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Abbreviations 

Area Under the Curve (AUC) 

Classification and regression trees (CART) 

Donor Service Areas (DSA) 

Health Resources and Services Administration (HRSA) 

Health Resources and Services Administration (HRSA) 

Hepatocellular carcinoma (HCC) 

Liver Simulation Allocation Model (LSAM) 

Minneapolis Medical Research Foundation (MMRF) 

Model for End-Stage Liver Disease (MELD) 

Optimal Classification Trees (OCT) 

Optimized Prediction of Mortality (OPOM) 

Organ Procurement and Transplantation Network (OPTN) 

Scientific Registry of Transplant Recipients (SRTR) 

Standard Transplant Analysis and Research (STAR) 

United Network for Organ Sharing (UNOS) 

 

Abstract 

Since 2002, the Model for End-Stage Liver Disease (MELD) has been used to rank liver 

transplant candidates. However, despite numerous revisions, MELD allocation still does not 

allow for equitable access to all waitlisted candidates. An Optimized Prediction of Mortality 

(OPOM) was developed (http://www.opom.online) utilizing machine learning Optimal 

Classification Tree models trained to predict a candidate’s three-month waitlist mortality or 

removal utilizing the Standard Transplant Analysis and Research (STAR) dataset. Liver 

Simulation Allocation Model (LSAM) was then used to compare OPOM to MELD-based 
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allocation. Out-of-sample Area Under the Curve (AUC) was also calculated for candidate groups 

of increasing disease severity. OPOM allocation, when compared to MELD, reduced mortality 

on average by 417.96 (406.8-428.4) deaths every year in LSAM analysis. Improved survival was 

noted across all candidate demographics, diagnoses, and geographic regions. OPOM delivered a 

substantially higher AUC across all disease severity groups. OPOM more accurately and 

objectively prioritizes candidates for liver transplantation based on disease severity, allowing for 

more equitable allocation of livers with a resultant significant number of additional lives saved 

every year. These data demonstrate the potential of machine learning technology to help guide 

clinical practice, and potentially guide national policy. 

 

 

Introduction 

The successful clinical application of liver transplantation has generated a discrepancy between 

supply and demand, and in doing so, has generated a persistent insufficient organ supply that 

results in thousands of candidate deaths every year while awaiting liver transplantation.  Given 

the scarcity of this resource, one of the most crucial challenges in liver transplantation involves 

accurately prioritizing a waitlisted candidate’s likelihood of death within the near future, so that 

the limited supply of donated livers can be allocated to maximize the benefit from transplantation. 

 

Since 2002, liver allocation has depended on the Model for End-Stage Liver Disease (MELD) 

score to rank disease severity and, consequently, priority for receiving a liver transplant.1 Certain 

patient populations, however, are at risk of death or of becoming too sick and unsuitable for 

transplantation based upon disease progression that is not captured in their lab-based MELD 

score calculation. To allow them to contend for liver offers, these candidate populations have 

been granted “artificial” points (MELD exception points). Although overall the MELD score has 

allowed for a more objective ranking of candidates awaiting liver transplantation, compared to 

the pre-MELD era, the process of MELD exception point granting has emerged as a significant 

weakness in the allocation process, leading to inequitable and undesirable outcomes.2 In 

particular, the arbitrary MELD score exception points policy has overly prioritized the 
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subpopulation of liver transplant candidates with hepatocellular carcinoma (HCC).3

 

 Indeed, since 

the adoption of the MELD score, there have been multiple policy revisions to reduce the amount 

of exception points for HCC candidates to more accurately reflect this population’s risk of 

waitlist removal from death or tumor progression. Notwithstanding these revisions, there remains 

a higher risk of waitlist death/removal for candidates without exception points, when compared 

to those candidates with exception points. 

We sought to utilize a state-of-the-art machine learning method—termed Optimal Classification 

Trees—to generate a more accurate prediction of a liver candidate’s three-month waitlist 

mortality or removal, that would in-return allow for a more appropriate prioritization of 

candidates awaiting liver transplantation.  The following prediction problem was posed: what is 

the probability that a patient will either die or become unsuitable for liver transplantation within 

three months, given his or her individual characteristics?  

 

Materials and Methods 

Data 

Waitlist, deceased-donor, transplant, and follow-up information was obtained for the period 

January 1st, 2002 to September 5th

 

, 2016 from the Organ Procurement and Transplantation 

Network Standard Transplant Analysis and Research (STAR) dataset.  

