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ABSTRACT

This thesis consists of three independent essays on dynamic models in financial economics.

In the essay that comprises Chapter 1, I employ a martingale approach to study a con-
sumption and portfolio problem in a discrete time model with dynamically incomplete markets
and short-sale constraints. I show that the solution of the original dynamic problem is identical
to the solution of a static problem of choosing among consumption bundles satisfying budget
constraints formed using all Arrow-Debreu state prices consistent with no arbitrage. The bud-
get feasible set can be defined by finitely many constraints even though infinitely many state
price vectors are consistent with no arbitrage, and the apgroach is convenient for computation.

In the second essay I estimate the parameters of one and two-factor models of the term
structure of interest rates due to Cox, Ingerscll, and Ross using the method of maximum
likelihood, and present tests of the models. I recover the unobservable state variables and
exploit their conditional density in estimation and testing, and use both the time-series and
cross-sectional information in a sample of bonds that includes coupon bonds. I compare the
basic CIR one-factor model of the term structure (interpreted as a model of nominal bond
prices) to one of their two-factor models, and compare these to extended (translated) models.
The tests reject the one-factor model in favor of its translated variant, and also reject the CIR
one-factor models in favor of the translated two-factor model. I also nest these models within
a more general Markov model for yields and reject the restrictions implied by the bond pricing
riodels.

The third essay presents an extended simulated moments estimator (ESME) of the param-
eters of continuous time asset pricing models in which the underlying state variables follow an
exogenously given diffusion process and the endogenously determined asset prices can be ex-
pressed as conditional expectations of known functions of the sample path of the state vector.
The ESME allows the estimation of models in which the asset pricing functicn is neither known
in closed form nor easily evaluated numerically. The idea underlying the estimation strategy
is that, when asset prices can be written as conditional expectations, it is possible to simulate
the moments of certain functions of asset prices even when it is not feasible to compute the
endogenously determined asset prices as functions of the underlying state variables. I show
the consistency and asymptotic normality of the estimator and demonstrate its computational

feasibility by using it to estimate a one-factor term structure model due to Cox, Ingersoll, and
Ross.

Thesis Supervisor: John C. Cox
Title: Nomura Professor of Finance
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CHAPTER 1
CONSUMPTION AND PORTFOLIO POLICIES
WITH INCOMPLETE MARKETS AND
SHORT-SALE CONSTRAINTS:

THE FINITE DIMENSIONAL CASE

Abstract In this essay, I employ a martingale approach to study a consumption-
portfolio problem in a discrete time model with dynamically incomplete markets
and short-sale constraints. In doing so I show how the approach is useful when
markets are incomplete. The solution of the original dynamic problem is identical
to the solution of a static problem of choosing among consumption bundles satisfying
budget constraints formed using all Arrow-Debreu state prices consistent with no
arbitrage. The budget feasible set can be defined by finitely many constraints even
though infinitely many state price vectors are consistent with no arbitrage, and the
approach is convenient for computation.

1 Introduction

The classical approach to the analysis of optimal intertemporal consumption and portfolio
policies is stochastic dynamic programming, the use of which in this context was pioneered by
Mossin (1968), Samuelson (1969), and Hakansson (1970) in discrete time and Merton (1969,
1971) in continuous time. Recently Pliska (1982, 1986), Cox and Huang (1987a, 1987b), and
Pages (1987) have used a martingale representation technology instead of dynamic programming
to study optimal intertemporal consumption and portfolio policies, while Chamberlain (1988),
Duftie and Huang (1985), and Huang (1987) have used it in a general equilibrium setting.
However, to date little is known about how the martingale approach may be useful when markets
are dynamically incomplete. With the exception of the paper by Pages, those mentioned above
assume that markets are complete, while Pagés makes an assumption about the asset price
process and the nature of the incompleteness that excludes the cases of real interest.

In this essay I use the martingale approach to study optimal intertemporal consumption and
portfolio policies in a general discrete time, discrete state space “finite dimensional” economy
with dynamically incomplete markets and short-sale constraints. A dynamically incomplete
(henceforth simply “incomplete”) market is one in which not all contingent claims can be
created ’by dynamic trading in the existing securities. I show how the original dynamic problem
can be reformulated as a static problem which may then be attacked with the Lagrangian theory.
The static formulation is useful for computation, has a natural economic interpretation, and

has a geometry which makes it easy to understand the effect of incomplete markets. While the




results of course apply only to the finite dimensicnal case, I impose no additional assumptions
on either the asset price process or the nature of the incompleteness of markets.

In the martingale approach one solves the consumption and portfolio problem by separating
it into two parts. First one identifies the set of attainable consumption bundles and solves a
static optimization problem in order to select the consumption bundle most preferred by the
consumer-investor. Then one determines the trading strategy needed to generate the most
preferred consumption bundle. Pliska (1982) explicitly carries out these computations for a
simple example in a discrete time finite probability space in which the agent consumes only at
a single terminal date. Pliska (1986) extends the analysis to a more general continuous time
stochastic enviroment (though again with consumption only at a single terminal date) in which
asset prices are semi-martingales and consumption can be either positive or negative.

Cox and Huang (1987a) allow intermediate consumption and provide an easily verifiable
set of sufficient conditions for existence weaker than those required in dynamic programming
when asset prices follow a diffusion process. They find the unique set of Arrow-Debreu state
prices (or, after normalization by the bond price, the unique equivalent martingale measure)
that is consistent with the absence of arbitrage, and show that the solution of a static problem
of maximizing utility subject to a single budget constraint formed using this set of state prices
and the portfolio policies needed to implement it are identical to the optimal consumption
and portfolio policies given by dynamic programming. Cox and Huang (1987b) characterize
the optimal policies and compute explicitly the optimal consumption and portfolio policies in
certain situations in which it is difficult if not iinpossible to use dynamic programming. An
appealling feature of their approach is that the Lagrangian theory may be used to study the
static problem.

While Cox and Huang only consider the continuous time case, the use of the martingale
approach in the discrete time finite dimensional case with complete markets follows immediately
from their analysis. Just as in the continuous time case, one finds the Arrow-Debreu state prices
implied by the asset prices, solves a static problem of maximizing utility subject to a budget
constraint formed using the state prices, and then implements the solution of the static problem.

A limitation of the analyses of Pliska and Cox and Huang is that these authors assume
that markets are complete. In the papers by Cox and Huang the completeness of markets gives
a unique set of Arrow-Debreu state prices or a unique equivalent martingale measure that is
used to form the budget constraint in the static problem that comprises the first part of the
martingale approach. When markets are incomplete there are infinitely many sets of state
prices or equivalent martingale measures that are consistent with the absence of arbitrage,
and the static problem of maximizing utility subject to the requirement that consumption be

feasible with respect to budget constraints formed using all state prices consistent with no




arbitrage involves infinitely many budget constraints. Hence it is not immediately obvious that
the Lagrangian theory can be used to attack the problem.

The problem I study is that of a consumer-investor who selects his most preferred consump-
tion bundle from among those that can be generated by a dynamic trading strategy using his
endowment and the available securities. I first characterize the set of Arrow-Debreu state prices
that are consistent with the given securities prices and the absence of arbitrage, and then show
that the set of consumption bundles that can be generated by a dynamic trading strategy is
identical to the set of consumption bundles that are budget feasible with respect to all of the
state prices consistent with no arbitrage. Therefore the solution of the agent’s original problem
is identical to the solution of a static problem of maximizing utility subject to the constraint
that the consumption bundle lies in the budget feasible set.

This static problem involves infinitely many budget constraints. I show that the set of fea-
sible consumption bundles is generated by a finite number of budget constraints corresponding
to the extreme points of the closure of the set of state prices consistent with no arbitrage.
That is, the budget feasible set can be defined by a finite number of constraints even when
markets are incomplete and there are tnfinitely many state price vectors consistent with no
arbitrage. Hence the solution of the consumer-investor’s problem can be easily characterized
using the Lagrangian theory and numerical solutions can be computed using standard non-
linear programming techniques. The set of feasible consumption bundles has a nice geometry
and a pleasing interpretation in terms of prices. I also extend the results to include short-sale
constraints.

If the agent’s preferences have an expected utility representation the optimal consumption
plan may be obtained using dynamic programming. In this case the agent’s original program
and the static problem I obtain have identical solutions. An advantage of the static formulation
vis-a-vis dynamic programming is that solving the static problem requires significantly less
computation.

In the finite dimensional setting, a static formulation of Breeden (1987) represents another
alternative to the martingale approach. The relationship between consumption and the trad-
ing strategies (shares of securities held in various states) is given by a set of linear equations.
Breeden uses these to eliminate consumption from the problem and obtains a static problem
in which maximization is performed with respect to the shares of the securities held. Bree-
den’s approach has the same computational advantages vis-a-vis dynamic programming as the
approach in this essay. However, the approach here provides an interpretation of the feasible
consumption set in terms of the prices of consumption in the various states that Breeden’s does
not. The formulation in this essay is also more convenient for computation with the utility

functions commonly assumed in finance. In addition, the characterization of the solution of



the general problem makes it easy to obtain closed form solutions for the optimal consumpticn
policy in the case of an agent with a time-additive, state-independent utility function of the
hyperbolic absolute risk aversion (HARA) class (with no nonnegativity restrictions on consump-
tion) when the investment opportunity set is constant and there are no short-sale constraints
(see Hakansson (1970) for these solutions obtained via dynamic programming).

The balance of the essay is organized as follows. Section 2 presents an example with which
I introduce the main ideas of the essay and illustrate the geometry of the approach. Section 3
describes the economy and its vector space representation and introduces most of the notation.
I exploit the vector space representation to show that the set of consumption bundles that can
be generated by a dynamic trading strategy using the agent’s endowment and the available
securities is identical to the set of consumption bundles that are budget feasible with respect
to all of the state prices that are consistent with the absence of arbitrage, and show that the
budget feasible set can be defir.ed by a finite number of constraints. This program is carried
out in Section 4. In Section 5 I present a simple characterization of the solution of the agent’s
problem, indicate how to implement the optimal consumption policy using a dynamic trading
strategy, and discuss the advantages of the approach for computations. Section 6 consists of an

example which illustrates the approach. Section 7 contains a few concluding remarks.

2 An Example

I consider an economy with one consumption good, only two dates ¢ = 0,1 and three possible
outcomes {w;,wz,w3} at time 1. In order to be able to graph the feasible consumption set I
require that the good be consumed only at time 1, and use ¢ = (¢;, ¢, c3)’ tc denote consumption
in the three states.

As a point of departure, I first suppose that there are three securities available for trading,
so markets are complete. These securities have current prices §§ = 1, §2 = 2, and S3 = 3, and
state contingent payoffs at time 1 of S} = (1,1,1), §% = (3,2,1), and S} = (1,3,5). The given
securities prices imply that the Arrow-Debren state prices are (1/3,1/3,1/3). If I require that
consumption be nonnegative and let the agent have an endowment of 1 at time 0, the feasible

consumption set is
{ceR®|c>0,1/3¢c; + 1/3c2 + 1 [3ea < 1}.
This set is shown in Figure 1.

Now suppose that the third security is not available for trading. When only the first two

securities are available for trading, the feasible consumption set is defined by the inequalities
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Figure 1

Graphical representation of the feasible consumption sets

The complete markets feasible consumption set is the polyhedron consisting of the convex hull
of (0,0,0), (3,0,0), (0,3,0), and (0,0,3); the bundles a nonsatiated agent might choose lie on
the face consisting of the convex hull of (3,0,0), (0,3,0), and (0,0,3). If the third security is
not available for trading the bundles a nonsatiated agent might choose lie on the line segment
connecting (0,1,2) and (2,1,0). If the third security is not available for trading and the second
security may not be sold short the bundles a nonsatiated agent might choose lie in the segment
connecting (1,1,1) and (2,1,0).
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where ¢, and ¢, denote the number of shares of the two securities. The first inequality says
essentially that the agent’s consumption must be spanned by the payoffs of the two securities,!
and the second inequality is the budget constraint.

Equations (1) and (2) imply

IN
-

(3)
1/261+1/263 < 1, (4)

C2

so that when only the two securities are available for trading the feasible consumption set is
{ceR®|c>0,c<1,1/2¢; + 1/2¢3 < 1}.

The bundles a nonsatiated agent might choose lie in the intersection of the two planes ¢; = 1,
1/2¢; + 1/2c3 = 1, or in the segment connecting (0,1,2) and (2,1,0). This segment is also
shown in Figure 1. It is a subset of the feasible consumption set for the complete markets case.

The “1” on the right hand side of the two inequalities (3) and (4) is the initial wealth. The
coefficient “1” on ¢, in the inequality ¢; < 1 and the coefficients “1/2” and “1/2” on ¢; and c3
in the inequality 1/2¢; + 1/2¢3 < 1 have a natural economic interpretation. These coefficients
can be thought of as the prices of consumption in the two states. To see this, note that the
least costly way to obtain an additional unit of consumption in the state w; without decreasing
consumption in any state is to take a long position of 1/2 unit of the second security and a
short position of 1/2 unit of the first. The cost of this portfolio is 1/2. The least costly way
to obtain an additional unit of consumption in the state w3 without decreasing consumption
in any state is to take a long position of 3/2 units of the first security and a short position of
1/2 unit of the second security. The cost of this position is 1/2. Both of these positions yield a
positive amount in the second state, which is why the coefficient on ¢; is zero in the inequality
1/2¢; + 1/2¢3 < 1. That is, the two portfolio strategies that generate consumption in the first
and third states also generate consumption in the second state, so if one is undertaking either
of these strategies there is a range of state wp consumption for which the cost of consumption

in that state is zero.

