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We study a hybrid strategy that uses both process flexibility and finished goods inventory for supply chain

risk mitigation. The interplay between process flexibility and inventory is modeled as a two-stage robust

optimization problem. In the first stage, the firm allocates inventory before disruption happens; in the second

stage, after a disruption happens, the firm determines production quantities at each plant to minimize

demand loss. Our robust optimization model can be solved efficiently using constraint generation, and under

some stylized assumptions, can be solved in closed form. For a canonical family of flexibility designs known

as the K-chains, we provide an analytical expression for the optimal inventory solution, which allows us

to study the effectiveness of different degrees of flexibilities. Moreover, we find that firms should allocate

more inventory to high variability products when its level of flexibility is low, but as flexibility increases,

the inventory allocation pattern “flips” and firms should allocate more inventory to low variability products.

These observations are further verified through a numerical case study of an automobile supply chain. Finally,

we extend our robust optimization model to the time-to-survive metric, a metric that computes the longest

time a supply chain can guarantee a predetermined service level under disruption.
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1. Introduction

Over the past decade, managing supply chain disruption risks has emerged as one of the top business

challenges. As reported by Forbes, 80 percent of companies worldwide see better protection of
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supply chains as a priority (Culp 2013). Supply chain disruption is difficult to manage because it

can come from a wide range of sources, whether from natural disaster, epidemics, factory fire or

political upheavals (Simchi-Levi et al. 2014). The problem is further exacerbated as new sources

of disruptions are constantly emerging, exemplified by the recent Equifax data breach (O’Marah

2017) and the computer system outage at Delta Air Lines (Jansen 2017).

To effectively manage supply chain risks, a firm needs to coordinate different risk mitigation

strategies under supply and demand uncertainty. In this study, we focus on two popular risk

mitigation strategies: holding finished goods inventory and employing process flexibility. While

it is clear that both strategies improve supply chain resilience, it is much more challenging to

understand the hybrid approach that combines both strategies. Therefore, for a firm to successfully

implement the hybrid approach, one needs to answer the following questions: how does the firm’s

flexibility design affect its inventory decisions? And how should the firm allocate inventory among

different products to achieve a required service level while minimizing cost?

To study the hybrid strategy, we introduce a two-stage robust optimization model in which

finished goods inventory is stored in the first stage, while in the second stage, after disruption

happens, the firm decides what and how much to produce at each plant using process flexibility to

minimize the impact of disruption. Our two-stage risk mitigation model is intended for relatively

infrequent disruption events, in contrast to stochastic dynamic models that are used to model

frequent disruptions, e.g., (Tomlin 2006). In our model, the second stage decisions represent the

firm’s actions during a disruption, and the first stage inventory decisions represent the inventory

levels the firm wants to build up prior to disruptions. Moreover, the inventory flexibility strategy

we consider is most practical when a firm is facing disruptions that last for a short term, e.g., a few

weeks, as holding months of inventory is a very expensive risk mitigation strategy. For longer term

disruptions, the firms may consider our inventory flexibility strategy as an intermediate solution,

while remodeling their supply chains to resume production quickly. For example, after the 2011

Japanese Earthquake, Toyota started to create a quake-proof supply chain that is guaranteed to

recover in less than two weeks when another disruption occurs (Kim 2011).
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1.1. Risk Mitigation Strategies

Next, we provide basic intuitions behind the two risk mitigation strategies, process flexibility and

inventory, and then explain why it is important to coordinate the two strategies.

Risk mitigation inventory, also known as protective inventory, has been identified in a number of

papers as an important tool for dealing with supply chain risk (see literature review in section 1.4).

However, holding a large amount of inventory would incur a high loss in cost efficiency (Chopra and

Sodhi 2014), as these inventories are only used when disruptions occur. As a result, firms would

typically hold the minimum amount of inventory subject to a given performance requirement.

Process flexibility is defined as the “ability to build different types of products in the same

manufacturing plant or on the same production line at the same time” (Jordan and Graves 1995).

For example, under full flexibility design, each plant is capable of producing all products; while

under dedicated design (i.e., no process flexibility), each plant is capable of producing just a single

product (see Figure 1).

With process flexibility, the firm is capable of adjusting its production in the existence of uncer-

tainties, and thus, is in a better position to match its capacity and demand. Unfortunately, imple-

menting full flexibility is often too expensive since each plant needs to be capable of producing all

products (Simchi-Levi 2010). As a result, partial flexibility designs are considered. A popular class

of partial flexibility designs studied in the literature are known as K-chains (Hopp et al. 2004,

Chou et al. 2014). In a K-chain, there are N plants and N products, and for each 1≤ i≤N , plant

i has the flexibility to produce products i, i+1, to i+K−1 modulo N (see Figure 1 for an example

of 2-chain). Note that if K = 1, we get dedicated design in the N plants and N products system,

and if K is equal to the number of products, we get full flexibility design.

It is important to note that process flexibility can greatly impact inventory decisions. Consider

dedicated and full flexibility designs in Figure 1 as an example. Suppose that the firm holds

inventory for Product 2, and a disruption occurs at Plant 1. Then, under dedicated design, the

inventory of Product 2 would not be helpful, since the inventory cannot be used to satisfy any
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Figure 1 Process Flexibility Designs

Dedicated 2-Chain Partial Flexibility Full Flexibility

Plant Product

of the demand for Product 1. However, under full flexibility design, inventory of Product 2 can

be used to save the flexible production capacities at Plant 2, which allows the firm to reallocate

the capacities at Plant 2 to produce Product 1. In other words, when a firm has both inventory

and process flexibility, inventory helps to free up excess flexible capacities during an unforeseen

event, and thus improves the firm’s ability to mitigate risk. As a result, the existence of process

flexibility can reduce the amount of inventory needed, and the synergy between inventory and

process flexibility makes the hybrid strategy very compelling.

Although it is well documented that both flexibility and inventory can improve supply chain

resilience (see literature review in section 1.4), the synergy between inventory and process flexibility

is not well understood. To the best of our knowledge, no existing literature has considered a hybrid

strategy combining (partial) process flexibility designs and inventory as a way to mitigate against

risks in a multi-product supply chain. We note that because holding extra amounts of inventories

can be inefficient and expensive, our hybrid strategy is mainly intended for infrequent disruptions

when the firm can restore its original production capacity in a few weeks. In the latter part of

the paper, we will also discuss how process flexibility may greatly increase the effectiveness of

inventories, and potentially allow firms to use this strategy for longer disruptions.

1.2. Robust Optimization Model

In both process flexibility and risk mitigation literature, uncertainties in demands and capacities

are typically specified through probability distributions. Given probability distributions, the firm’s

objective is modeled using two different approaches. In the first approach, the firm’s objective is

to maintain a high level of profit/production with high probability (aka Type 1 service level). In
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this case, the inventory and process flexibility problem would be modeled as a two-stage stochas-

tic program with chance constraints. Unfortunately, these service constraints are non-convex (see

Online Appendix for more details), which makes the stochastic problem intractable. A different

approach is to minimize the firm’s expected cost. This would lead to a two-stage linear stochastic

program, which is a convex optimization problem. However, even for discrete distributions, solving

the two-stage linear stochastic program exactly is #P-hard (Dyer and Stougie 2006), and practi-

tioners would often resort to approximating the true problem using sample average approximation

(SAA). The quality of the SAA solutions depends on the number of samples, and the number of

samples required for SAA solutions to achieve strong theoretical guarantees is often very large

(Shapiro and Nemirovski 2005). Therefore, SAA is only capable of producing good solutions for

problems with a small number of variables.