Prediction Methods 

The prediction problem was addressed using data analytics models that were trained on historical 

data. Specifically, a model was calibrated based on Optimal Classification Trees (OCT), which 

represented a state-of-the-art machine learning prediction method that afforded interpretability 

and high prediction accuracy.4

 

 The end result was a classification tree that predicted the 

probability of a patient dying or becoming unsuitable for transplant within three months (the 

dependent variable), given observations of certain patient characteristics (the independent 

variables).  
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Classification trees are hierarchically organized structures of nodes that make predictions by 

sequentially “splitting the data” based on values of independent variables until a “leaf node” is 

reached. Given a certain tree, its predictive power is assessed by evaluating the accuracy of its 

predictions on historical observations. In theory, an infinite number of trees could be constructed, 

by varying the number of nodes, the independent variables used as splitting variables at the 

nodes, the associated splitting thresholds, and the predictions at the leaf nodes. OCT, which were 

used to train the model, leverage mixed-integer optimization to methodically sweep through all 

such candidate trees. In this process, OCT assess the predictive power of each tree, and in the 

end select the most favorable one, as detailed in Model Calibration below. Once trained, the 

model predicted as output the dependent variables, given observations of the independent 

variables, which were potentially previously unseen by the model. Henceforth the model is 

referred to as Optimized Prediction of Mortality (OPOM). (http://www.opom.online/) 

 

To exemplify, Figure 1 depicts a sample classification tree, in which the data is first split at the 

Root Node based on the patient’s MELD score. Proceeding in this fashion, a prediction for the 

dependent variable is made once one of the leaf nodes—Nodes 3-6 in this example—is reached. 

The dependent variable (dying or becoming unsuitable for transplant within three months) for a 

patient with MELD of 28 and bilirubin of 6.2, for example, is predicted to be 49% by this tree. 

By splitting the data merely twice—based on MELD and bilirubin—to make a prediction, this 

example tree had limited predictive power; the tree found to achieve the highest predictive power 

performed up to ten splits to make a prediction, based on additional independent variables. 

 

Observations, Dependent and Independent Variables 

An observation corresponded to a patient at the time of a check-in visit, so that observed 

characteristics were all up-to-date. All such available observations for patients aged more than 12 

years, dated after the implementation of MELD, were retrieved and totaled 1,618,966 

observations. For each observation, the dependent variable was set to 1 if the patient died or was 

removed from the waitlist as unsuitable for transplant within the three-month follow-up period 

from the observation date, and to 0 otherwise. A total of 28 independent variables were recorded 

for each observation, detailed in the supplementary materials. (Table S1) Of note, all variables 

were readily retrieved from UNOSNet; of the 28 variables examined, 20 are variables associated 
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with the traditional MELD, but in this instance applied with use of trajectories of these lab values 

(e.g., change in INR since previous check-in).  

 

There were 374,666 observations that were missing their dependent variables due to the 

candidate receiving a liver transplant during the follow-up period. Two methods were used in the 

management of the transplanted cohort: 1.) the missing dependent variables were imputed using 

a machine learning approach5

 

 which has demonstrated the ability to outperform other related 

extant methods; or 2.) the transplanted cohort observations were excluded from the dataset. Both 

methods for dealing with observations missing their dependent variables yielded statistically 

similar results. For brevity, only the results obtained by excluding these observations were 

reported in the Results. 

Model Calibration 

OPOM comprised two models: one for non-HCC candidates (independent variables 1-25), and 

one for HCC candidates (independent variables 1-28).  

 

The observations of each patient were all randomly assigned to either the training, the validation, 

or the testing set, with probabilities 50%, 20%, and 30%, respectively. OPOM models were fit on 

the training set and then the out-of-sample accuracy value for the validation set was computed. 

Models with different tree depths (1 to 10) and different numbers of minimum observations in 

the leaves (1, 5, or 10) for OPOM were computed, and models that yielded the highest accuracy 

for the validation set were selected. The top three layers of the selected models can be found in 

the supplementary materials. (Figure S1) Assessment of the independent variables that 

contributed the most predictive power are also demonstrated in the supplementary materials. 

(Figure S2). 

 

Allocation Outcomes 

The latest version of Liver Simulation Allocation Model (LSAM) was used 

(https://www.srtr.org/media/1203/lsam.pdf).  LSAM is a program developed by the Scientific 

Registry of Transplant Recipients that uses historical real-world data from 2007-2011 to simulate 

the allocation of livers to candidates during that period. LSAM simulates allocations based on 
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Match MELD, i.e., the MELD score with consideration of exception points as per the 2014 

national allocation policy. To measure the impact of OPOM, the simulation was run after 

substituting all patients’ Match MELD scores with their corresponding OPOM scores, which, for 

consistency, were re-scaled to range between 6-40, instead of 0-100%, and also to match the 

original MELD-score distribution. Through this substitution, all LSAM features, including its 

organ acceptance model, were retained. Of note, Status 1A candidates were listed using the same 

criteria as is currently done, were not assigned an OPOM score, and were ranked above non-

Status-1A patients. 

