [0.00] [0.00]

Model Cia3(B):

DT=11.58+0.85%ONS+2.44*10 4*0FFs*as2-0, (R2=0.69)

(6.42) (5.08) (9.38) (DW=1.91)
[0.00] ([0.00] [0.00]
Model D1la3:

DT=9.7140.94*0ONS+1.1%10"4*Ls2-7, (R2=0.69)
(5.44) (5.69) (9.34) (DW=2.05)
[0.00] [0.00] [0.00]



C. One_M1ib Model

The nonlinear form for four altemnative variables, MAXASLS, SUMASLS, ONLS,
and LS, are introduced as with the previous model formulations, with estimations for values
of the exponent from 0.0 to 5.0. The model estimations yield the same results as for the
linear forms, the coefficients of crowding variables MAXASLS, SUMASLS, and ONLS are
insignificant at 0.05 level in the nonlinear forms. However, in models C1b3 and D1b3, the
crowding variables either with ONS*LSE form and E of 1.3-2.0 or with LS and E in the
range of 0.8 to 4.0 are significant at the 0.05 level. Figures 3.15 and 3.16 plot the corrected
R? values as a function of the variables LS. It is clear from Figure 3.15 that the model
C1b3, the ONS*LSE form, with E in the range of 1.4-2.8 offers highest R2 values.
Similarly, the model D1b3, the LS form, with E in the range 1.2-2.7 offers highest
explanatory power. The estimated models C1b3 and D1b3 with an exponent of 2.0 for the

LS term are presented below:

Model Clb3(B);

DT=11.85+0.63*ONS+0.48*OFFS+7.7*10 5*0NS*LS2-0, (R2=0.67)

(8.73) (2.78) (4.30) (1.94) (DW=2.19)
[0.00] [0.01] [0.00] [0.06]

Model D1b3:

DT=11.46+0.66*ONS+0.49*OFFS+7.7*10 4*182-0, (R2=0.68)
(8.47) (3.17) (4.46) (2.26) (DW=2.21)
[0.00] [0.00] [0.00] [0.03]

In conclusion, it is clear that the variables reflecting on board crowding for models C
and D are more related to departing or arriving standees with an exponent greater than 1.0.
The comparison of exponents for variables reflecting crowding effect is summarized in

Table 3.10.
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Figure 3.15 R—SQUARE vs. E of LS
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Table 3.10 Comparison of Exponents for Variables
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Reflecting Crowding Effect
Model Form One_M1 One_M1a Ons_M1b
model model model
MAXASLS 1.0-1.3 08-1.4 -
SUMASLS 0.8-2.0 1.0-1.2 -
ONLS 0.8-1.3 - -
ONS'LS(EXP) 25 - 1.4-28
LS 2.53.0 253.0 1227
OFFAS - 1218 -
OFFS*AS(EXP) . 1.62.7 -

AS
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3.5.7 Checking the Assumptions for Linear Regression

There are four key assumptions which must be met for a linear regression model to

be appropriate:

1: The mean of each error component is zero.

2: The error components are approximately normal.

3: The variance of the error component is the same for
each predicted value.

4: The errors are independent of each other.

These four key assumptions are required to construct confidence intervals and to
perform hypothesis tests. If these assumptions are violated, the resulting models may still
provide accurate predictions of DT, but the validity of any inferences from the model will
be questionable. Therefore, before conclusions are drawn from this analysis the
assumptions for those most promising models discussed earlier (Models B1, Bla, Cl-1,
Clal, C1-3, Cla3, Cib3, D1-3, Dla3 and D1b3) should be checked to make sure that none

are violated.

Because ar. exactly normal distribution is not necessary for assumption 2, and
preblems arise only when the distribution is severely skewed and does not resemble a
normal distribution, assumptions 1 and 2 are checked by plotting histograms of residuals.
Assumytion 3 is checked by plotting standardized residuals against predicted dwell times,
and Assumption 4 is checked using the Durbin-Watson statistic (DW). As discussed
earlier, the ideal value of DW is 2, in which case, the errors are completely uncorrelated,

and there is no violation of the independent errors assumption.

Appendix C presents the results for those promising models with a linear form for the

variables reflecting crowding, along with several examples for the variables in nonlinear
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form. It is clear from the Figures C.1 to C.6, that the error component is approximately
bell-shape, with the mode at zero and the variance of the error component almost the same
for predicted values below 40 seconds. Further, the DW statistics are between 1.85 and
2.15 for these desirable models with linear form of MAXASLS, SUMASLS, ONLS,
OFFAS and LS, while the DW statistics are between 1.90 and 2.21 for these models with
nonlinear forms. Because all DW statistics are close to 2 no significant autocorrelation
exists. Thus, it appears that these desirable models do not violate the assumptions of the
multiple linear regression model. Therefore, models B1, Bla, Cl1-1, Clal, C1-3, Cla3,
C1b3, D1-3, D1a3 and D1b3 look promising as dwell time functions.

3.5.8 Summary of One-Car Models
From the preceding analysis, the following conclusions can be drawn:

(1) It appears that linear regression models can accurately describe dwell time using
several variabies, moreover, the dwell time model should consider the effects of passenger

crowding. The most interesting models are summarized below:

Model Bl-1:

DT=12.59+0.55%ONS+0.22*OFFS+0.0076*MAXASLS, (R2=0.62)
(8.87) (3.66) (1.89) (6.49) (DW=2.05)
[0.00] ([0.00] [0.06] [0.00]

Model Blal:
DT=12.43+0.54*ONS+0.01*MAXASLS, (R%=0.64)

(6.33) (2.65) (8.12) (DW=1.93)
[06.00] [0.01] [0.00]
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Model C1-1:

DT=12.50+0.55%ONS+0 . 23*OFFS+0.0078*SUMASLS, (R2=0.62)

(8.94) (3.76) (2.03) (6.70) (DW=2.06)
[{0.00] [0.00] [0.04] [0.00]

Model Clal:

DT=12.32+0.56*ONS+0.01*SUMASLS, (R?=0.65)
(6.33) (2.78) (8.25) (DW=1.93)
[0.00] [0.01] [0.00]

Model C1-3:

DT=11.94+0.45*ONS+0.47*OFFS+0.013*ONLS, (R2=0.62)
(8.70) (2.88) (4.66) (6.64) (DW=2.12)
[0.00] [0.01] [0.00] [0.00]

Model Cla3:

DT=11.43+0.80*ONS+0.022*0OFFAS, (R%=0.67)

(6.15) (4.51) (8.84) (DW=1.85)
[0.00}] {0.00] [0.00]
Model D1-3:

DT=9.24+0.71*ONS+0.52*0OFFS+0.16*LS, (R2=0.63)
(7.19) (5.40) (5.35) (6.98) (DW=2.10)
[0.00] [0.00] [0.00] [0.00]

Model Dla3:
DT=8.10+0.88*0ONS+0.22*LS, (R2=0.62)

(4.13) (4.56) (7.61) (DW=1.98)
[0.00] [0.00] [0.00]
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Model D1b3:

DT=11.46+0.60%ONS+0.48*0OFFS+0.066*LS, (R2=0.67)
(8.37) (2.64) (4.38) (2.09) (DW=2.20)
[0.00] [0.01] [0.00] [0.05]

(2) The boarding and alighting process appears different between two sets of data:
ONS 2OFFS, and OFFS>ONS. In the former data set, it is clear that adding any altemnative
form of the variables proposed to reflect the effect of passengers crowding on board does
significantly improve the explanatory power of the model. It also appears that the marginal
dwell time for alighting is negligible in this data sei. In the latter data set, the linear
regression model explains dwell times using just two variables ONS and OFFS. However,
in some cases, adding one variable to reflect the effects of passengers crowding may be a
slight improvement over the model without the crowding effect. T tests show that
coefficients for the two sets of data, ONS>OFFS and OFFS>ONS, are significantly
different for those variables reflecting crowding which implies that aggregation may

obscure those particular characteristics related to the two sets of data.

(3) A variable reflecting the product of passenger movements and standees, i.e. the
variable MAXASLS SUMASLS, ¢cr ONLS makes more sense than using the standee
variable alone, (LS or AS), because if there were standees, but no passengers boarding or
alighting, the number of passengers standing should have no significant impact on dwell
time. Based on this viewpoint, modeis B1-1, C1-1 and C1-3 may be preferred over model
DI1-3. Similarly, models Blal, Clal and Cla3 are preferred over model Dla3. Since
models C1-1 and Clal with the SUMASLS form assume possible effect of AS on OFFS
and of LS on ONS, it appears better able to reflect all possible crowding effects. Based on

this viewpoint, the SUMASLS form is most preferred among these model forms.

(4) The constant in all models (about 10 seconds) was reasonable, since dwell time
always includes some time for the doors of the train to open and close, and some time for

passengers who may want to alight, even if there is no one waiting to board the train.
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(5) In One_MI1 models, it appears appropriate to choose a linear form for the
variables MAXASLS, and SUMASLS reflecting crowding effect in the models B1-1, and
Cil-1. In model C1-3 with the ONS*LSE form and model D1-3 with the LS form, a
nonlinear form with an exponent of 2.5 for the variable LS significantly improves the
explanatory power, implying that the on board crowding term is more related to departing
passenger load with an exponent of 2.5. Similarly, in One_MIla model, the model Cla3
with OFFAS form with E in the range of 1.2 to 1.8 and that with OFFS*ASE form with E of
1.6-2.7 do offer better explanations. It also appears that model D1a3 with nonlinear form of
LS with E in the range of 2.5-3.0 offers maximum improvement over the linear form.
While in One_M1b models, model C1b3 with E in the range of 1.4 to 2.8, and model D1b3
with E in the range of 1.2-2.7 offer highest explanatory power. These results are shown

below:

Model C1-3:

DT=11.43+0.69*ONS+0 .48*OFFS+1.35*10 5*0ONS*LS2-5, (R2=0.65)
(8.78) (5.38) (4.99) (7.41) (DW=2.16)
[0.00] [0.00] [0.00] [0.00]

Model Cla3(A):

DT=12.0+0.83*ONS+6.32*10"4*0FFASL-5, (R2=0.68)

(6.52) (4.81) (9.13) (DW=1.90)
[0.00] [0.00] [0.00]
Model Cla3(B):

DT=11.58+0.85%0NS+2.44*10-4*OFFS*AS82-0, (R2=0.69)

(6.42) (5.08) (9.38) (DW=1.91)
[0.00] [0.00] [0.00]
Model Clb3:

DT=11.85+0.63*ONS+0.48*OFFS+7.7*10"5*ONS*LS2-0, (R?=0.67)
(8.73) (2.78) (4.30) (1.94) (DW=2.19)
[0.00] [0.00] [0.00] [0.06]



Model Di-3:

DT=10.05+0.78*ONS+0.50*OFFS+2.0*10 - 4*1.s2-5, (R2=0.68)
(8.32) (6.70) (5.51) (8.50) (DW=2.10)
[0.00] ([0.00] [0.00] [0.00]

Model Dla3:

DT=9.7140.94*0ONS+1.1*10-4*182-7, (R2=0.69)
(5.44) (5.69) (9.34) (DW=2.05)
[0.00] [0.00] [0.00]

Model D1b3:

DT=11.46+0.66*0NS+0.49*OFFS+7.7*10"9*1s2-0, (R2=0.68)
(8.47) (3.17) (4.46) (2.26) (DW=2.21)
[0.00] [0.00] [0.00] [0.03]

(6) It appears that the desirable models do not violate the assumptions of the multiple
linear regression model. Therefore, these models look promising as dwell time functions.
These recommended models explain between 60% and 70% of the variation in dwell times,
implying that some factors affecting the dwell time were not included, most importantly
operator behavior and passenger characteristics, however, the most significant factors have

been captured in these model forms.