In the interest of computational tractability, we propose a two-stage robust optimization model

that finds the optimal inventory allocation under general process flexibility designs. In the robust

optimization model, product demands and plant capacities lie in an uncertainty set. In the first

stage, given a process flexibility design, the firm allocates its inventory levels across the products;

and in the second stage, after the uncertainties are realized, the firm uses both inventory and

process flexibility to either minimize its cost or satisfy a certain service level requirement. We find

this robust model to be more tractable than its stochastic counterparts. In our numerical example

(section 4), we find that two-stage robust problems for supply chains can be solved much faster than

its stochastic counterparts. In some stylized settings, our robust model can even be solved in closed

form (section 3), allowing for detailed analysis in order to identify useful insights. Finally, further

computational experiments demonstrate that our robust model containing hundreds of nodes can

be solved to optimality in less than 10 minutes (see chapter 4 of Wang 2016).

Apart from tractability, the worst-case model provides several additional advantages compared

with its stochastic counterparts in the context of risk mitigation. First, it is difficult and often

impossible to accurately assess the uncertainties in plant disruptions, because production disruption
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can occur from so many different sources, whether from natural disaster, epidemics, or factory

fire (Simchi-Levi et al. 2014). Because the optimal inventory level can be very sensitive to the

probability of disruption, considering the worst-case scenario may offer a more “robust” approach.

Second, for small probability events such as plant disruptions, managers might find it useful to

understand the maximum possible shortage of demand under a wide range of scenarios. This

understanding may lead them to better identify scenarios where the supply chain is most vulnerable.

Finally, it has been suggested in Graves and Willems (2000) that it is easier for managers to

communicate with customers by committing to a certain service level under a range of scenarios,

rather than providing a probabilistic guarantee, which is difficult to understand or verify.

1.3. Overview and Summary of Results

Robust Optimization Model. In section 2, we propose a robust optimization formulation for sup-

ply chain risk mitigation. The decision variables are inventory levels in the first stage and production

quantities in the second stage. The formulation ensures that the total demand lost is bounded by

some target value for all scenarios in the uncertainty set, with the objective of minimizing the

inventory costs. It turns out that our formulation is highly tractable numerically, and under some

stylized assumptions, can be even solved in closed form. We also demonstrate that our model can

be extended in several ways in section 5. In particular, our model can be extended to find the

optimal inventory allocation that maximizes a supply chain’s time-to-survive (TTS), a metric that

measures the longest time the supply chain can maintain customer service levels.

Analysis and Insights. In section 3, we analyze a special family of flexibility designs called the

K-chains to provide insights into inventory allocations under different degrees of flexibility. First,

we provide a closed-form characterization of the optimal inventory decision when the uncertainty

set is symmetric. Using this characterization, we find that while changing from a dedicated network

to the well-studied 2-chain design provides a large portion of benefit, when plants are subject to

disruptions, 2-chain does not completely capture the benefit of full flexibility even under moder-

ate demand variabilities, and there are significant benefits achieved by increasing the degree of
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flexibility beyond 2-chain. The characterization also allows us to understand how the gap between

inventory costs of 2-chain and K-chain (K > 2) changes when we vary the magnitude of potential

disruptions.

Second, we show that the optimal inventory allocation can be drastically different under differ-

ent flexibility designs. In particular, there tends to be a shift of inventories from high variability

products to low variability products as the degree of process flexibility increases. We refer to such

phenomenon as the flipping effect, since the inventory levels flip as the degree of flexibility increases.

Therefore, it is unlikely that a single inventory strategy can perform well for all kinds of flexibility

designs. Optimizing over inventory decisions that are tailored to the firm’s particular supply chain

network structure using our robust optimization model may significantly improve the firm’s risk

mitigation strategy, compared with other simple inventory heuristics that ignore the firm’s supply

chain structure.

Numerical Case Study. In section 4, we apply our robust optimization approach to a risk mitiga-

tion example of General Motors. The example is based on a real-world case introduced by Jordan

and Graves (1995). The numerical experiment supports our finding that 2-chain is not as effective

as K-chain for K > 2 when there is supply uncertainty, even when the assumptions in section 3 do

not hold. We also demonstrate the flipping effect in this numerical case study.

1.4. Related Literature

There is rich literature on inventory for risk mitigation. Many of the earlier papers (e.g., Meyer et al.

1979, Song and Zipkin 1996, Arreola-Risa and DeCroix 1998) studied inventory risk mitigation

in a single product setting. More recently, inventory mitigation strategies under multi-period,

multi-echelon settings have also been explored (e.g., Bollapragada et al. 2004, DeCroix 2013).

Moreover, researchers have also considered hybrid strategies in which firms use both dual sourcing

and inventory to mitigate risks (Gürler and Parlar 1997, Tomlin 2006).

Process flexibility, also referred to as “mix flexibility” or “product flexibility”, has also been

observed as a potential risk mitigation tool. Tomlin and Wang (2005) consider a risk mitigation
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strategy that uses a combination of mix-flexibility and dual sourcing. Tang and Tomlin (2008)

suggest process flexibility as one of the five types of flexibility strategies that can be used to mitigate

supply chain disruptions. And finally, Sodhi and Tang (2012) list flexible manufacturing processes

as one of the eleven robust supply chain strategies.

While many researchers investigated the effectiveness of fully flexible resources (e.g., Fine and

Freund 1990, Bish and Wang 2004, Tomlin and Wang 2005), our model allows one to study arbitrary

partial process flexibility designs in a multi-plant, multi-product system. This feature is motivated

by the seminal work of Jordan and Graves (1995), who argue that fully flexible resources are often

too expensive or impossible to implement, while a little bit of flexibility in the system often provides

the same benefit as full flexibility. More recently, the effectiveness of sparse flexibilities designs have

been verified by a number of theoretical developments (e.g., Chou et al. 2010, 2011, Simchi-Levi

and Wei 2012, Wang and Zhang 2015). Moreover, Bassamboo et al. (2010, 2012) observed that

when the firm is free to purchase any flexible resource, sparse configurations such as chaining and

tailored pairing are often near optimal.

Production postponement and delayed product differentiation is another stream of literature

closely related to the two-stage flexibility and inventory model we study. The classical research

of Fisher and Raman (1996) and Swaminathan and Tayur (1998) studied two-stage production

models, but neither paper proposed a model that incorporates partial second-stage production flex-

ibility. To the best of our knowledge, the only paper in the postponement literature that considers

partial flexibility is the work of Chou et al. (2014). However, that work differs from our paper

significantly as they focused on a stochastic model with no capacity uncertainties, whereas our

paper studies a robust model with capacity disruptions.

In this paper, we propose a robust optimization approach to study the risk mitigation strategy

for combining partial process flexibility and inventory. The model is a two-stage robust optimiza-

tion problem, where the firm allocates inventory before the uncertainties are realized (ex-ante),

and schedules its flexible production after uncertainties are realized (ex-post). Our approach to
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model uncertainties follows the recent proposals in the robust optimization literature (e.g., Ben-Tal

et al. 2009, Bandi and Bertsimas 2012), which propose to replace probabilistic distributions with

uncertainty sets. This approach is similar to the model studied by Graves and Willems (2000), who

argued that in supply chain management, it is often easier for the firm to commit to service level

guarantees under a range of scenarios, rather than probabilistic service guarantees.

In the two-stage robust optimization literature, Ben-Tal et al. (2004) studied the general two-

stage robust linear programs (which they called “Adjustable Robust Counterpart”). They proved

that the two-stage robust linear programs are NP-hard in general, and proposed the Affine

Adjustable Robust Counterpart, which is shown to be computationally tractable in many settings.

Atamtürk and Zhang (2007) studied a general two-stage robust network flow problem, showing

that while the problem is NP-hard in general, it can yield polynomial-timed solutions when the

networks have certain structures. Computational methods for solving general two-stage robust lin-

ear programs include, for example, Thiele et al. (2010), who proposed a cutting-plane method,

and Zeng and Zhao (2013), who proposed a column-and-constraint generation algorithm. For a

more detailed overview of the recent advances and applications of two-stage robust optimization,

we refer the readers to the recent surveys of Bertsimas et al. (2011) and Gabrel et al. (2014).