 

Out-of-sample AUC 

Performance was also evaluated by measuring out-of-sample Area Under the Curve (AUC) on 

the testing set. A model’s AUC corresponded to the probability that a randomly drawn 

observation whose dependent value was 1 (i.e., patient died or was removed from the list) had a 

higher score under that model than a randomly drawn observation whose dependent values was 

0.6

 

 Therefore, OPOM’s and MELD’s AUC values measured their ability to identify patients who 

would die or become unsuitable for transplant within three months from ones who would not. 

AUC was measured considering different patient populations based on exception status, and for 

both Match MELD and for MELD-Na, i.e., the MELD score based on lab values, with no 

consideration of exception points, but with inclusion of the serum Sodium level. 

 

AUC was also measured for subpopulations of patients with increasing disease severity. For a 

fair comparison, when calculating OPOM’s AUC, MELD was used to determine disease severity 

when stratifying patients; and vice versa.  

 

Disclaimer 

This study used data from the Scientific Registry of Transplant Recipients (SRTR). The SRTR 

data system includes data on all donor, wait-listed candidates, and transplant recipients in the US, 

submitted by the members of the Organ Procurement and Transplantation Network (OPTN). The 

Health Resources and Services Administration (HRSA), U.S. Department of Health and Human 

Services provides oversight to the activities of the OPTN and SRTR contractors. 
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Results 

Simulation Results 

Figure 2 depicts the simulated average number of patient deaths each year by Match MELD and 

OPOM. Allocation of livers based upon OPOM scores, rather than Match MELD, resulted in 

417.96 (17.6%) fewer deaths each year. The demographic profiles of candidates transplanted 

through OPOM allocation, vs Match MELD, are demonstrated in Table 1. Notably, a higher 

number of female candidates received transplants when OPOM allocation was utilized. Further 

analysis demonstrated that OPOM reduced the number of deaths across all United Network for 

Organ Sharing (UNOS) Regions when compared to Match MELD. (Range of reduction 11.4-

23%; Table 2, Figure 3) In addition, OPOM allocation demonstrated a decrease in waitlist 

deaths/removals across every disease severity bracket when compared to MELD allocation 

(Table 3), with the largest reduction in mortality being in those candidates with a MELD score of 

16 to 20 (30% decrease).    

 

The simulated average annual number of deaths (waitlist deaths, removed patients’ deaths, and 

post-transplant deaths) by patient status for both models is demonstrated in Table 4. Compared to 

Match MELD, OPOM decreased deaths of waitlisted candidates by 23.3%, decreased deaths of 

candidates removed from the waitlist by 21.5%, and decreased post-transplant deaths by 1.8%. 

OPOM allocated more livers to non-HCC patients, and less to HCC patients, when compared to 

Match MELD. However, OPOM, when compared to Match MELD, decreased the number of 

waitlist deaths and removals for both HCC patients and non-HCC patients. The overall number 

of transplants performed was simulated to remain stable when OPOM allocation was compared 

to Match MELD (6138.92 versus 6177.56).  

 

AUC 

OPOM considerably outperformed both MELD variants when predicting the three-month 

probability of dying or becoming unsuitable for transplant for all patients (0.859 versus 0.841 for 

MELD-Na, and 0.823 for Match MELD) and across all exception statuses. (Table S2, 
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supplemental) In addition, analysis of out-of-sample AUC for OPOM, Match MELD, and 

MELD-Na, for subpopulations of patients with increasing disease severity, revealed a notable 

decline in predictive power for Match MELD and MELD-Na as disease severity increased, 

whereas OPOM’s predictive power was maintained. (Figure 4) The largest divergence in 

predictive power between OPOM and MELD was at the higher disease severity brackets, with 

OPOM outperforming Match MELD by as much as 16%. 

 

Sample Match Run: OPOM vs MELD 

Table 5 depicts LSAM-generated sample match runs for an OPO in Region 3 for blood-type-O 

candidates simulated to be offered a 66-year-old brain-dead donor. OPOM, compared to MELD, 

replaced 12 of the top-20 ranked candidates with individuals predicted to have a higher 

probability of waitlist death/removal. Indeed, of the 12 candidates introduced by OPOM, eight 

were simulated to experience waitlist death/removal. Conversely, of the 12 candidates removed 

by OPOM, two were simulated to experience waitlist death/removal. 