" The inequality appears because I have not yet excluded the possibility that the agent becomes satiated; I do
this below.



An additional unit of consumption in state w; can be obtained either by purchasing 1 unit
of the first security or 1/2 unit of the second security. Both of these strategies have a cost of
one, and both also yield positive amounts in the first and third states.

It turns out that I can make precise the interpretation of the coefficients of the two inequal-
ities as prices. When markets are incomplete there is not a unique state price vector. Rather,
there are infinitely many state price vectors consistent with the absence of arbitrage. In the

example, the state prices 7 = (m, T2, 73) consistent with the absence of arbitrage satisfy

T +rbws = 1, (5)
3my +2my+ 13 = 2, (6)
™ > 0, (7)
T2 > 0, (8)
T3 > 0, (9)
or
m 0 1/2
T =a{l]+{(l1-a)] O |,
73 0 1/2

where 0 < a < 1.

In the complete markets case one defines the set of feasible consumption bundles by forming a
budget constraint using the single state price vector. Reasoning by analogy with the complete
markets case, one might conjecture that when markets are incomplete one would define the
feasible set by forming budget constraints using ail of the (infinitely many) state price vectors
consistent with the absence of arbitrage. This is a correct definition of the feasible set, but
most of the constraints are redundant. One can define the feasible set using only the extreme
points of the closure of the set of state price vectors consistent with the absence of arbitrage.
These extreme points are (0,1,0) and (1/2,0,1/2). The components of these vectors are the
coefficients on ¢, ¢2, and c3 in the inequalities (3) and (4).

This result provides a natural interpretation of the feasible consumption set in terms of
prices and budget constraints. The agent’s consumption in the second state, for example, is
constrained by the fact the he must sacrifice one unit of his initial wealth in order to increase his
state wp consumption by one unit. This interpretation makes it much easier to understand the
feasible consumption set. In addition, it is easy to see exactly how closing markets affects the
feasible set. In the example, disallowing trading in the third security increased the dimension
of the linear span of the set of state prices consistent with no arbitrage from one to two and

added another plane defining the feasible consumption set.



The extreme points are relatively easy to calculate even for large problems. Given the
extreme points, the agent’s problem is simply to maximize utility subject to budget constraints
formed using the extreme points. The problem is almost identical to the complete markets
case, the only difference being that there is more than one budget constraint when markets are
incomplete.

The approach also works when there are short-sale constraints. If I now suppose that the

second security may not be sold short, the set of feasible consumption bundles is defined by the

inequalities
1 3
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1 1
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The last of these inequalities comes from the short-sale constraint. The triple (0,0,1), the
components of which are the coefficients on ¢;, ¢z, and ¢3 in the last inequality, is also an
extreme point. The bundles a nonsatiated agent might choose lie in the segment connecting
(1,1,1) and (2,1,0). I defer discussion of the details of short-sale constraints and simply observe
that (0,0,1), (0,1,0) and (1/2,0,1/2) are the extreme points of the set of state prices consistent
with no arbitrage when the second security may not be sold short. The triples (0,1,0) and
(1/2,0,1/2) satisfy (5)-(9) above, while (0,0, 1) satisfies 37 + 272 + 73 < 2 along with (5) and
(7)-(9). Although the role of these relations will not be clear until Section 4, I note that the
securities prices are supermartingales with respect to the measure = = (0,0,1) and martingales
with respect to (0,1,0) and (1/2,0,1/2).

3 The Finite Market Economy

I consider the following model of an agent’s intertemporal consumption and portfolio policy

under uncertainty. There is a finite number N of states of the world, indexed by w € Q. There
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is a finite number of time periods, indexed by t = 0,1, 2, ...,T. The information in the economy
is exogenously specified and is represented by a sequence of partitions of Q, {F;;t =0,...,T}.
The interpretatior is that at time ¢ the agent knows which cell of F; contains the true state.
Information increases through time; Fy4, is at least as fine as F;. Without loss of generality I
assume Fp is trivial and Fr is the discrete partition (i.e., Fo = Q and Fr = {w|w € Q}). The o-
field of events generated by F; is denoted F;, and the family of o-fields F = {#;t = 0,1,...,T}
is called the filtration generated by the sequence of partitions F;. This information structure
can be easily and intuitively represented by an event tree, and I make use of this representation
when it is convenient to do so.

There is a single consumption good which the agent consumes at each date and cannot store.
The agent’s consumption can depend only upon the information he has at time ¢. I formalize
this by defining a consumption bundle to be a stochastic process ¢ = {¢;; t = 0,1, ...,T} that is
adapted to F; this means that ¢; is measurable with respect to ;. Similarly, the agent receives
a wage income stream which is an F-adapted stochastic process y = {y;; t =0,1,...,T}.

At each date there are K + 1 securities available for trading in frictionless markets, with
K > 0. It is convenient, but certainly not necessary, to assume that all K + 1 securities are
available for trading at each date. Only trivial modifications are needed if some securities are
not available for trading at some dates, and I indicate them below. I use S* to denote the
price of security k at time ¢, and use S = {S; t = 0,1,...,T}, where S; = (59, 5},...,5KY,
to denote the securities price process. For convenience I assume that the securities pay no
dividends; this affects nothing. I assume that the securities price process S is adapted to
F. I make no further assumptions on the price system besides requiring that |SF| < +oo for
t=0,1,..,7 and k = 0,1,2,..., K. In particular, I require neither that one of the securities be
a riskless bond nor that there are sufficiently many linearly independent securities that markets
are (dynamically) complete. '

The agent’s problem is to manage a portfolio of these K + 1 securities in order to obtain
his most preferred consumption plan. I use a vector space representation to {ormalize this as
follows.

Let N, = |F}|, the number of cells (or nodes or events) in partition F; at date t. Clearly
No=1and Nr=N.Ifllet L = Ng+ N; + ...+ N, then L is the total number of cells from
time 0 to time T. It is clear that any F-adapted stochastic process can be characterized by its
values at these L cells. This allows one to represent any F-adapted process by an L-dimensional
Euclidean vector space RL with its coordinates properly defined. I allocate the first coordinate
to date 0’s cell, the next N; coordinates to date 1’s cells, the next N, coordinates to date 2’s
cells, etc.

Now one can see that any consumption bundle can be viewed as a vector in R with each

11



coordinate represerting the consuimnption in some cell of some partition (in some state at some
date). Similarly, a wage income stream can also be viewed as a vector in ®F. From now on I
use ¢,y € R to denote consumption bundles and income streams respectively.

A trading strategy is a predictable K + 1 dimensional process ¢ = {¢;; t = 1,...,T}, where
er = (2,4, ..., 0K). The components of the trading strategy ¢F can be interpreted as the
number of shares of security k held by the investor between ¢ — 1 and £. The assumption that
the trading strategy is predictable means that ¢; is measurable with respect to F;_;. This is
the natural information constraint.

It is possible to model the trading strategy as a vector in a Euclidean space in a fashion
similar to the way I handled the consumption bundles and wage income streams. Since at
each time ¢ < T the K + 1 components of the trading strategy ¢?,¢},...,pK have to be
determined at each of the N, cells of partition F;, the total number of values to be determined
is M = (K +1)(No+ N1+ ...+ Nr_1). Thus a trading strategy can be represented by a vector
¢ € RM . Each of the coordinates of ¢ represents a long or short position in one of the securities
at some date t < T and subset of (2. I allocate the first K + 1 coordinates to be the investment
strategies a date 0, the next K + 1 coordinates to the investment strategies at the first cell of
F; at date 1, the next K + 1 to be the strategies at the second cell of Fj, etc.

The trading strategies and payoffs are related through a payoff matrix X € RILxXM, For
t=0,1,...,T — 1, think of each security at each date and cell of F; as a distinct investment
opportunity. From the discussion above, there are M = (K + 1)(No + N1 + --- + Nr_;) such
opportunities. I represent each such investment opportunity as a vector in L, where I recall
that L = No+ Ny + ---+ N, so that a vector in RL can represent the payoff of an investment
in each cell of F; for each date { = 0,1,...,T. As with ¢ and g, I allocate the first coordinate
to date 0’s cell, the next N; coordinates to date 1’s cells, the next N, coordinates to date 2’s
cells, etc.

I use z™ € RL to denote the vector corresponding to the m-th investment opportunity
and use z™(A;) to denote the element of z™ corresponding to A, € F;. Suppose the m-
th investment opportunity z™ is the opportunity to invest in the k-th security in the event
A;. Following Breeden (1987), I represent this opportunity by setting z™(A4,) = —5F(4,),
setting z™(Ae1) = SFq(Aep1) if Aggr C Ay, and setting 2™(Appn) = 0 if Ay ¢ Ap. All
other elements of z™ (i.e., those corresponding to other dates) are set equal to zero. For
a common stock, the vector representing an investment opportunity will have one negative
element corresponding to the cost of buying the stock at a particular date and state and a
number of positive elements corresponding to the payoffs from closing out the position next
period. The matrix X is formed by adjoining the M column vectors 2™, with the m-th column

of X corresponding to the m-th investment opportunity.

12



Each component of the vector ¢ also corresponds to one investment opportunity. The
consumption bundle produced by a trading strategy ¢ given a matrix X and income vector y
is ¢ = X + y. If certain securities are not available for trading in certain events at certain
dates, there is no vector z™ corresponding to the missing investment opportunities and I form
the matrix X by adjoining M < (K 4+ 1)(No + Ny + --- 4+ Nr_;) columns z™. Similarly, the
vector ¢ would contain no component corresponding to the missing investment opportunity.

I use C(y) to denote the set of feasible consumption bundles that can be generated by a

dynamic trading strategy using income y. That is,

Cly)={ceRl|c>0, Ipe®M st. c= X+ y). (10)

The equation ¢ = X + y appears with an equality instead of an inequality because I assume
below that the agent can never be satiated and therefore will never choose a consumption
bundle such that ¢ < X¢ +y and ¢ # X¢ +y.2 Since ¢ represents a dynamic trading strategy,
it is easy to see that C(y) is identical to the set of feasible consumption bundles in a dynamic
programming formulation of the consumption and portfolio problem. Were all of the elements
of y save the first zero the condition ¢ = X¢ + y would be the usual self-financing constraint.
The agent chooses among various consumption bundles c.

Specifically, I consider the consumer-investor’s problem

b b 11
max, u(c,p) (11)

where p is an L—vector of the probabilities of the various states and u(c, p) represents a non-
decreasing utility function. I assume that the agent’s preferences are time consistent in the
sense that a consumption plan that is initially optimal remains optimal at all future dates
and states. Weller (1978) shows that a sufficient condition for time consistency is that the
agent’s preferences have an expected utility representation with respect to the uncertainty
remaining at every date and state, but this condition is stronger than is necessary [Donaldson,
Rossman, and Selden (1980), Johnsen and Donaldson (1985)]. Time additive functions u(c,p) =
u(e1)+ L, piu(c;) are of course included in the class of utility functions I consider, but certainly
do not exhaust the class.

An example will make the formulation clear. Consider a three date economy with two
securities and the following partitions of : Fy = Q, F] = {{w1,w2},{ws,ws}}, and F, =
{{w1},{w2}, {w3},{wa}}. One of the securities (security 0) is riskless and always has a price

of 1. The other (security 1) is risky and has the following prices in the various cells of the

2The appendix also considers the case where the agent may reach satiation and the set of feasible consumption
bundles is defined C(y) = {c € RY | c >0, Jp € RM s.t. ¢ < Xy + y} and the budget feasible set (see equation
(13) below) is defined B(y) = {c € R*|c > 0, x(c—y) < 0 ¥x € I1}. There I obtain identical results using slightly
more elaborate arguments.
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(1,2)

_(1,1)‘|:
ws——(1,1/2)

Figure 2

Event tree representation of the securities price process

The two componer.ts of the ordered pairs indicate the prices of the riskless and risky securities,
respectively.

partitions of Q: S}(2) = 2; S ({w1,w2}) = 4, S1({ws,ws}) = 1; S}(w1) = 8, Si(w2) = 2,
S}(w3) = 2, and S}(w4) = 1/2. The numbers of cells at each date are Ny = 1, N; = 2, and
N; =4, and I have L = No+ N; + N, = 7. Hence any consumption bundle can be represented
by a vector in ®7, ie., ¢ = (¢(R),c({w1,w2}), c({ws,wq}), c({wr}), e({w2}), c({wa}), c({wa})) T,
where the ¢({w;}) denote consumption at the various dates and subsets of 2. This securities
price process can be represented by the event tree in Figure 2.

There are two investment opportunities at date 0, the riskless bond and the risky security.
Similarly, at date 1, there are two investment opportunities at each of the cells {w;,w,} and
{w3,w4}. Thus a trading strategy is ¢ € R®, and the payoff matrix X has six columns. For this

example, I have

(-1 -2 0 0 0 0\

1 4 -1 -4 0 0

1 1 0 0 -1 -1
X=|l0 0o 1 8 o0 o
6 0 1 2 0 0

0o 0 0 0 1 2

\o 0 0 o 1 1/2/

The consumption bundle produced by a trading strategy ¢ given an income vector y is ¢ =
Xe+y,and C(y) = {c€ R |c>0,3pe R s.t. c = X + y}.

