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Area Under the Curve (AUC)

Classification and regression trees (CART)

Donor Service Areas (DSA)

Health Resources.and Services Administration (HRSA)
Health Resources and Services Administration (HRSA)
Hepatocellular earcoma (HCC)

Liver Simulation Allocation Model (LSAM)

Minneapolis Medical Research Foundation (MMRF)
Model for EndStage Liver Disease (MELD)

Optimal Classification Trees (OCT)

Optimized Prediction of Mortality (OPOM)

Organ Procurement and Transplantatiorwdek (OPTN)
Scientific Registry of Transplant Recipients (SRTR)
Standard Transplant Analysis and Research (STAR)

United Network:for Organ Sharing (UNOS)

Abstract

Since 2002, the Model for Effstage Liver Disease (MELD) has been used to rarde
transplantcandidatesHowever, @spite numerous revisions, MELD allocatistill does not
allow for equitableaccess to all waitlisted candidatésr Optimized Prediction of Mortality

(OPOM)wwas developed hftp://www.opom.onling utilizing machine learning Optimal

Classification Tree models trained to predict a candidate’s -thoggh waitlist mortality or
removal utilizing the Standard Transplant Analysis and Rese8dAR) dataset. Liver
Simulation AllocationModel (LSAM) was then used to compare OPOM to MEh&sed
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allocation Out-ofsample Area Under the Curve (AUCasvalsacalculatedor candidategroups

of increasing disease severiQPOM allocation, when compared to MELE&ducedmortality
on average by17.96 (406.8428.4)deaths every yean LSAM analysis Improved survival was
noted across all candidate demographics, diagnoses, and geographic @gDNsdelivered a
substantiallyhigher AUC across all disease severigroups OPOM more accuratyy and
objectivelyprioritizescandidates for liver transplantation based on disease seatiotying for
more equitable“allocation of livers with a resultant significant number ofiacaitives saved
every year. " These data demonstrate the potentiaachine learning technology to help guide

clinical practiceand potentially guide national policy.

I ntroduction

The succeéssful clinical application of liver transplantation has generated a discrepancy between
supply and demand, and in doisg has generated persisten insufficient organ supplyhat

results inthousands of candidate deaths every year while awaiting liver transplant&iiem

the scarcity ofsthis resourcene of the most crucial challenges in liver transplantation involves
accurately=prioritizing a waitlisted candidatéleelihood of death within the near futurso that

the limited supply of donated livers can be allocated to maximize the benefit fresplénatation.

Since 2002, liver allocation has depended on the MfmieEndStage Liver Disease (MELD)
score to rank deéase severitynd, consequentlyriority for receiving a livetransplant Certain
patient populations, howeveaye at risk of deatlor of becoming too sick and unsuitable for
transplantatiorbased upordiseaseprogressionthat is not captured in their labased MELD
score calculationTo allow them to contend for liver offers, these candidate populations have
been granted«“artificial” pointdMELD exception poinfs Although overall the MELBscore has
allowed forsa more objective ranking of candidates awaiting liver transptantabmpared to

the preMELD era,the process of MELD exception point granting basergedas a significant
weakness in the allocation process, leadinginequitableand undesirable outcom@sin

particular, thearbitrary MELD score exceptionpoints policy has overly prioritized the
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subpopulation of liver transplant candidatethvaepatocellular carcinom#&CC).* Indeed, since

the adoption of the MELD score, there have been multiple policy revisions to rééumeount

of exception points for HCC candidates to more accurately reflect this population’s risk of
waitlist removal_from death or tumor progression. Nttatanding these revisions, there remains

a higher risk.of waitlist death/removal for candidates without exceptionspevwien compared

to those candidates with exception points.

We soughirtorutilize a statd-the-art machine learning methedermed Ogtnal Classification
Trees-to generate a more accurate prediction of a liver candidate’s-rtioeth waitlist
mortality ‘or/ removal, that would ireturn allow for a more appropriate prioritization of
candidates-awaiting liver transplantation. The following prediction probleasp@ed:what is
the probability-that a patient will either die or become unsuitable for liver transplantation within

three months, given hisor her individual characteristics?