3.6 Two-Car Train Modeis

As discussed in Chapter 2, initiaily, three different approaches were used to build

two-car train dwell time models. These approaches were:

1. DT = £( sum of ONS, sum of OFFS for that train,

(sum of ONOFFS) *Standses for that train)
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where DT is the longer dwell time (LDT) car for

that train

2. DT for each car = f(sum of ONS, sum of OFFS for that car,
(sum of ONOFFS) *Standees for that car)
where DT is the dwell time for car 1 and car 2 of that

train

3. DT for car having longer dwell time (LDT)
= f(ONS and OFFS for LDT car,

(sum of ONOFFS) *standees for LDT car)

The first approach was based on the theory that the dwell time for a train depended
on the total numbers of passengers bearding, and alighting, and the effect of crowding on

board, treating the train as an entity.

The second approach dealt with a two-car train as two single cars, and found the
relationships between the dwell time and total boarding passengers, total alighting

passengers, and crowding effect, for each car separately.

The third approach was based on the theory that the dwell time for a two-car train is

the longer of the dwell time for car 1 and car 2 of that train, i.e.

DT = MAX{Dwell Time for car 1, Dwell time for car 2},

so that the dwell time for a two-car train is taken as the longer dwell time (LDT) of
the two dwell times (one for each car). So, it was expected that the number of passengers
boarding and alighting and crowding level of the car with LDT would be more related to

the observed dwell time.
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Apart from the above approaches, alternative models may be estimated based on
dividing the data into two sets: the data set with ONS being equal to, or greater than, OFFS
(ONS 2O0FFS) and that with OFFS being greater than ONS (OFFS>ONS). 32 and 19
sample points are obtained for the former group (ONS2OFFS) and latter group
(OFFS>ONS) respectively, which enable the following two altemative models to be

estimated adopting the first approach above:

la. DT = f£(sum of ONS, sum of OFFS for that train,
ONOFFS * Standees for that train),
whaere (ONS=COFFS)

1b. DT = f(sum of ONS, sum of OFFS for that train,
ONOFFS * Standees for that train),

where (OFFS>ONS)

In the following analysis, models were estimated under these five approaches, named
Two_Ml1, Two_Mla, Two_Milb, Two_M2, and Two_M3 models in the subsequent
sections. Similar to the one-car models, the statistical packages SST (1986) and MINITAB

(1989) were used for the regression analysis, as well as for checking the results.

3.6.1 Correlation Analysis

Appendix A (Figures A.11 to A.20) presents the relationships between the dwell time
and the key potential independent variables for the data set used in the Two_M3 models, all
of which appear to show some correlation. The correlation coefficients (r) between all
variables in these five models are shown in Appendix B (Tables B.4 to B.8). It is clear
from Tables B.4 to B.8 that each variable is highiy correlated with the dependent variable

(DT) as well as with some other independent variables. As section 3.5.1 discussed, in
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multivariate linear regression estimation, it is desirable to avoid strong correlation between
independent variables. The high est correlations among the independent variables are
between those reflecting crowding, as with the one-car data set, suggesting that these

variables should not be included together in model formulations.

3.6.2 Model A: DT = f(ONS, OFFS)

This model assumes that only the numbers of passenger boarding and alighting affect
the dwell time, so there is no effect of passenger crowding on board. The resulting models
based on the five approaches discussed in section 3.6 are expressed by 1, la, 1b, 2, and 3

respectively in this (and subsequent) specifications, producing the following results:

Model Al:

DT=11.73+0.42*0ONS+0.49*0FFS, (R2=0.68)
(7.44) (7.59) (6.22) (DW=2.08)
[0.00] [0.00] [0.00]

As indicated by the t-statistics and p-values, all coefficients are strongly significant in
model Al, with a corrected R? of 0.68. The coefficient of the variable ONS is close to that
of the variable OFFS implying that the marginal dwell time for boarding is about equal to

that for alighting. The constant for the model is about 12 seconds.

Compared with the corresponding one-car train model, the constant term is about 3
seconds greater, while the coefficients for the variables ONS and OFFS are lower, implying
that the marginal dwell times for boarding and alighting are lower in aggregated two-car
data. It also appears that this two-car model better explains the dwell times using two
variables ONS and OFFS only, than the one-car model, implying that the crowding effect is

more significant in the one-car data set.
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Model Ala:

DT=9.69+0.42*ONS+0.66*OFFS, (R2=0.71)
(4.32) (4.49) (3.99) (DW=2.17)
[0.00] [0.00] [0.00]

Similar to model Al, in model Ala, in which ONS2=OFFS, all coefficients are
strongly significant, with RZ of 0.71. The coefficient of the variables ONS and OFFS is
0.42 and 0.66 respectively implying that the marginal dwell time for boarding is about 0.63

times that for alighting. The constant for this model is about 10 seconds.

Compared with the corresponding one car model, the constant term is slightly greater
with lower marginal dwell time for boarding and alighting. Similar to A1 model, this two-

car model better explains dwell times using the variables ONS and OFFS only.

Model Alb:

DT=14.31+0.13*ONS+0.50*0OFFS, (R2=0.67)
(7.38) (0.76) (3.97) (DW=2.24)
[0.00] [0.46] [0.00]

In model Alb, in which OFFS>ONS, as indicated by the t-statistics and p-values, the
coefficient of the variable ONS is insignificant implying that the marginal dwell time for
boarding is negligible. Consequently, the variable ONS is dropped from this (and
subsequent) models, producing the following model A1bR:

Model AlbR:
DT=14.39+0.56*0FFS, (R%=0.68)

(7.46) (6.29) (DW=2.08)
[0.00] [0.00]

All coefficients are strongly significant and the corrected R2 is high in model A1bR

which implies that the dwell time is more strongly related to alighting passengers than to
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boarding passengers. In this model, the constant is about 14 seconds, with the marginal

dwell time for alighting being about 0.56 seconds.

Compared with the corresponding one car train model, it is clear that the constant

term is greater and the marginal dwell time for boarding is negligible in this two-car model.

Also, it is clear from these results, as indicated by the Rz, that models Ala and A1bR
using two data sets based on the relative magnitude of ONS and OFFS are a slight

improvement over model Al.

Model A2:

DT=13.27+0.70*ONS+0.56*0FFS, (R?=0.57)
(12.39) (8.87) (5.76) (DW=1.51)
[0.00] [0.00] [0.00]

In model A2, all coefficients are strongly significant, but the R? is low compared to
models Al, Ala, and AIbR. The coefficient of the variables ONS and OFFS is 0.70 and
0.56 which implies that the marginal dwell time for boarding is about 1.3 times that for

alighting. The constant is about 13 seconds.

Model A3:

DT=14.37+0.73*0ONS+0.56*0FFS, (R2=0.65)
(9.85) (7.88) (4.73) (DW=1.92)
[0.00] [0.00] [0.00]

In model A3, all coefficients are strongly significant, as indicated by t-statistics and
p-values, and with an RZ of 0.65. The results show that the coefficient of the variable ONS
is about 1.3 times that for alighting, implying that the marginal dwell time for boarding is

about 1.3 times that for alighting. The constant is about 14 seconds.
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3.6.3 Model B: DT = f(ONS, OFFS, ONOFFS*Standees)

Compared to model A, this model recognizes the effect on dwell time of crowding on
board as well as the number of passengers boarding and alighting. The crowding effect was
examined using three aiternative variables: MAXASLS, ABLS, and ABAS, assuming
movement of passenger boarding and alighting would be affected by arriving standees, or
departing standees. Model estimations using these three alternative variables produce the

following results:

Model Bl:

Bl-1 DT=14.04+0.26*0ONS+0.36*OFFS+0.0008*MAXASLS, (R?=0.70)
(7.43) (2.78) (3.71) (2.07) (DW=2.15)
[0.00] [0.01] [0.00] [0.04]

Bl-2 DT=13.65+0.30*0ONS+0.36*0OFFS+0.0007*ARAS, (R?=0.70)
(7.40) (3.67) (3.61) (1.88) (DW=2.16)
[0.00] [0.00] [0.00] [0.07]

Bl-3 DT=13.89+0.26*0ONS+0.38*OFFS+0.0008*ABLS, (R2=0.70)
(7.44) (2.77) (4.15) (2.02) (DW=2.15)
[0.00] [0.01) [06.00] [0.05]

As indicated by the R2, it is clear that adding any of these three variables to reflect
the effect of crowding on board does improve the explanatory power of the model. There
also appears to be little to choose between the MAXASLS, ABAS and ABLS forms,
although the MAXASLS and ABLS forms are slightly preferred since all coefficients are
significant. The coefficients of the variables ONS, OFFS and MAXASLS are 0.26, 0.36
and 0.0008 in the MAXASLS form implying that the marginal dwell time for boarding is
about 0.7 times that for alighting, and about 320 times that for MAXASLS.

Compared with the corresponding one car train model, the constant temm is slightly
greater with smaller marginal dwell time for boarding and greater marginal dwell time for
alighting. The coefficients for the variables reflecting effects of passenger crowding is

about one-tenth that for a one-car model.
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As in the one car case, only single model based on MAXASLS are presented here:

Model Bla:

DT=11.38+0.34*ONS+0.52*0OFFS+0.0005*MAXASLS, (R%=0. 70)
(3.79) (2.52) (2.23) (0.85) (DW=2.22)
[0.00] [0.02)] [0.03] [0.40]

In model Bla, the coefficient of variable MAXASLS is insignificant at the 0.05 level,
with an R2 of 0.70. Since the coefficient of the crowding variables is insignificant,
compared to model Ala, it is clear that adding MAXASLS to reflect the effect of crowding

on board doesn’t improve the explanatory power of the model.

Model Blb:

DT=15.75+0.40*0OFFS+0.0008*MAXASLS, (R2=0.72)
(8.11) (3.39) (1.90) (DW=2. 46)
[0.00] [0.00] [0.08]

As indicated by the R2, it is clear from the model B1b that adding MAXASLS to
reflect the effect of crowding on board is a slight improvement over model Alb. The
coefficient of the variable OFFS and MAXASLS is about 0.40 and 0.0008 respectively,
which implies that the marginal dwell time for alighting is about 500 times greater than the

crowding variable MAXASLS. The constant for this model is about 15 seconds.

Compared with the corresponding one car train model, the constant term is greater
with similar marginal dwell time for alighting. While the marginal dwell time for crowding

is insignificant in the one-car model, that for boarding is insignificant in this two-car model.

Model B2:

B2-1 DT=15.34+0.33*0ONS+0.30*OFFS+0.004*MAXASLS, (R2=0.63)
(13.72) (2.77) (2.72) (4.06) (DW=1.72)
[0.00] [0.01] [0.01}] [0.00]
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B2-2 DT=14.95+0.42*%0ONS+0.29*0FFS+0.004*ABAS, (R2?=0.63)

(13.72) (4.08) (2.54) (3.91) (DW=1.74)
{0.00] [0.900] [0.01] [0.00]

B2-3 DT=15.20+0.32%ONS+0.37*OFFS+0.004*ABLS, (R%=0.63)
(13.73) (2.67) (3.59) (4.02) (DW=1.72)
[0.00] [0.01] [0.00] [0.00]

In model B2, all coefficients are strongly significant, as indicated by the t-statistics
and p-values, with an R2 of 0.63. Compared to model A2, it is clear that adding any of
these three variables to reflect the effect of crowding on board significantly improves the
explanatory power of the model. There also appears to be little to choose between the
MAXASLS, ABAS, and ABLS forms.