Incomplete markets can be represented quite easily in this set-up. For example, if the risky
security were not available for trading at time 1, the matrix X would be missing its fourth and

sixth columns.
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4 Characterization of the Set of Feasible Consumption Bun-
dles

I now make precise and prove the claimms made in Section 2. In particular, in this section I'
show that the set of feasible consnmption bundles C(y) consisting of the ¢ > 0 that can be
generated by a dynamic trading strategy using income y is identical to a set B(y) consiéting of
the ¢ > 0 that are budget feasible with respect to all of the state prices that are consistent with
the absence of arbitrage, and then show that this set B(y) can be characterized using finitely

many constraints. Hence the solution of (11) is identical to the solution of the static problem

Zax u{c,p), (12)

and the trading strategies that implement the solutions are identical.

Breeden {1987) uses a representation of the set of feasible consumption bundles essentially
identical to (10) in advancing a numerical technique to solve the consumption-portfolio problem
as a static prcblem. Breeden uses the equality ¢ = X¢ + y to eliminate ¢ and solved a static
problem where the maximization was over . By characterizing the set of feasible consumption
bundles in terms of the budget feasible set B(y) I provide an alternative characterization of the
set of feasible consumption bundles that both is more useful for computation and has a natural
economic interpretation.

I first consider i :complete markets when short-sales of the available securities are permitted,

and then turn to siori-sale constraints.

4.1 Incomplete Markets

If the consumption-portfolic prcblem is to be well-posed I certainly do not want the securities
price process to admit any arbitrage opportunities. That 1s, I want to exclude the possibility
that something might be created from nothing, or that a trading strategy which produces
positive payoffs and never requires any investment might exist. J begin by making precise this

notion of an arbitrage opportunity.
Definition 1 An arbitrage opportunity is a vector p € ®M suck that X > 0 and X # 0.

This definition of an arbitrage opportunity is the same as the “simple free lunch” of Harrison
and Kreps (1979). I assume that no such opportunities exist. That is, I assume that X¢ > 0
implies X = 0.

I also define a set of state prices II, or, after normalization by the price of any security, a

set of equivalent martingale measures:
N={reRl|r7X=0,7>0,m =1}.
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Here m; denotes the first component of the vector 7. I explain these after I present Proposition 1.

Proposition 1 If there are no arbitrage opportunities then Il is non-empty. Moreover the
linear span of 1l is identical to X1, the largest linear subspace orthogonal to the linear sub-
space spanned by the column vectors of X. Therefore it has dimension L — rank(X), i.e.
dim(span(Il)) = L — rank(X).

PROOF. A special case of Motzkin’s Transposition Theorem [Schrijver (1986), Corollary 7.1k]
says that there is a vector z with 2 > 0 and 24 = 0 if and only if Aw > 0 implies Aw = 0.
Letting A = X and w = ¢, there exists # > 0 such that #X = 0. If I normalize 7 so that its
first component m; = 1 the normalized vector m will be an element of II.

Since it is obvious that II ¢ X+, all I need do to prove the second claim is show that any y
satisfying y X = 0 can be represented as a linear combination of elements of II. Let w = 7 — ey.
For sufficiently small ¢ w > 0 and w/w, € II, so it is easy to see that y can be represented as

a linear combination of the # and w/wy, i.e. y € span(Il). &

The relationship between this proposition and the securities markets is as follows. If markets
are dynamically complete then at each node of the event tree describing the economy there must
be available for trading as many linearly independent securities as branches leaving the node,
and the dimension of the linear span of II is one — i.e., there is a unique state price vector. Each
column of X corresponds to one investment opportunity or security at one node, so if there are
fewer linearly independent securities than branches at some nodes X will have fewer linearly
independent columns than in the complete markets case. If I count each “missing” linearly
independent security at each node as an unavailable market, the dimension of the linear span
of II, or dimX*, is equal to the number of unavailable markets plus one.

The 7 € II can be interpreted as Arrow-Debreu state prices, and the requirement that
7 = 1 says simply that the price of consumption at time 0 is one. These state prices comprise
a measure on §) such that when one integrates a security price SF over the intersection of the
current cell and any partition F; (s > t) with respect to this measure the integral is equal to
the current security price multiplied by the price of the current state. Letting A; denote an

element of Fy,

W(Ag)Stk(At) = Z 7F(A¢+J')St+j(At+J') Vit € {0,...,T—1}, V]E {1,...,T—t}.
Ay €F4,NA,
If the elements of X have been normalized by tle price of any security, or if the rate of return
on one of the securities is always zero, then the = € II may also be interpreted as probabilities.
In this case, for each A; € F; there is a security with unit current price and unit price in every

state next period, so the 7 indeed are probabilities. The set II will consist of the equivalent
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probability measures under which the securities prices are martingales. Letting @, be the new
probability measure given by m, @, is equivalent to the original measure because 7 > 0 and

the securities prices are martingales because

B(staan )= Y e 4 = S,
Acy j€Fe4NA: ¢
where S;* denotes the time ¢t normalized price of the k-th security. Normaiization is really
not necessary in this model because even if one does not normalize the securities prices one
can still treat m as a finite measure and define conditional measure in the way one defines
conditional probability. The sum of these conditional measures may not be one, but this is the
only difference.
Next, define the budget feasible set

B(y)={ce Rl |c>0,n(c—y) =0 Vr e I} (13)

The following theorem shows that the budget feasible set is identical to the set of feasible

consumption bundles.
Theorem 1 B(y) = C(y).

ProoF.Let D={ce Rl |IpeRM st.c—y=Xp}andlet E={ce RL |n(c—y)=0Vr €
I1}. I first show D = E.

(i) D C E. Consider ¢c € D. For m € II, I have 7X¢ = 0 giving us m(¢ — y) = 0. Therefore
ce k.

(ii) E ¢ D. From Proposition 1, E = {c € R | 7(c — y) = 0 Vr € X*}. Thus there exists a
vector ¢ € RM such that ¢ — y = X¢.

Together, (i) and (ii) yield D = E. Finally, I have B(y) = En{ceRl|c>0} = Dn
{ceRl|c>0}=C(y). N

Theorem 1 provides a complete characterization of the feasible consumption set when mar-
kets are incomplete. It allows one to see exactly how the incomplete markets case differs from
the complete markets case where the feasible consumption set can be defined by a single budget
constraint. This characterization of the budget feasible set is not yet useful for characterizing
optimal policies or for computation because B(y) is defined by infinitely many constraints. A
more useful characterization of the set of feasible consumption bundles follows.

Define T = {r € RL | 7X = 0,7 > 0,m = 1} = cl(I1). The set I is a closed, bounded
(convex) polyhedron contained in X+, and therefore is generated by (or is the convex hull of)
finitely many extreme points. If I define II® = {r | 7 is an extreme point of 1} it is clear from

the discussion in Section 7.2 of Schrijver (1986) that the following lemma is true.
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Lemma 1 II = conv.hull(IT¢).
Define
Bé(y)={ce R |c>0,7(c—y) =0Vr eI}
Then
Corollary 1 B¢(y) = B(y).

PROOF. From lemma 1, it is easy to see that B*(y) = {c € RL |¢ > 0,7(c~y) =0Vr € T} =
{ceRl|c>0,m(c—y)=0Vrecl(ll)} = B(y). 1

This is one of the key results of the essay. The characterization of the set of feasible consumption
bundles in terms of finitely many constraints involving the extreme points of II allows one to
attack the problem
[ax u(c,p)

using the Lagrangian theory. Furthermore, the budget feasible set has a nice geometric inter-
pretation as a polyhedron defined by budget hyperplanes formed using the extreme points of
the set of state prices consistent with the absence of arbitrage. Section 6 consists of an example
which illustrates this approach.

For computational purposes, if the number of extreme points, &, of cl(I) is greater than
dim(X*), then k—~dim(X*) of the constraints 7(c ~y) = 0 will be redundant, and k—dim(X*)
of them can be omitted. In fact, one can perform maximization using dim(X<) constraints
of the form gi(c — y) = 0, for i = 1,...,dim(X*), where the ¢; are any dim(X*) linearly
independent vectors that lie in I or its affine hull. A set of dim(X*) extreme points of II form
a particularly convenient set, but any set may be used. This may make certain probhlems easier
computationally. Standard algorithms exist for generating a basis for the orthogonal space of
a matrix, and given a basis for X% it is easy to find dim(X*) points that lie in the affine hull
of II. For some problems it may be easier to use these algorithms than to generate the extreme

points of il.3

31f one uses the Householder method to construct the QR decompesition of X, X = QR, then the last L — M
columns of Q, say (¢™*!,...,¢%), will span the left null space of X (see, e.g., Golub and Van Loan, Section 6.2
(1983)). Given a basis for the left null space of X one can easily construct dim(II) lmeatly independent vectors
that lie in {r €RL | xX =0, x = 1}. Consider the ¢',i € {M+1,...,L}, such that g; # 0. (Note that at least
one of the ¢* must have a nonzero first component, for if g§ = 0 Vi then {reRt |xX=0,m = 1} =@, which
contradicts Proposition 1.) Normahze these so that t.he first components are equal to one, ie., defineg =g¢ /q1
Pick any one of these 7' q say 3", and construct ¢ = §* — 7 for those vectors with ga#0,ie{M+1,..., L},
i#k Thenlet ¢ =¢'if g} =0,i€ {M +1,...,L}. Consider the space given by

-k

7 + Z ai?,

i€{M4+1,..,L}
i#k

where 2.. ai = 0. This space is the affine hull of I. That is, it is exactly {x € R | X =0, x; = 1}.
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4.2 Short-sale Constraints

It is straightforward to extend the approach to include short sale constraints on some of the
securities. The arguments are either identical to or slight generalizations of those in the previous
section. In this formulation short sale constraints (or restrictions on long positions) appear in
the form of inequality constraints on the components of ¢, i.e. ¢; > 0 or ¢; < 0. A short-sale
constraint on one security will invoive constraints on more than one of the elements of . In
particular, if a security is available for trading at k different dates and states and it may never
be sold short, then k of the ¢; are constrained to be greater than or equal to zero.

Rearrange the rows of X, and the components of ¢, ¢ and y so that

2
pY=1®s )
Pt
X=(Xr X, X:),

with ¢, > 0, ¢, < 0, and ¢; unconstrained. Define

Ci(y) ={ce RL1e>0,3pst.c=Xp+y,0r> 0,0, < 0}.
Also define
M = {re Rt |7>0,7X, <0,7X, >0,7X;=0,m =1}
and
Bi(y)={ceRl|c>0,m(c-y)=0V¥rell, n(c—y)<0Vrell\II}.

Similar to the intepretation of II, one can establish the following relationship between the lack

of arbitrage opportunites and II;.

Proposition 2 If there are no arbitrage opportunities for dynamic trading strategies satisfying

@r > 0 and p, < 0 then II; is non-empty.

PRroOF. Motzkin’s Transposition Theorem [Schrijver {1986), Corollary 7.1k] implies that there
is a vector # with # > 0, #X; < 0, #X, > 0 and #X; = 0 if and only if X¢ > 0 implies
X =0, where ¢, > 0 and ¢, < 0. If one normalizes # so that its first component 7; = 1 the

normalized vector 7 will be an element of II.

Similar to the incomplete markets case, I want to show that Ci(y) = B1(y).

Theorem 2 B;(y) = Ci(y).
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Proor.Let D = {c € RL | I psit. o, > 0,00, < 0,c = Xo+y} and let E = {c € R |
m(c—y)=0Vr €I, m(c—y) <0 Vr €Il \ II}. Similar to the proof of Theorem 1, I only
need to show D = E. D C FE is obvious, so I only have to show F C D.

Since II C II;, Theorem 1 implies that there exists a vector ¢ such that ¢ — y = X¢. I first
claim that ¢, > 0. If this is not true, one may assume for simplicity that the first component
of ¢r, 1, is strictly negative. Find a vector z such that zX; # 0 and 2X* = 0, where X; is
the first column of X and X! is the submatrix of X formed by removing X; from X. (Such a
vector z always exists because the lack of arbitrage opportunities implies that Il is non-empty.)
Now, choose a vector 7 € II and a sufficiently small real number € such that 7, = 7 + €z > 0
and m¢X; < 0 and 7. X! = 0. Let &, be a normalization of 7 such that #, = /7 € II;. I find
that #(c — y) = 7 X101 > 0, a clear contradiction. Therefore ¢, > 0, and similarly ¢, < 0.

What is interesting here is that with short-sale restrictions, the set II; consists not only
of the equivalent measures under which securities prices are martingales, but also those under
which the prices of the securities for which short-sale is restricted are supermartingales. This is
similar to the supermartingale result of Dybvig and Ross (1986). An intuition for the result is as
follows. If a security price follows a supermartingale with non-zero expected change, then that
security is “overpriced,” and offers an apparent arbitrage opportunity. However, if short-sales
are not possible the opportunity cannot be exploited and nothing precludes the security price
from following a supermartingale.

Next define

M ={re®"|r>0,7X, <0,7X, > 0,7X, = 0,m = 1}.

The set 11, is a closed, bounded (convex) polyhedron and is generated by finitely many extreme

points. Let II denote the set of extreme points of II;. Define
Bi(y)={ceRl|c>0,m(c—y)=0Vrell®, r(c—y)<OVr € 5 }.

Then, similar to the incomplete markets case, I have

Corollary 2 B;(y) = B§(y).

Proor. Identical to the proof of Corollary 1. 1§

This corollary allows us to attack the problem

max u(c,
c€B5(y) (e,)
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using the Lagrangian theory. Theorems 1 and 2 and Corollaries 1 and 2 combine incomplete
markets and short-sale restrictions in a very general way and show how a dynamic consump-
tion and portfolio problem can be solved as a static maximization problem with finitely many

equality and inequality constraints.