Discussion 

For almost two decades now, MELD has served as the scoring system used to rank liver 

transplant candidates on the waitlist. While it is the case that the MELD score and its 

components (bilirubin, INR, and creatinine) are effective predictors of three-month mortality, 

they are not the only relevant predictors. Indeed, although a simple method to stratify candidates 

awaiting liver transplantation, the MELD score is a linear regression method that does not 

accurately predict mortality for all candidates who can benefit from liver transplantation. The 

latter is demonstrated by our results demonstrating a significant deterioration in MELD 

predictive capabilities with increasing disease severity when compared to OPOM. Importantly, it 

is the candidates with the highest disease severity that warrant the most accurate mortality 

prediction, to in return allow for the most accurate prioritization on the liver transplant waitlist. 

Differentiation within the latter cohort of the highest disease acuity represents the greatest 

challenge of this prediction problem. In contrast to MELD, which demonstrated decreasing AUC 

values as sicker patient strata are considered, OPOM maintained significantly higher AUCs 

especially within the sickest candidate population, thus allowing for a more accurate prediction 

of waitlist mortality.   
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The use of MELD exception points within the current scoring system has represented an 

arbitrary, yet advantageous, solution for certain sub-populations of candidates, most notably 

those candidates with HCC. Indeed, Berry and Ioannou, through a competing risks analysis, 

demonstrated a near-complete lack of survival benefit among patients undergoing liver 

transplantation on the basis of MELD exception points, and thus calling into question the need 

for a system that artificially raised MELD scores.7 The latter “HCC advantage” has been 

addressed through first serial downgrades in the amount of MELD exception points granted, and 

subsequently, more recently, with both a delayed initiation of MELD exception points (6-month 

delay), as well as a cap on the extent of points an individual can achieve (MELD 34 cap).8

 

 These 

modifications have been implemented with the hopes of decreasing waitlist mortality and 

increasing transplant rates in the non-HCC population; however, they have thus far represented 

insufficient and inexact changes in adequately equalizing access to liver transplants for the non-

HCC population. Although well intentioned, the quest to equalize priority between the HCC and 

non-HCC candidates has been fundamentally inadequate as they have utilized the assignment of 

exception points based on an imprecise mortality prediction.  

Herein, we introduce Optimized Prediction of Mortality (OPOM), a novel system based on a 

state-of-the-art machine learning method that has allowed for a more accurate prediction of 

three-month mortality rate for all patients on the liver transplant waitlist. OPOM allocation 

outperformed the currently used MELD-based prediction method. In simulations, OPOM averted 

significantly more waitlist deaths/removals for both HCC and non-HCC candidates, and yet 

maintained overall transplant rates, therefore allowing for more equitable and efficient allocation 

of liver grafts for candidates awaiting transplantation across all levels of disease severity. As 

demonstrated using LSAM, the use of OPOM in place of current Match MELD scores, would 

save on average at least 418 more lives each year, with every UNOS Region benefiting from this 

effect. Importantly, the overall number of transplants remains stable with OPOM allocation; 

albeit with an acceptable, and expected, decrease in HCC transplants to accommodate the 

increase in transplants of non-exception point candidates. Unlike MELD allocation which relies 

upon the cumbersome and inexact approach of exception point assignment, OPOM allows for 

accurate prioritization of all candidates based upon individual characteristics thus negating 

MELD’s varying levels of success in predicting mortality for different patient populations. For 
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candidates with hepatocellular cancer, OPOM’s predictive ability is strengthened by the 

incorporation within the model of AFP levels, as well as tumor size and number.  

 

The accurate prediction of an individual candidate’s risk of waitlist mortality/removal is 

paramount to ensure equitable access to liver transplantation. Whereas on the one hand MELD-

based allocation with inclusion of exception points has over prioritized exception point 

candidates at the expense of those candidates listed with lab MELD scores, on the other hand 

utilizing only a lab-based MELD score for waitlist prioritization would shift the pendulum in the 

opposite direction, resulting in an allocation process that greatly underserves those in need of a 

liver transplant but with a lab MELD score that does not reflect their severity of disease. OPOM 

achieves an evidence-based, unbiased and objective middle ground for all waitlisted candidates 

by utilizing multiple variables with associated trajectories. Notably, there is a higher number of 

transplants in the female population with OPOM allocation; perhaps overcoming the systematic 

bias noted in MELD based allocation for female candidates.9,10

 

 The latter has been attributed to 

the inability of MELD to accurately capture the female candidate’s degree of renal insufficiency 

based on serum creatinine levels, resulting in lower MELD scores, and thus lower transplantation 

rates. OPOM has provided a more complete picture of the individual candidate’s true waitlist 

mortality that in return has allowed for a more accurate prediction of need for liver 

transplantation. Although there is a decrease noted in transplants for Black and Asian candidates 

with OPOM allocation, with an increase in White and Hispanic patients transplanted, it should be 

noted that there is also a decrease in waitlist deaths for all of these candidate populations.  