M ater ialsand«M ethods

Data

Waitlist, deceasedonor, transplant, and follewp information was obtained for the period
January T 2002 to Septembeb", 2016 from the Organ Procurement and Transplantation

Network Standard Transplant Analysasd Research (STAR) dataset

Prediction Metheds

The predictionsproblem was addressed using data analytics modei®tbaiained on historical
data.Spetifically, a modelvas calibratedased on OptimaClassificationTrees(OCT), which
represente@ stateof-the-art machine learning prediction methtitht afforeed interpretability
and high prediction accuralyThe end result wasa classificationtree that prediced the
probability_of a patient dying or becoming unsuitable for transplant within three mghehs
dependent variable), givenbservations of certain patiemharacteristics (the independent

variables).
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Classification trees are hierarchically organized structafesodesthat make predictions by
sequentially‘splitting the databased on values of independent variabiesl a “leaf node” is
reachedGiven a certain tree, its predictive power is assessed by evaluating the accuracy of its
predictions on historical observations. In theory, an infinite number of trees coctadteucted,

by varyingthe numberof nodes, thandependent variablegsedas splitting variables at the
nodes, the,associated splitting thresholds, and the prediatitims leaf node<OCT, whichwere

used to“train“the moddkverage mixednteger gtimization to methodically sweep through all
suchcandidate trees. In this process, OCT assess the predictive power of each tree, and in the
end select the /most favorable one, as detailed in Model Calibration below. @inesl,tthe

model predicted as output the dependent variables, given observatidghe ofdependent
variables, ‘which were potentially previously unseen by the model. Henceforth thé ismode

referred to as Optimized Prediction of Mortality (OPONmtt[g://www.opom.onling/

To exemplify, Figure 1ldepicts a sample classification tré whichthe data is first spliat the
Root Nbdebased on the patient's MELD scolroceeding in this fashion, a prediction for the
dependentwariable is made once one of the leaf rddledes 3-6in this example-is reached.
The dependent variab{eying or becoming unsuitable for transplant within three moritrsy
patient with"MELD of 28 andbilirubin of 6.2, for examplejs predicted to be 3% by this tree
By splitting the data merely twiedbased on MELD andbilirubin—to makea prediction, this
example tree had limited predictive power; the tree found to achieve the highestiyerguiwer

performedwptaen splitsto makea prediction based on additional independent variables.

Observatians, Dependent and Independent Variables

An obseryation, corresponded to a patient at the time of a -¢heakit, so that observed
characteristicsvere all upto-date. Al suchavailable observations for patients aged more than 12
years dated after the implementatioof MELD, were retrievedand totaled 1,618,966
observationsFFor each observation, the dependent variable was set to 1 if the patient died or was
removed from,the waitlist as unsuitable for transplamihin the threemonth followup period

from the observation date, and to O otherwdséotal of 2 independent variablegererecorded

for each observatigrdetailed in the supplementanyaterials (Table S1) Of note all variables

werereadily retrieved from UNOSNetf the B variables examined, 20 are variables associated
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with the traditional MELD, but in this instance applied with use of trajectories of these lab values
(e.g., change in INR since previous chatk-

There were374,666 observations that were missing thepeahdent variables due to the
candidateeceiving a liver transpht during the followup period. Two methods were usadhe
management ahe transplanted cohort: XhHe missing dependent variablesre imputedusing

a machiné”learning approacihich hasdemonstrated the ability toutperfom other related
extant methodsyr 2.) the transplanted cohort observations were excluded from the d&atet.
methods for dealing with observations missing their dependent variables yieltsticalis
similar resultss For brevity, only the results obtained by excluding these observatoas

reportedn the Results

Model Calibration
OPOM comprisedwo models: one for neRICC candidategindependent variables25), and

one forHCEeandidategindependent variables28).

The dservationf each patientvereall randomly assignetdb either thetraining,the validation,

or thetesting setwith probabilities 50%, 20%, and 30%, respectiv€liPOM modelsvere fiton

the training set anthenthe outof-sample accuracyalue for the validation setas computed
Models withdifferent tree depthél to 10 and different numbers of minimum observations

the leavs (475yn0r 10)for OPOM were computedaindmodelsthat yielded the highesiccuracy

for the validation setvere selectedlhe top three layers of the selected models can be found in
the supplementary materials. (FiguRl) Assessment of the independent variables that
contributed the_most predictive power are also demonstrated in the supplgnmeatarials.
(FigureS2).