4.3 Generating Extreme Points

As the last step in characterizing the feasible consumption set I consider how to generate the
extreme points of Il and II; in order to form the budget constraints.! In general it can be
difficult to generate the extreme points of an arbitrary polyhedron. However, the event tree
information structure gives the payoff matrix X a special structure that considerably simplifies
the task of generating the extreme points. I need the following proposition which follows from

Theorem 8.4 in Schrijver (1986) and the discussion immediately following that theorem.

Proposition 3 Let 7 be a vector in RE, let A and B be matrices, let b be a vector, and let
P be the bounded (convex) polyhedron defined by the system wA > 0, 7B = b. A point n¢ is
an extreme point of P if and only if n° € P and 7° satisfies nB = b along with L — rank(B)

linearly independent equations from the subsystem 1A = 0.

Let

- (3)

where J is L X (L — 1) and [ is an (L — 1) x (L — 1) identity matrix, and let X = (z X)),

where zT = (1 0 ... 0). One can see that II is defined by
nJ > 0,
X = 2

Set up a system of the form
TZ = (ZTao)’

where Z is a matrix formed from the columnrs of X and L-rank(X) columns from J. This
is essentially constraining L—rank(X) of the elements of 7 to equal zero and solving for the
remaining elements such that 7X = 0. Applying the above proposition with A = J, B = X,

and b = z7, one sees that any solution # of the above system is a candidate extreme point. If

* As indicated in Section 4.1, when there are no short-sale constraints one can form the budget constraints by
using dim(X*) vectors that lie in the affine hull of II.
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# € II then it is an extreme point; otherwise it is not and it is discarded. One can continue this
procedure until one has formed all possible matrices Z.

One could apply this proposition directly to the entire system in order to generate the
extreme points of II. However, this would not exploit the special structure of the event tree
and the payoff matrix X. Instead, I use this proposition to generate the extreme points of the
sets of conditional state prices at the price subsystems at each node of the event tree, and then
combine these conditional state prices in the obvious fashion. The following proposition shows

how this can be done.

Proposition 4 The set of extreme points for the whole price system II° can be generated
through multiplications of the extreme points of the price subsystems at each node of the event
tree. That is, the extreme points of the price subsystems can be interpreted as conditional prob-
abilities (or measures), and they can be used to define the probabilities (or measures) for each
node using the rule P(AN B) = P(B|A)P(A).

ProOF. I only sketch the basic idea. Suppose one has an extreme point 7 for the whole price
system. Take any sub-tree, and project m to the price subsystem associated with this sub-
tree. One obtains either a zero probability at the node that generates this tree or a positive
probability. In the latter case, I claim that the projection defines an extreme point for the sub-
tree. If this is not true, the projection can be written as a convex combination of two different
points of the subsystem. This in turn defines two different points in I which have the property
that 7 can be represented as a convex combination of these two points. This contradicts the
assumption that 7 is an extreme point.

Conversely, any point 7 generated from the extreme points of the subsystems through multi-
plications must be an extreme point of the whole system, for otherwise it could be represented
as a convex combination of two different points in II. The projection of 7 on any sub-tree
(which is either zero or an extreme point for the subsystem by assumption) could be written as
a convex combination of the projection of the other two points. The projection of the other two
points must differ on at least one sub-tree. This violates the assumption that = is generated

from extreme points of the subsystems through multiplications. 8

With this procedure, the problem of finding the extreme points of a polyhedron is reduced to
a series of comparatively simple problems that involve finding the extreme points at each node
of the event tree. The solution for 7 can then be obtained by the appropriate multiplications of
the solutions of these smaller problems. This procedure is illustrated in the example in Section
6.

A similar procedure can be employed for the extreme points of II;. The polyhedron TI; is

defined by the systems
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where J, X; and z correspond to the J, X, and 2 defined earlier. By Proposition 3 one can

find the extreme points of this polyhedron by forming a system
7Z =0,

where Z is an L x L matrix formed from the columns of X; and L—rank(X,) linearly independent
columns taken from J, X, and X,. The solution # of this system is a candidate extreme point.
If # € T;, # is an extreme point, otherwise one discards it. Again, one continues this procedure
until one has formed all possible matrices Z.

Just as before, the actual computation of the extreme points is simplified by the fact that the
matrix X has a special structure and the extreme points of the whole system can be obtained

through multiplications of the extreme points of the price subsystems at each node.

5 Solution of the Optimization Problem

Given the characterization of the feasible set, the agent’s problem (11) becomes

max u(c, p) (14)
subject to the constraints
c > 0, (15)
m(c—y) = 0 Vrell, (16)
mc—y) < 0 Vrell. (17)

The 7 € II{ and the w € II° are the extreme points of the sets
M={reRl|r>0, 17X, <0, 7X, >0, 71X, =0, m =1}
and
M={reRl|r>0, 71X =0, m =1}.
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The problem (14)—(17) is a nonlinear program subject to linear inequality and equality con-
straints and can be solved using standard algorithms (see, for example, Gill, Murray, and Wright
(1981) and Fletcher (1981)).

A useful characterization of the solution of the static problem (14)—(17) can be obtained
irom a simple manipulation of the first order conditions. The solution of (14)-(17) will satisfy

a system of equations

u(e,p)—m = P ANaf  i=1,...,L, (18)
(c—y) = ;]_l r=1,...,7, (19)
(c—y) < 0 r=7+1,...,R, (20)

¢ >0 i=1,..,1L, (21)

where the extreme points associated with the constraints (16) and (17) are indexed using the
integers 1,..., R, the 7; are the Lagrange multipliers of the constraints ¢; > 0, and the A" are

the Lagrange multipliers of the constraints 7"(¢ — y) < 0. We can rewrite (18) as

9 k .
6—c:u(c,p)—1;;=/\2ar1r{ i=1,...,L, (22)

r=1
where R | @, = 1, o, > 0. Examining (22), one can see that this is one of the first order
conditions of a problem with one budget constraint formed using a convex combination of the
extreme points. The particular convex combination depends upon the utility function. That
is, at the solution it is as though there were complete markets, where the Arrow-Debreu state
price vector depends on the utility function.

This characterization of the solution is very simple. The unique state price vector is just a
separating hyperplane. (The budget feasible set B(y) and the upper contour sets of the utility
function are convex sets.) However, the characterization, while not very deep, is useful.®

Associated with this single Arrow-Debreu state price are, at every node, conditional state
prices for consumption at the nodes next period. For utility functions of the HARA class, the
conditional state prices are the same at every node when the uncertainty in the prices of the
securities is multiplicative, there is a bond, and the investment opportunity set is constart
(and there are no binding short-sale constraints or non-negativity constraints on consumption).
Further, the single Arrow-Debreu price for the whole system can be recovered by multiplying
together the conditional state prices as in Proposition 4. Since the conditional state prices

are the same at every node, one can recover the price for the whole system by solving only a

®This characterization in terms of a single state price also motivated some of the research in the continuous
time case [He and Pearson (1989)}.
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one-period problem. Once one has obtained the single Arrow-Debreu price for the whole system
it is easy to calculate the optimal consumption and portfolio policies.

A direct proof of the claim that the conditional state prices are the same at all nodes is
both cumbersome and tedious, for it involves writing out all of the first order conditions for
the static problem with budget constraints formed using the elements of II° and recognizing
certain symmetries. However, it is easy to see why the claim should be true. It is well known
that in the setting described above the proportion of the agent’s risky asset portfolio invested
in each of the risky securities is independent of wealth (e.g., Hakansson (1970); see also Merton
(1971)). Hence the optimal proportions will not depend on the current node. But the portfolio
choices can be the same at all nodes only if the conditional state prices are the same at all

nodes.

5.1 Implementing an optimal solution.

Once an optimal consumption bundle is found, the remaining issue is how to implement it
through a dynamic trading strategy, i.e., how to solve explicitly for ¢. From the equality
¢ —y = X it is clear that one can solve for ¢ in terms of ¢ — y and the elements of X.
This turns out to be fairly simple to do. Working backwards, given the optimal consumption
pattern at date T one determines the trading strategy for each node at time 7" — 1 and the
wealth level required to carry out this strategy. This requires only that one solve a system of
linear equations. After finding the wealth required at each node at time 7' — 1 and adding the
time T — 1 consumption at that node one can determine the trading strategies for each of the
nodes at T — 2 and the wealth levels required at these nodes. Repeating the procedure T times
gives the trading strategies for all dates and nodes. This procedure is illustrated in the example

in Section 6.

5.2 Cormputational considerations

In formulation the agent’s original problem in this paper (11) becomes the static problem (14)-
(17), which can be solved using standard nonlinear programming algorithms. An alternative
formulation cf the problem is due to Breeden (1987). Breeden also considers the intertemporal
consumption and portfolio problem (11), uses the relationship ¢ = X ¢ + y to eliminate ¢, and

solves

max u(X¢ +y,p) (23)

subject to

¢ 2 0, (24)
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Xe+y > 0. (25)

This is also a nonlinear program subject to linear inequality and equality constraints and can be
solved using standard algorithms. Dynamic programming is yet another alternative for solving
the original problem if the agent’s preferences have an expected utility representation.

Breeden (1987) discusses why his approach is better for computation than dynamic program-
ming when the agent has a time additive state independent utility function, and his discussion
also applies to the static problem (14)-(17). The computational inefficiency of dynamic pro-
gramming stems from the fact that computing optimal policies using dynamic programming
requires that at each node one compute the optimal policies for all possible levels of wealth,
including those that will never be realized at the node. The relative superiority of the static
formulations is even greater when the agent’s utility function is not time additive (or more
generally of the linear Koopmans aggregator type discussed by Bergman (1985)). For utility
functions in this class optimal policies depend upon wealth but not upon past consumption
histories. In general optimal policies depend upon past consumption histories as well as wealth,
and computing optimal policies using dynamic programming requires that at each node one
compute the optimal policies for all possible levels of wealth and past consumption histories.
This may involve computing optimal policies for all possible realizations of a high dimensional
random variable, and Breeden’s discussion of the computational inefficiency of dynamic pro-
gramming applies with even more force.

If the agent’s preferences do not have an expected utility representation dynamic program-
ming cannot be used to compute optimal policies and the static formulations of this essay and
Breeden are the only way to compute optimal intertemporal consumption and portfolio policies.

In general, there is little that can be said about the relative merits of the two static formu-
lations, Breeden’s (23)-(25) and the one of this paper (14)—(17). Computational efficiency is
likely to be problem, data, and algorithm-dependent. However, the formulation in this paper
is superior for additively separable utility functions, a class which includes the utility functions
most commonly used in finance.

If the agent’s utility is additively separable, the objective function (14) will be of the form

L
u(e,p) = u(er) + Y pin(ci), (26)

=2
which is additively separable in the variables ¢;. The objective function in Breeden’s formulation

is

L
wXp+y,p) = u(zre+31) + Y piu(zio + i), (27)

1=2
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where z; denotes the i-th row of the matrix X and y; denotes the :-th component of the vector
y. Even though the agent’s utility is additively separable in consumption, the objective function
is not additively separable in the variables ; over which maximization is to be performed. This
lack of additive separability, compared to the additive separability in the ¢; in the formulation
in this paper, makes the latter approach preferred for computation.

The problem (14)-(17) with an additively separable utility function is a separable program-
ming problem (see, e.g., Walsh (1975), p. 5). General nonlinear programming algorithms tend
to be more efficient when applied to such problems.® More importantly, special methods are
available for the solution of such problems (see, e.g., Hadley (1964) and Beale (1970); a more
recent algorithm suited for such problems is described in Fourer (1986)). In essence, these
methods reduce the nonlinear programming problem to an approximating linear programming
problem via piecewise linear approximations of the nonlinear functions. One can see the basic
idea with a simple example.

Take the objective function (26), and construct a piecewise linear approximation of each of
the L component functions u(c;).” This is shown in Figure 3, where each of the linear segments

has the indicated slope df The agent’s problem (14)—(17) becomes

[(dl 161) + Ep, dle1 + d282 + d3e3)]

& ,e' ,e 1=2

s.t.

G = e}+e?+e‘?, i=1,...,L,
0 < el<M}! i=1,...,L,
0 < e¢<M? i=1,...,L,
0 < <M} i=1,...,L,
c > 0,
m(c-y) < 0 Vrell,
m(c—-y) = 0 Vrell®

Since each of the u(c;) is concave, one has d} > d? > d3, implying that the variable e} is
preferred to e? and the variable e? is preferred to e3. Thus, at optimality one is assured that

e? > 0 implies e! = M} and €? > 0 implies e? = M?.

% A limited set of computational experiments using an algorithm for general nonlinear programming problems,
subroutine E04VCF from the NAG FORTRAN Library — Mark 11 [Numerical Algorithms Group Limited (1982)],
confirmed that this is true for power and exponential utility functions in a simple example.

"This discussion is drawn from an example in Shapiro (1979).
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Approximation of the objective function

Each component of the objective function in an additively separable programming problem may
be approximated by a piecewise linear function.
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This approximating linear program is much easier to solve than the original nonlinear pro-

gram. While it only yields approximate solutions, more accurate approximations can be ob-
tained by repeated solution using finer approximations in the regions surrounding the solutions
of the previous approximations. The relative efficiency of this approach is of no importance
in small examples, but is likely to be of importance in problems of large enough size to be of

practical interest.

6 An Example

The economy has three dates t = 0,1,2 and the following partitions of Q: Fop = Q, F} =
{{w1,ws,ws}, {wy,ws,ws}, {wr,ws,ws}}, and Fp = {wy,wz,ws,wsy,ws,ws,wr,ws,wy}. There are
two securities, a riskless bond with price §? = 1 for t = 0,1,2, and a risky security with prices
55(Q) = 15 Si({wr,w2,w3}) = 2, S}({ws,ws,we}) = 1, Sj({wr,ws,we}) = 1/2; S}(w1) = 4,
S(ws) = 2, SHws) = 1, Sh(ws) = 2, Shws) = 1, Shwe) = 1/2, Sh(wr) = 1, Sh(ws) = 1/2,
and S3(wg) = 1/4. This securities price process can be represented by the event tree shown in
Figure 4.