The 418 waitlist deaths averted with OPOM utilization is significantly more than the number 

predicted with implementation of MELD-Na. Indeed, MELD-Na which was approved by UNOS 

in June 2014 and implemented in January 2016, was predicted through similar LSAM analyses 

to decrease waitlist deaths by only 52 patients a year.3 Similarly, the application of a 6-month 

delay in awarding exception points for HCC candidates was simulated in LSAM to achieve a 

higher rate of transplants for non-HCC candidates, at the expense of a lower transplant rate for 

HCC candidates. The downstream effect on waitlist mortality with this proposed change, 

compared with the current policy, was a net reduction of only 30 deaths in the non-HCC 

population. The latter policy was adopted in October of 2015, and much like the acceptance of 
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MELD–Na, although well intentioned, represented nominal changes in waitlist mortality in 

simulations when compared to liver allocation through OPOM. Although the actual number of 

waitlist deaths averted with LSAM under OPOM allocation may represent an overestimation, it 

is important to note the ability of LSAM to predict the overall directionality of change.

 

11 

Machine learning holds the potential to become an indispensable tool for clinicians with 

optimized predictions based upon large amounts of data.12,13 OCT are a state-of-the-art machine 

learning method.4 OCT are decision trees similar to the classification and regression trees 

(CART), but are solved to global optimality with a novel method using mixed-integer 

optimization that outperforms the classical CART algorithms.14

 

 We utilized OCT to develop an 

analytical tool that takes all available patient information to predict whether the waitlisted 

candidate will undergo the adverse events of either death or becoming unsuitable for transplant 

within three months. In contrast to the piecemeal way in which current policy has been 

constructed, our tool is trained on historical outcomes in a unified fashion utilizing millions of 

data points. Instead of adding in exceptions and cutoffs ex-post to decrease mortality on the 

waitlist, machine-learning analytical tools tackle the problem directly by building these different 

criteria into the model itself. The out-of-sample AUC and accuracy illustrated that OPOM 

performs well not only on patients without exceptions, but also on patients with HCC exceptions. 

Furthermore, the OPOM advantage over MELD is most notable among sicker patient 

populations, with OPOM outperforming both match MELD and MELD-Na in AUC analysis, 

thus allowing OPOM to achieve a greater “sickest-first” allocation policy. 

The use of readily available, reproducible, and objective data that accurately predict liver-related 

mortality is essential. Although OPOM utilizes a larger number of variables than MELD, it is 

important to note that many of these additional variables are linked to MELD, and it is the 

trajectories of change in these lab values that powers OPOM’s accuracy. The latter concept is in 

line with studies examining the utility of changes in MELD scores for both waitlist and post-

transplant mortality prediction, as well as liver transplant allocation.15,16 At first glance OPOM’s 

complexity, in comparison to MELD, can be overwhelming. However, importantly, no additional 

data collection would be required by the transplant practitioner, as OPOM was generated based 

upon available data within the STAR files, data that are routinely collected on all waitlisted 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

candidates. Furthermore, OCT are versatile tools that can allow for additional variables to be 

included/excluded with ease should additional priorities in liver allocation require that OPOM be 

modified. This could be crucial for appropriate allocation to the group of candidates with non-

HCC standardized exceptions (e.g., those candidates with hepatopulmonary syndrome, 

portopulmonary hypertension, etc.), and those candidates with non-HCC, non-standardized 

exceptions.17

 

 Although for the purposes of the initial creation and application of OPOM these 

non-HCC exceptions populations were grouped in the non-HCC patients population, they 

nonetheless would benefit from an optimized prediction method based on incorporation of 

consensus variables that accurately gauge their risk of mortality.  To this point, granularity in the 

varying types of MELD exceptions within LSAM would also allow for a more accurate 

assessment of the differing classes of exception point candidates, instead of a simple HCC versus 

non-HCC candidate comparison. It should be noted that LSAM analysis is also limited in that it 

only allows for an accurate assessment of waitlist deaths, as waitlist removals include not only 

candidates with deterioration in their condition, but also those removed due to improvement in 

their condition.  Although additional analysis with consideration of a shorter or longer interval of 

waitlist risk could be considered, the risk of waitlist mortality at the three-month interval was 

assessed to allow for accurate comparisons to MELD score calculations. Despite these 

limitations, and the fact that LSAM cannot account for center or practitioner changes in listing or 

acceptance behavior, LSAM remains the current simulation model employed to assess and 

implement national policy changes in liver allocation and distribution.  