2. The Model

We consider a firm that has M plants (denoted by Si for i = 1, . . . ,M) and produces N products

(denoted by Tj for j = 1, . . . ,N). A plant may produce either one or multiple products, and the

flexibility design specifies which product each plant can produce. More formally, the firm’s flexibility

design can be represented as a bipartite network, where a link (Si,Tj) exists if and only if plant i

is able to produce product j. We refer to the set of such links as F . For a given flexibility design

F and a subset of products A ⊂ {T1, . . . ,TN}, we define PF(A) = {Si : (Si,Tj) ∈ F ,Tj ∈ A} as the

plants that can produce at least one of the products in A.

We assume that both plant capacity and product demand are uncertain quantities due to

unknown risks such as plant disruptions or demand fluctuations. We denote the realized capacity
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by c = (c1, c2, . . . , cM), and the realized demand by d = (d1, d2, . . . , dN). We use U ⊂ R
M
+ × R

N
+ to

denote the uncertainty set for both capacity and demand, and assume (c,d)∈ U . Throughout the

paper, we will consider polyhedral uncertainty sets; that is, U will be defined by a system of linear

inequalities.

2.1. Service Guarantee Model

Next, we present the service guarantee (SG) model, where the firm ensures that total demand loss

for any scenario in uncertainty set U is bounded by a fixed shortage allowance, δ, while minimizing

inventory cost. This can be modeled using a two-stage decision problem. In the first stage, the

firm determines inventory level for each product, where the inventory level of product j is denoted

by variable sj, with unit holding cost hj. In the second stage, the firm observes realized product

demand and available plant capacities, and determines its production schedule. We use xij(c,d) to

denote the quantity of product j produced by plant i under demand d and capacity c. Similarly,

we use lj(c,d) to denote the lost sales of product j. The inventory decision problem can then be

formulated as follows.

(SG) min
s,x,l

N∑

j=1

hjsj (1)

s.t.
∑

i: (Si,Tj)∈F

xij(c,d) + lj(c,d)≥ dj − sj, ∀1≤ j ≤N, (c,d)∈ U ,

∑

j: (Si,Tj)∈F

xij(c,d)≤ ci, ∀1≤ i≤M, (c,d)∈ U ,

N∑

j=1

lj(c,d)≤ δ, ∀(c,d)∈ U ,

x(c,d), l(c,d), s≥ 0. (2)

The first constraint defines lost sales where demand is satisfied by either production or inventory,

and the second constraint enforces plant capacity limits. The third constraint ensures that the

total lost sales is bounded by a fixed budget δ.

While the SG model defines service guarantee aggregated over all products, the model can also

be used if the firm requires service guarantees on an individual product level. To do this, we need
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to make two changes in the model: first, the lost sales allowance δ is set to zero; second, the

uncertainty set U is modified to reflect service guarantee for individual products. For example, if

the firm wants to commit to 95% of the demand for each product under all possible scenarios in

uncertainty set U , then we can define the uncertainty set to U ′, where U ′ = {(c,0.95d) | (c,d)∈ U}.

Note that the uncertainty set U ′ can easily be modified to allow different products having different

service guarantee levels (by making an affine transformation on U).

2.2. Optimization Algorithm

We claim that the service guarantee model (SG) can be solved efficiently using an optimization

method called constraint generation. Because this paper is focused on deriving operational insights

on the interplay between flexibility and inventory, we omit the technical details of the algorithm to

solve the robust optimization model; instead, we only give an outline of the algorithm. Full details

of the constraint generation algorithm can be found in chapter 4 of Wang (2016).

The algorithm for solving the SG model can be divided into two main steps. First, we can refor-

mulate the two-stage robust optimization problem associated with the SG model as the following

linear program:

min
N∑

j=1

hjsj (3)

s.t.
∑

Tj∈A

(dA
j − sj)−

∑

Si∈PF (A)

cA
i ≤ δ, ∀A⊂ {T1, . . . ,TN},

s≥ 0.

The derivation of this reformulation can be found in chapter 4 of Wang (2016). Note that this

linear program has N variables and 2N linear constraints (with one constraint associated with

each subset of the N products; dA
j and cA

i are constants defined for each subset A), so the number

of constraints grows exponentially as the number of products increases. When N is not a large

number, we can directly solve the linear programming formulation (3). However, in general when

N > 15, solving (3) with all the 2N constraints becomes extremely slow.
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To solve the SG model faster, in the second step, we apply a constraint generation algorithm

to the linear programming problem (3). We provide the basic ideas of our algorithm here. The

constraint generation algorithm for solving the SG model runs iteratively, starting from a linear

program with the same objective function as in (3) but with an empty set of constraints. At each

iteration, the algorithm first solves the linear program with objective (3) and the current set of

constraints, then runs a subroutine that either proves that the current inventory vector s is optimal,

or returns a violating linear constraint in (3). Depending on the outcome of the subroutine, the

algorithm either terminates with an optimal solution, or adds another inequality to the current

set of constraints. When the uncertainty set is polyhedral, the subroutine can be reformulated

as a compact mixed integer linear program (MILP) (see chapter 4 of Wang (2016) for details),

which can be solved quickly using off-the-shelf optimization solvers. In general, the algorithm stops

when only a tiny fraction of the 2N constraints are added to the set, so the running time of the

constraint generation algorithm (and the running time of the subroutines) is much shorter than

the time to solve the full linear programming formulation with exponentially many constraints.

For example, when the number of products is equal to 50 and the uncertainty set is polyhedral,

the full linear programming formulation has 250 ≈ 1.12 × 1015 constraints, and solving a linear

program with this size is beyond the capability of any existing LP solvers. In contrast, we observe

in numerical experiment that our constraint generation algorithm requires only (on average) a

few hundreds constraints being generated, even if the LP contains more than 1015 constraints;

furthermore, each constraint generation step takes a fraction of a second. For a detailed discussion

of the computational complexity of the algorithm, we refer readers to chapter 4 of Wang (2016).

We note that while constraint generation is a common standard technique for solving linear pro-

grams with a large number of constraints (Bertsimas and Tsitsiklis 1997), different tricks are often

needed to come up with the subroutine that efficiently generates constraints depending on specific

problem structures. In our constraint generation algorithm, we take advantage of the network flow

structure to come up with a subroutine that solves a mixed-linear integer program with moderate
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size. Finally, while we focus on the SG model in the paper, our computational algorithm can be

applied to more general models with different lost sales costs for different products, or multiple

stages of productions. These extensions are discussed in section 5.

2.3. Constructing Uncertainty Sets for Stochastic Fluctuations

So far, we have introduced a robust optimization formulation of the supply risk mitigation prob-

lem, and our model framework allows using any polyhedral uncertainty set (i.e., a finite set of

linear inequalities) to model demand and supply uncertainty. Typically, in robust optimization, the

uncertainty set is chosen based on some probabilistic interpretation (Bertsimas and Thiele 2006).

In this section, we introduce a specific class of parametric uncertainty sets and discuss how to

choose the values of the uncertainty set parameters in applications. For the rest of the paper, we

will mainly focus on this class of uncertainty sets.

We start with the demand uncertainty. In the literature, product demands are often described

as stochastic quantities. Suppose that the demand for each product j is denoted by some random

variable Dj with mean d̄j and standard deviation σj. In this case, applying the method described

by Ben-Tal et al. (2009), we use the following set of linear inequalities to restrict the variations of

demand, d.
N∑

j=1

(dj − d̄j)≤ γ,
N∑

j=1

|dj − d̄j|
σj

≤ β, |dj − d̄j| ≤ ασj, ∀1≤ j ≤N. (4)

The constraint defined by parameter γ allows us to upper-bound the maximum total demand

increase compared with the mean. The constraint defined by parameter β is known as the budgeted

uncertainty constraint, and allows us to control the total normalized deviation between the actual

demand and its mean. Finally, the constraints defined by parameter α is known as box uncertainty

constraints and allow us to control demand deviations for each individual product. The values of

α, β and γ can be chosen based on empirical data or probability theories such as the central limit

theorem (Ben-Tal et al. 2009). Alternatively, the parameters can be chosen in order to optimize or

estimate stochastic quantities (Bertsimas and Thiele 2006, Bandi and Bertsimas 2012). To avoid

negative product demand, we assume throughout the paper that ασj ≤ d̄j for any 1≤ j ≤N .
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The uncertainty set (4) includes several types of commonly used uncertainty sets as special cases.