Using the convention for allocating the components of 7, ¢, and y to the various events,

T = (7(Q), r({w1,w2,w3}), T({ws, ws,we}), T({wr, ws,ws}),

m(w1), T(w2), 7(w3), T(wa), T(ws ), T(ws), T(w7), T(ws), T(ws)) ,

¢ = (¢(Q), c({wr,w2,w3}), c({ws,ws,we}), c({wr,ws, wo }),

e(wr )a c(“’?)v ¢(ws), c(wa), c(w5)7 ¢(ws), c(w7)’ c(wS)’ c(w9))’ )

and similarly for y. The matrix X is

(-1 -1 0 0 0 0 0 0
2 1 2 -1 0 0 0 0
1 1 0 0 -1 -1 0 0
5 1 0 0 0 0 -5 1
0O 0 4 1 0 0 0 0
0 0 2 1 0 0 0 0

X=|{0 0 1 1 0 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 1 1 0 0
0o 0 0 0 5 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 5 1
\0 0 0 0 0 0 25 1)

N
S



— w1 ——(1,4)

—(1a2) w2 (112)

_w3_(1’1)

|—w4 _— (1,2)
(1,1) /—(1,1) ws — (1,1)

|—we—-—(1,1/2)

w7 —(1,1)

L (1,1/2) ——ws —(1,1/2)

wg —(1,1/4)

Figure 4

Event tree representation of the securities price process

The two components of the ordered pairs indicate the prices of the riskless and risky securities,
respectively.

The first step is to find the extreme points of II.

The matrix Z consists of X along with four columns taken from J. The columns from J
have the effect of constraining certain elements of 7 to equal zero. Any = such that 7.X = 0
and 71 = 1 can be written

s Te 7 T8 9 mi0 1 T12 T13
7 = {1,m2, 3, Mg, Mg —, My ——, Mp—, W3——, M3 —, M3 ~——, Ty ——, Tg——, T4— }. (28)
mp Wy W W3 W3 3 Ty T4 T4

The components 72,73, T4 satisfy the equations

-1 -1

1 o T3 T4 2 1 _

(1 Ty T3 7r4) 1 1 =(0 0), (29)
05 1

along with a constraint requiring that one of the 7; equal zero arising from one of the columns

of J. The components 75/72, /72, 77 /72 satisfy the equations
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-2 -1

1 7/ / 4 1] _
] FE R *

1 1

along with a constraint requiring that one of the terms % equal zero. The values of 75, ms,

and 77 are obtained from the obvious multiplications. Similar equations hold for the other
components of 7.

Solving these equations amounts to finding the extreme points for the price subsystems at
each node of the event tree in Figure 4. It is easy to see that (0,1,1) and (1/3,0,2/3) are the
only two extreme points that satisfy (29). Similarly, (0,1,0) and (1/3,0,2/3) are the only two
extreme points that satisfy (30), and one finds the same two extreme points for the other two
subsystems.

Now one finds the elenients of II¢, the extreme points of the closure of the set of equivalent
measures for the whole price system, by multiplying together the extrenie points of the subsys-
tems as one would usualiy do for conditional probabilities; how to do this is clear from equation
(28). One obtains

(/1 1 1 1 1 1 \
/0\ (0\ (1/3\ (1/3\ (1/3\ (1/3\
1 1 0 0 0 0
0 0 2/3| [2/3] |2/3] |2/3
0 0 0 1/9 1/9 0
0 0 1/3 0 0 1/3

me={fol,l o |,| o l.l29],1290.,] 0 (3.
ol |1/3 0 0 0 0
1 0 0 0 0 0
of {2/3 0 0 0 0
0 0 0 2/9 0 2/9
0 0 2/3 0 2/3 0
(\o/ \o/ \o/) \a9/ \ 0/ \49/]

These six extreme points are not linearly independent and any five of them may be used to
define the constraints in the maximization problem.

The nonzero components of these extreme points may be interpreted as the prices of con-
sumption in the various states. For example, the least costly way to obtain an additional unit
of consumption in the state {w;,w2,w3} without decreasing consumption in any state is to take
a long position in 2/3 share of the risky security and a short position in 1/3 unit of the riskless
bond. This position yields 1 unit of consumption in the state {w;,w2,w3} and 1/2 unit of con-
sumption in the state {w;,w2,w3}. Entering this position costs 1/3 unit of current consumption,

and 7} = 7"({w1,ws,ws}) = 1/3 for the extreme points with 73 # 0 (here 7" denotes the r-th
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element of I1¢). This set of transactions is also the cheapest way to obtain consumption in the
state {wy,ws,ws}, and 7} = 7" ({w7,ws,we}) = 2/3 for the extreme points with 7} # 0.

With the extreme points one can now solve the static utility maximization problem and
determine the optimal consumption bundle. If all outcomes are equally likely and that the

consumer has log utility and an endowment of 10 now and zero in both future periods the

problem is
4 13
max [loch +1/3) logei+1/9) log c.-]
=2 i=5
subject to

e =10 forr=1,...,5.

Here the first five elements of II® are used to define B(y). The optimal consumption plan is

c=(35,5,35,25,75,5,32 5,35 22 32 21 1)),
3 3 2 2 4 3 2 4 2 8

Given the optimal consumption plan one works backward to determine the trading strate-
gies. For example, at the node {w;,w;,ws}, the trading strategy satisfies the (overdetermined)

system

P ({wr,wz,ws}) + 49 ({wr,w2,w3}) = 7-,
@ ({wr,w2,ws}) + 20" ({wr,w2,ws}) = 5,
¢0({wlaw21w3})+991({“’1,“2,“’3}) = 3-,

where ¢!({w;,w2,ws3}) denotes the number of units of the risky security o hold at node

{wi,w2,w3} and @°({w1,w2,w3}) denotes the number of units of the bond. Solving these,

P {wr,wa,w3}) = 2-,

o ({wr,wa,w3}) = 1-.

The total cost at {w),ws,ws} is then °({wy,w2,w3}) + 2! ({w),w2,w3}) = 5. Performing the

calculations at the other nodes in the obvious way yields
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0 1,1 .2 1
3-,2-,1-,1-),
‘P ( 3’ 2, 3, 4)

2 1 2 1
1 (1;,1;,1;,2;),

€
Il

where ¢° = (¢°%(Q), ¥°({w1,w2,w3}), P°({wa, ws,we}), ¥ ({w7,ws,we})) and ¢ is defined anal-
ogously.

7 Conclusion

In this essay I show how the martingale approach can be used to determine optimal intertempo-
ral consumption and portfolio policies in 2 general finite dimensional economy with incomplete
markets and short-sale constraints. When markets are incomplete the feasible consumption
bundles satisfy budget constraints formed using all Arrow-Debreu state prices consistent with
the absence of arbitrage. The set of feasible consumption bundles is identical to the budget
feasible set defined by the budget constraints formed using the extreme points of the closure of
the set of state prices consistent with no arbitrage. This result makes the martingale approach
useful even when markets are incomplete and there are infinitely many Arrow-Debreu state
prices or equivalent measures consistent with the absence of arbitrage.

When there are short-sale constraints securities prices must be super-martingales under
the set of Arrow-Debreu state prices or equivalent measures consistent with the absence of
arbitrage, and the feasible consumption bundles must satisfy budget constraints formed using
all of these state prices. In this case I also show that this set of feasible consumption bundles
may be defined using only budget constraints formed from the extreme points of the set of state
prices consistent with no arbitrage.

This approach to the consumption-portfolio problem is very convenient for computation.
It also provides an alternative approach to obtain the optimal consumption policies for time-
additive, state-independent, utility functions of the HARA class (with no nonnegativity restric-
tions on consumption) when there is a constant investment opportunity set and there are no
short-sale constraints.

All of the results of course apply only to the discrete time finite dimensional case. How
the martingale approach can be useful in the infinite dimensional continuous time case with

incomplete markets and short-sale constraints is the subject of another paper, He and Pearson
(1989).

Appendix

This appendix studies the budget feasible set when the agent may discard the consumption
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good. I start with incomplete markets and no restrictions on short-sales, and then consider the

problem when short-sales are restricted.

Incomplete markets

I again use C(y) to denote the set of feasible consumption bundles, and have

Cly)={ceRl|c>0,Ipe RM st.c < Xp+y}.

Again, it is easy to see that C(y) is identical to the set of feasible consumption bundles in a
dynamic orogramming formulation of the consumption and portfolio problem.

In this case I define the budget feasible set
B(y)={ce R |c>0,r(c-y) <0Vrell}).
I need the following variant of Farkas’ Lemma to show that B(y) = C(y).

Lemma 2 Let A be a m X n matriz and let b be an m—vector. Then the system of linear

inequalities Az < b has a solution z iff wb > 0 for each row vector w > 0 with wA = 0.

Proor. Schrijver, Corollary 7.1e. 1

With this lerama I can now prove a theorem that corresponds to Theorem (2) above, i.e. I can

prove that the budget feasible set is identical to the set of feasible consumption bundles.
Theorem 3 B(y) = C(y).

Proor.Let D= {c|Jp e RM st. c—y < Xy} and let E = {c | 7(c—y) <0, Vr € T I
first show D = E.
(i) D c E. Consider ¢ € D. For w € II, I have rX¢ = 0 giving us (¢ — y) < 0. Therefore
ceFE.
(ii) E € D. Consider ¢ € E. Clearly m(y — c) > 0 Vr € II. Using the above lemma with
—X =A,7r=w,and y —c=bIhave that —X¢ < y ~ ¢ has a solution for ¢, i.e. c—y < X¢
has a solution ¢. Therefore ¢ € D.

Together, (i) and (ii) yield D = E. Finally, L have B(y) = En{c|¢ >0} = DN{c|c> 0} =
Cy). 1

I also provide a more useful characterization of the set of feasible consumption bundles
corresponding to Corollary 1. First define IT = {r>20|7nX =0,m >0,m =1} = cl(II). As
above, conv.hull(IT¢) = TI.

Corollary 3 Defining B°(y) = {¢ 2 0| m(c — y) < 0 Vr € II°}, then B*(y) = B(y).
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PROOF. It is easy to see that B*(y) = {¢ 2 0| 7(c—y) <OVr €M} = {c> 0| m(c—y) <
0Vr ecl(ll)} = B(y). ©

Short-sale constraints
Define

Ci(y) ={c20]|3pst.c< Xp+uy,p 20,0, <0}.
Also define
I ={peRl|7>0,7X, <0,7X,>0,7X, = 0,m; = 1}
and
Bi(y)={c>20| n(c-y) <0Vrell,}.

Similar to the incomplete markets case, I want to show that C(y) = B;(y). To do this I need

the following lemma.

Lemma 3 Let A be a matriz, w be a row vector, and z and b be column vectors. Partition A
2y

sothat A=(A, A, Ai)andz= (z,) The system Az < b has a solution z with z, > 0,
2t

z; < 0 if and only if wb > 0 for each row vector w > 0 with wA, > 0, wA, <0, wA,; = 0.

ProoF. Define A" = (I A, -A, A -A;) and accordingly 2/, a column vector . Then
Az < b has a solution z with the desired properties iff A’2' = 0 has a solution 2’ > 0. A’z' = b
has a solution 2’ > 0 iff wb > 0 for each row vector w with wA’ > 0 [Schrijver, Corollary 7.1d).
But wA’ > 0 implies w > 0, wA, > 0, —wA, > 0, wA; > 0 and —wA,; > 0, which is equivalent
tow >0, wA, >0, wA; < and wi4; =0. |

I 'am now in a position to prove the equivalence of C;(y) and B;(y).
Theorem 4 B;(y) = Ci(y).

PrOOF. Let D={c|3pst. ¢, 20,90, <0,c< Xp+y}and E={c|m(c-y)<0Vr € I, }.
Similar to the proof of Theorem 3, I only need to show D = E. D C E is obvious, so I only
have to show E C D.

Consider ¢ € E. Clearly, 7(y—c) > 0 for all 7 € II;. Using the above lemma with A = - X,
w=m,b=y—cand z = ¢, [ have that —X¢ < y — ¢ has a solution ¢ with ¢, > 0, ¢, <0, or
equivalently, ¢ < X¢ + y has a solution for ¢ with the desired properties. Thereforec€ D. §

Next define
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M={r>0|7X,<0,7X,>0,7X; =0,m = 1}.

Let II$ denote the set of extreme points of 1I;. Define

Bi(y) = {c2 0| x(c—y) < 0Vre I},
Then similar to the incomplete markets case,
Corollary 4 B;(y) = B{(y).

PRroOF. Identical to the proof of Corollary 3. §

As above, this corollary allows one to attack the problem

using the Lagrangian theory, and the set of extreme points may be found as in Section 4.
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CHAPTER 2
AN EMPIRICAL EXAMINATION OF THE COX,
INGERSOLL, ROSS MODEL OF THE TERM STRUCTURE
OF INTEREST RATES USING THE METHOD
OF MAXIMUM LIKELITHOOD

Abstract We estimate the parameters of one and two-factor models of the term
structure of interest rates due to Cox, Ingersoll, and Ross (1985b) using the method
of maximum likelihood and present tests of the models. We recover the unobservable
state variables and exploit their conditional density in estimation and testing, and
use both the time-series and cross-sectional information in a sample of bonds that
includes coupon bonds. In an initial set of tests, we compare the basic CIR one-
factor model of the term structure (interpreted as a model of nominal bond prices) to
one of their two-factor models, and compare these to extended (translated) models.
We reject the one-factor model in favor of its translated variant, and also reject the
CIR one-factor models in favor of the translated two-factor model. However, the
fit of the models for long term bonds is relatively poor. We also nest these models
within a more general Markov model for yields and reject the restrictions implied
by the bond pricing models.