The constant is larger in model B2 than in A2, with a lower marginal dwell time for
boarding and alighting. The coefficient of the variables OFFS is about .30, which is about
80 times that of the variable MAXASLS and also somewhat below the coefficient for ONS.

Model B3:

B3-1 DT=16.14+0.47*0NS+0.37*0OFFS+0.0027*MAXASLS, (R2=0.67)
(9.87) (3.12) (2.59) (2.13) (DW=1.89)
[0.00] [0.00] [0.01] [0.00]

B3-2 DT=15.79+0.55*0ONS+0.37*OFFS+0.0026*ABAS, (R2=0.67)
(10.0) (4.22) (2.52) (2.03) (DW=1.92)
[0.00] [0.00] [0.02] [0.05]

B3-3 DT=16.01+0.47*ONS+0.42*OFFS+0.0026*ABLS, (R2=0.67)
(9.98) (3.06) (3.20) (2.13) (DW=1.88)
[0.00] [0.00] [0.00] [0.04]

In model B3, all coefficients are significant at the 0.05 level, as indicated by the t-
statistics and p-values. Similar to model B2, adding MAXASLS, ABAS or ABLS to
express the effect of crowding on board does improve the explanatory power of the model.

There also appears to be little to choose between the MAXASLS, ABAS and ABLS forms.
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The constant is larger in model B3 than in A3, with a lower marg;nal dwel time for

boarding and alighting. The coefficients of the variables ONS, OFFS, and MAXASLS are

0.47, 0.37, and 0.0027 respectively, which implies that the marginal dwell time for
boarding is about 1.3 times that for alighting, as well as 170 times that for MAXASLS.

3.6.4 Model C: BT = f(ONS,OFFS,ONLS,OFFAS)

Once again, like Model C for one-car trains, this model recognizes that movement of
alighting passengers would be affected by arriving standees, while movement of boarding
passengers would be affected by dej. tting standees. Therefore, the crowding effect may be
examined in three alternative variables: OFFAS, ONLS, and SUMASLS, and can he
represented in several different forms. Similar to model B, this model assumes the effect
on dwell time of crowding on board as well as the number of passengers boarding and
alighting. The first form of this model introduces the variable SUMASLS to express the
marginal effect on dwell time of crowding on board, which is the sum of OFFAS and

ONLS:

Model Cl-1:

DT=13.93+0.27*ONS+0.36*OFFS+0.0008*SUMASLS, (R2=0.70)
{7.43) (2.92) (3.79) (2.03) (DW=2.15)
[0.00] [0.01] [9.00] [0.05]
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All coefficients are significant at the 0.05 level, as indicated by the t-statistics and
p-values. Similar to model B1, adding the variable SUMASLS in model Cl-1 is a slight
improvement over model Al. The coefficients of the variables ONS, OFFS, and
SUMASLS are 0.27, 0.36, and 0.0008 implying that the marginal dwell time for boarding is
about 0.7 times that for alighting, as well as about 320 times that for the crowding variable
SUMASLS. It is clear that all coefficients are almost identical with those for the

MAXASLS form of model B1.

Compared with the corresponding one car train model, the constant term is slightly
greater with smaller marginal dwell time for boarding and greater marginal dwell time for
alighting. Since the coefficient of the variable SUMASLS in the two-car model is only
one-sixth of that in the one-car model implying once again that the crowding effect is less

significant in twe-car train dwell times.

Model Clal:

DT=11.31+0.34*ONS+0.52*0FFS+0.0005*SUMASLS, (R2=0.70)
(3.83) (2.62) (2.23) (0.85) (DW=2.22)
[0.00] ([0.01] [0.03] [0.40]

As indicated by the t-statistics and p-values, the coefficient of the variable
SUMASLS is insignificant in model Clal. Once again, similar to model Bla, adding the
crowding variable SUMASLS doesn’t improve the explanatory power of the model since

the coefficient of the variable SUMASLS is insignificant at the 0.05 level.

Compared with the corresponding one car train model, the constant term is similar,
but the marginal dwell time for boarding is smaller. The marginal dwell time for the
crowding effect is insignificant in this two-car model while that for alighting is insignificant

in the one-car model.
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Model Clbl:

DT=15.69+0.41*0FFS+0.0008*SUMASLS, (R2=0.72)
(8.10) (3.50) (1.88) (DW=2.46)
{0.00] [0.00] [0.08]

In model C1bl, all coefficients are significant at 0.10 level. Compared with model
AlbR, it is clear that adding the crowding variable SUMASLS in model C1b1 significantly
improves the explanatory power of the model. The coefficients of the variables OFFS and
SUMASLS are about 0.43 and 0.0008 implying that the marginal dwell time for boarding is
about 540 times greater than that for SUMASLS.

Similar to models C1-1 and Clal, the constant term is greater than that in the
corresponding one car train model. The marginal dwell time for alighting is similar in the
one and two-car models, but the marginal dwell time for boarding is insignificant in the

two-car model while that for the crowding effect is insignificant in the one-car model.

Modal C2-1:

DT=15.25+0.33*%ONS+0.31*OFFS+0.004*SUMASLS, (R2=0.63)
(13.79) (2.91) (2.84) (4.10) (DW=1.73)
[0.00] [0.00] [0.01] [0.00]

As indicated by the t-statistics and p-values, all coefficients are strongly significant in
model C2-1 with an R2 of 0.63. Compared to model A2, it is clear that adding the
crowding variable SUMASLS significantly improves the explanatory power of the model.
The coefficients of variables ONS, OFFS, and SUMASLS are 0.33, 0.31, and 0.004 which
implies that the marginal dwell time for boarding is about the same as that for alighting, and
is about 80 times greater than the crowding variable SUMASLS. The constant is about 15

seconds in this model.
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Model C3-1:

DT=16.08+0.48*0ONS+0.38*OFFS+0.0028*SUMASLS, (R2=0.68)
(9.98) (3.25) (2.68) (2.17) (DW=1.89)
[0.00] [0.00] [0.01] [0.04]

Similar to model C2-1, all coefficients are significant at the 0.05 level in model C3-1
with an R2 of 0.68. As indicated by the R2, it is clear that adding the crowding variable
SUMASLS does improve the explanatory power over model A3. The coefficients of
variables ONS, OFFS, and SUMASLS are 0.48, 0.38, and 0.0028 respectively implying the
marginal dwell time for boarding is about 1.3 times that for alighting, as well as 140 times

greatér than the crowding variable SUMASLS.

The second form of this model presents the separate effects of crowding on alighting
and boarding passengers with two variables OFFAS and ONLS. The variable OFFAS
represents the interaction between alightings and arriving standees while ONLS reflects the

interaction between boardings and departing standees. Models with OFFAS and ONLS are

as follows:

Modael Cl1-2:

DT=13.99+0.23%*0ONS+0.41*0FF3+0. 0003 *OFFAS
(7.39) (1.92) (3.16) (0.23)
[0.00] [0.06] [0.00] [0.82]

+0.001*ONLS, (R2=0.70)
(1.38) (DW=2.13)
[0.18]
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Model Cla2:
DT=11.15+0.39*ONS+0.45%0FFS+0.0013*OFFAS
(3.63) (1.84) (1.28) (0.43)
[0.00] [0.08] [0.21] [0.67)]
+0.00014*ONLS, (R2=0.69)
(0.092) (DW=2.19)
[0.93]

Model Clb2:
DT=15.88+0.38*OFFS+0.0016*OFFAS-0.0001*ONLS, (R2=0.71)
(7.88) (2.90) (1.06) (-0.06) (DW=2.44)
[0.00] [0.01] [0.31] [0.95]
Model C2-2:
DT=15.28+0.32*ONS+0.33*OFFS+0.004*OFFAS
(13.60) (2.05) (2.10) (1.29)
[0.00] [0.04] [0.04] [0.20]
+0.005*%0ONLS, (R2=0.63)
(2.10) (DW=1.73)
[0.04]
Model C3-2:
DT=16.21+0.42*ONS+0.44*OFFS+0.001*OFFAS
(9.84) (2.07) (2.23) (0.30)
[0.00] [0.04] [0.03] [0.76]
+0.004*ONLS, (R2=0.67)
(1.45) (DW=1.87)
[0.16]

As indicated by the t-statistics and p-values, the coefficients of variables ONLS and
OFFAS are insignificant in models C1-2, Cla2, C1b2, and C3-2 while that of OFFAS is

insignificant in model C2-2. These results may be due to multicollinearity in the variables:
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the correlation coefficients are between 0.58 and 0.90 for varizbles OFFAS and ONLS,
0.75 to 0.88 for variables OFFS and OFFAS, and between 0.85 and 0.87 for variables ONS
and ONLS (see Tables B.4-B.8). The high correlation between variables OFFAS and
ONLS which both reflect crowding, suggests that these variables should not be included
together in model formulations. One way of dealing with this problem is to introduce either

variable ONLS or OFFAS in any model formulation.

The variable ONLS or OFFAS is introduced in the third form of this model which
assumes that departing standees affect passenger boarding, and arriving standees affect

passengers alighting with the following results:

Model C1-3:

DT=13.92+0.22*ONS+0.43*OFFS+0.0013*ONLS, (R2=0.70)
(7.51) (2.00) (5.37) (2.08) (DW=2.12)
[0.00] [0.05] [0.00] [0.04]

In model C1-3, all coefficients are significant at 0.05 level, as indicated by the t-
statistics and p-values. Compared with model Al, as indicated by the R2, it is clear that
adding the crowding variable ONLS does improve the explanatory power. The coefficients
of variables ONS, OFFS, and ONLS are 0.22, 0.43, and 0.0013 respectively, which implies
the marginal dwell time for boarding is about half that for alighting, and 140 times greater

than the crowding variable ONLS.

Compared with the corresponding one car train model, the constant item is slightly .
greater, but the marginal dwell times are smaller for boarding and greater for alighting. The
coefficient of variable ONLS is about one-tenth that in the one-car model implying that the

marginal dwell time effect of the variable ONLS is less significant in the two-car model.
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Model Cla3:
DT=11.2440.33*0NS+0.58*0FFS+0. V0067*ONLS, (az=o .70)
(3.72) (2.12) (2.91) (0.78) (DW=2.24)
[0.00] [0.04] [0.01} [0.44]

As indicated by the t-statistics and p-values, the coefficient of variable ONLS is
insignificant implying that the marginal dwell time effect of variable ONLS is negligible.
The R2 also shows that adding the crowding variable ONLS doesn’t result in any

improvement over model Ala.

In model C1b2, the coefficient of variable ONLS is both insignificant and negative,
implying that marginal dwell time is negatively related to the ONLS which is not
reasonable. Thus, the variable ONLS is dropped from model Clb2 to produce the

following result:

Model Clb3:

DT=15.87+0.38*0FFS+0.0015*0OFFAS, (R2=0.73)
(8.16) (3.11) (1.97) (DW=2.44)
[0.00] [0.00] [0.07]

Compared with model Alb, it is clear from model Clb3 that adding the crowding
variable OFFAS does improve the explanatory power of the model. The coefficients of
variable OFFS and OFFAS are about 0.38 and 0.0015 implying that the marginal dwell

time for alighting is about 250 times greater than the crowding variable OFFAS.