Allocation Qutcomes

The latest ,version of Liver Simulation Allocation Mode{(LSAM) was used
(https://mww.srtr.org/media/1203/Isam.pdf). LSAM is a program developed by the Scientific
Registry of Transplant Recipierttsat uses historical reaforld data from 2002011 to simulate

the allocation of livers to candidates during that period. LSAM simulates atlosdiased on
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Match MELD, i.e., the MELD score with consideration of exception points as per the 2014
national allocation policy. To measure the impact of OPOM, the simulation was tem af
substituting all patients’ Match MELD scores with their cqoaexling OPOM scores, which, for
consistency, were fgcaled to range betweenr46, instead of 100% and also to match the
original MELD-score distributionThrough this substitution, all LSAM features, includiitg
organ acceptance model, were retair@dnote, Status 1A candidates were listed using the same
criteria 'as“is“currently donevere not assigned an OPOM scamad wereranked abovenon-

StatuslA patients.

Out-of-sample AUC

Performance was alsevaluatecby measuring oubf-sampleArea Underthe Curve AUC) on

the testing setA model's AUC corresporatl to the probability that a randomly drawn
observation whose dependent value was 1 (i.e., patient died or was removed frai) fiag di

higher score under that model than a randomly drawn observation whose dependent values was
0.° Thereforep@POM’s and MELD’s AUC values measlteeir ability toidentify patients who

would die or become unsuitable for transplant within three months from ones who would not.

AUC was.-measured consideridgferent patient populations based on exception status, and for
both Match MELD and for MELENa, i.e., the MELD score based on lab values, with no

consideration of exception points, but with inclusion of the serum Sodium level.

AUC was alse"measurddr subpopulations of patients with increasing disease sevEotya
fair comparison, when calculating OPOM’'s AUC, MELD was usedetermine disease severity

whenstratifying patientsand vice versa.

Disclaimer,

This study.used data from the Scientificgidry of Transplant Recipients (SRTR). The SRTR
data systemincludes data on all donor, aNsieéd candidates, and transplant recipients in the US,
submitted by the members of the Organ Procurement and Transplantation NetiR®N) (Dhe
Health Resourceand Services Administration (HRSA), U.S. Department of Health and Human

Services provides oversight to the activities of the OPTN and SRTR contractors.
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Results

Smulation Results

Figure 2 depicts theimulatedaveragenumber ofpatientdeatts each yeaby Match MELDand
OPOM Alloeation=of livers based upo®POM scores rather than Match MELDresulted in
417.96 (1.7/.60) fewer deaths each yedihe demographic profiles of candidates transplanted
through OPOM allocation, vs Match MELRye demonstratedn Table 1. Notably,a higher
number offemale candidates receivé@nsplantsvhen OPOMallocationwas utilized Further
analysis demonstrated that OPOM reduced the number of deaths acrosgeall Nétwork for
Organ ®aring (UNOS)Regions when compared to Match MELD. (Range of reductiod-1
23%; Table 2, Figure 3 In addition, OPOM allocatiomdemonstrated a decrease in waitlist
deaths/removals across every disease severity bracket when compared to MELD allocation
(Table3), withethelargestreductionin mortality being in those candidates with a MELD score of
16 to 20(30% decrease).

The simulatedwaverage annual number of deétretlist deaths, removed patients’ deaths, and
postiransplant.deathd)y patient status fdsoth modelss demonstrated in Tab#e Compared to
Match MELD, OPOM decreaskdeaths of waitlisted candidatby 23.3%,decreased deaths of
candidates'removed from the walitlist 21.5%, andlecreasegbostiransplant deathby 1.8%
OPOM allocatedanorelivers to nonHCC patientsand less to HCC patientwhencompared to
Match MELD. However,OPOM, when compared to Match MELDRlecreased the number of
waitlist deaths andemovals for both HCC patients and A4@€C patientsThe overall number

of transplants.performed was simulated to remain stable when Gi#lGdationwas compared

to Match MEED 6138.92 versus 6177.56).

AUC

OPOM considerably outperformed both MELD variants when predicting the-riwath
probability of dyingor becoming unsuitable for transpldot all patients (0.859 versus 0.841 for
MELD-Na, and 0.823 for Match MELD) and across all exception statuJedle 2,
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supplemental) In additionanalysis ofout-ofsample AUC for OPOM, Match MELD, and
MELD-Na, for subpopulations gsatients withincreasing disease severitgvealed anotable
decline in predictive power foMatch MELD and MELDNa as disease severity increased
whereas OPOM'’s predictive power was maintain@elgure 4) The largest divergence in
predictivepower between OPOM and MELD was at thigher disease severity bracketath
OPOM outperformingMatchMELD by as much ag6%.