For instance, one may consider a box uncertainty set where each demand variable dj is bounded

individually, which is a special case of (4) with β = γ = +∞. The budget uncertainty set is also a

special case of (4) with β = +∞.

Although we will focus on demand uncertainty sets defined by (4) in the rest of the paper,

we note that other forms for demand uncertainty set can be used in our model. A possibility is

bounding the standard deviation of demands instead of the absolute deviation of demands as in

(4). However, this modification involves quadratic constraints in the uncertainty set. When the

uncertainty set contains only linear inequalities as in (4), the optimization algorithm (described

in §2.2) can be implemented efficiently by solving a sequence of mixed integer linear programs

(MILPs). If the uncertainty set is a quadratic conic set, our algorithm requires solving a sequence of

mixed integer conic quadratic programs (MICQPs). Although there are several open-source solvers

for MICQPs, the dimensions of solvable MICQP by current solvers are much smaller compared to

MILPs (Bonami et al. 2012).

In the context of risk mitigation, most of the capacity uncertainty comes from plant disruptions

due to low probability, unforeseeable events. Because standard deviations of the disruptions are

difficult to estimate and plant disruptions may cause the entire plant to go down, we do not consider

the budgeted uncertainty constraint to the capacity vector. Moreover, because plant capacities can

only decrease due to disruption, we use the following set of inequalities to restrict the capacity

vector, c,
M∑

i=1

(c̄i − ci)≤ ζ, 0≤ ci ≤ c̄i, ∀1≤ i≤M, (5)

where parameter ζ bounds the total loss of capacity for all of the plants. Alternatively, we can view

ζ as the firm’s judgment on the potential magnitude of a disruption.

In the rest of this paper, we will focus on the uncertainty set U defined by Equations (4) and

(5). For more techniques to construct uncertainty sets, we refer interested readers to Bandi and

Bertsimas (2012) and the references therein.
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3. Analysis and Insights

In the previous section, we proposed a robust optimization framework that coordinates inventory

and production decisions to mitigate supply disruptions. To further understand this robust opti-

mization approach, we study two stylized settings based on the service guarantee (SG) model. In

both settings, we assume that the number of plants and products are equal (M = N), all products

have a unit holding cost (hj = 1), and the demand shortage parameter is zero (δ = 0). Note that

δ bounds the aggregate demand loss. As we commented in section 2.1, even when δ = 0, demand

loss for individual products can still be included in the model by making an affine transformation

to the uncertainty set.

3.1. Inventory Costs Under Different Flexibility Levels

To analyze different flexibility levels, we consider the K-chain designs. The K-chains are commonly

studied in the literature (e.g. Hopp et al. 2004, Chou et al. 2014, Wang and Zhang 2015) as a class

of designs with different levels of flexibility. Recall that in a K-chain, for each 1 ≤ i ≤ N , plant i

has the flexibility to produce products i, i+1, to i+K − 1 modulo N . If K = 1, we get dedicated

design in the N by N system, and if K is equal to the number of products, we get full flexibility

design.

We use the class of uncertainty sets defined by Equations (4) and (5) in section 2.3, and assume

that the uncertainty is symmetric, i.e., d̄j = d̄, σj = σ and ci = c̄, for all 1 ≤ j ≤ N . Under our

assumption, any U can be expressed as U = Uc ×Ud, where

Ud = {d|
N∑

j=1

(dj − d̄)≤ γ,
N∑

j=1

|dj − d̄|/σ ≤ β, |dj − d̄|/σ ≤ α, ∀1≤ j ≤N}, (6)

Uc = {c|
N∑

i=1

(c̄− ci)≤ ζ, 0≤ ci ≤ c̄, ∀1≤ i≤N}, (7)

for some parameters γ, ζ, β and α.

Under these assumptions, we can obtain a closed-form analytical expression for the optimal

inventory of the SG model for K-chains. Let e be a vector with all entries equal to 1. For any

integer 1≤ t≤N , we define

Cmin(t) = min
x

{cTx | eTx≥ t,0≤ x≤ 1,c∈ Uc},
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Figure 2 Inventory Cost for K-chain Designs
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(N = 8, d̄ = c̄ = 1, α = 2, β = γ = 4)

Dmax(t) = max
x

{dTx | eTx≤ t,0≤ x≤ 1,d∈ Ud}.

Proposition 1. Let F be a K-chain, for some integer 1≤K ≤N . Then the optimal inventory

cost of the SG model is

N max{ max
1≤t≤N−K

Dmax(t)−Cmin(t +K − 1)

t
, max
N−K<t≤N

Dmax(t)−Cmin(N)

t
,0}. (8)

The characterization for the optimal inventory cost of K-chain in Proposition 1 provides us

with a useful tool to think about the effectiveness of different degrees of flexibility. For example, it

allows us to solve the optimal inventory cost of K-chains by solving N linear programs, which is

much faster than the constraint generation algorithm for the general SG model. In addition, the

characterization allows us to further analyze the optimal cost for a K-chain as we change different

parameters. In Figure 2, we plot an example of the inventory cost as magnitude of a disruption

(measured by ζ) changes, under different levels of demand variability σ and different flexibility

designs including 2-chain, 3-chain and full flexibility. The reason we consider the impact of change

in ζ is because it is typically difficult to estimate, as disruption may come from many different

sources. From another perspective, one can view ζ as a firm’s conservativeness thinking about

disruption - larger ζ would imply that the firm is planning more conservatively as it prepares for

disruptions impacting a larger portion of its production capacity.
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From Figure 2, we observe that there is a significant gap between the performance of 2-chain

and K-chain for K > 2 with both capacity and demand uncertainty. This contrasts to the classical

observations that 2-chain performs almost as well as full flexibility (and hence K-chain for any

K > 2) when there is no capacity uncertainty (Jordan and Graves 1995). For illustration, in the 10

plants 10 products example studied by Jordan and Graves (1995), if demand is normally distributed

with coefficient of variation of 0.4, then the expected utilization rate of full flexibility is 95.4%,

while that of 2-chain is already 95%. In comparison, the optimal inventory of 2-chain in Figure 2

is more than twice that of full flexibility, under most of the parameter ranges.

Interestingly, we also observe that most of the gap between 2-chain and full flexibility can be

closed by 3-chain, which is just one additional degree of flexibility higher than 2-chain. In hindsight,

this is not entirely surprising. Intuitively, while 2-chain is very effective in satisfying uncertain

demand without capacity uncertainty, even the disruption of a single production plant can break

up the chain; in comparison, 3-chain would still form a chain even if one plant is down. We note

that recent findings suggest that 2-chain may not be effective when the demand variability is large

compared with capacity (Chou et al. 2014, Wang and Zhang 2015). A crucial difference between our

observation to the existing literature is that in our setting, a relatively small amount of uncertain

supply disruption, e.g. shutdown of a single plant, creates a significant gap between 2-chain and

full flexibility, as illustrated in Figure 2 under moderate demand variability (σ = 0.3).

Given that there is a significant gap between 2-chain and K-chain for K > 2 with both capac-

ity and demand uncertainty, another interesting question is the comparative static of this gap

and potential capacity loss. From Figure 2, we observe that when capacity loss (measured by ζ)

increases, the gap between the inventory costs for 2-chain and K-chain (K > 2) widens. Next, we

formally prove this observation under a wide range of ζ.