Model C2-3:

DT=15.25+0.24*ONS+0.49*OFFS+0.0064*ONLS, (R2=0. 62)
(13.54) (1.67) (5.24) (3.86) (DW=1.68)
[0.00] [0.10] [0.00] [0.00]
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As indicated by the R2, model C2-3 is a significant improvement over the model A2

when the crowding variable ONLS is added. The coefficients of variables ONS, OFFS, and
ONLS are 0.24, 0.49, and 0.0064, which implies that the marginal dwell time for boarding
is about half that for alighting, and is about 37 times greater than the crowding variable
ONLS. However, compared with model C2-1, the SUMASLS form is preferred since all

coefficients are significant at the 0.05 level.

Model C3-3:

DT=16.20+0.39*ONS+0.49*OFFS+0.0044*ONLS, (R2=0.68)
(9.93) (2.17) (4.19) (2.21) (DW=1.86)
[0.00] [0.04) [0.00] [0.03]

As indicated by the t-statistics and p-values, all coefficients are significant at the 0.05
level, with an R2 of 0.68. Compared to model A3, it is clear from model C3-3 that adding
variable ONLS to reflect the effect of crowding on board significantly improves the
explanatory power of the model. The coefficients of variables ONS, GFFS, and ONLS are
0.39, 0.49, and 0.0044 respectively implying the marginal dwell time for boarding is about

0.8 times that for alighting, and about 87 times greater than the crowding variable ONLS.

3.6.5 Model D: DT = f(ONS,OFFS,AS,LS)

This model assumes that dwell time is affected by crowding on board as well as by
the number of passenger boarding and alighting. The crowding effect was examined using

two independent variables: AS and LS, with the following results:

Modsel D1-1:

DT=12.36+0.37*ON3S+0.39*OFFS+0.05*AS-0. 02*LS, (R2=0.69)
(7.61) (2.44) (2.43) (0.31) (-0.13) (DwW=2.12)
[0.00] ([0.02] [0.02] [0.76] [0.90]



Model Dlal:

DT=9.79+0.44*0NS+0.58*0OFFS+0.043*AS-0. 031*LS, (R2=0.69)
(3.90) (1.93) (1.85) (0.18) (-0.14) (DW=2.19)
[0.00] [0.06] [0.08] [0.86] [0.89]

Model D1bl:

DT=15.18+0.41*0OFFS+0.082*AS-0.045*LS, (R2=0.72)
(7.96) (3.10) (0.60) (-0.33) (DW=2 . 32)
[0.00] [0.01] [0.56] [0.74]

Model D2-1:

DT=13.26+0.29*ONS+0.61*OFFS-0.18*AS+40 .28*LS, (R2=0.65)
(13.24) (1.49) (3.11) (-0.90) (1.39) (DW=1.86)
[0.00] [0.14] [0.01] [0.37] [0.17]

Model D3-1:
DT=14.40+0.39*ONS+0.58*0OFFS-0.14*AS+0. 23*LS, (R2=0 .70)

(10.48) (1.46) (2.22) (-0.52) (0.85) (DW=1.85)
[0.00] [0.15] [0.03] [0.60] [0.40]

All these models show insignificant and/or counter intuitive signs for the crowding

coefficients which once again may result from multicollinearity between the variables; as

shown in Tables B.4-B.8 the correlation coefficients between the variables AS and LS are

between 0.96 and 0.99.

Because the coefficients of the variable LS is insignificant and negative in models

D1-1, Dlal, and DIbl, it is dropped from these models, similarly, the variable AS is

dropped from the models D2-1 and D3-1 to produce the following results:
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Model D1-2:

DT=12.37+0.35*ONS+0.41*OFFS+0.027*AS, (R2=0.69)
(7.73) (5.20) (4.46) (1.61) (DW=2.11)
[0.00] [0.00] [0.00] [0.11]

As indicated by the t-statistics and p-values, the coefficient of the variable AS is
insignificant at 0.10 level implying that the variable AS may contribute little to explaining

dwell time.

Compared with the corresponding one car train model, the constant term is about 3
seconds greater, but the coefficient for ONS, OFFS, and AS are smaller, implying that the

marginal dwell times for boarding, alighting, and crowding effect on board are smal'er in

this model.

Modal Dla2:

DT=9.90+0.41*ONS+0.60*OFFS+0.01*AS, (R2=0.70)
(4.21) (3.98) (2.67) (0.36) (DW=2.18)
[C.00] [0.00] [0.01] [0.73]

Similar to model D1-2, the coefficient of the variable AS is insignificant, implying
that the marginal dwell time contribution of the crowding term AS is negligible. As
indicated by the RZ, it is also clear from the model D1a2 that adding the crowding variabie

doesn’t improve the explanatory power of the model.

Model D1b2:

DT=15.00+0.43*OFFS+0.037*AS, (R2=0.74)
(8.43) (4.23) (2.11) (DW=2.38)
[0.00] [0.00] [0.05]

As indicated by the t-statistics and p-values, all coefficients are significant at 0.05

level in model D1b2 with an R2 of 0.74. Compared to model A1b, it is clear that adding the
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variable AS to reflect the effect the crowding on board significantly improves the
explanatory pewer of the model. The coefficients of variables OFFS and AS are 0.43 and
0.037 respectively implying that the marginal dwell time for alighting is about 11 times

greater than the crowding variable AS.

The constant term is greater than in the D1a2 model. The coefficients for OFFS is
similar for these two models, but that for AS is smaller in this two-car model than that of
LS in the one-car model, once again, implying that the crowding effect is less significant in

the two-car model.

Model D2B:

DT=13.05+0.45*ONS+0.46*OFFS+0.099*LS, (R3=0. 65)
(13.44) (5.02) (5.00) (4.77) (DW=1.89)
[0.00] [0.00] [0.00] [0.00]

As indicated by the t-statistics and p-values, all coefficients are strongly significant in
model D2-2, with an R? of 0.65. Compared with model A2, it is clear that adding the
crowding variable LS is a significant improvement. The coefficients of variables ONS,
OFFS, and LS are 0.45, 0.46, and 0.099, which implies that the marginal dwell time for
boarding is almost the same as that for alighting, and is about 45 times greater than the

crowding variable LS.

Model D3-2:

DT=14.29+0.52*0ONS+0.46*OFFS+0.09*LS, (R2=0.70)
(10.62) (4.65) (4.02) (3.08) (DW=1.94)
[0.00] [0.00] [0.00] [0.00]

In model D3-2, all coefficients are strongly significant, as indicated by the t-statistics
and p-values. As indicated by the R2 value, adding the crowding variable LS is a

significant improvement over model A3. The coefficients of variables ONS, OFFS, and LS
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are 0.52, 0.46, and 0.09 respectively, implying that the marginal dwell time for boarding is

about 1.1 times that for alighting, as well as about 6 times that for LS.

In conclusion, as indicated by previous analysis by the corrected R2 value, it is clear
that the Two_M1, Two_MIla, and Two_M1b models offer better explanatory power than
Two_M2 and Two_M3 models. Thus, in the subsequent sections, further analysis will be

concentrate only on these three models.

Finally, the equality of individual parameters from two data sets la and Ib
(ONS 2OFFS, and OFFS>ONS) was examined by t-statistics again. Table 3.11 presents
t-test results for model forms la and 1b which shows that the coefficient estimates are
insignificantly different at the 0.05 level. Thus, it is concluded that there is not sufficient
evidence to reject the hypothesis.that the marginal effect of these variables on dwell time

are equal for the two sets of data.

3.6.6 Model Estimation with Alternative Forms

The previous model estimations, assumed that the effect on dwell time of crowding
on board is linear, however, it m7y well be nonlinear. To investigate this possibility,
nonlinear forms for the variables reflecting crowding is introduced in the following model
formulations. As discussed in sections 3.6.3-3.6.5, the crowding effect is examined through
six altemative variables: MAXASLS, SUMASLS, ONLS, OFFAS, AS, and LS. Two
examples with the MAXASLS and ONS*LSE forms from the promising models discussed

in sections 3.6.3-3.6.5 are piesented as follows:
DT = b, + b,*ONS + b,*OFFS + b;*MAXASLSE

DT = by, + b;*ONS + b,*OFFS + by*ONS*LSE



Table 3.11

.97

t test for Equality of Individual Cosfficient

between Two-Car Train Data Sets

( t-statistics shown)
Variable Ata & Aib Bla&Bib Cta1 &Cib1

models models models

Constant -1.5% -1.22 -1.24
ONS 0.48 - -
OFFS 0.77 0.46 0.42
MAXASLS - -0.41 .
SUMASLS - - -0.41
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Models were estimated are done by changing the value of the exponent (E) from 0.0
to 5.0, based on the five approaches discussed earlier in section 3.6; for the Two_MI,

Two_M2, Two_M3, Two_Mla, and Two_M1b models.

A. Two_M1 Model:

Figures 3.17 to 3.21 present R2 as a function of the exponent of the variables
MAXASLS, SUMASLS, ONLS, and AS for model estimations based on the approaches
discussed earlier. Figure 3.17 shows that R2 is highest over the range of E from 1.2 to 5.0
in model Bl-1 with the MAXASLS form, with the comparable ranges being 1.5-5.0,
2.0-3.5, 1.5-5.0, and 2.0-5.0 for models with the SUMASLS, ONLS, ONS*LSE, and AS
variables respectively (see Figures 3.18-3.21). The wide ranges for E imply that different
exponential forms of the variables can be applied in each model. Examples of these models

with nonlinear crowding variables are shown below:

Model Bl-1:

nr=14;09+o.zv*ons+o.37*orvs+1.2*10-4*unxA3le-2, (R2=0.71)
(7.54) (3.06) (4.01) (2.16) (DW=2.16)
[0.00] [0.01] [0.00] [0.04]

Mcdel C1-1:

DT=13.38+0.29*0Ns+0.39*orrs+7.2*10'5*suumsnsl-5, (R2=0.71)
(7.71) (3.73) (4.48) (2.21) (DW=2.17)
[0.00] [0.00] [0.00] [0.03]

Model C1-3(A):
DT=13.79+0.27*ONS+0.45*OFFS+1.6%10"7*ONLS2, (R2=0.72)

(8.14) (3.49) (5.92) (2.57) (DW=2.16)
[0.00] ([0.00] [0.00] [0.02]
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Figure 3.17 R—SQUARE vs. E of MAXASLS
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Figure 3.19 R—SQUARE vs. E of ONLS
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Figure 3.21 R—SQUARE vs. E of AS
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Model Cl-3(B):
DT=13.54+0.28*0ONS+0.44*OFFS+6.0*10 S*ONS*LS2, (R2=0.71)

(8.06) (3.70) (5.65) (2.41) (DW=2.14)
[0.00] [0.00] [0.00] [0.02]

Model D1-2:
DT=12.72+0.36*ONS+0.42*OFFS+1.3*10"6*as2-5, (R2=0.70)

(7.94) (6.08) (5.01) (2.03) (DW=2.11)
[0.00] [0.00] [0.00] [0.05]

Compared with the linear form with the variables MAXASLS, SUMASLS, ONLS,

and AS reflecting crowding effect in the models B1-1, C1-1, C1-3, and D1-2, it is clear that

the coefficients of the constant, and variables ONS and OFFS are very similar, while those

for the crowding variables are different. In model D1-2, as indicated by the t-statistics and

p-values, all coefficients are significant at the 0.05 level with a nonlinear form of AS with a

range of E from 2.0 to 5.0, while they aren’t at the same significance level with a linear AS

form.