Sample Mateh'Run: OPOM vs MELD

Table 5 depicts LSAMyenerated sample match suior an OPO in Region 3 for bloagipe-O
candidatesimulated tdoe offereda 66-yearold brainrdeaddonor OPOM, comparetb MELD,
replaced 2<of‘the top20 ranked candidates with individuals predicted to have a higher
probability of waitlist deatlémoval. Indeed, of the2lcandidatesntroducedby OPOM,eight

were simulatedo experence waitlist deathemoval Conversely, of the Zcandidates removed

by OPOM,.two were simulated to experience waitlesath/removal

Discussion

For almost two decades now, MELD has servedhas scoring system used to rank liver
transplantwcandidates on the waitlist. While it is the case that the MELD score and its
components” (bilirubin, INR, and creatinine) are effective predictors of-thoe¢h mortality,

they arenot theonly relevant predictordndeed, although a simple method to stratify candidates
awaiting Inver transplantation, the MELD score a linear regression method that does not
accuratelygpredict mortality for all candidates who can benefit from liver transplantakien.
latter is demonstrated by our results demonstrating a significant deteriomatiMELD
predictive capabilities with increasing disease sevaritgn compared to OPONmportantly, it

is the candidates with the highest disease severity that warrant the most accurate mortality
prediction,.to.in, return allow for the most accurate prioritization on the liver transplant waitlist.
Differentiation_within the latter cohort ahe highest disease acuity represents the greatest
challenge_ofithis prediction problein. contrast taMELD, which demonstrated decreasiAfyC
values assicker patientstrataare consideredOPOM maintained significantly higihh AUCs
especiallywithin the sickest candidate populatidhusallowing for a more accurate prediction

of waitlist mortality.
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The use of MELD exception points within the current scoring system has represented an
arbitrary, yet advantageous, solution foertain sukpopulations ofcandidates most notably
those candidates with HC@ndeed, Berry and loannou, through a competing rakalysis,
demonstrated a neaomplete lack of survival benefit among patients undergoing liver
transplantation on the basis of MELD exception points, and thus calling into questiorethe ne
for a system_that artificiallraisel MELD scores’ The latter HCC advantage” has been
addressedthrough first serial downgrades in the amount of MELD exception points gradhted, a
subsequentlymore recentlywith both a delayed initiation of MELD exception poinfsrhonth
delay), as well as a cap on the extent of poinis@imidual can achieve (MELD 3dap)® These
modificationssshave been implemented with the hopes of decreasing waitlist mortality and
increasing transplant rates in the A#G@C population; however, theyahethus farrepresented
insufficientandinexacthanges iradequatelyequalizing access to liver transplants for the-non
HCC populationAlthough well intentioned, the quest to equalize priority between the HCC and
nonHCC candidates has been fundaméyntaladequate athey haveutilized the assignment of

exception points based on an imprecise mortality prediction.

Herein, we.introduce Optimized Prediction of Mortality (OPQM)novel system based on a
stateof-thesart machine learning method that has allowed a&amoreaccurate prediction of
threemonth mortality rate forall patients on the liver transplant waitlist. OPC#Mocation
outperformedhe currently used MELased prediction method. In simulations, OPOM akrt
significantly*mere \aitlist deaths/removals for both HCC and ##@C candidates, and yet
maintairedoverall transplant rates, therefore allowing for more equitable and efficient allocation
of liver graftsfor candidates awaitingransplantatioracross all levels of disease severig
demonstratedising LSAM, the use of OPOM in place of curréh&tch MELD scores, would
save on average at leddt8 more lives each yeawith every UNOS Regiohenefiting fromthis

effect Importantly the overallnumber of transplants remains stable with OPOM allocation;
albeit with,an acceptable, and expected, decrease in HCC transplants to accommodate the
increase in“transplantd nonexception pointandidatesUnlike MELD allocation which relies
uponthe cumbersome andexactapproach of exception point assignmédBOM allows for
accurate prioritization of all candidatémsed upon individual characteristittsus negating
MELD'’s varying levels of success in predicting mortality for different pateapulations.For
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candidates with hepatocellular cancer, OPOM’s predictive ability is strengthened by the
incorporationwithin the modebf AFP levels as well agumor size and number.