Proposition 2. When 0≤ ζ ≤ 2c̄, the difference between the optimal inventory costs of 2-chain

and K-chain (K > 2) is increasing as ζ increases.
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Proposition 2 is useful for a decision maker (DM) thinking about adding flexibility in the following

way: suppose that the DM is considering between 2-chain and 3-chain but is unsure about the

potential capacity loss caused by disruptions, which is described by ζ. Then, the DM can always

calculate the difference between the inventory costs of 2-chain and 3-chain under the minimum

(maximum) reasonable ζ, and this quantity would indeed be a lower-bound (upper-bound) on the

difference under other values of ζ, as long as 0 ≤ ζ ≤ 2c̄. Finally, in the following corollary, we

show that if ζ > 2c̄, then the optimal inventory costs of 2-chain is the same as dedicated design.

Thus, when ζ > 2c̄, the firm should ignore 2-chain completely, and consider either implementing

flexibility with more than 2 degrees, or not implementing flexibility at all.

Corollary 1. When ζ > 2c̄, the optimal inventory costs of 2-chain is equal to NDmax(1), which

is equal to the optimal inventory costs of a dedicated design.

The intuition behind Corolary 1 is reasonably straightforward. Consider product 1. Intuitively, in

the worst-case secnario for product 1, both plants capable of producing product 1 are disrupted,

while product 1 has demand Dmax(1). This forces us to allocate Dmax(1) amount of inventory

at product 1. By symmetry of 2-chain, we also need to allocate Dmax(1) amount of inventory at

product 2, 3, . . ., N , which is exactly the optimal inventory allocation for the dedicated design.

3.2. Inventory Allocation Strategy

In this section, we study a setting where product demand variability is different. Like section 3.1,

we consider a special case of the uncertainty set defined in section 2.3 given by

Ud = {
N∑

j=1

(dj − d̄)≤ γ,
N∑

j=1

|dj − d̄|/σj ≤ β, |dj − d̄|/σj ≤ α, ∀1≤ j ≤N}, (9)

Uc = {
N∑

i=1

(c̄− ci)≤ ζ, 0≤ ci ≤ c̄, ∀1≤ i≤N}, (10)

with U = Uc ×Ud. The parameter σj measures the demand variability of product j.

We want to understand how inventory allocations change as we add more flexibility to the system,

starting from a dedicated flexibility design. First, for dedicated design (K = 1), we show that under

the optimal decision, the firm places more inventories to the high variability products.
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Proposition 3. When F is a dedicated design (i.e., 1-chain), there always exists an optimal

inventory solution s, such that for any two products j1, j2 with σj1 ≥ σj2, we have sj1 ≥ sj2.

In contrast, for full flexibility design (K = N), it can be shown that the optimal inventory

allocation places more inventories to the low variability products, under a large range of parameters.

Proposition 4. When F is a full flexibility design (i.e., N -chain), if c̄N ≥ α
∑N

j=1 σi + γ + ζ,

there always exists an optimal inventory solution s, such that for any two products j1, j2 with

σj1 ≥ σj2, we have sj1 ≤ sj2.

We note that condition c̄N ≥ α
∑N

j=1 σi + γ + ζ is usually satisfied in practice: ζ (the loss of

capacity due to disruption), α
∑N

j=1 σi (total absolute demand deviation), and γ (total demand

variation) all measure the variability of the system; due to the central limit theorem, all three

quantities are usually smaller than c̄N , the total capacity of the system, because the total capacity

scales linearly in N and variability scales in the order of
√

N . Moreover, a condition of this form

is necessary—for example, if c̄N < ζ, then the uncertainty set would contain scenarios where the

total available capacity is zero, rendering any flexibility design useless.

Propositions 3 and 4 demonstrate that if we start from dedicated design and add flexibilities until

we arrive at full flexibility, the inventory allocations to high and low variability products will be

eventually flipped. We call this the flipping effect, which is the phenomenon that the optimal solution

holds more inventory for products with high demand variability when the degree of flexibility is

low, but holds more inventory for products with lower variability when the firm has a high degree of

flexibility, and thus the pattern of inventory decision “flips” as the degree of flexibility grows. The

intuition behind the flipping effect is that when there is full flexibility, the firm is more concerned

about being able to use inventory to free up capacities anywhere in the system because any capacity

is fully flexible, therefore placing more inventories to low variability products so that the inventories

can be consumed when needed. On the contrary, when there is dedicated design, the firm should

place inventories to high variability products, in order to ensure its service level.
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We also note that Propositions 3 and 4 do not require the assumption that the capacity loss is

positive (ζ > 0), suggesting that demand variability is the main driver for the flipping effect. In

section 4, we further confirm this insight as our numerical studies show that the flipping effect also

holds when we have deterministic capacity loss, as well as when demand variation and capacity

loss are stochastic.

The flipping effect has also been partially observed in production postponement under stochastic

demand, as Fisher and Raman (1996) showed that when the second stage production is fully

flexible, the firm should produce more low variability products in the first stage. However, Fisher

and Raman (1996) do not consider the change in inventory allocations as flexibilities are added into

dedicated design. Our finding augments Fisher and Raman (1996), and demonstrates that when

the firm adds flexibility to its manufacturing system, its optimal inventory allocation strategy can

change drastically, with the trend of allocating more inventories to low variability products. The

flipping effect also demonstrates that when a manufacturing system has partial process flexibility,

there does not exist a universal rule-of-thumb method for inventory allocation. In these cases,

our model and computational algorithm provide a tool for effectively making optimal inventory

decisions.

The placement of inventories to low variability products in full flexibility is also related to the

push and pull strategy in the operations management literature (see, e.g., Simchi-Levi 2010). In

a pull strategy, the firm produces to order after demand is realized. In a push strategy, the firm

produces to stock and has less ability to adjust. With full flexibility, the firm should apply pull

strategy to products with high demand uncertainty, and apply push strategy to products with low

demand uncertainty, which means holding more inventory for products with lower variability in

the first stage.

4. Application: Risk Mitigation for an Automotive Supply Chain

In this section, we apply our robust optimization method to a case study for the automobile

supply chain. We consider an automotive manufacturing system based on the General Motors data
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provided by Jordan and Graves (1995). The dataset consists of 16 vehicle models and 8 assembly

plants. We use the same plant capacities and mean product demands as in their paper, shown in

the left hand side of Figure 3. Since the dataset does not include cost information, we apply the

service guarantee (SG) model, and assume all products have a unit holding cost.

The uncertainty set is created according to the section 2.3, with parameters α, β, γ, and ζ. We

present our findings with parameters set to α = 2, β = 8 and γ = 0.5
∑N

j=1 σj. Furthermore, we

assume at most 10% of total capacity may be lost under plant disruption, namely, ζ = 0.1
∑M

i=1 c̄i.

The demand shortage allowance δ is set to 5% of the total mean demand. While we only present our

numerical results under this set of parameter values, we have also tested a wide range of different

parameter values within 50% of the presented values. For all of the different sets of values tested,

we obtained similar qualitative insights.

To simulate the scenarios where products have different demand variability, we assume that

half of the products have high variability demand with σj = vhd̄j, and the rest of products have

low variability demand with σj = vld̄j, where vh > vl > 0. We tested three groups of variabili-

ties: (vh, vl) = (0.2,0.1), (0.3,0.15), and (0.4,0.2). In each case, we test 200 scenarios where high

variability products are randomly selected.