It should be noted that OPOM allocation does not address the issues in liver distribution, and the 

resultant geographic disparity that exists between UNOS Regions and Donor Service Areas 

(DSA). However, it is worth noting that the application of this machine-learning tool is capable 

of saving an additional 418 lives every year—and that this is on the same magnitude as that 

achieved with LSAM models of wide broader sharing. Thus, the implementation of OPOM 

represents an avenue to achieve more equitable liver allocation within any defined geographic 

unit. 

 

The application of an OPOM-based allocation system would more accurately adhere to the 

“sickest-first” principle. Indeed, the decrease in waitlist mortality/removal achieved through 
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utilization of OPOM would not only represent the potential for more equitable allocation, but 

also would represent an important facet towards alleviating the discrepancy between supply and 

demand. 
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Figure 1: Example of a classification tree that predicts risk of dying or becoming unsuitable for 

transplant within three months. Although this sample tree splits the data twice—based on MELD 

and bilirubin—to make a prediction, OPOM performed up to ten splits to make a prediction, 

based on additional independent variables. 

 

Figure 2: Simulated deaths by year for sample LSAM run: Match MELD vs OPOM. 

 

Figure 3: LSAM simulated annual percent decrease in deaths by UNOS Region using OPOM 

allocation (as compared to Match MELD). 

 

Figure 4: Out-of-sample AUC for OPOM by disease severity (as measured by Match MELD), 

and out-of-sample AUC for MELD-Na, and Match MELD, by disease severity (as measured by 

OPOM).  
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Tables 

Table 1: LSAM simulated average annual deaths and transplants by candidate demographics 

under Match MELD and OPOM allocation. 

  Match MELD 

Transplants 

OPOM 

Transplants 

Match MELD 

Deaths 

OPOM     

Deaths 

Sex  Male 3995.8 

(3998-4001.4)  

3798.36 

(3790.2-3808.8) 

1486.8 

(1473.2-1494.8) 

1213.48 

(1200.4-1220) 

Female 2181.76 

(2170.2-2192.6) 

2340.56 

(2332.4-2358.6) 

892.88 

(886-898.2) 

748.24 

(741.8-753.2) 

      

Race White 4247.64 

(4233.4-4260) 

4301.72 

(4294.4-4317.2) 

1674.64 

(1665.2-1688.4) 

1387.36 

(1376.8-1397.2) 

Black 699.28 

(686.4-709.6) 

640.28 

(634.2-648.2) 

219.32 

(214.2-224.2) 

175.12 

(171.2-178.6) 

Hispanic 862.44 

(856.6-868.8) 

893.2 

(886.6-901.4) 

373.04 

(371.8-375.2) 

304.48 

(302.4-306.4) 

Asian 294.32 

(290-298.4) 

231.32 

(225.8-238.6) 

84.72 

(80.8-88.4) 

72.52 

(69.4-73.6) 

Other 73.88 

(72.2-76.2) 

72.4 

(70.2-75.2) 

27.96 

(26-29.4) 

22.24 

(20.8-23.8) 

      

Blood type O  2782.4 

(2771.8-2790.8) 

2801.8 

(2773.4-2810.6) 

1153.12 

(1142.4-1162.4) 

945.6 

(940-956.4) 

A 2177.16 

(2171-2182) 

2185 

(2175-2194.4) 

909.36 

(892.2-920.4) 

757 

(747.8-764.2) 

B 852.68 

(847-861.2) 

823.2 

(814.6-831.6) 

253.9 

(245.8-264) 

206.64 

(198.8-213.6) 

AB 365.32 328.92 63.28 52.48 
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(362.4-366.8) (324-331.8) (61.6-64) (49-57) 

      

Cause of 

Liver Disease 

Acute 

Hepatic 

Necrosis 

387 

(382.4-392.4) 

380.2 

(371.8-394.6) 

103.64 

(101.4-109.2) 

94.6 

(92-97) 

Cholestatic 

Liver 

Disease 

457.2 

(449.2-464.2) 

473.4 

(466.6-476.2) 

160.48 

(157-165.4) 

131.36 

(128-135) 

Malignant 

Neoplasms 

646.96 

(642-658) 

376.44 

(369.2-381.4) 

155.96 

(149.8-161) 

112.52 

(107.2-116.8) 

Non-

Cholestatic 

Cirrhosis 

3801.68 

(3788.2-3818.6) 