The accurate prediction of an individual candidate’s risk of waithsitrtality/removal is
paramount.te.ensure equitable access to liver transplantation. Whereas on the one hand MELD
based allocation with inclusion of exception points has over prioritized exception point
candidatesat'the expense of those candidates V\istedab MELD scores, on the other hand
utilizing onlya'labbased MELD score for waitlist prioritizatiomould shift the pendulum in the
opposite direction, resulting in an allocation process that greatly under®rges need ofa

liver transplanbut with alab MELD score that does not reflect theeverity of diseas€®©POM
achieves arvidence-basedinbiased and objective middle ground for all Vistigéd candidates

by utilizing multiple variables with associated trajectaristably, there isa higher number of
transplants In the female populatiath OPOM allocationperhaps overcoming the systematic

bias noted.in MELD based allocation for female candid4ft$he latter has been attributed to

the inability=ofsMELD to accurately capture the female candidate’s degree of renal insufficienc
based on serum creatinine levels, resulting in lower MELD scores, and thus lower transplantation
rates OPOM hasprovideda more complete picture of thadividual candidats true waitlist
mortality.«that in return has allowed for a more accurate prediction ofeed for liver
transplantationAlthough there is a decrease noted in transplants for Black and Asian candidates
with OPOM allocation, with an increase in White and Hispanic patients transplargkduid be

noted thatthere is also a decrease in waitlist deaths for all of these candidate populations.

The 418 waitlist deaths averted with OPOM utilization sgynificantly more than the number
predictedwith implementation of MELBENa. Indeed, MELBENa which was approved by UNOS

in June 2014 and implemented in January 2016, was predicted theimitgr LSAM analy®s

to decrease. waitlist deaths byly 52 patiens a yeaf Similarly, the application of a-fnonth

delay in awarding exception points for HCC candidates was simulated in LSAM to achieve a
higher rate“of,transplants foon-HCC candidatesat the expense of a lower transplant rate for
HCC candidatesThe downstream effect on waitlist mortality with this proposed change,
compared with the current policy, was a net reduction of only 30 deaths in tRdQ@n
population.The latter policy was adopted in October of 2015, and much like the acceptance of
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MELD-Na, although well intentioned, represedtnominal changes in waitlist mortality
simulationswhen compared to liver allocation through OPOAthough the actual number of
walitlist deaths averted with LSAM under OPOM allocation may represent an avextsti, it
is important to note the ability of LSAM to predict the overall directionalityhainge'*

Machine learning holds the potential to become an indispensable tool for clinicians with
optimized predictions based upon large amounts of'‘d&t&@CT are astateof-the-art machine
learning methed OCT are decision trees similan the classification and regression trees
(CART), but are solved to global optimality with a novel methang mixedinteger
optimization thabutperforms the classical CART algorithiidVe utilized OCT to develop an
analytical ‘tool“that takes all available patient information to predioetherthe waitlisted
candidatewill undergo the adverse events of either death or becoming unsuitatiangplant
within three_months. In contrast to the piecemealy in which current policy has been
constructed, our tool is trained on historical outcomes in a unified fastilmmg millions of

data pointswinstead of adding in exceptions and cutofisosk to decrease mortality on the
waitlist, machinelearning analytical tooltackle the problem directly by building these different
criteria 'inte, the model itself. The oeof-sample AUC and accuracy illusteatthat OPOM
performs.well not only on patients without exceptions, but also on patients with HOQ@liexse
Furthermore, the OPOM advantage over MELD is most notable among sicker patient
populations with OPOM outperforming both match MELD and MEINE in AUC analysis,

thus allowing"@POM to achieve a greater “sickast” allocation policy.

The use of readily available, reproducible, and objective data that accurately predietiitest
mortality 1s essentialAlthough OPOM utilizes a largenumber é variablesthan MELD it is
important to_note thamany of these additional variables are linked to MELD, and it is the
trajectories.of change in these lab values that powers OPOM'’s acclihaclatter concept is in