To study systems with different flexibility levels, we construct flexibility designs based on the

K-chain design in balanced (M = N) systems. Recall that in a K-chain design, plant i is capable

of producing products i, i + 1, to i + K − 1. Since the number of plants and products are unequal

in this example, we construct “generalized K-chains” by following the clustering idea of Jordan

and Graves (1995). More specifically, Jordan and Graves (1995) proposed clustering plants and

products into separate groups (six groups in this example), and consider each group as a plant

dedicated to producing one product family. Once clustered, the base design can then be viewed as

a dedicated or 1-chain design. Finally, to create a generalized K-chain, for each group i, one adds

flexibility arcs to connect group i to groups i + 1, . . ., i + K − 1. An example of the generalized

2-chain is given in the right side of Figure 3.
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Figure 3 Flexibility Design in the GM Example
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EX. DEMANDCAPACITY BASE DESIGN
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EX. DEMANDCAPACITY 2-CHAIN DESIGN

There are many ways to add flexibility links to create a generalized K-chain design: the resulting

design depends on the order that the groups appear in the chain, as well as plants and products

being connected in each group. Because not all flexible designs are feasible due to physical and

technological limitations, and these limitations may differ across different firms, in our simulation,

we do not use the optimal K-chain. Instead, for each of the 200 scenarios, we generate a generalized

K-chain by randomly selecting a group permutation, and then connect a random plant in each

group i to a random product in each of the groups i + 1, . . ., i + K − 1. Finally, we also consider

full flexibility design, where any plant can produce all products. Note that full flexibility design

contains M ×N = 128 flexibility arcs, while the base design, 2-chain, 3-chain, and 4-chain contains

16, 24, 32, and 40 flexibility arcs, respectively.

Table 1 and Table 3 list the optimal total inventory cost and the percentage of inventory allocated

to high variability products (averaged over 200 random instances) respectively. We start with the

observation from Table 1. From Table 1, we see that while changing from the base design to a 2-

chain design reduces inventory cost, there is also significant inventory cost reduction from a 2-chain
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Table 1 Total Inventory Cost

(vh, vl) Base 2-chain 3-chain 4-chain Full

(0.2, 0.1) 1219.5 (439%) 573.1 (206%) 343.8 (124%) 292.9 (105%) 277.9

(0.3, 0.15) 1514.3 (430%) 786.4 (224%) 497.4 (141%) 405.2 (115%) 351.8

(0.4, 0.2) 1809.0 (425%) 1014.1 (238%) 670.7 (158%) 535.1 (126%) 425.7

Note: The percentages in round brackets display the cost ratios of the designs to full flexibility.

Table 2 Total Inventory Cost (Deterministic Capacity)

(vh, vl) Base 2-chain 3-chain 4-chain Full

(0.2, 0.1) 526.2 (189%) 331.6 (119%) 277.9 (100%) 277.9 (100%) 277.9

(0.3, 0.15) 784.3 (223%) 510.4 (145%) 360.6 (103%) 355.1 (101%) 351.8

(0.4, 0.2) 1047.5 (246%) 706.6 (166%) 474.9 (112%) 445.3 (105%) 425.7

Note: The percentages in round brackets display the cost ratios of the designs to full flexibility.

design to designs with higher degrees of flexibility, such as 3-chain or 4-chain. This observation

echoes the insight from our analysis in section 3.1, which shows that in the presence of supply

disruption, 2-chain is no longer as effective as full flexibility.

We also want to illustrate that the uncertainty in supply significantly increases the ineffectiveness

of a 2-chain, compared with systems that suffer from deterministic loss in capacity. To illustrate

this, we test another numerical example with the same setting, except that all plant capacities are

deterministic and set to 90% of their original capacity levels. The result is shown in Table 2. Note

that full flexibility design has the same inventory cost in Table 1 and Table 2, because the two

examples assume the same worst-case total capacity. However, the performance of 2-chain is much

better in Table 2. Therefore, we conclude that as capacity uncertainty increases, 2-chain becomes

less effective.

Next, we discuss the percentages of inventories allocated to high variability products (Table 3).

Recall that in every example, 8 products are randomly selected with high demand variability σj =

vhd̄j, and the remaining 8 products have low variability demand σj = vld̄j. For different variability
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Table 3 Percentage of Inventory for High Variability Products

(vh, vl) Base 2-chain 3-chain 4-chain Full

(0.2, 0.1) 50.1% 49.8% 48.4% 45.6% 41.3%

(0.3, 0.15) 51.4% 52.0% 50.1% 46.2% 38.8%

(0.4, 0.2) 53.9% 54.7% 52.0% 47.6% 33.0%

Table 4 Percentage of Inventory for High Variability Products (Deterministic Capacity)

(vh, vl) Base 2-chain 3-chain 4-chain Full

(0.2, 0.1) 50.8% 43.6% 42.2% 41.5% 41.3%

(0.3, 0.15) 53.9% 47.2% 41.6% 39.8% 38.8%

(0.4, 0.2) 57.3% 51.0% 43.2% 37.2% 33.0%

parameters (vh, vl), the result shows the same trend: the optimal solutions hold more inventory

for products with high demand variability when the degree of flexibility is low (e.g., base design).

But as the degree of flexibility increases (e.g., 4-chain, full flexibility), it is optimal to hold more

inventory for products with lower variability, and to hold less inventory for products with higher

variability. The simulation result verifies the flipping effect observed in section 3.2, furthermore, the

percentages of inventories allocated to high variability products are monotonically decreasing as

we add flexibility to the system. In general, the flipping effect occurs gradually as we add flexibility

to the system, and the magnitude of the flipping depends on the variabilities of the products.

Interestingly, we find that the flipping effect is not unique to systems with capacity uncertainty. In

Table 4, we list the percentages of inventories allocated to high variability products when capacities

are deterministically reduced by 10%. As Table 4 shows, the flipping effect still exists when there

is no capacity uncertainty.

Furthermore, we note that the findings above are not unique to the robust optimization model,

as similar results also hold for the stochastic model (see Online Appendix for a description of the

model). In the stochastic model, we consider a case where product demands are independent and

normally distributed truncated at two standard deviations. We assume that 8 randomly selected

This	article	is	protected	by	copyright.	All	rights	reserved

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



Author: Article Short Title 25

products have high variability demands with a coefficient of variation equal to 0.5; the remaining

8 products have a coefficient of variation equal to 0.25. We assume that each plant is disrupted

independently with probability 0.1. The objective is to find the optimal inventory allocation such

that the expected fill rate is at least 95%. The model is solved by the SAA method (described

Online Appendix) with 1,000 samples.

Comparing with the robust optimization model, the stochastic model takes much longer to solve.

For this example with 16 vehicle models, the robust optimization model is solved by constraint

generation in less than a second, while the SAA approach takes about 10 minutes. For a large scale

network with hundreds of nodes, the robust optimization model can still be solved in a few minutes

on a standard laptop, while the SAA model becomes prohibitively large to solve.

Table 5 shows the total inventory level and the percent of the inventory allocated to high variabil-

ity products, averaged over 200 random examples. The result provides similar qualitative insights

obtained from the robust optimization model: 1) there is a significant improvement in inventory

cost when more flexibility is added to the 2-chain; 2) less and less inventory is allocated to high

demand variability products as the degree of flexibility increases.

Table 5 Inventory Allocation for the Stochastic Model

Base 2-chain 3-chain 4-chain Full

Total Inventory 902.4 485.3 335.8 299.6 269.0

High Var Products 44.4% 42.5% 40.2% 34.9% 13.1%

5. Extensions to the Service Guarantee Model
5.1. Time-to-Survive Model

In this subsection, we introduce a metric called Time-to-Survive (TTS) to measure the resilience of

supply chain when the duration of the disruption is unknown. Given a facility in the supply chain

(e.g., a plant or a distribution center), TTS is defined as the longest time that customer service

level is guaranteed if this facility is disrupted. The TTS metric has already been adopted by the
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Ford Motor Company to assess risk exposure in its complex supply chain and evaluate Ford’s risk

mitigation strategies (Simchi-Levi et al. 2014, 2015).

The definition of TTS is motivated by the concept of Time-to-Recover (TTR), which is the time

for a facility to return to full capacity after a disruption. TTR is widely used to evaluate supply

chain risk (see e.g. Hopp et al. 2012). If TTS is greater than TTR, then a disruption in that facility

is not going to affect the firm’s service level. On the other hand, when TTS for a specific facility

is shorter than TTR, then a disruption at that facility will have an impact on service. Thus, an

important challenge in supply chain risk management is to allocate inventory to different products

to increase the supply chain’s time to survive.