As indicated by the above results, it appears that the nonlinear form to reflect the

effect of crowding is a slight improvement over the linear model. There also appears to be

little to choose between these two model forms since the linear model is more easily

interpreted.
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B. Two_MIla Model:

The nonlinear form for four altemnative variables, MAXASLS, SUMASLS, ONLS,
and AS, are introduced in the model formulations with estimations carried out as before.
The results from these models with a nonlinear form for the crowding variables are similar
to those with the linear forms for the crowding variables, that the coefficient of the
crowding variable insignificant at 0.05 level in models Blal, Clal, Cla3, and Dia2

implying that these crowding variables contribute little to the dwell time.

C. Two_M1b Model:

Figures 3.22 to 3.26 show R2 as a function of the exponent of the variables
MAXASLS, SUMASLS, OFFAS, and AS for model estimations based on approach Ib. As
presented in Figure 3.22, R? is highest with E of 0.5 in model B1bl with the MAXASLS
form, similarly, compared with ranges of 0.4-0.5, 0.5, 0.6-0.7, and 0.6 in models Clbl,
C1b3 and D1b2 with the SUMASLS, OFFAS, OFFS*ASE, and AS variables respectively
(see Figures 3.23 to 3.26). The wide ranges for E again imply that different exponential
forms of the variables can be used in each model. Examples of these models with nonlinear

crowding effects are shown below:

Model Blbl:

DT=15.79+0.34*0OFFS+0.089*MAXASLS?-5, (R2=0.75)

(8.60) (2.63) (2.28) (DW=2.46)
[0.00] ([0.01)] [0.04]
Model Clbl:

DT=15.76+0.34*0OFFS+0.089*SUMASLS?-5, (R2=0.75)
(8.61) (2.70) (2.29) (DW=2.47)
[0.00] [0.02] [0.04]
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Figure 3.25 R—SQUARE vs. E of AS
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Model Clb3(A):

DT=15.81+0.33*OFFS+0.12*0FFAS?-5, (R2=0.75)
(8.59) (2.50) (2.28) (DW=2.39)
[0.00] [0.03] [0.04]

Model Clb3(B):

DT=16.64+0.29*0FFS+0.014*OFFS*as%-6, (R2=0.74)
(8.18) (1.94) (2.20) (DW=2.43)
[0.00] [0.07] [0.04]

Model D1b2:

DT=14.90+0.40*OFFS+0.30*As?-6, (R2=0.74)
(8.58) (3.72) (2.27) (DW=2.38)
[0.00] [0.00] [0.03]

As indicated by the R2 values, it is clear that models Bibl, Clbl, C1b3, and D1bB
with nonlinear forms of the crowding variables MAXASLS, SUMASLS, OFFAS, and AS
are slight improvements over the linear model. The ranges of exponents for variables

reflecting crowding effect which produce highest explanatory power are summarized in

Table 3.12.

3.6.7 Checking the Assumptions for Linear Regression

Similar to the one-car models, before firm conclusions cab be drawn from the
analysis, the four key assumptions (stated in section 3.5.7) for those most promising two-
car models should be checked to make sure that none are violated. Assumptions 1 and 2 are
checked by plotting histograms of residuals, while assumption 3 is checked by plotting
standardized residuals against predicted dwell times, and assumption 4 is checked using the

Durbin-Watson statistic (DW).



-107-

Table 3.12 Comparison of Exponents for Variables

Reflecting Crowding Effect
Mode! Form Two_M1 Two_M1b
model model
MAXASLS 1.2-5.0 05
SUMASLS 1.5-5.0 0.4-0.5
ONLS 2.0-35 -
ONS*LS(EXP) 1.55.0 -
LS - -
OFFAS - 05
OFFS*AS(EXP) - 0.6-0.7
AS 2.0-5.0 0.6
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Appendix C presents example of the results for model C1-3 with linear crowding
variable form (Figure C.7), and for model C1-1 with nonlinear crowding variable form
(Figure C.8). It is clear from the Figures C.7 and C.8, the error component was not spread
significantly from the mode at zero and the variance of the error component is virtually the
same for all predicted values. Further, the DW statistics are about 2.15 for these desirable
models with linear form of the crowding variables MAXASLS, SUMASLS, and LS,
implying that no significant autocorrelation exists. Thus, these desirable models look

promising as dwell time functions.

As discussed earlier, in Two_M1a model, two variables ONS and OFFS are used to
explain the dwell time. Figure C.9 shows the histogram of error component based on this
model form. It is clear from Figure C.9 that the error component is not spread significantly
from the mode at zero and the variance of the error component is similar for all predicted
values. The DW statistics is 2.17 implying that no significant autocorrelation exists. Thus,
the model form with only ONS and OFFS variables appears promising as dwell time

function in Two_M1a model.

Similarly, Figure C.10 presents the results for model Two_MIlb with a linear
crowding variable form, while Figure C.11 presents that with a nonlinear form. It is clear
from the Figures C.10 and C.11 that the error component is approximately bell-shaped, with
the mode at zero, but the variance of the error component does not appear to be the same
across all predicted values, although only 19 sample points are available in estimating the
Two_MIb model. Furthermore, the DW statistics are about 2.40 which implies that
negative autocorrelation may exist. However, this test result is within the inconclusive
region implying that additional information is needed before any conclusion can be drawn

conceming possible error autocorrelation.
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3.6.8 Summary for Two-Car Models
From the preceding analysis, the following conclusions can be drawn:

(1) It appears that linear regression models can accurately describe dwell time using
several variables, moreover, the dwell time model should consider the effects of passenger
crowding (except Two_Mla Model). There also appears to be little to choose between
these five models, although the Two_M1, Two_M1la and Two_M1b are slightly preferred
since these models offer better explanation for all observations. As indicated by the
previous analysis, it is clear that Two_M1la and Two_M1b models, estimated by using two
data sets based on relative magnitude of ONS and OFFS, are a slight improvement over
Two_ML1, since they better explain the observations and reflect the underlying boarding and
alighting process. However, Two_M1 has the advantage that it can be applied to all
predictions, while either Two_M1a or Two_MI1b should be used depending on the specific
situation. The promising Two_M1, Two_Mla and Two_MI1b models are summarized

below:

Model Ala:

DT=9.69+0.42*0NS+0.66*OFFS, (R2=0.71)
(4.32) (4.49) (3.99) (DW=2.17)
[0.00] [0.00] [0.00]

Model Bl-1:
DT=14.04+0.26*ONS+0.36*OFFS+0.0008*MAXASLS, (R2=0.70)

(7.43) (2.78) (3.71) (2.07) (DW=2.15)
[0.00] [0.01] [0.00] [0.04]
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Model Blb:

DT=15.75+0.40*OFFS+0.0008*MAXASLS, (R2=0.72)

(8.11) (3.39) (1.90) (DW=2.46)
[0.00] [0.00] [0.08]

Model Ci-1:

DT=13.93+0.27*0ONS+0.36*OFFS+0.0008*SUMASLS, (R2=0.70)
(7.43) (2.92) (3.79) (2.03) (DW=2.15)
[0.00] [0.01] [0.00] [0.05]

Model Clbl:

DT=15.69+0.41*0OFFS+0.0008*SUMASLS, (R2=0.72)

(8.10) (3.50) (1.88) (DW=2.46)
[0.00] [0.00] [0.08]

Model C1-3:

DT=13.92+0.22*0ONS+0.43*OFFS+0.0013*ONLS, (R2=0.70)
(7.51) (2.00) (5.37) (2.08) (DW=2.12)
[0.00] [0.05] [0.00] [0.04]

Model Clb3:

DT=15.87+0.38*0FFS+0.0015*%0OFFAS, (R2=0.73)

(8.16) (3.11) (1.97) (DVi=2.44)
[0.00] [0.00] [0.07]

Model D1b2:

DT=15.00+0.43*OFFS+0.037*AS, (R2=0.74)
(8.43) (4.23) (2.11) (DW=2.38)
[0.00] [0.00] [0.05]

(2) A variable reflecting the product of passenger movements and standees, such as
MAXASLS, SUMASLS, or ONLS may make more sense than using the standee variable

alone, (LS or AS), because if there were standees, but no passengers boarding or alighting,
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the number of passengers standing should have no significant impact on dwell time. Based
on this viewpoint, models B1-1, C1-3, and C1-3 may be preferred over model D1-2.
Similarly, models B1bi, Cibl, and C1b3 are preferred over model D1b2. Furthermore,
because the model C1-3 with the SUMASLS form assumes possible effect of the AS on the
OFFS and of the LS on the ONS, it appears better able to interpret all possible crowding
effects. Based on this viewpoint, the SUMASLS form is most preferred among these model

forms.

(3) The constant in all promising Two_M1, Two_M1a, and Two_M1b models (about
13, 11, and 15 seconds respectively) was reasonable, since dwell time always include some
time for the doors of the train to open and close, and some time for passengers who may

want to alight, even if there is no one waiting to board the train.

(4) It appears that nonlinear forms for variables reflecting crowding effects in models
Two_MI1 and Two_M1b better describe the observations. Results of these models with

nonlinear crowding variables are summarized below:

Model Bl1l-1:

DT=14.09+0.27*ONS+0.37*OFFS+1.2*10 4*MAXASLS1-2, (R2=0.71)
(7.54) (3.06) (4.01) (2.16) (DW=2.16)
[0.00] [0.01] [0.00] [0.04]

Model Blbl:
DT=15.79+0.34*0FFS+0.089*MAXASLS?-5, (R2=0.75)

(7.94) (6.08) (2.28) (DW=2.46)
[0.00] [0.00] [0.04]
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Model C1-1:

DT=13.88+0.29*ONS+0.39*OFFS+7.2*10 6*suMasrLs!5, (rR2=0.71)

(7.71) (3.73) (4.48) (2.21) (DW=2.17)
[0.00] [0.00] [0.00] [0.03]
Model Clbl:
DT=15.76+0.34*CFFS+0.0089*SUMASLS?-5, (R2=0.75)
(8.61) (2.70) (2.29) (DW=2.47)
[0.00] [0.01] [0.04]

Model C1-3(A):

DT=13.79+0.27*0NS+0.45*0FFS+1.6*10‘7*ONL82, (R2=0.72)
(8.14) (3.49) (5.92) (2.57) (DW=2.16)
[0.00] ([0.00] [0.00] [0.02]

Model Cl1lb3{A):
DT=15.81+0.33%0FFS+0.12*0FFAS?-5, (R2=0.75)
(8.59) (2.50) (2.28) (DW=2.39)
[0.00] [0.02] [0.04]
Model C1-3(B):
DT=13.54+0.28*ONS+0.44*OFFS+6.0*10 /*ONS*LS2, (R2=0.71)
(8.06) (3.70) (5.65) (2.41) (DW=2.14)
[0.00] [0.00] [C.00] [0.02]
Model C1b3(B):
DT=16.64+0.29*CFFS+0.014*OFFS*as®-6, (R2=0.74)

(8.18) (1.94) (2.20) (DW=2.43)
[0.00] ([0.07] [0.03]



-113-
Model D1-2:

DT=12.7240.36*ONS+0.42*OFFS+1.3*106*a82-5, (RrR2=0.70)
(7.94) (6.08) (5.01) (2.03) (DW=2.11)
[0.00] [0.900] [0.00] [0.05]

Model D1b2:

DT=14.90+0.40*0FFS+0.30*as?-6, (R2=0.74)
(8.58) (3.72) (2.27) (DW=2 . 38)
[0.00] [0.00] [0.03]

(5) The recommended models explain about 70% of the variation in dwell times,
implying that while some factors affecting the dwell time were not included, most
importantly operator behavior and passenger characteristics, the most significant factors

have been captured in these model forms.