line with _studies examining the utility of changes in MELD scores for both waattidtpost
transplant'mortality prediction, as well as liver transplant allocatibhat first glanceOPOM’s
complexity, in comparison to MELD, can be overwhelming. However, importantly, no additional
daa collectionwould berequired by the transplant practitionas OPOM wasgenerated based
upon available data within the STAR filedata that are routinely collected on all waitlisted
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candidates. Furthermore, OGire versatile tod that can allow for additional variables to be
included/excluded with ease shoaldditionalpriorities in liver allocation requirthatOPOM be
modified. This could becrucial for appropriate allocation to the group of candidates with non
HCC standardizedexceptions (e.g., those candidates with hepatopulmonary syndrome,
portopulmonary hypertension, etc.), and those candidates wittH@Qn nonstandardized
exceptions. Although for the purposes of the initial creation and application of OR®d4e
non-HCC "exceptions populations were grouped in the-HGC patients population, they
nonetheless“would benefit from an optimized prediction method based on incorporation of
consensus variables that accurately gauge their risk of mortality. Tmothtsgranularity in the
varying typesmof MELD exceptions within LSAM would also allow for a more accurate
assessment of'the differing classes of exception point candidates, instead of a simple HCC versus
nonHCC candidate comparisohi.should be notechat LSAM analysis islsolimited in that it

only allows for an accurate assessment of waitlist dea#hsaitlist removals includeot only
candidates, with deterioratian their condition but also thoseemoved due tamprovement in

their conditionwAlthoughadditional analysis with consideration of a shorter or longer interval of
waitlist riskicould be consideredtherisk of waitlist mortality at the thremonth intervalwas
assessedo,allow for accurate comparisons to MELD score calculations. Despite these
limitationssand the fact that LSAM cannot account for center or practiticimenges in listing or
acceptancebehavior,LSAM remains the current simulation model employed to assess and

implementnational policy changes in liver allocation and distribution.

It should besnetethat OPOM allocation doesot address the issues in liver distribution, and the
resultant igeographic disparity that exists between UNOS Regions and Donor Seease Ar
(DSA). However, it is worth noting that thapplication of this machinkearning tool is capable
of saving.an. additional 18 lives every yearand thatthis is on the same magnitude as that
achieved withkSAM models ofwide broader sharingThus, the implementation of OPOM
represents.an avenue to @ste more equitable liver allocation withany defined geographic

unit.

The application of an OPOMased allocation system would more accurately adhere to the

“sickestfirst” principle. Indeed, the decrease in waitlist mortality/remoaehieved through
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utilization of OPOMwould not only represent the potential for more equitable allocation, but
alsowould represent an important fadetvardsalleviaing the discrepancy between supply and

demand.
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Figure 1: Example of a classification tree that predicts risk of dying or becomsugfable for
transplant within three months. Although this sample tree splits the data-thased on MELD
and bilirubin—to make a prediction, OPOM performed up to ten splits to make a prediction,

based on additional independent variables.

Figure 2: Simulated deathy pear for sample LSAM run: Match MELD vs OPOM.

Figure 3:'LSAM simulated annual percent decrease in deaths by UNOS Region using OPOM
allocation (as compared to Match MELD).

Figure 4:0utof-sample AUC for OPOM by disease severity (as measured by MattDME
and outof-sample AUC for MELDNa, and Match MELD, by disease severity (as measured by
OPOM).
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Tables
Table 1: LSAM simulated average annual deaths and transplants by candidate demographics
under Match MELD and OPOM allocation.