For this purpose, we define the supply chain TTS as the minimum (worst) TTS among all of the

potential scenarios. The longer the supply chain TTS, the more robust the supply chain is. Below

we show that the problem of allocating inventory to maximize supply chain TTS can be reduced

to a special case of the model in section 2.

Suppose that plant i has capacity ci per unit time (i = 1, . . . ,M), product j has a demand rate

dj per unit time (j = 1, . . . ,N). Let rj be the amount of inventory allocated to product j, and

assume that the sum of inventory among all products cannot exceed a given budget R. We use

U ⊂ R
M
+ × R

N
+ to denote the uncertainty set that models the uncertainty of plant capacity and

product demand. We then formulate the problem of maximizing supply chain TTS as the following

nonlinear program:

(TTS) max
rj ,x

(c,d)
ij

t

s.t. t≤ rj

dj −
∑

i: (i,j)∈F

x
(c,d)
ij

, ∀1≤ j ≤N, (c,d)∈ U ,

∑

j: (i,j)∈F

x
(c,d)
ij ≤ ci, ∀1≤ i≤M, (c,d)∈ U ,

N∑

j=1

rj ≤R,

rj ≥ 0, x
(c,d)
ij ≥ 0, ∀1≤ i≤M,1≤ j ≤N, (c,d)∈ U .
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In this formulation, x
(c,d)
ij denotes the production rate of product j by plant i if realized capacity

rate and demand rate is (c,d). The first constraint follows the definition of TTS: In any scenario,

the supply chain must survive the disruption by continue supplying all products for at least t time

units. The second constraint requires that production does not exceed plant capacity. The last

constraint specifies that total inventory cannot exceed a given budget R.

Let sj = rj/t, we can reformulate the TTS model as

(TTS′) min
sj ,x

(c,d)
ij ≥0

M∑

j=1

sj (11)

s.t. dj −
∑

i: (i,j)∈F

x
(c,d)
ij ≤ sj, ∀1≤ j ≤N, (c,d)∈ U ,

∑

j: (i,j)∈F

x
(c,d)
ij ≤ ci, ∀1≤ i≤M, (c,d)∈ U ,

sj ≥ 0, x
(c,d)
ij ≥ 0, ∀1≤ i≤M,1≤ j ≤N, (c,d)∈ U .

This is a special case of the SG model in section 2.1 where the lost sales allowance is equal to δ = 0.

Therefore, the analysis and algorithms developed for the SG model also applies to the TTS model.

Based on the optimization model, we note that the optimal objective value of (11) gives the

ratio between R, the amount of inventory that the firm holds for all products, and the TTS. As a

result, under a fixed flexibility design, its TTS scales linearly with inventory budget R. Therefore,

under a fixed flexibility design, the firm only needs to compute the TTS model with R = 1, in order

to consider the full trade-off between keeping inventory and increasing TTS.

To illustrate how the TTS model can be used to measure supply chain resilience, let us consider

the GM example introduced in Section 4. Figure 3 in that section shows the base and 2-chain designs

for the manufacturing system, as well as the demand rates for all products and the capacities for

all production plants. We assume that at most one plant is disrupted at any given time, which is

the same assumption made for the implementation of the TTS model in Simchi-Levi et al. (2015).

Therefore, the capacity uncertainty set can be expressed as:

Uc = {c∈R
M |

M∑

i=1

(c̄i − ci)/c̄i ≤ 1, 0≤ ci ≤ c̄, ∀1≤ i≤M}.
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For demand uncertainty, the demand uncertainty set follows the structure defined in section 2.3:

Ud = {d∈R
N |

N∑

j=1

(dj − d̄j)≤ γ,
N∑

j=1

|dj − d̄j|
σj

≤ β, |dj − d̄j| ≤ ασj, ∀1≤ j ≤N}

with parameters σj = 0.15d̄j, α = 2, β = 8, γ = 0.5
∑N

j=1 σj. Under these assumptions, we solve the

TTS model (11) for GM’s network. Note that the TTS model requires that all of the demand in

Ud to be filled during TTS. This is more conservative than the SG model we studied numerically

in §4, because in §4, we allow 5% of the total demand to be lost. Following the discussion from

§2.1, we can also relax the conservativeness by shrinking the uncertainty set. For example, if we

let U ′
d = 0.95 · Ud, the TTS under U ′

d corresponds to firm requiring that 95% of demand for each

product to be filled during TTS.

Table 6 and Table 7 list the TTS of GM’s network under different flexibility designs given

inventory budget R (measured in weeks of demand) with demand uncertainty set Ud (100% fill

rate) and U ′
d (95% fill rate per product), respectively. To populate Table 6 and 7, the TTS under

each flexibility design only needs to be computed for R = 1, as the TTS under the same flexibility

design with R = x can be obtained by multiplying the TTS with R = 1 by a factor of x for any

positive x. Once the TTS under a flexibility structure is computed with R = 1 (one week of extra

inventory), the firm can use it to consider how much extra inventory is needed to protect its supply

chain against disruptions. For example, under the base design with no flexibility (see Figure 3), if

GM wants to maintain 100% of its demand with one week of extra inventory, its TTS is about 0.91

week; and this number would increase threefold if GM is willing to hold thee weeks of inventory.

From Table 6 and Table 7, we observe that adding partial flexibility to the system can greatly

increase TTS of a supply chain. Under 3-chain, the TTS with 100% fill rate and R = 1 is greater

than 3 weeks, so GM’s supply chain is robust against any disruption less than three weeks with

one week of inventory. If GM sets its service level to just 95% for each product, under 3-chain,

the TTS is further increased to 3.76 weeks with R = 1. Under this circumstance, GM can hedge

against disruption for over 11 weeks (almost three months) with just three weeks of inventory.
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Table 6 TTS Achieved under Different Inventory Budget and Ud

Base 2-chain 3-chain 4-chain Full

R = 1 (week) 0.91 2.00 3.10 3.43 3.77

R= 2 (weeks) 1.82 4.00 6.21 6.86 7.54

R = 3 (weeks) 2.73 6.00 9.31 10.29 11.30

Table 7 TTS Achieved under Different Inventory Budget and U
′

d

Base 2-chain 3-chain 4-chain Full

R = 1 (week) 0.96 2.19 3.76 4.22 4.54

R= 2 (weeks) 1.92 4.38 7.52 8.44 9.08

R = 3 (weeks) 2.89 6.57 11.27 12.66 13.62

5.2. Cost Minimization Model

Sometimes, a supply chain manager does not set a particular service guarantee level, but would

rather include the service level as a part of overall cost. In this case, the problem of cost mini-

mization facing demand and capacity uncertainties can also be formulated as a two-stage robust

optimization problem, which we call the cost minimization (CM) model. Like the service guar-

antee model, the firm determines the inventory level for each product in the first stage; in the

second stage, the firm minimizes the cost based on the realized product demand and available plant

capacities.

The total cost in the CM model may include inventory, production, underage (lost sales) and

overage costs. For product j, we denote the unit inventory holding cost to be hj, the unit underage

(lost sales) cost to be uj, and the unit overage (excess inventory) cost to be oj. The unit product

cost of product j at plant i is denoted by fij. We define Π(F , s,c,d) to be the second stage cost,

given flexibility design F , inventory vector s = (s1, s2, . . . , sN) (decision from the first stage), and

realized capacities c and demands d. We introduce a new decision variable, η, to represent the

second stage cost. The CM model can be then formulated as follows.

(CM) min
s,η

N∑

j=1

hjsj + η (12)
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s.t. Π(F , s,c,d)≤ η, ∀(c,d)∈ U ,

s∈Xs, η ∈Xη,

where

Π(F , s,c,d) = min
l,x

∑

(Si,Tj)∈F

fijxij +
N∑

j=1

ujlj +
N∑

j=1

oj(sj − dj)
+ (13)

s.t.
∑

i: (Si,Tj)∈F

xij + lj ≥ dj − sj, ∀1≤ j ≤N,

∑

j: (Si,Tj)∈F

xij ≤ ci, ∀1≤ i≤M,

lj, xij ≥ 0.