1 Introcduction

The term structure of interest rates, the function mapping time to maturity to the prices (or
yields) of default-free bonds, has long been of interest to economists. Qur contribution to this
voluminous literature is to propose and implement a method to estimate and test two of the
term structure models of Cox, Ingersoll, and Ross (CIR) (1985b) using the method of maximum
likelihood. The key to our approach is a method to recover the unobservable state variables.
This enables us to exploit their conditional density in estimation and testing, and to use both
the time-series and cross-sectional information in a sample of bonds that includes coupon bonds.
We compare the basic CIR one-factor model of the term structure (interpreted as a model of
nominal bond prices) to one of their two-factor models, and also compare these to extended
(translated) one and two-factor models. We also nest the bond pricing models within a general
Markov model for yields and test the restrictions implied by the bond pricing model. Our
approach can also be used to estimate and test a number of the “arbitrage” models of the term
structure that have appeared in the literature.

There are two motivations for this work. The first of these is very practical. The one and

two-factor CIR term structure models are potentialiy useful for practical purposes such as pric-
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ing options on bonds, hedging bond portfolios, and formulating dynamic trading strategies.!
To use the CIR models for these purposes, one needs reasonably precise estimates of the param-
eters. The first goal of this work is to provide an estimation technique that exploits both the
information in the conditional density of the state variables and the information in the prices of
long term (coupon) bonds. The second goal is to assess the performance of the models against
a more general alternative. In particular, we find that when we nest the bond pricing models
within a reneral Markov model for yields of discount bonds we reject the restrictions implied
by the bond pricing models.

The appeal of the CIR (1985b) models is that they provide closed form expressions for bond
prices and endogenous interest rate dynamics (and hence endogenous bond price dynamics)
that are supported by an underlying economic equilibrium. Also, interest rates in the CIR
models are guaranteed to be non-negative. An alternative “arbitrage” approach of Brennan
and Schwartz (1979, 1980, 1982), Dothan (1978), Oldfield and Rogalski (1987), Richard (1978),
Schaefer and Schwartz (1984), and Vasichek (1977) involves closing the bond pricing model
with an arbitrary assumption about the form of the risk premium investors require for bearing
interest rate risk. As pointed out by CIR (1985b), this arbitrage approach provides no way
of guaranteeing that the term structure so obtained is supported by any underlying economic
equilibrium.?

A difficulty in testing the underlying real model is that the underlying state variable, the
instantaneous riskless rate of interest, is not observable. This unobservability of the rate of
interest makes it difficult to exploit its known conditional density in estimation and testing.
For example, Gibbons and Ramaswamy (1986) used the steady state density of the interest
rate in their test of the CIR model, while Brown and Dybvig (1986) use neither the conditional
nor steady state densities in estimating the parameters of the model (interpreted as a model of
nominal bond prices). Similarly, in the two-factor nominal models the drift of the instantaneous
rate of inflation is also not observable.

In this paper we use the method of maximum likelihood to estimate one of the nominal
models in CIR (1985b) and perform several tests of the model. Qur procedure allows us to
recover the unobservable state variables, and hence enables us to exploit the known conditional
density of the state variables in estimation and testing. We also use the information contained in
the prices of a cross-section of bonds observed at each point in time. Our use of the conditional

density to extract information from a time series of bond prices combined with the cross-

1Of course, to use it for these purposes the one-factor model must be interpreted as a model of the prices of
nominal bonds.

*This is not to say that there is no such equilibrium. For example, Marsh (1980), Campbell (1986), and we
show that the arbitrage model of Vasicek (1977) is consistent with the CIR (1985a) framework. Also, while he
does not develop it in an equilibrium framework, the example for which Richard gives a closed form solution is
identical in most essentials to one of the two-factor models presented in CIR (1985b).
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sectional information in the prices of bonds observed at the same time is a strength of our
approach. Our procedure allows us separately to identify all of the parameters of the model,
and also to use the information in the prices of coupon bonds. Our use of the information
contained in the prices of coupon bonds potentially permits powerful tests of the model, because
the prices of long term bonds are relatively sensitive to the model parameters. We also apply
our procedure to the basic CIR one factor model of the term structure, but interpreted as a
model of nominal bond prices.

The tests of the model we offer a.e of two forms. We begin by nesting the one-factor CIR
(1985b) model within an cxtended (translated) model discussed in CIR (1985b) and Marsh
(1980). The extension is simply a translation of the interest rate process (corresponding to a
translation of the rates of return on the productive processes), and hence is of limited theoretical
interest. However, it provides a more flexible specification of a restrictive feature of the basic
CIR model, and hence admits a meaningful test of the model. The inflation rate process can
be extended in an identical fashion, providing a bivariate translated process and an extended
two-factor model.

3 can be obtained as special cases of the translated

Moreover, Ornstein-Uhlenbeck processes
processes. These processes (including their special cases) have served as the workhorse models
in the term structure literature,® and the bivariate translated process nests a number of the
stochastic processes for which closed form bond pricing formulas have been obtained.’> For
example, the extended model includes the models of Vasichek (1977), Schaefer and Schwartz
(1984), and Merton (1970), and all of the models in Oldfield and Rogalski (1987), as special
cases.

The first set of tests we perform involve using the likelihood ratio to test restrictions on the
translated two-factor model, i.e., to select among models for which tractable closed-form solu-
tions are available. We compare the one-factor models to the two-factor models, and compare
the basic CIR models to their translated variants. This set of tests addresses the question of
which of the tractable models best fits the data.

The set of tractable models does not exhaust the set of all possible models. Our second set of
tests addresses the overall performance of the CIR models by examining whether the restrictions
on the time series behavior of yields implied by the models are satisfied. In particular, we nest
the bond pricing models within a more general Markov model for yields on discount bonds and

test whether the restrictions implied by the model are satisfied.

3See Feller (1970), p. 335.

“See, e.g., Vasichek (1977), Schaefer and Schwartz (1984), Merton (1970), Marsh (1980), Ingersoll, Skelton,
and Weil (1978), and Oldfield and Rogalski (1987)).

®Exceptions include the two-factor nominal model in CIR (1985b) using the model of the price level that they
term “model one,” models in which multiple state variables follow correlated Ornstem-Uhlenbeck processes, and
the nonlinear general equilibrium model of Longstaff (1989).
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A recent test of certain implications of the CIR model is performed by Stambaugh (1988).5
One implication of the CIR model is that conditional expected holding period returns of discount
bonds should be related linearly to forward rates. If bond prices are described by a k-factor
model, conditional expected returns should be explained by k forward rates. This leads to a
straightforward test of the model when the data set includes enough discount bonds to compute
more than k£ implied forward rates. Stambaugh finds only weak evidence for more than two
factors. While Stambaugh’s approach is appealling and leads to a straightforward test of the
model, limitations are that it may only be applied to discount bonds, the underlying state
variables are neither identified nor recovered, and estimates of the parameters of the CIR
model are not obtained.

Estimates of (certain combinations of) the parameters of the basic one-factor CIR (1985b)
model, interpreted as a model of the prices of nominal bonds, are presented in Brown and
Dybvig (1986). Their approach is as follows. They first select a sample of U.S. Treasury issues
trading at a number of dates. The prices of these securities are functions of their maturity,
their coupon rates and dates, the parameters of the model, and the current instantaneous rate
of interest r. Let p(r) denote the observed price of a bond with maturity 7, and let P(¢,r,7)
denote the price as given by the CIR model when the interest rate is r, where ¢ = (¢1, @2, ¢3)',
$ = K+ A +202, ¢ = (k+ A+ ¢1)/2, and ¢3 = 2k0/0%. Brown and Dybvig write

P(r) = P(¢,7,7)+ € and estimate the parameter vector ¢;, ¢2, $3, 7 using nonlinear regression

techniques. Brown and Dybvig do not estimate the parameter vector , 02,8, A of the CIR model
because the the parameters k and A can:ot be identified separately using their procedure. The
source of the problem is that the risk premium A can only separately be identified using time-
series information, and Brown and Dybvig do not exploit this information.” Qur approach to
estimation makes use of both the time-series information contained in the distribution of the
riskless rate and the information in cross-sectional observations on bond prices, and permits us
separately to identify all of the parameters of the models.

Brown and Schaefer (1988) apply the approach of Brown and Dybvig to estimate the model
using U.K. government index linked securities.

Gibbons and Ramaswamy (1986) present a test of the CIR model of the prices of real bonds
that is robust to the specification of the price level process. They first calculate the ex-post

real yields to maturity of a sample of Treasury bills. Given these, the assumption in CIR

®Mellino (1986) reviews empirical work on traditional hypotheses about the term structure in the light of
current models. Campbell (1986), Mankiw (1986), and Fama (1984a, 1984b) are recent papers which present
empirical evidence bearing on the traditional theories. Roll (1970) has tested the pure expectations, liquidity
preference, and market segmentation theories, while Roll (1971) has constructed a mean-variance model in an
effort to explain the determinants of term premia.

"This observation is exactly analogous to the observation that the expected rate of return on a common stock
cannot be estimated from the prices of options observed at a single point in time.
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(1985b) that the price level process is independent of the real economy allows Gibbons and
Ramaswamy to estimate certain of the moments of the distribution of real yields on discount
bonds, and obtain the parameters of the underlying real model, using the generalized method
of moments (Hansen (1982)). The advantage of this approach is that it permits estimation of
the real model without any assumption about the price level process besides the independence
assumption made in CIR (1985b). A disadvantage is that this approach allows them to make
use only of moments of the steady state density of the interest rate. Further, their procedure
requires that they possess a sequence of observations on bonds with the same terms, i.e., the
same time to maturity and coupon rate. In practice, this restriction permits them to use only
the information contained in the prices of short term discount bonds. While Treasury notes
and bonds currently are issued on a regular cycle, different issues have different coupon rates,
only short term discount bonds have been widely traded for any length of time, and there
are not enough coupon bonds to construct the implied prices of pure discount bonds without
interpolation or extrapolation. The ability to use only short term bonds is a serious drawback,
because compared to longer term bonds, the prices of such bonds are relatively insensitive to
the model parameters.

Heston (1988) employs a similar estimation and testing strategy using the real holding
period returns of a sample of Treasury bills.

The relative merits of our appoach and that of Gibbons and Ramaswamy (1986) depend
upon how one views the tradeoff between efficiency and specification errors. Our approach
exploits the conditional density of the underlying state variables and makes use of the informa-
tion in the prices of coupon bonds. The tradeoff is that we need to model explicitly the price
level process. This requirement may impede testing of the underlying real model. However, we
accept this possibility in exchange for the advantages that our approach provides. Moreover, for
practical purposes such as hedging bond portfolics and formulating dynamic trading strategies
it is necessary to model explicitly the price level process.

The balance of the paper is organized as follows. In the next section we list the assumptions
and certain results of the CIR model, and derive the transiation of the basic CIR model discussed
in CIR (1985b) and Marsh (1980). We present the derivation of the translated model because it
appears that the existence of the extension is not well known.2 With this, we have a model that
nests a number of the closed form bond pricing formulas in the literature. Secticn 3 describes
the estimation methodology and the data set used in estimating the parameters of the models.
Our first set of tests in which we select among the tractable models is described in Section 4,

while we present the results bearing upon the overall performance of the models in Section 5.

8See, for example, Campbell (1986), where it is shown that the Vasichek (1977) model is consistent with a
special case of the CIR (1985a) asset pricing model. The Vasichek model is a special case of the translated model
discussed in Marsh (1980) and CIR (1985b) and derived here.
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We conclude in Section 6.

2 The Cox, Ingersoll, Ross Model

In this section we list the assumptions and certain results of the CIR model of the term structure
of interest rates, and present a simple translation of the basic CIR {(1985b) model discussed in
CIR and Marsh (1980). The extension is useful in testing the model, and may be of value in
applications. Furthermore, it nests as special cases a number of the bond pricing models for

which tractable closed form solutions for the bond price are known.?

2.1 The One-Factor Model

In developing a general theory of asset pricing with diffusion information, CIR (1985a) make

(among others) the following assumptions:
Al. There is a single physical good which may be allocated to consumption or investment.

A2. Production possibilities consist of a set of n linear activities. The returns to investments

7 in these activities are given by a system of stochastic differential equations of the form

dn(t) = La(Y, )dt + LG(Y, )W (1), (1)

where W(t) is an (n + k)-dimensional Brownian motion in ®*t*, Y is a k-dimensional vector of
state variables, I, is a n X n diagonal matrix valued function of 7 whose i-th diagonal element
is the i-th component of 5, a(Y,t) is an n-dimensional vector valued function of Y and ¢, and
G(Y,t) is an n X (n + k) matrix valued function of Y and t. The covariance matrix of physical

rates of return GG’ is positive definite.

A3. The movement of the k-dimensional vector of state variables, Y, is given by a system of

stochastic differential equations of the form
dY (t) = u(Y,t)dt + S(Y,t)dW (¢),

where u(Y,t) is a k-dimensional vector and S(Y,t) is a2 k X (n + k) dimensional matrix. The

covariance matrix of changes in the state variables, SS’, is non-negative definite.
4 4

A4. There is a market for instantaneous borrowing and lending at an interest rate r. The
market clearing interest rate, as a function of underlying variables, is determined as part of the

competitive equilibrium of the economy.