Match MELD OPOM Match MELD OPOM
Transplants Transplants Deaths Deaths
Sex Male 3995.8 3798.36 1486.8 1213.48
(3998-4001.4) (3790.2-3808.8) | (1473.2-1494.8) | (1200.4-1220)
Female 2181.76 2340.56 892.88 748.24
(2170.2-2192.6) | (2332.4-2358.6) | (886-898.2) (741.8-753.2)
Race White 4247.64 4301.72 1674.64 1387.36
(4233.4-4260) (4294.4-4317.2) | (1665.2-1688.4) | (1376.8-1397.2)
Black 699.28 640.28 219.32 175.12
(686.4-709.6) (634.2-648.2) (214.2-224.2) | (171.2-178.6)
Hispanic 862.44 893.2 373.04 304.48
(856.6-868.8) (886.6-901.4) (371.8-375.2) (302.4-306.4)
Asian 294.32 231.32 84.72 72.52
(290-298.4) (225.8-238.6) (80.8-88.4) (69.4-73.6)
Other 73.88 72.4 27.96 22.24
(72.2-76.2) (70.2-75.2) (26-29.4) (20.8-23.8)
Blood type O 2782.4 2801.8 1153.12 945.6
(2771.8-2790.8) | (2773.4-2810.6) | (1142.4-1162.4) | (940-956.4)
A 2177.16 2185 909.36 757
(2171-2182) (2175-2194.4) (892.2-920.4) | (747.8-764.2)
B 852.68 823.2 253.9 206.64
(847-861.2) (814.6-831.6) (245.8-264) (198.8-213.6)
AB 365.32 328.92 63.28 52.48
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(362.4-366.8) (324-331.8) (61.6-64) (49-57)
Cause of Acute
Liver Di Hepatic 387 380.2 103.64 94.6
Necrosis (382.4-392.4) (371.8-394.6) (101.4-109.2) | (92-97)
Cholestatic
. 457.2 473.4 160.48 131.36
liver
Disease (449.2-464.2) (466.6-476.2) (157-165.4) (128-135)
Malignant 646.96 376.44 155.96 112.52
Neoplasms | 645 g5g) (369.2-381.4) (149.8-161) (107.2-116.8)
Non-
.| 3801.68 4201.68 1700.04 1407.52
Cholestatic
Cirrhosis (3788.2-3818.6) | (4195.6-4204.8) | (1687.6-1707.6) | (1399.6-1417.2)
Other 884.72 707.2 259.56 215.72
(880-889.4) (701.8-717.4) (255-262.8) (207-224.4)
Candidate Average 50.3 52.81 54.4 54.24
demographics | Age (50.2-50.3) (52.75-52.89) (54.4-54.5) (54.18-54.3)
Average
Cumulative
L 152.5 222.04 313.1 331.26
waiting time
(days) (151.9-154.2) (219.55-224.97) | (312.1-313.9) | (329.15-332.74)
BMI (27.8-27.8) (28.08-28.16) (28.3-28.3) (28.27-28.36)
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Table 2: LSAM simulated average annual deaths and average cumulative waiting time by UNOS
Region under Match MELD and OPOM allocation. Regions with higher waitlist mortality rate
as measured.by inverse of average cumulative waiting time, notably Region 3, tended to exhibit

higher pereentage reduction in deaths (last column).

Match MELD OPOM

Average Average numbel| Average Average numbe| Percentage
cumulative of deaths cumulative of deaths reduction in
waiting time to waiting time to deaths by OPOM
death (days) death (days)

Region 1 336.73 129.44 355.57 105.32 18.63%
(323.17-343.86) | (126-132.4) (348.89-364.98) (102.4-109.4)

Region 2 335.63 327.32 356.42 273.84 16.34%
(326.42-340.84) | (325-328.4) (347.45-372.05) (268.8-283.6)

Region 3 161.33 201.8 167.93 155.28 23.05%
(157.301-166.88)( (199.4-210.2) | (164.76-169.43) (150-160.8)

Region 4 ©06.49 273.72 309.03 234.76 14.23%
(301.43-310.14) | (271.2-276.8) | (300 52-320.89) (228.2-238.4)

Region 5 385.15 490.92 403.42 404.84 17.53%
(378.21-388.59) | (484.2-497) (390.53-409.23) (398.6-410)

Region 6 260.21 53.16 264.79 47.12 11.36%
(247.43-272.68) | (51-54.6) (244.83-275.33) (44.2-50.2)

Region 7 316.54 194.44 342.41 160.12 17.65%

(311.6-321.22) | (192.8-196.6) | (334.91-347.66) (159-161)
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Region 8 294.59 144.12 309.41 117.52 18.46%
(279.66-312.52) | (140.8-147.8) | (299.36-328.2) | (114.8-119)

Region 9 376.05 234.2 404.14 194.12 17.11%
(372.89-379.59) | (232.6-235) (397.15-410.95) (191.4-196.2)

Region 10 207.78 159.32 210.11 127.36 20.06%
(202.93-212.49) | (156.2-161.4) | (201.88-217.54) (123.8-131.6)

Region 11 280.47 171.24 313.19 141.44 17.40%
(277.43-285.28) | (169.6-175.2) | (303.25-320.11) (132.4-148)

Nationwide 313.1 2379.68 331.26

1961.72 17.56%

(812.1-313.9)

(2369.8-2393)

(329.15-332.74)

(1950.6-1970)

Table 3: LSAM: simulated average annual waitlist deaths reduction with OPOM allocation (as

comparedito Match MELD allocation).

Reduction in Waitlist
Deaths as categorized
by last-known Match

6-10 16.18%
11-15 24.98%
16-20 29.95%
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Table 4. LSAM simulated average annual deaths and transplants by candidate status and

MELD

21-25 28.22%
26-30 28.34%
31-35 21.96%
36-40 10.80%

exception status under Match MELD and OPOM allocation.