3.7 Comparisons between One and Two-Car Train Models

Tables 3.13 to 3.15 compare the parameter estimates for One_M1, One_M1la, and
One_M1b models, while Tables 3.16 to 3.18 present those for Two_M1, Two_MIla, and
Two_M1b models, and Table 3.19 compares the exponents for the variables reflecting
crowding, for both one and two-car models. From Tables 3.13 to 3.19, the following

conclusions can be drawn:

(1) Tables 3.13 and 3.16 show that the constant terms in the Two_M1 dwell time
models are greater than those in the corresponding One_M1 models, but the marginal dwell
time for boarding is significantly smaller. The coefficients of ONS differ by about a factor
of 2 in the two car case, that is, there are about half as many ONS per door as in a one car
case with the same total ONS. The marginal dwell time for alighting varies between one

and two-car models, depending on what model form is chosen, and it depends mainly on
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load distribution between cars. It is also clear that the coefficients of the variables
reflecting the crowding effect in the one-car models are greater than those in the two-car
models implying that the marginal dwell time effect of crowding is greater in one-car trains
than in two-car trains. This is due to the six doors available for passengers alighting and
boarding in any two-car trains, and passengers would like to board a less crowded car, so

that the impacts of AS on OFFS and LS on ONS are less significant.

To test these conclusions, the equality of individual parameter estimates from one
and two-car train data sets was examined by t-statistics. It is clear from Table 3.20 that
estimates of the variable ONS in A1 model from cne and two-car data sets are significantly
different. Similarly, estimates of the variable ONS in the other model forms (Bl1-1, Cl1-1,
and C1-3) from one and two-car data sets are also marginally significantly different. T-
tests are also applied to test the equality of parameter estimates of ONS from one car train
data set being twice of that from the two car train data set. The t-statistics are 3.32,0.17,
0.06, and 0.05 respectively for Al, B1-1, Cl-1, and C1-3 models, implying that the null
hypothesis should be rejected in A1 model, but there are no sufficient evidences to reject

the null hypotheses in B1-1, C1-1, and C1-3 inodels.

As indicated by the corrected R2 shown in Tables 3.13 and 3.16, it is clear that
adding any proposed variable reflecting the crowding effect in One_M1 model significantly
improves the explanatory power of the model. These results suggest that the on board

crowding effect is more important for the one car train data set.

(2) Tables 3.14 and 3.17 show, that the constant terms in the one car and two car
models are similar, but the Two_Mla models have smaller marginal dwell time for
boarding and significant marginal dwell time for alighting. The coefficients of ONS differ
by about a factor of 2 in the two car case since there are about half as many ONS per door
as in a one car case with the same total ONS. The parameter estimates of the variables

reflecting crowding are insignificant in all Two_MIla models and those for OFFS are
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insignificant in most One_Mla models. The equality of individual parameter estimates
from two data sets Two_Mla and One_Mla was examined only for Ala model by t-
statistics. Table 3.21 shows that the estimates for the variables ONS and OFFS from two
data sets are significantly different which implies that the marginal dwell times for boarding
and alighting are significantly different between one and two-car train models with the data
sets with ONS 2OFFS. T-test is also applied to test the equality of parameter estimate of
ONS from one car train data set being twice of that from the two car train data set. The
t-statistic is about 0.20, implying that there is no sufficient evidence to reject the null
hypothesis that the marginal dwell time for boarding on one car train is twice that on two

car trains while passengers boarding process dominate alighting.

As indicated by the corrected R2 shown in Tables 3.14 and 3.17, it is clear that
adding crowding variables in One_M1la model offer better explanation of dwell times,
implying that the on board crowding effect is most important when the boarding process

dominates alighting in one car train data set.

(3) Tables 3.15 and 3.18 compare parameter estimates for one and two-car train dwell
time models with the data sets OFFS>MONS. It is clear that the marginal dwell time effect
for boarding is only marginaliy s:gnificant for both the one car and two car models. This
may be because the alighting process is not so significantly affected by passenger crowding.
As to two-car train models, the insignificant marginal dwell time for boarding may be due
to the six doors available for passengers alighting and boarding in any two-car trains so that
the boarding and alighting process can occur simultaneously, resulting in the marginal
effect on dwell times from boarding being negligible. As indicated by the R? values, using
the variables ONS and OFFS in One_M1b, and OFFS in Two_MI1b can well explain the
dwell times. However, in some cases as Tables 3.15 and 3.18 show, adding a crowding
variable does slightly improve the explanatory power. Finally, t tests were used to compare

the individual parameter estimates from the two sets of models. As indicated by the t-
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statistics shown in Table 3.22, the estimates of the variable ONS for model Alb are
significantly different between one and two-car train data sets. Again, t te;st is also applied
to test the equality of parameter estimate of ONS from one car train data set being twice of
that from the two car train data set. The t-statistic is 2.42, implying that the null hypothesis

should be rejected.

(4) Table 3.19 shows that models B1bl and C1b1 of Two_M1b model with nonlinear
MAXASLS and SUMASLS forms with an exponent of 0.5 are a slight improvement over
the models with linear MAXASLS and SUMASLS forms, implying that the on board
crowding term is more related to MAXASLS and SUMASLS with an exponent of 0.5.
While in models C1-3 and D1-2 of Two_M1 model, it is clear that the models with
nonlinear forms of ONSXLS20 and AS20 are significant improvements over the linear
models implying that the on board crowding term is more related to LS with an exponent
about 2.0. Similarly, models C1-3, D1-2, and D1a2 with nonlinear forms of ONS*LS2-5
and LS25 perform better, implying that the passengers crowding effect is more related to

LS with an exponent of 2.5.

(5) In conclusion, the passengers boarding and alighting process appears significantly
different. Furthermore, using two sets of data, ONS> OFFS and OFFS>ONS, to do
analysis will make the results more clear since the aggregation models obscure the

particular characteristics related to each data set.
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Table 3.13 Comparison of Parameter Estimates of

One-Car Train Dwell Time Models

(t-statistics in parentheses)

At B1-1 B1-2 B1-3 C1-1 C1-3 D1-3
model model model model model model model

Constant 9.07 12.59 12.34 12.28 12.50 11.94 9.24

(8.87) (8.87) (8.64) (8.89) (8.94) (8.70) (7.19)
ONS 1.55 0.55 0.67 0.53 0.55 0.45 0.71

(8.46) (3.66) (4.76) (3.57) (3.76) (2.88) (5.40)
OFFS 0.63 0.22 0.20 0.33 0.23 0.47 0.52

(5.58) (1.89) (1.65) (3.10) (2.03) (4.66) (5.35)
MAXASLS 0.0076

(6.49)
ABAS 0.0072
(6.20)
ABLS 0.0075
(6.76)
SUMASLS 0.0078
(6.70)
ONLS 0.013
(6.64)
LS 0.16
(6.98)

Corrected
R-Square 0.48 0.62 0.61 0.62 0.62 0.62 0.63
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Table 3.14 Comparison of Parameter Estimates of
One-Car Train Dwell Time Models
(t-statistics in parentheses)

Ala Bia C1al C1a3 D1a3.
medel model model model model
Constant 8.67 12.43 12.32 1143 8.22
(3.91) (6.33) (6.33) (6.15) (4.37)
ONS 0.90 0.54 0.56 0.80 0.69
(4.03) (2.65) (2.78) (2.12) (3.55)
OFFS 1.41 0.73
(5.28) (2.83)
MAXASLS 0.01
(8.12)
SUMASLS 0.01
(8.25)
OFFAS 0.022
(8.84)
LS 0.18
(5.67)

Corrected
R-Square 0.52 0.64 0.65 0.67 0.65
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Table 3.15 Comparison of Parameter Estimates of
One-Car Train Dwell Time Models
(t-statistics in parentheses)

Aib B1b C1ibt Cib3 - Dib3
model model model model model
Constant 11.98 12.47 12.46 12.19 11.46
(8.51) (8.47) (8.60) (8.86) (8.37)
ONS 0.88 0.67 0.65 0.48 0.60
(4.61) (2.51) (2.43) (1.61) (2.64)
OFFS 0.43 0.39 0.39 0.47 0.48
(3.82) (3.34) {(3.43) (4.23) (4.38)
MAXASLS 0.002
(1.11)
SUMASLS 0.0022
(1.25)
ONLS 0.0074
(1.74)
LS 0.066
(2.09)

Corrected
R-Square 0.64 0.64 0.65 0.66 0.67
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Table 3.16 Comparison of Parameter Estimates of

Two-Car Train Dwell Time Models

(t-statistics in parentheses)

A1 B1-1 B1-2 B1-3 Ci-1 C1-2 D1-2
model mode! model model model model model

Constant 11.73 14.04 13.65 13.89 13.93 13.92 12.37

(7.44) (2.78) (7.40) (7.44) (7.43) (7.51) (7.73)
ONS 0.42 0.26 0.30 0.26 0.27 0.22 0.35

(7.59) (2.78) (3.67) (2.77) (2.92) (2.00) (5.20)
OFFS 0.49 0.36 0.36 0.38 0.36 0.43 0.41

(6.22) (3.71) (3.61) (4.15) (3.79) (5.37) (4.46)
MAXASLS 0.0008

(2.07)
ABAS 0.0007
(1.88)
ABLS 0.0008
(2.02)
SUMASLS 0.0008
(2.03)
ONLS 0.0013
(2.08)
AS 0.027
(1.61)

Corrected
R-Square 0.68 0.70 0.70 0.70 0.70 0.70 0.69
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Table 3.17 Comparison of Parameter Estimates of
Two-Car Train Dwell Time Models
(t-statistics in parentheses)

Ata Bia Ciat Cla3 = Dita2
model model model model model
Constant 9.69 11.38 11.31 11.24 9.90
(4.32) (3.79) (3.83) (3.72) (4.21)
ONS 0.42 0.34 0.34 0.33 0.41
(4.49) (2.52) (2.62) (2.12) (3.98)
OFFS 0.66 0.52 0.52 0.58 0.60
(3.99) (2.23) (2.23) (2.91) (2.67)
MAXASLS 0.0005
(0.85)
SUMASLS 0.0005
(0.85)
ONLS 0.00067
(0.78)
AS 0.01
(0.35)
Corrected

R-Square 0.71 0.70 0.70 0.70 0.70
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Two-Car Train Dwell Time Models

(t-statistics in parentheses)

A1b B1b Cib1 C1b3 D1b2
model model model model model
Constant 14.39 15.75 15.69 15.87 15.00
(7.46) (8.11) (8.10) (8.16) (8.43)
ONS
OFFS 0.56 0.40 0.41 0.38 0.43
(6.29) (3.39) (3.50) (3.11) (4.23)
MAXASLS 0.0008
(1.90)
SUMASLS 0.0008
(1.88)
OFFAS 0.0015
(1.97)
AS 0.037
(2.11)
Corrected
R-Square 0.68 0.72 0.72 0.73 0.74
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Table 3.19 Comparison of Exponents for Variables
Reflecting Crowding Effect

Model Form One_M1 One_M1a One_M1b Two_M1 Two_M1b
model model model model model

MAXASLS 1.01.3 0814 - 1.2-5.0 05
SUMASLS 0820 1.0-1.2 - 1550 0405
ONLS 0.8-1.3 - - 2,035 -
ONS*LS(EXP) 25 - 1428 1550 .
LS 2530 2530 1227 . .
OFFAS . - 1.2-1.8 - . 05
OFFS*AS(EXP) - 1.62.7 - - 0.60.7

AS - - - 2.0-5.0 0.6
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Table 3.20 t test for Equality of individual Coefficient
between One and Two-Car Train Data Sets

( t-statistics shown )

Variable A1 Bi-1 Ct-1 C1-3

model model model model
Constant -1.42 -0.28 -0.61 -0.86
ONS 5.90* 1.64 1.62 1.20
OFFS 1.02 -0.93 -0.88 0.31
MAXASLS - 5.52* - -
SUMASLS - - 5.71* -
ONLS - - - 5.69*

* significant at 0.05 level.
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Table 3.21 t test for Equality of Individual Coefficient
between One_M1a and Two_M1a Data Sets

( for A1a Models Only )
Variable DF t Critical
t-value
Constant 112 -0.32 1.97
ONS 112 1.99* 197
OFFS 112 2.39* 1.97

* significant at 0.05 level.