4201.68 

(4195.6-4204.8) 

1700.04 

(1687.6-1707.6) 

1407.52 

(1399.6-1417.2) 

Other 884.72 

(880-889.4) 

707.2 

(701.8-717.4) 

259.56 

(255-262.8) 

215.72 

(207-224.4) 

       

Candidate 

demographics 

Average 

Age 

50.3 

(50.2-50.3) 

52.81 

(52.75-52.89) 

54.4 

(54.4-54.5) 

54.24 

(54.18-54.3) 

Average 

Cumulative 

waiting time 

(days) 

152.5 

(151.9-154.2) 

222.04 

(219.55-224.97) 

313.1 

(312.1-313.9) 

331.26 

(329.15-332.74) 

Average 

BMI 

27.8 

(27.8-27.8) 

28.12 

(28.08-28.16) 

28.3 

(28.3-28.3) 

28.31 

(28.27-28.36) 
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Table 2: LSAM simulated average annual deaths and average cumulative waiting time by UNOS 

Region under Match MELD and OPOM allocation. Regions with higher waitlist mortality rate, 

as measured by inverse of average cumulative waiting time, notably Region 3, tended to exhibit 

higher percentage reduction in deaths (last column). 

 Match MELD OPOM  

 Average 

cumulative 

waiting time to 

death (days) 

Average number 

of deaths 

Average 

cumulative 

waiting time to 

death (days) 

Average number 

of deaths 

Percentage 

reduction in 

deaths by OPOM 

Region 1 336.73  

(323.17-343.86) 

129.44 

(126-132.4) 

355.57 

(348.89-364.98) 

105.32 

(102.4-109.4) 

18.63% 

 

Region 2 335.63  

(326.42-340.84) 

327.32 

(325-328.4) 

356.42 

(347.45-372.05) 

273.84 

(268.8-283.6) 

16.34% 

 

Region 3 161.33  

(157.301-166.88) 

201.8 

(199.4-210.2) 

167.93 

(164.76-169.43) 

155.28 

(150-160.8) 

23.05% 

 

Region 4 306.49 

(301.43-310.14) 

273.72 

(271.2-276.8) 
309.03 

(300.52-320.89) 

234.76 

(228.2-238.4) 

14.23% 

 

Region 5 385.15 

(378.21-388.59) 

490.92 

(484.2-497) 

403.42 

(390.53-409.23) 

404.84 

(398.6-410) 

17.53% 

 

Region 6 260.21 

(247.43-272.68) 

53.16 

(51-54.6) 

264.79 

(244.83-275.33) 

47.12 

(44.2-50.2) 

11.36% 

 

Region 7 316.54 

(311.6-321.22) 

194.44 

(192.8-196.6) 

342.41 

(334.91-347.66) 

160.12 

(159-161) 

17.65% 
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Region 8 294.59 

(279.66-312.52) 

144.12 

(140.8-147.8) 

309.41 

(299.36-328.2) 

117.52 

(114.8-119) 

18.46% 

 

Region 9 376.05 

(372.89-379.59) 

234.2 

(232.6-235) 

404.14 

(397.15-410.95) 

194.12 

(191.4-196.2) 

17.11% 

 

Region 10 207.78 

(202.93-212.49) 

159.32 

(156.2-161.4) 

210.11 

(201.88-217.54) 

127.36 

(123.8-131.6) 

20.06% 

 

Region 11 280.47 

(277.43-285.28) 

171.24 

(169.6-175.2) 

313.19 

(303.25-320.11) 

141.44 

(132.4-148) 

17.40% 

 

Nationwide 313.1 

(312.1-313.9) 

2379.68 

(2369.8-2393) 

331.26 

(329.15-332.74) 
1961.72 

(1950.6-1970) 

17.56% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: LSAM simulated average annual waitlist deaths reduction with OPOM allocation (as 

compared to Match MELD allocation). 

Reduction in Waitlist 

Deaths as categorized 

by last-known Match 

6-10 16.18% 

11-15 24.98% 

16-20 29.95% 
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MELD 21-25 28.22% 

 26-30 28.34% 

 31-35 21.96% 

 36-40 10.80% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: LSAM simulated average annual deaths and transplants by candidate status and 

exception status under Match MELD and OPOM allocation. 