9Some models it does not subsume are listed in footnote 5.

43



A5. There are a fixed number of identical individvals, each of whom seeks to maximize an
objective function of the form E ft" U(C(s),Y(8), s)ds, where U is a von Neumann-Morgenstern

utility function.

A6. Physical investinent and trading in claims takes place continuously in time with no adjust-
ment or transactions costs.

CIR (1985a) show that the equilibrium interest rate can be written

r=a"a+ a"GG’a‘W(-{w) + a"G’S’a‘W(M),
Jw Jw
where a is the vector of the expected rates of return on the n linear activities, GG’ is the
covariance matrix of the rates of return, GS’ gives the covariances among the rates of return
on the linear activities and the changes in the state variables, J(W,Y) is the indirect utility
function, and a* represents the optimal proportion of wealth W to be invested in each of the
productive processes. CIR show
1-1(GG") a
1(GG'Y11

CIR also show that the price of any contingent claim satisfies a particular partial differential

a* = (GG")a + ( )(GG’)“I.

equation. We record a special case of this equation below.

CIR (1985b) specialize the model by assuming log utility, which gives _VK.-,!.EVL& = —1 and
mjlf”- =0, 50 r = a”a — a*’GG'a*. The partial differential equation satisfied by the price F
of any contingent claim the payouts of which do not depend on wealth becomes

LA k 1
3 ZZCOV(Y.‘,YJ')FY.-yj + ZFy,—(m + Wcov(W, Y)+F-rF+é=0,

i=1j=1 i=1
where 6 is the payout rate of the claim and cov(W, Y;) represents the local covariance of wealth
W and the state variable Y;.
CIR also assume that the means and covariances of the rates of return on the productive
processes are proportional to a single state variable Y. The development of the state variable

Y is described by a stochastic differential equation

dY (t) = (EY () + ()dt + v\[Y (t)dW (). (2)
where v is a 1 X (n + 1)-vector. Write QY = GG’ and &Y = a. Then a* = Q- 'a +

10=-12
—-—-—,—-‘;,10‘1 -2 12711 and

r(t) = (aa-a""Q7'a")Y(t) (3)

9 ta-1
(S )r o
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From (2) and (3), the interest rate r follows a “square root” diffusion process

dr(t) = (6 — r(t))dt + 01/r(8)dZa (). (4)

where Z;(t) is a linear combination of components of W(t). The factor risk premium is a*’GS’ =
a”TY = Ar, where GS’' = LY.
Given this, the fundamental equation for the value of a discount bend with maturity 7,

P(7), becomes

1/20%rPy + k(6 = 1)P, = ArP, — P, —rP =0

with boundary condition P(0) = 1. The solution to this partial differential equation with the
given boundary condition is given in CIR (1985b) as

P(r) = A(r)e 800", (5)

where

_ 2yelrHr+n)T/2 28/0*
40 = [oraae—niE] ©
B(r) = A=) ™
T (rAta)em—1)+27
¥ = ((x+A)?+207)2 (8)

The extension of the model is to assume that the means of the rates of return on the
productive processes are linear functions of a single state variable Y’ i.e., they are proportional
to Y’ plus a constant Y. The movement of the state variable Y’ is described by the stochastic

differential equation

dY'(t) = (EY'(t) + ¢)dt + v\ [Y'(t)dW (). 9)
Now writing QY = GG’ and &(Y’' +Y) = a, we obtain
'Qla -1\, 1’01\
Following CIR (1985b), we assume that 1’Q"'a > 1. The interest rate r can be written

- _ N-15 \s5
r=r'+ 7, where 7 = (}—,g—_,%) Y and r’ follows a square root process

dr'(t) = k(8 — r'(t))dt + o\/r'(t)dZ:(2). (11)
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If we maintain the assumption that the covariances among the rates of return on the n linear

activities and the state variable Y’ are proportional to Y/, and further assume that!®

116011
o =0 12

we again obtain a constant factor risk premium a*GS’ = a*’TY’ = Ar'. Given this, the equation

&IQ—I -

for the value of a discount bond becomes
1/20%' Popr + k(8 = ¥')Pyt = APy — P — (P' 4+ F)P = 0
with boundary condition P(0) = 1, and solution

P(r) = A(r)e B0, (13)

where

_ 278('7+A+5)1/2 2r6/0?
A(T) = [(7 FA+ n)(e"" — 1) n 27] ) (14)
B(r) = 2 — 1) (15)
T (AR -1)+27]
7 = ((x+ 2)?+ 2022, (16)

The formula is more flexible than the basic CIR model (5)-(8), and includes the basic CIR

formula as a special case when 7 = 0.!

2.2 The Two-Factor Model

CIR (1985b) extend their model to the pricing of nominal bonds in two ways, one of which (the
model of the price level they term “model 2”) is as follows. They suppose that the expected

rate of inflation y follows a process

dy(t) = wa(62 — y(1))dt + o21/y(1)dZs(2),

and the price level follows the process

dp(t) = y(O)p(t)dt + o,p(t)\[y(t)dZs(2),

%In this setting, equation (12) is equivalent to the assumption that the set of active technologies does not
change. It is admittedly a strong restriction or & and 2, and is discuased in the appendix.

11 The extended one-factor model can also be viewed as the original CIR one-factor model combired with a
constant inflation rate f.

46




with cov(y, p) = po20,yp.1? With this model of the price level the partial differential equation
for the real price N(7) of a nominal bond is

1/20%r N,y + 1/203yNyy + po20pypNy, + 02yp? Ny,
+(k8 — (k 4+ A)r)N; + K2(02 — )Ny + ypNp — N, =N =0

with boundary condition N(0) = 1/p(T"), where p(T') denotes the price level at the maturity of
the bond. The solution is (CIR (1985b))

N(r) = C(r)e”POWP(r)/p(t), a7
where
2t elé+n2tpo20p)7/2 2r262/03
¢ = | : (19)
(€ + K2 + pogop)(ef” — 1) + 2
2(ef7 — 1)(1 - 02)
D = P , 19
N oy A CIERER (19
£ = ((s2+p00,)” +205(1 - ) /2. (20)
We also use P(7) to denote the nominal bond price, and have
P(r) = N(7)p(). (21)

We can also translate the inflation rate process in the same way we translated the real model,
but do not do so here, or report results for a model with both state variable processes translated,
because the data do not permit us to distinguish the model with a translated inflation rate from
the model with only the real interest rate process translated.

The extended model, even though it admits negative nominal interest rates when ¥ < 0, has
a particularly interesting form. A restrictive feature of the basic one and two-factor CIR models
is that the local variance of the instantaneous real riskless interest rate is proportional to its
level, i.e., var(r) = o%r. The extended model weakens this assumption by allowing the local
variance of the instantaneous riskless rate of interest to be a linear function of the instantaneous

2r — 0*F. With the extended models, 7, rather than zero,

rate of interest, i.e., var(r) = o%r' = ¢
provides a lower bound for the first state variable.
To see why the translated model is of interest, consider the CIR square root process (4) for

7, and suppose that x is large. In this case, values of r close to zero are extremely unlikely; as

21n the results reported below we set o, = p = 0 because this restriction is never rejected by the data.
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 approaches zero, the diffusion coefficient o+/r approaches zero, and there is a strong upward
drift. In the translated process with ¥ < 0, while there is still a strong upward drift when r
approaches zero, the diffusion coefficient does not approach zero. This makes small values of r
much more likely. Put differently, for a given value of r, the conditional density for r in the basic
CIR model with ¥ = 0 assigns less probability to values of r near zero than does the density in
the translated model, holding constant «, the steady state mean § + 7, and the variance of the
steady state distribution of the interest rate.

This feature of the translated process turns out to be empirically relevant. In these models,
steep!3 upward sloping yield curves on some days, together with steep downward sloping yield
curves on others, are possible only if x (or x2) is large. Steeply upward sloping yield curves
occur when r is considerably below its long run mean 8 + 7, while downward sloping yield
curves occur when r sufficiently above its long run mean. If ¥ = O,Ithe extent to which r can be
below a fixed mean 8 4 7 is limited by the fact that 0 is a lower bound for r, and therefore the
steepness of the yield curve is limited. Moreover, values of r near zero are unlikely. If ¥ < 0, it
is possible to have steeper upward sloping yield curves for the same value of 8 + 7, and a curve
of a given steepness is much more likely. We find in the data a number of steep upward sloping
yield curves along with downward sloping yield curves, and when we constrain # = 0 we cannot
find a set of parameter values such that r(¢) and y(t) are both greater than zero for all times .

In short, we advance the extended model as an alternative not because we necessarily
believe that the variance of the instantaneous rate of interest is related linearly to the level of
the rate, though of course it may be, but because the extended model may provide a better
approximation to the true (presumably nonlinear) function, and a better approximation to the
conditional density of the state variables.

Morever, our translated model for the interest rate process includes Ornstein-Uhlenbeck

processes of the form

dr(t) = k(6 — r(t))dt + 6dZ,(2), (22)

as special cases. To see this, note that the process for the interest rate r in the translated model

can be written

dr(t) = dr'(t) = k(8 — v(t))dt + V(0?r(t) + 62)dZy(t),

where § = 6 + 7 and 62 = —0?F. Letting 0 — 0, ¥ = —00, and 8 — oo at rates such that
6 = 0 + 7 and 62 = —0?F are constant, in the limit we obtain an Ornstein-Uhlenbeck process

for the real interest rate r.

13For the purposes of this discussion, the “steepness” of the yield curve is measured by the difference in yields
of 3 and 6 month Treasury bills.
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To see what this limiting process implies about the underlying equilibrium model, write (1)
and (9) as

dn(t) = La&Y(t)dt+ IH\Y(t) - Y(t)dW (),
dY (t) = dY'(t) E(Y(2) = (Y = ¢/&))dt + v\/(Y (2) = Y (2))dW (2),

where Y(t) = Y'(t) +Y and H = {hi;} is an n x (n + k) matrix such that HVY’ = G.
Letting the h;; — 0, Y — —o0, v; — 0, and { — 0o at rates such that ~HH'Y, —»'Y, and

Y -¢/¢) = ¢ are constant, the processes become

dn(t) = I,,&Y(t)dt+I,,H\/—V(t)dW(t),
dY(t) = &Y (t) - {)dt + v\/-V(2)dW (2).

The equalities r = a”a — a”’GG'a" and a* = (GG')™! + (%%,G{l-;:—l) (GG")™1 yield (22),
and the factor risk premium is constant as in Vasichek’s model if a condition analogous to (12)
is imposed.

Hence, although it is not obvious from simple comparison of the bond pricing formulas, the
Vasichek (1977) model in which the instantaneous rate of interest follows an Ornstein-Uhlenbeck
process is a special case of the translated CIR model. Schaefer and Schwartz (1984) have a
model in which the two state variables follow an Ornstein-Uhlenbeck process and a square-root
process, respectively. While the state variables in their model have different interpretations
than the corresponding state variables in the CIR model, their approximate analytical solution
is identical to the translated two-factor bond pricing formula. Also, all of the interest rate
processes considered in Oldfield and Rogalski (1987) are special cases of ihe translated processes

here.

3 Estimation Approach and Data

We first present our estimation approach in the context of the basic one-factor CIR model
(interpreted as a model of nominal bond prices), and then extend our approach to the estimation
of the two-factor model. Once we have presented the approach for the two-factor CIR model,
the adaptation of the approach to the translated one and two-factor models, and for other
models of bond prices, should be clear.

When estimating the two-factor model, we do not explicitly link the expected rate of inflation
y and observations on the price level. That is, we do not make use of data on the price level

(CPI) and the conditional density for the price level in estimating the model. One reason for

49



not using price level data is that some of the price level data are collected in the middle of the
month, and are therefore not aligned with the bond price data, which are from the last business
day of the month. Appending an appropriate measurement error model to the price level data
might allow one to interpret the actual CPI data, measured at mid-month, as the end-of-month
price level plus a2 measurement error. However, appending a measurement error model to the
price level process effectively prevents one from learning about the price level process from the
CPI data.

Even were the data alignment not an issue, no analytic expression for the conditional joint
density of y and p is known. Obtaining the density via numerical solution of the backward
equation would involve a prohibitive amount of computation, as the backward equation is in
two space variables.

Due to the fact that our estimation procedure does not explicitly associate y with the price
level, we interpret our tests as tests of a “necessary condition” for the CIR model. That is, if
the CIR model is to hold when y and p are explicity associated with price level data, it must of
necessity hold when we do not link y and p with the price level data. Of course, the two-factor
model (17)—(20) may fit the bond price data, even though the estimated process for the price
level does not adequately describe the price level data.

Below we find it convenient to work with (negative of) the natural logarithms of the bond
prices instead of the prices themselves, and define Y(7;) = —In P(7;). Also, throughout most
of this section, the exposition is as though the data consists of the prices of bonds for cash
settlement. In actuality, the prices in our data set are quoted on the basis of settlement in
two business days (“skip-day” settlement). We indicate the appropriate adjustment for the

settlement terms at the end of the section.