In the last constraint of (12), Xs and Xη are polyhedral sets representing constraints on inventory

decisions and second stage cost, respectively. Like the SG model, xij(c,d) denotes the production

of product j by plant i, and lj(c,d) denotes the lost sales of product j. To keep notations succinct,

we use xij and lj instead in formulation (13). As it turns out, the constraint generation algorithm

we described in section 2.2 can be also applied to the cost minimization (CM) model.

We note that the cost minimization (CM) model is a generalization of the service guarantee

(SG) model. More specifically, for the CM model, if we set oj = 0, fij = 0, uj = 1 for all i, j, and

Xη = {η |η = δ}, then we recover the SG model. Because of its generality, the CM model can be

applied to many different problems. While the CM model is more general, the more specialized

structure in the SG model makes it much easier to solve numerically, and allows us to incorporate

additional features such as TTS (section 5.1) and multi-stage supply chains (section 5.3). Moreover,

the simplicity of the SG model can be advantageous; in some situations, it is difficult to accurately

estimate the costs of lost sales due to its long term effect (Latour 2001).

5.3. Multi-Stage Service Guarantee Model

In section 2.1, we showed that if the firm specifies a service guarantee for each individual product,

the problem can be reduced to a special case of the SG model by setting δ = 0 and modifying the

This	article	is	protected	by	copyright.	All	rights	reserved

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



Author: Article Short Title 31

demand uncertainty set. In this subsection, we show that the SG model can be extended for a

multi-stage supply chain when δ = 0.

Suppose there are K stages in the supply chain. For all k = 1, . . . ,K, stage k consists of Mk

plants/suppliers, and Nk products/components. The stage indices are counted backward, so the

final products are produced in stage 1, and the products/components in stage k require components

from stage k +1. Furthermore, we assume the bill of material information at stage k is represented

by a matrix Ak, such that one unit of product j at stage k requires Ak
j′j units of component j′ at

stage k + 1.

Let sk
j be the inventory of product j at stage k, with unit holding cost hk

j . Let Π̃(F , s,c,d) be

the total lost sales for the final products given inventory s, capacity c and demand of final products

d. The multi-stage service guarantee (m-SG) model can be formulated as

(m-SG) min
K∑

k=1

Nk∑

j=1

hk
j s

k
j

s.t. Π̃(F , s,c,d)≤ 0, ∀(c,d)∈ U

sk
j ≥ 0,

where

Π̃(F , s,c,d) = min

N1∑

j=1

lj

s.t.
∑

i: (S1
i ,T 1

j )∈F

x1
ij + lj ≥ dj − s1

j , ∀1≤ j ≤N 1

∑

i: (Sk+1
i ,T

k+1
j′

)∈F

xk+1
ij′

+ sk+1
j′

≥
Nk∑

j=1

Ak
j′j

∑

i: (Sk
i ,T k

j )∈F

xk
ij, ∀1≤ k ≤K − 1

∑

j: (Si,Tj)∈F

xk
ij ≤ ck

i , ∀1≤ k ≤K,1≤ i≤Mk

lj, xk
ij ≥ 0.

In the subproblem Π̃(F , s,c,d), the first set of constraints defines the lost sales of final products.

The second set of constraints ensures that there are enough components at stage k + 1 to satisfy

production at stage k. The third set of constraints enforces capacity limits.
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The m-SG model can also be solved efficiently using constraint generation algorithm (Wang

2016). To apply constraint generation, we can first decompose the subproblems for different stages,

using the fact that the lost sales allowance δ is zero and making affine transformation on the

uncertainty sets. To this end, we define uncertainty sets U1 = U , and Uk+1 = {(c,Akdk) | (c,dk) ∈

Uk} for all k = 1, . . . ,K − 1. Let Π̃k(F , s,c,dk) be the lost sales of stage k, we have

(m-SG’) min
K∑

k=1

Nk∑

j=1

hk
j s

k
j

s.t. Π̃k(F , s,c,dk)≤ 0, ∀(c,dk)∈ Uk, k = 1, . . . ,K

sk
j ≥ 0,

where

Π̃k(F , s,c,dk) = min
Nk∑

j=1

lj

s.t.
∑

i: (Sk
i ,T k

j )∈F

xk
ij + lj ≥ dk

j − sk
j , ∀1≤ j ≤Nk

∑

j: (Si,Tj)∈F

xk
ij ≤ ck

i , ∀1≤ i≤Mk

lj, xk
ij ≥ 0.

We note that for the general case of the SG model with δ > 0, this reformulation technique does

not work because the subproblem cannot be decomposed for different stages. Nevertheless, even

when δ is fixed to zero, the firm can still adjust its target service guarantee by using different

demand uncertainty sets (see section 2.1).

6. Conclusion

We consider a firm that coordinates process flexibility and inventory decisions to mitigate supply

risk. This interplay of process flexibility and inventory is modeled as a two-stage robust optimiza-

tion problem, which can be solved efficiently using constraint generation algorithm. Under some

symmetric assumptions, the solution of the robust optimization model can be characterized, allow-

ing us to better understand the change in optimal inventory as flexibility or capacity uncertainty
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changes. Using the characterization, we find that the widely used 2-chain structure does not pro-

vide enough protection against supply disruption. Moreover, we show that the optimal inventory

decision critically depends on the flexibility design of the supply network. In particular, there

tend to be a shift of inventories from high variability products to low variability products as the

degree of process flexibility increases. We refer to such phenomenon as the flipping effect, which is

demonstrated using both theoretical analysis and numerical experiments.

Our robust optimization model is applicable to various types of risk mitigation problems, as the

model can be extended to incorporate different underage, overage, and inventory costs. The model

can be also extended to incorporate multi-stage supply chain and unknown disruption time. In the

numerical experiment, we apply the robust optimization method to a risk mitigation example in

an automotive supply chain. This application demonstrates that our model can be an effective tool

for analyzing the hybrid risk mitigation strategy that combines process flexibility and inventory.
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Bonami, P., Kilinç, M., and Linderoth, J. (2012). Algorithms and software for convex mixed integer nonlinear

programs. In Mixed Integer Nonlinear Programming, pages 1–39. Springer.

Chopra, S. and Sodhi, M. S. (2014). Reducing the risk of supply chain disruptions. MIT Sloan management

review, 55(3):73.

Chou, M., Teo, C.-P., and Zheng, H. (2011). Process flexibility revisited: The graph expander and its

applications. Operations Research, 59(5):1090–1105.

Chou, M. C., Chua, G. A., Teo, C.-P., and Zheng, H. (2010). Design for process flexibility: Efficiency of the

long chain and sparse structure. Operations Research, 58(1):43–58.

Chou, M. C., Chua, G. A., and Zheng, H. (2014). On the performance of sparse process structures in partial

postponement production systems. Operations Research, 62(2):348–365.

Culp, S. (2013). Supply chain disruption a major threat to business. Forbes. Published on Feburary 15,

2013.

DeCroix, G. A. (2013). Inventory management for an assembly system subject to supply disruptions. Man-

agement Science, 59(9):2079–2092.

Dyer, M. and Stougie, L. (2006). Computational complexity of stochastic programming problems. Mathe-

matical Programming, 106(3):423–432.

Fine, C. H. and Freund, R. M. (1990). Optimal investment in product-flexible manufacturing capacity.

Management Science, 36(4):449–466.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



Author: Article Short Title 35

Fisher, M. and Raman, A. (1996). Reducing the cost of demand uncertainty through accurate response to

early sales. Operations research, 44(1):87–99.

Gabrel, V., Murat, C., and Thiele, A. (2014). Recent advances in robust optimization: An overview. European

Journal of Operational Research, 235(3):471–483.

Graves, S. C. and Willems, S. P. (2000). Optimizing strategic safety stock placement in supply chains.

Manufacturing & Service Operations Management, 2(1):68–83.
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