  Match MELD  OPOM 

Deaths by patient 

status 

Waitlist Deaths 
1201.76 (1198.4-1204.2) 

 

922.12 (916-926.8) 

 

Removed Patient Deaths 
593.84 (590.2-599.8)  

 

466.28 (463.4-470) 

 

Post Graft Deaths 584.08 (572.8-539.2) 

 

573.32 (565.4-581) 

 

All 2379.68 (2369.8-2393) 

 

1961.72 (1950.6-1970) 
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Deaths by patient 

exception status  

HCC patients 293.8 (289-298) 

 

212.04 (208.2-215.8) 

 

Non-HCC patients 2085.88 (2075-2097.4) 

 

1749.68 (1735.2-1761.8) 

 

All patients 2379.68 (2369.8-2393) 

 

1961.72 (1950.6-1970) 

 

   

Removals by 

patient exception 

status 

HCC patients 255.32 (252.4-258.4) 

 

237.16 (234.8-240.4) 

 

Non-HCC patients 2153.8 (2404.4-2416.4) 

 

1961.24 (1953.2-1969.4) 

 

All patients 2409.12 (2404.4-2416.4) 

 

2198.4 (2191.8-2209.8) 

 

   

Transplants by 

patient exception 

status 

HCC patients 1178.72 (1171.4-1190.2) 

 

690.96 (681.6-701.6) 

 

Non-HCC patients 4998.84 (4994-5002.6) 

 

5447.96 (5438-5457) 

 

All patients 6177.56 (6166-6184.2) 

 

6138.92 (6127-6148.8) 

 

 

 

Table 5: LSAM simulated match runs in a Region 3 OPO for blood type O under Match MELD 

(top table) and OPOM (bottom table) allocation. OPOM, compared to Match MELD, replaced 12 

of the top 20 candidates with individuals with a higher predicted probability of waitlist death or 

removal. The remaining 8 candidates on the original Match MELD rank order list, with the 

exception of the Status 1A candidate (Rank Order #1), experienced a change in their rank order 

under OPOM allocation. The last column reports whether the patient was simulated to die or be 

removed from the waitlist by becoming unsuitable for transplant. 

 

Match Run under Match MELD allocation   

Rank 

Order 

Candidate 

ID 

Waiting 

Time (days) 

Age 

(years) 

MELD Score 

 

 Waitlist 

Death/Removal  

1 A 7.89 0.8 Status 1A    
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2 B 0.27 62.6 25    

3 C 20.33 56.16 24    

4 D 6.24 52.1 23    

5 E 50.94 61.99 22    

6 F 13.59 62.03 22    

7 G 72.4 59.06 22  yes 

8 H 476.98 62.98 19    

9 I 22.52 62.85 19    

10 J 227.13 61.16 18  yes 

11 K 1240.82 55.67 18  yes 

12 L 156.98 54.23 18    

13 M 778.88 50.99 17    

14 N 294.31 70.35 16  yes 

15 O 178.6 56.07 16    

16 P 430.45 60.61 16    

17 Q 27.52 63.06 16  yes 

18 R 574.66 67.05 15    

19 S 287.19 57.46 15    

20 T 246.28 48.2 15    

… … … … …  … 

 

 

Match Run under OPOM allocation   

 Rank 

Order 

Candidate 

ID 

Waiting 

Time (days) 

Age 

(years) 

OPOM Score 

 

 Waitlist 

Death/Removal  

1 A 7.89 0.80 Status 1A    

2   50.76 73.58 40  yes 

3 B 0.27 62.60 25  

 4 1074.37 69.22 23  yes 

5 D 6.24 52.10 23  

6 N 294.31 70.35 22  yes 

7 H 476.98 62.98 22  
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8 310.90 64.46 22  yes 

9 771.13 69.38 22  yes 

10 937.42 59.64 21  yes 

11 

 

36.56 24.57 20  

 12 Q 27.52 63.06 19  yes 

13 57.03 66.70 19  

14 560.52 62.99 19  yes 

15 2666.90 53.94 18  yes 

16 O 178.60 56.07 18  

17 

 

146.37 67.29 18  

 18 

 

170.14 58.80 18  yes 

19 148.94 66.92 18  

20 K 1240.82 55.67 17  yes 

… … … … …  … 
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Figures 

Figure 1: Example of a classification tree that predicts risk of dying or becoming unsuitable for 

transplant within three months. Although this sample tree splits the data twice—based on MELD 

and bilirubin—to make a prediction, OPOM performed up to ten splits to make a prediction, 

based on additional independent variables. 
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Figure 2: Simulated deaths by year for sample LSAM run: Match MELD vs OPOM. 
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Figure 3: LSAM simulated annual percent decrease in deaths by UNOS Region using OPOM 

allocation (as compared to Match MELD). 
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Figure 4: Out-of-sample AUC for OPOM by disease severity (as measured by Match MELD), 

and out-of-sample AUC for MELD-Na, and Match MELD, by disease severity (as measured by 

OPOM). 
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