Table 3.22 t test for Equality of Individual Coefficient
between One_M1b and Two_M1b Data Sets

( for A1b Models Only )
Variable DF t Critical
t-value
Constant 55 -0.97 2.00
ONS 55 2.93* 2.00
OFFS 55 -0.41 2.00

* significant at 0.05 level.
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3.8 Comparison witk Koffman's Dwell Time Models

Compared with the results on the Boston College and Riverside Lines shown in
Koffman (1984), the mean dwell time of 23.3 seconds for the one-car trains in this study is
greater than those of 10.0 seconds for Boston outbound and 15.4 seconds for Boston
inbound (see Table 1.2) because of different definition and measurement of dwell times
between two studies. Furthermore, the average passengers boarding and alighting, and the
average arrival load (AL) and leaving load (LL) of 8.7, 6.7, 75, and 76 respectively for the
one car train data set in this study are greater than those on Koffman's: 3.1, 6.3, and 46.7
for passengers boarding, passengers alighting, and passengers on-board (POB) respectively
in Boston outbound; and 4.0, 0.8, and 41.9 for passengers boarding, passengers alighting,
and passengers on-board respectively in Boston inbound. The average passengers boarding
and alighting, and AL and LL are 19.1, 14.2, 163, and 168 respectively for the two car train

data set in this study.

The preliminary analysis reflects the relationships between the dwell time and the key
explanatory variables. To explain or predict the dwell time using these variables, multiple
linear regression method is applied. The models were estimated in several forms using
three explanatory variables: number of passengers boarding (ONS), number of passengers
alighting (OFFS), and an alternative variable reflecting crowding effect on board. The
constant term in all one-car models is about 1C seconds while that in two-car models is
about 13 seconds. The marginal dwell time for boarding, alighting, and the explanatory
variable reflecting crowding effect varies, depending on what model form is chosen. For
example, the marginal effect on dwell time for boarding, alighting, and crowding effect is

0.55, 0.23, and 0.0078 respectively for the orie car train model with the SUMASLS form.

Koffman’s models for Boston and San Diego outbound are shown below:
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Bogton outbound (Free Fare)

Riverside

DT=3.04+0.65%*ONS+0.61*OFFS+0.040*POB, (R%=0.68)
(2.50) (7.70) (6.20) (1.40)
[0.02] [0.00] [0.00] [0.18]

Boston COlloé_g

DT=2.96+0.84*0ONS+0.52*0OFFS+0.029*POB, (R2=0.84)
(6.00) (13.8) (13.2) (3.00)
{0.00] [0.00] [0.00] [0.060]

San Diego (SSFC)

DT=8.14+0.67*ONS+0.59*OFFS+0.034*POB, (R?=0.43)
{15.0) (17.4) (14.9) (4.80)
[0.00] [0.00] [0.00] [0.00]

Compared with Koffman’s results, the constant terms in this study are greater than
those in Boston outbound because of different definition and measurement of the dwell
times, but the constant terms are close between this study and San Diego case. The
definition and measurement of the dwell times are identical in both San Diego case and this

study.

The marginal dwell time for boarding and alighting in both Koffman’s models and
the one car train model D1-3 of this study are close, both have the similar model form. The
only difference between these two models is D1-3 model using leaving standees (LS)
reflecting crowding effect on board while Koffman’s model using POB reflecting it.
Compared with the Koffman’s results, the marginal effect on dwell time for boarding,

alighting, and crowding effect of the alternative model forms in this study may vary.
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Chapter 4

Summary and Cenclusions

4.1 General

The formulation of dwell time models for rail systems has been addressed in this
thesis. Whereas in practice this topic is seldom dealt with in the transit industry, this study
demonstrates that the dwell time is positively related to the number of alighting and

boarding passengers, and significantly related to the passenger crowding level on board.

The mean dwell time are 23.3 and 26.6 seconds, with standard deviations of 11.41
and 8.40 seconds for the one and two-car train observations. The observations were
classfied into four groups for the preliminary load analysis first, based on the following
ranges for leaving passenger load (LPL): LPL<53, 53<LPL<81, 81<LPL<109, and
LPL2109. The mean dwell times are 16.8, 20.6, 24.0, and 36.0 seconds for the groups
with standard deviations of 5.65, 8.35, 6.68, and 13.31 seconds respectively for the one-car
train data set. F test shows that the mean dwell time appears significantly related to LPL.
Secondly, the observations were classified into four groups for the boarding and alighting
(ONOFFS) analysis, based on the following ranges for ONOFFS: ONOFFS<9,
9<ONOFFS<17, 17<ONOFFS<25, and ONOFFS>25. The mean dwell times are 15.8,
20.0, 27.1, and 41.0 seconds, with standard deviations of 6.65, 6.32, 5.90, and 14.96
seconds for the four groups. F test indicates that the mean dwell time is positively related

to the ONOFFS variable.

Similarly, a preliminary analysis was conducted for the set of two-car train dwell
times based on the LPL and ONOFFS variables. The mean dwell times are 204, 23.2,
27.5, and 35.5 seconds with standard deviations of 5.68, 7.39, 6.81, and 6.31 seconds for

the four groups based on load analysis. F test suggests the mean dwell time is positively
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related to the LPL for the two-car train data set. The analysis based on the ONOFFS
variable presents the mean dwell times of 19.3, 22.8, 28.7, and 34.9 seconds with standard
deviations of 5.69, 4.87, 6.81, and 6.56 seconds respectively for the four groups. Once

again, F test demonstrates that the mean dwell time is positively related to ONOFFS.

The preliminary analysis reflects the relationships between the dwell time and the key
explanatory variables. For example, the marginal dwell time for boarding, alighting, and
crowding effect on board are 0.55, 0.23, and 0.0078 respectively with a constant of 12.5
seconds for one car train model with SUMASLS form, similarly, those are 0.27, 0.36, and
0.0008 with a constant of 13.9 seconds for the corresponding two car train model. Suppose
the number of passengers boarding and alighting are 20 respectively at a station, and AS
and LS are assumed 100 respectively (that is a heavy loaded condition for one car train),

then the predicted dwell times for both one and two car trains are :

One~car train:

DT=12.5+0.55%20+0.23*%20+0.0078* (20*100+20*100)=59.3 (seconds)

Two-car train:

A. the same ONS, OFFS, AS, and LS as one-car train
D'l'=13.9+0.27*20+O.36*20+0.0008*(20*100+20*100)=29.7 (sseconds)
B. Double ONS, OFFS, AS, and LS

DT=13.9+0.27*40+0.36*%40+0.0008* (40*200+40*200)=51.9 (seconds)

It is clear that the crowding effect on dwell time is much greater in a heavy loaded
one-car train than in a two-car train. In real operation, these dwell time functions can be
applied in the scheduling process and in operations, thereby achieving the objectives of

promoting service quality, line capacity, operations, and reliability.

The major issues and findings relating to the models presented in the case study of
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this thesis are summarized in the following sections. Suggestions are also made for further

research on this topic.

4.2 Data Collection Issues

The one and two-car train data sets were collected from two stations (Copley and
Arlington), and one station (Arlington) respectively on the MBTA (Massachusetts Bay
Transportation Authority) Green Line as described in Chapter 3. Because of the unusual
level of detail of data required, it was necessary to have a two person team per car, or a four
person team for a two car trains, to collect data. Although the use of video-recording may
appear to be an alternative way to collect data, this technique cannot be used to capture all
the data required simultaneously, thus it appears infeasible for this type of study. Data
collection was a labor intensive and difficult process for this study, which limited the data
available for comprehensive analysis in this thesis. However, in the transit industry, for
further study and building dwell time function purposes, the data collection method stated
in Chapter 3 can be adopted to collect additional data, covering several stations, times of

day, and different rail system and fare collection types.

4.3 Modelling Issues

Multiple linear regression models were applied to explain the dwell time with several
explanatory variables: the number of boarding passengers (ONS), the number of alighting
passengers (OFFS), and passenger crowding level on board (such as: MAXASLS, ABAS,
ABLS, SUMASLS, ONLS, OFFAS, AS, and LS). A crucial issue in applying linear

regression is that these explanatory variables should not be highly correlated with each
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other, that is, explanatory variables with high correlation should not be included together in
any model formulation. Furthermore, the four key assumptions stated in Chapters 2 and 3
should be met for any linear regression model. Otherwise, remedial measures should be
taken, such as applying the generalized least squares (GLS) or weighted least squared

(WLS) methods.

4.4 Case Study

Dwell time functions were estimated for one and two-car trains on the Green Line
light rail operation of the Massachusetts Bay Transportation Authority (MBTA). A number

of findings were reached as a result of the case study:

(1) One and two-car train observations were classified into four groups for the
preliminary analysis, based on leaving passenger load (LPL) and the number of passengers
boarding and alighting (ONOFFS). The results show that the mean dwell time is positively
related to both leaving passenger load and the number of passengers boarding and alighting

for one and two-car train observations at the 0.05 significance level.

(2) There is no significant difference in the mean dwell times between the one and
two-car data sets for groups with the same ranges of the LPL and ONOFFS at the 0.05

significance level.

(3) Based on the preliminary analysis, three major factors, the number of passengers
boarding (ONS), passenger alighting (OFFS), and the effect of crowding on board, were
expected to enter into the dwell time function. The models were then estimated for one-car
trains based on three approaches: all data together, the data set with ONS being equal to, or
greater than, OFFS (ONS=>OFFS) and that with OFFS being greater than ONS

(OFFS>ONS). The results show that adding any altemative form of the variable (such as:
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MAXASLS, defined as the maximum of the product of ONOFFS and AS (arriving
standees), and ONOFFS and LS (leaving standees)); and SUMASLS, defined as the sum of
the product of OFFS and AS, and ONS and LS) to reflect the effects of passenger crowding
on board in the ONS2OFFS data set does significantly improve the explanatory power of
the model, implying that on board crowding is most important when the boarding process

dominates alighting in the one-car train datz set.

The model estimations by using two data sets based on relative magnitude of ONS
and OFFS are a slight improvement over that by aggregating data set. However, the
aggregated model has the advantage that it can be applied to all predictions while the

appropriate disaggregate model should be used in the specific situation.