Match MELD

OPOM

Deaths by patient

status

Waitlist Deaths

1201.76 (1198.4-1204.2)

922.12 (916-926.8)

Removed Patient Death

593.84 (590.2-599.8)

466.28 (463.4-470)

Post Graft Deaths

584.08 (572.8-539.2)

573.32 (565.4-581)

All

2379.68 (2369.8-2393)

1961.72 (1950.6-1970)
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Deaths by patient

exception status

HCC patients

293.8 (289-298)

212.04 (208.2-215.8)

Non-HCC patients

2085.88 (2075-2097.4)

1749.68 (1735.2-1761.8)

All patients

2379.68 (2369.8-2393)

1961.72 (1950.6-1970)

Removals by

patient exception

HCC patients

255.32 (252.4-258.4)

237.16 (234.8-240.4)

status Non-HCC patients 2153.8 (2404.4-2416.4) 1961.24 (1953.2-1969.4)
All patients 2409.12 (2404.4-2416.4) 2198.4 (2191.8-2209.8)
Transplants by HCC patients 1178.72 (1171.4-1190.2) 690.96 (681.6-701.6)

patient exception

status

Non-HCC patients

4998.84 (4994-5002.6)

5447.96 (5438-5457)

All patients

6177.56 (6166-6184.2)

6138.92 (6127-6148.8)

Table 5: LSAM.simulated match runs in a Region 3 OPO for blood type O under Match MELD
(top table)rand'©OPOM (bottom table) allocation. OPOM, compared to Match MELD, replaced 12
of the top 20"candidates with individuals with a higher predicted probability of waitlist death or
removal. The remaining 8 candidates on the original Match MELD rank order list, with the
exceptionmof the Status 1A candidate (Rank Order #1), experienced a change in their rank order
under OPOMpwallocation. The last column reports whether the patasnsimulated to die or be

removed fromsthe waitlist by becoming unsuitable for transplant.

Match Run under Match MELD allocation

Rank | Candidate Waiting Age MELD Score Waitlist
Order ID Time (days) (years) Death/Removal
1 A 7.89 0.8 Status 1A
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2 B 0.27 62.6 25

3 C 20.33 56.16 24

4 D 6.24 52.1 23

5 E 50.94 61.99 22

6 F 13.59 62.03 22

7 G 72.4 59.06 22 yes
8 H 476.98 62.98 19

9 I 22.52 62.85 19

10 J 227.13 61.16 18 yes
11 K 1240.82 55.67 18 yes
12 L 156.98 54.23 18

13 M 778.88 50.99 17

14 N 294.31 70.35 16 yes
15 0] 178.6 56.07 16

16 P 430.45 60.61 16

17 Q 27.52 63.06 16 yes
18 R 574.66 67.05 15

19 S 287.19 57.46 15

20 T 246.28 48.2 15

Match Run under OPOM allocation
Rank | Candidate Waiting Age OPOM Score Waitlist
Order ID Time (days) (years) Death/Removal

1 A 7.89 0.80 Status 1A

2 50.76 73.58 40 yes
3 B 0.27 62.60 25

4 1074.37 69.22 23 yes
5 6.24 52.10 23

6 N 294.31 70.35 22 yes
7 476.98 62.98 22
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8 310.90 64.46 22 yes
771.13 69.38 22 yes

10 937.42 59.64 21 yes

11 36.56 24.57 20

12 27.52 63.06 19 yes

13 57.03 66.70 19

14 560.52 62.99 19 yes

15 2666.90 53.94 18 yes

16 178.60 56.07 18

17 146.37 67.29 18

18 170.14 58.80 18 yes

19 148.94 66.92 18

20 1240.82 55.67 17 yes
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Figures
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Figure 1: Example of alassification tree that predicts risk afing orbecoming unsuitable for

transplantvithin three monthsAlthough thissample treesplits the data twice-based on MELD

and bilirubin—to make a prediction, OPOM performed up to ten splits to make a joredict

based on additional independent variables.
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Figure 2:Simulated eaths by year for sample LSAM run: Match MELD vs OPOM
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Figure 3 LSAM simulated annual percent decrease in deaths by UR&Sonusing OPOM

allocation(as compared tMatch MELD).
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Figure 4 Outof-sample AUCfor OPOM by disease severity (as measured by Match MELD)

and out-of-sample AUC faMELD-Na, and Match MELDby disease severitjas measured by

OPOM).
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