(4) The model specifications with a variable reflecting the product of passenger
movements and the standees, such as the variable MAXASLS, SUMASLS, or ONLS (the
product of ONS and LS) may make more sense than using the standee variable alone, (LS
and AS), because if there were standees, but no passengers boarding or alighting, the
number of passengers standing should have no significant impact on dwell time.
Furthermore, because the model estimation with the SUMASLS form assumes possible
effect of AS on OFFS and LS on ONS, it appears better able to reflect all possible crowding
effects. Based -on this viewpoint, the SUMASLS form is preferred among these model
forms. These models are summarized below, with R2 value, t-statistics in parentheses, and

p-values:

Model Bl-1:

DT=12.59+0.55*%ONS+0.22*OFFS+0.0076*MAXASLS, (R2=0.62)
(8.87) (3.66) (1.89) (6.45)
[0.00] [0.00] [0.06] [0.00]
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Model Cl1l-1:
DT=12.50+0.55*ONS+0.23*OFFS+0.0078*SUMASLS, (R2=0.62)
(8.94) (3.76) (2.03) (6.70)
[0.00] [0.00] [0.04] [0.00]
Model C1-3:
DT=11.94+0.45*ONS+0 . 4T*OFFS+0.013%0NLS, (R2=0.62)
(8.70) (2.88) (4.66) (6.64)
[0.00] [0.01] [0.00] [0.00]
Model D1-3:
DT=9.24+0.71*ONS+0.52*OFFS+0.16*LS, (R2=0.63)
(7.19) (5.40) (5.35) (6.98)
[0.00] [0.00] [0.00] [0.00]

(5) Models with nonlinear forms of crowding variables were estimated and in many
cases, these models with form such as ONSXLS?5, are a significant improvement over
those with linear form, implying that the on board crowding effect is important for one car

train data set, which are summarized below:

Model C1-3:
DT=11.43+0.69*ONS+0.48*0FFS+1.35*%10"5*ONS*LS2-5, (R2=0.65)
(8.78) (5.38) (4.99) (7.41)
[0.00] [0.00] [0.00] [0.00]
Medel D1-3:
DT=10.05+0.78*0ONS+0.50*0OFFS+2.0*10 4*L82-5, (R2=0.67)
(8.32) (6.70) (5.51) (8.50)
[0.00] [0.00] [0.00) [0.00]

(6) Models were estimated for two-car trains based on five approaches: to treat the
train as an entity (including: all data together. the data set with ONS being equal to, or

greater than, OFFS (ONS 2OFFS), and that with OFFS>ONS); to deal with a two-car train
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as two single cars, and found the relationships between the dwell time and total boarding
passengers, total alighting passengers, and crowding effect, for each car separately; and to
treat the train based on the theory that the dwell time for a two-car train is the longer dwell
time (LDT) for car 1 and car 2 of that train, and found the relationships between the dwell

time and the number of passengers boarding and alighting and level of that car with LDT.

The results indicate that treating the train as an entity, the dwell times of trains may
be well explained by the explanatory variables ONS, OFFS, and those reflecting passenger
crowding effect on board (such as MAXASLS, or SUMASLS). Moreover, models
estimated by using two data sets based on relative magnitude of ONS and OFFS, are a
slight improvement over an aggregated data set, since the former better reflect the particular

boarding and alighting process characteristics in effect. The promising two car train models

are shown below:
Model Bl-1:
DT=14.04+0.26*ONS+0.36*OFFS+0.0008*MAXASLS, (R2=0.70)
(7.43) (2.78) (3.71) (2.07)
[0.00] [0.01] [0.00] [0.04]
Model Cl1-1:
DT=13.93+0.27*ONS+0.36*OFFS+0.0008*SUMASLS, (R%=0.70)
(7.43) (2.92) (3.79) (2.03)
[0.00] [0.01] [0.00] [0.05]
Model C1-3:
DT=13.92+0.22*0ONS+0.43*OFFS+0.0013*ONLS, (R2=0.70)
(7.51) (2.00) (5.37) (2.08)
[0.00] {[0.05] [0.00] [0.04]

(7) Model specifications with a variable reflecting the product of passenger

movements and the standees, such as the variable MAXASLS, SUMASLS, ONLS make
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more sense than using the standee variable alone, (LS or AS), as stated in one-car model.
Furthermore, the model estimation with the SUMASLS form allows possible effects of AS
on OFFS and LS on ONS, and so it appears better able to reflect !l possible crowding

effects, therefore the SUMASLS form is preferred among all two-car model forms.

(8) As discussed in Section 3.6 of Chapter 3, several mode! specifications with
nonlinear forms of crowding variables do offer better fit to observations over those with
linear forms of crowding variables, such as model estimation with the MAXASLS form,
with the comparable ranges of exponent being 1.2-5.0, and that with SUMASLS form, with
the exponent of 1.5-5.0. These model with nonlinear crowding variables are summarized

below:

Model Bl-1:

DT=14.09+0.27*ONS+0.37*OFFS+1.2*10 4*MAXASLS! -2, (R2=0.71)

(7.54) (3.06) (4.01) (2.16)
[0.00] [0.01] [0.00] [0.04]
Model C1-1:
DT=13.88+0.29*ONS+0.39*OFFS+7.2*10-5*SUMASLS1-5, (R2=0.71)
(7.71) (3.73) (4.48) (2.21)
[0.00] [0.00] [0.00] [0.03]

Model C1-3(A):

DT=13.79+0.27*ONS+0.45*OFFS+1.6*10"7*ONLS2, (R2=0.71)
(8.14) (3.49) (5.92) (2.57)
[0.00] [0.00] [0.00] [0.02]

Model C1-3(B):
DT=13.54+0.28*ONS+0.44*OFFS+6.0%10""*ONS*LS2, (R2=0.71)

(8.06) (3.70) (5.65) (2.41)
[0.00] [0.00] [0.00] [0.02]



-136-

Model D1-2:
DT=12.72+0.36%ONS+0.42*0OFFS+1.3*10"6*as2.5, (R2=0.70)
(7.94) (6.08) (5.01) (2.03)
[0.00] [0.00] [0.00] [0.05]

(9) It appears that the desirable one and two-car train models do not violate the key
assumptions of the multiple linear regression model, therefore these models look promising
as dwell time functions. The recommended models explain about 70% of the variation in
dwell times, implying that some factors affecting the dwell time were not included, most
importantly operator behavior and passenger characteristics; however, the most significant

factors have been captured in these model forms.

(10) The constant in all one-car models is about 10 seconds while that in two-car
models is about 13 seconds. These results were reasonable, since dwell time always
includes some time for doors of the train to open and close, and some time for passengers

who may want to alight, even if there is no one waiting to boarding the train.

(11) The t tests are applied to test the equality of individual coefficient between one
and two-car train data sets: the full data set; the data set with ONS 2OFFS ; and the data set
with OFFS>ONS. As indicated by the t-statistics, the estimates of ONS in Al model from
one and two-car train full data sets are significantly different while those in the other model
firms have a lower level of significance, and the variables reflecting crowding effect in

BI1-1, Cl1-1, and C1-3 models are significantly different between the two data sets.

The t-statistics show that the estimates for the variables ONS and OFFS from two
data sets Two_M1la and One_MIia (ONS=OFFS) are significantly different, implying that
the marginal dwell times for boarding and alighting are significantly different between one
and two-car train models with the data sets ONS >OFFS. But, t test also shows there is no
sufficient evidence to reject the null hypothesis that the marginal dwell time for boarding on

one car train is twice that on two car trains while passengers boarding process dominates.
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Finally, t tests were used to compare the individual parameter estimates from the two
data sets Two_MI1b and One_M1b (OFFS>ONS). The t-statistics show that the estimates
of the variable ONS for model Alb are significantly different between two data sets while

that of OFFS are not significantly different.

4.5 Directions for Further Research

Even though this study made a number of important contributions to the model
formulations of dwell time relationships for urban rail systems, numerous areas remain

candidates for possible future research.

In term of data inputs and requirements of the formulation, a number of areas remain
to be addressed. For. example: to incorporate the operator behavior and passenger
characteristics into the dwell time model; to reflect the station congestion levei in the
model; to formulate more than two-car train (say three-car, four-car, and six-car train) dwell
time model; and then to test the equality of the estimate of marginal boarding dwell time for

alighting and boarding between these models.

In term of meodelling specifications, it is expected to include operator behavior,
station platform congestion level, and passenger characteristics in the model formulations

provided these data can be obtained in further study.
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Dwell Time vs. Explanatory Variables
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Figure A.1 DWELL TIME vs. ONS
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Figure A.3 DWELL TIME vs. ABAS

One_M1 Sample Data (n = 122)
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Figure A.5 DWELL TIME vs. MAXASLS
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Figure A.7 DWELL TIME vs. ONLS

One_M1 Sample Data (n = 122)
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Figure A.9 DWELL TIME vs. LS
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Figure A.11 DWELL TIME vs. ONS

Two_M3 Sam

ple Data (n = 51)

32

1 1
12 16 20 24
ONS

Figure A.12 DWELL TIME vs. OFFS

— - ————— o aee

| NS R

n o n (=]
n n . J ~

-l

n o
Le) L2}

(epuoses) awy |iemd

ample Data (n = 51)

Two_M3 S

,s,--,:-i!lle
[a] -
n}
[a] -
o .
]
o
a ooano a -1
[n} o -
o a a}
jals] oo ja] [») -
aa
[u] -~
oo 8} a}
a .
a a
o o oo -1
an o o
a a o -
o 0oooono
- — e O
[SUREY NSRS SIS | ! ! |
e 8 8 8& 8 2 °

n.nvc0u00v swyl jlemq

24

20

16

12

OFFS



-147-

Figure A.13 DWELL TIME vs. ABAS
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Figure A.15 DWELL TIME vs. MAXASLS

Two_M3 Sample Data (n = 51)
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Figure A.17 DWELL TIME vs. ONLS

Two_M3 Sample Data (n = 51)
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Figure A.19 DWELL TIME vs. LS

Two_M3 Sample Data (n = 51)
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Appendix B

Correlation Matrix
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Correlation Matrix for One_M1 Model
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Correlation Matrix for One_M1b Model
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Table B.5 Correlation Matrix for Two_M1a Model
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Table B.7  Correlation Matrix for Two_M2 Model
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Appendix C

Histograms of Residuals &

Standarized Residuals vs. Predicted Dwell Times
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Figure C.1 (a) Histograms of Residuals
(b) Standardized Residuals vs. Predicted Dwell Times
(Model C1-1, Linear)
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Figure C.2 (a) Histograms of Residuals
(b) Standardized Residuals vs. Predicted Dwell Times
(Model D1-3, Nonlinear, E = 2.5)
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Figure C.3
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(a) Histograms of Residuals

(b) Standardized Residuals vs. Predicted Dwell Times

(Model B1at, Linear)
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Figure C.4 (a) Histograms of Residuals
(b) Standardized Residuals vs. Predicted Dwell Times
(Model D1-3, Nonlinear, E = 2.7)
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Figure C.5 (a) Histograms of Residuals
(b) Standardized Residuals vs. Predicted Dwell Times
(Mode! C1b3, Linear)
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Figure C.6
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(a) Histograms of Residuals

(b) Standardized Residuals vs. Predicted Dwell Times

(Modei C1b3(B), Nonlinear, E = 2.0)
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(b) Standardized Residuals vs. Predicted Dwell Times

Figure C.7 (a) Histograms of Residuals
(Model C1-3, Linear)
Histogram of PMAX N = 51
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Figure C.8 (a) Histograms of Residuals
(b) Standardized Residuals vs. Predicted Dwell Times
(Model C1-1, Nonlinear, E = 1.5)
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Figure C.9 (a) Histograms of Residuals
(b) Standardized Residuals vs. Predicted Dwell Times
(Model A1a, Linear)
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Figure C.10  (a) Histograms of Residuals
(b) Standardized Residuals vs. Predicted Dwell Times

(Model B1b1, Linear)
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Figure C.11 (a) Histograms of Residuals
(b) Standardized Residuals vs. Predicted Dwell Times
(Mecdel D1b3, Noniinear, E = 0.6)
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