3.1 The One-Factor Models

Our approach is constructed from two components. The first is the known conditional density
for the instantaneous rate of interest r. Using ry as an alternative notation for r(t), the density
for r, conditional on r¢, for s > t, is (CIR (1985b))

cumy (V)2 1/2
fru ) = e (2)" 2wy, (23)
where
2K
c = ,
02(1 - e-n(c—t))
u = ecre -,
v = cry,
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and I,(-) denotes the modified Bessel function of the first kind of order ¢.14

Given this conditional density for r, and the bond pricing function (5)—8), it is straightfor-
ward to obtain the density of the (negative) log price of a discount bond with maturity r; at
time s, Y,{71), conditional on the log price Y:(71) of a discount bond with maturity r; at time

t. We can recover the interest rate r, from the price of the bond, obtaining

r _ lnA(‘rl)—lnP,(rl)
' B(n1)
In A(7y) + Y,(11)
B(n)

The density for Y,(71) conditional on Yy(71) is

100 1 %) = ee= () Lty s @)
s\T1 t\T1)) = ce % q v B(T]),
where
= 2K
¢ = 02(1 - e-n(a-t))’
u = cre "o,
v = cry,
2x0
¢ = 51
o= In A(Tl) +Y¢(T1)
t B(Tl) [}
I In A(1) + Ye(11)
* B(m1) |

The term Fllf_:)' in (24) is the absolute value of the determinant of the Jacobian of the transfor-
mation from Y,(n;) to r,.

We can now use the method of maximum likelihood to take full advantage of the probability
distribution of the instantaneous interest rate r. As long as we are willing to interpret the basic
CIR one-factor model as a model of the prices of nominal bonds, the conditional density (24)

enables us to apply the method of maximum likelihood to a time series of observations {Y,(m1)}.

14See Oliver (1965) for the properties of the modified Bessel function.
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If we suppose that there are N observations available at times t;,t3,...,tN, the logarithm of
the likelihood function is

L(k,0°,8,))

In f(Ye;(11), Yo (11)s . -, Yen (71) | Yiy (1))

N
= lnH F(Ye,(n) | Y, (11))

=2

N
E In f(Yi;(11) | Ye;_y (1)),

=2

where the second equality follows from the fact that the process for the interest rate r is Markov.
However, at any instant of time this procedure makes use of only one point on the yield curve.
The information contained in the time series of this point is limited, and it seems unlikely that
it contains enough information to provide parameter estimates consistent with the entire yield
curve.

However, we can incorporate the information in a cross-section of bond prices observed at
each point in time using a statistical model for the prices of bonds. The second building block
of our approach is just such a statistical model. Suppose that at each point in time we observe
the prices of a sample of ! discount bonds and m — I coupon bonds. Letting P, (7;) denote
the observed price of 2 bond with maturity 7; at the i-th time ¢; and Py;(7;) denote the price
predicted by the CIR model, we write the observed prices of the discount bonds

Pu(r) = Pu(r)e™%, j=1,..,1, i=1,..,N. (25)
The properties of the residuals ¢, are specified below.
The price of a coupon bond is simply the price of a portfolio of discount bonds, i.e.,

H;

Q(rj) = Z c(rh)P(mn) + P(15), j=1+1,...,m,
h=1

where Q(7;) denotes the price of the coupon bond with maturity r;, the 74, h = 1,2,..., H;
are the times until the coupon payment dates, and ¢(7,) is the coupon paid at r,. We suppose

that the observed prices é(rj) of the m — I coupon bonds satisfy a statistical model

Qui(15) = Qui(ry)e™%, j=1+1,...,m, i=1,...,N. (26)

Letting ¥;,(7;) = —In P,,(r;) for j = 1,...,I and Yi(ri) = ~InQy(r;)forj=1+1,...,m, we

have

Yi(r)) =Y () + €64 j=1,...,m, i=1,...,N.
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Some such statistical model for the prices of bonds is clearly needed, because the CIR model
imjlies an exact linear relation among the yields on discount bonds with different maturities,
and no exact linear relation appears in the data. In other words, a strict interpretation of the
CIR model is that the residuals ;. are identically zero. Based on such a strict interpretation
of the CIR model, our need to rely on the statistical model above would lead to an immediate
rejection of the model. However, it seems unreasonable to reject the model on these grounds.
As argued by Stambaugh (1988), possible quotation errors, the averaging of bid and ask prices,
and cther possible problems in the data, would alone lead to a rejection of the CIR model
based on its strictest interpretation. Even if the model were literally true as a description
of equilibrium prices, anything that caused observed prices to deviate from equilibrium prices
would lead to an immediate rejection of the model.

More importantly, the CIR model is only a model. Being so, it is surely misspecified,
even as a description of equilibrium prices, and it is unreasonable to expect that the data
satisfy its strictest implications. With this, the ¢; are to be interpreted as due to omitted
factors, perhaps including measurement error. We assume that the ¢; are conditionally normally
distributed,!® and we also assume that the ¢; are independent. The normality assumption is
for statistical convenience. We maintain the independence assumption because this is in some
sense the “closest” we can get to the strict implications of the CIR model. That is, the strongest
assumption that is not obviously violated is that the omitted factors are independent. Among
other things, this excludes the presence of additional state variables.

With the statistical model above, we cannot proceed with estimation without some further
restriction on the ¢;. More precisely, we need to impose a linear restriction on the ¢; in order to
recover the unobservable interest rate r. Any linear restriction on the ¢;’s will allow us to do so.
The simplest approach is to assume that one of the ¢; is identically zero, i.e., that the observed
price of one of the bonds is equal to its equilibrium price. This is perfectly reasonable, provided
that we exercise some care in selecting the bond. We include in our sample observations on
the (just auctioned) 13-week bill and the (just auctioned) 26-week bill. These bills are actively
traded, or traded “on-the-run.” When estimating the one-factor models, we assume that the
observed price of the 13-week bill is equal to its equilibrium price, while in estimating two-factor
models we assume that the observed prices of both the 13 and 26-week bills are equal to the
predicted prices. Given the trading activity, number of participants in the market for these
securities, and low costs of transacting in these bills, it seems reasonable to assume that the
observed prices are adequate approximations of the equilibrium prices that would be observed

in a market without transactions costs.!®

'* A similar assumption is made by Brown and Dybvig (1986). They append an additive normally distributed
error to the bond pricing model.
16 This assumption is also made by Gibbons and Ramaswamy (1986). Morever, if the implications of equilibrium

53



Forj=2,...,mand i =1,...,N, we assume that the errors are independent of the yield
f},i(rl) on the 13-week bill with maturity 7, and joint normal, and we denote their conditional
density f(€2,t;y---v€mt; | €2,ti_gs---y€mti_y ). With this stochastic specification of the errors,
we can apply the method of maximum likelihood tc the m time series of different yields at the
same time.

We let Y, denote the vector of yields (Y, (1), Yii(72), - - -, Y (Tm), ), and let €, denote the

vector of errors (€24;,€3,¢;+...,€mz;). The joint density of Z', conditional on ¥, __ is

11

fE 1Y) = | Vs () ey)
= f(i;t.'(rl)’et.' | I‘?t.'q("'l)aft.'-x) X

= f(?ti(rl)’et.' | i}ti—l(rl)’eti—l)
= f(i;t.'(Tl)’l Y,ts'—l (1)) X fleg; | €iy)

a(?t.' (n1), €,)
oY,

The last equality follows from the assumption that the errors are independent of the yield on
the 13-week bill, and the third follows from

1 0
-6 1

OO

a(i}‘i(rl )’ ft.')
oY,

—fm 0 ... 1
= 1,

where f; = —B(t;)/B(n).
If the errors have mean zero and covariance matrix X, the logarithm of the likelihood

function of the Y is

L(x,0%6,0\,T) = Inf(¥y,,Feree oy | Eyy)
N
= In H f(zt.' I -i-;—t.'-l)
=2
N ~ o~
= Y Inf(Y,|Y, )
=2
N _ _ N
= Y Inf(Yu(n) | Yo, (n)) + ) _In f(ey; | €,_y).
=2 =2

asset pricing theories do not apply to the observed prices of the most actively traded securities, it is not clear
that they apply to any observables.
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The maximization problem is not as difficult as it might seem, because it is possible to concen-

trate the likelihood function on the parameters ,02,6 and .

3.2 The Two-Factor Model

Our approach to estimating the two-factor model is a simple extension of the the approach
we use to estimate the one-factor model. In estimating the two-factor model we also use the
conditional density for the instantaneous drift in the price level. The density for y, conditional

on y; has the same form as the density for r, conditional on r¢, and is

—ugeuy (V2 q2/2 12
f(ys | y1) = cae ™ I, (2(uav2) /%) (27)
where
_ 2&2
C2 = a'g(l _ 3—52(3"‘))’
up = oy,
V2 = CYs,
_ 2&292 1
2 = O’% .

This, together with the density for the instantaneous interest rate r given by (23) and the
statistical model for bond prices (25) and (26) are the building blocks of our approach to
estimating the two factor model.

As we now want to recover two unobservable state variables, 74, and yy,, from the observed
prices of the bonds for each time ¢;, we must impose two linear restrictions on the errors ¢j,.
As discussed above, we recover the interest rate r, and the drift in the price level y, by
assuming that the observed prices of the 13 and 26-week bills P;,(1) and P,,(r;) are equal to
their equilibrium prices. With this assumption, we can obtain the interest rate and the drift in

the price level

e, = (D(‘rg)f;g.-(n) ~ D(11)¥y,(12) + D(r2)In(A(11)C (1)) - D(TI)IH(A(Tz)C(T2))) /F,
w, = (~B(r2)¥u(r) + B(r)¥(r2) = B(r2) In(A(m)C(m)) + B(m) In(A(r2)C(r2))) / F,
where F = B(m)D(m2) — D(11)B(72). Also, we have
e, = You(15) + In(A(75)C(75)) = B(7j)ry, - D(7j)y,,  j=3,...,m.

Letting €;, now denote the vector of residuals €34;,...,€m; and €,_, denote the vector of

residuals €3¢, ;,...,€m,,_,, Wwe denote that the density of the errors €; conditional on €;_, by

55



f(es; | €1,_, ). The joint density for the observations }Z,‘. conditional on f_,.._‘, forj=12,...,m,

is

f(i7 . | zt.'-;) = f(re | vy ) (e | Yoy ) f(es | €60 ),

where
Dgn! - D(1y 0 0
Bl Bl o .. o
J = abs —:} —g 1 ... 0
-Bn  -Bh 0 1
_1
=B
and

ﬂJl o= —B(Tj)D(Tz) ; B(T2)’

g2 = -Br;) 22 Pm)

The logarithm of the likelihood function is

L(k,0%,8,),K2,02,02,0p,p,5) = lnf(ln_)_‘v’_b,...,ln!‘v_m |lnf_h)
N
= lan(ant; I ]-nXt,-_l) (29)
1=2
N L A
= Y Infn¥,|n¥,_,). (30)
=2

Again, with the exception of a modification due to the settlement terms, this is the likelihood
function we use in estimating the two factor model. One can obtain the likelihood function for
the extended two-factor model by mimicking the steps above. Given this, we can select among

models (e.g., test hypotheses of the form 7 = 0) using likelihood ratio tests.

3.3 Description of the Data

The data set we use to estimate and select among the tractable models consists of montnly
observations on the prices of 10 different bills, notes, and bonds drawn from the Government
Bond Master File prepared by the Center for Research in Security Prices. Each month between
December 1971 and December 1986 we took from the file the price and other data for the
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(just auctioned) 13 and 26-week bills, the longest maturity bill available,!” the most recently
issued (current) 2, 3, 4, 5, 7, and 10 year notes (when available), and the most recently issued
non-callable, non-convertible bond with no special tax status. In the early part of the sample
period, current notes of all maturities were not available. For example, the Treasury first issued
10 year notes in 1976. When current notes were not available, we selected the most recently
issued note or bond with the apr-opriate maturity. For example, when a 10 year note was not
available, we used the mosi recently issued non-callable, non-convertible bond with no special
tax status and a remaining maturity of between 7 and 10 years; when a 4 year note was not
available, we used the most recently issued note with a remaining maturity of between 3 and 4
years. We began the sample in D2cember 1971 because, beginning with this month, all of the
maturities are continuously available.!® For all securities, the prices used consist of the means
of the bid and ask prices on the last business day of the month, plus the accrued interest to the
settlement date.

The sample selection procedure produces a sample that covers the entire yield curve and
consists predominantly of current, actively traded securities. The sample consists solely of such
securities when they are available, and the sample selection procedure picks recently issued
securities when they are not. By including the (just auctioned) 13 and 26-week bills, the sample
includes the most actively traded discount bonds. As argued above, it seems reasonable to treat
the observed prices of these securities as reasonable approximations of equilibrium prices. We
restricted our attention to recently issued securities because the institutional literature (e.g.,
Stigum (1983), Fabozzi and Pollack (1987)) indicates that government securities issued some
time in the past are not actively traded, and suggests that the quoted prices of such securities

may not be reasonable approximations of equilibrium prices.

3.4 Adjustment for Settlement Terms

An inconvenience, though in this case not a serious one, is created by the fact that the prices
reported in the CRSP Government Bond Files are not quoted on a cash bzsis. Rather, the prices
are typically quoted on the basis of settlement in two business days, or “skip-day” settlement.
(That is, bonds ard cash are exchanged two business days after the quotation date.) Hence the
reported prices are actually not bond prices, but rather the forward prices of very short term
forward contracts.

Fortunately, given a model of bond prices, it is trivial to obtain formulas for the forward
prices. Letting P; (7) denote the price on the quotation date ¢, of a bond with maturity r and

P, (t, —t;) denote the price of a bond that matures on the settlement date ¢,, the forward price

1" The bill with the longest maturity has a maturity of one year or slightly less.
'8 Immediately prior to December 1971, there was no non-callable, non-convertible bond with no special tax
status and a remaining maturity greater than ten years.
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of a forward contract expiring at ¢, on the bond with maturity 7 is

F‘tq(l)tq(r))tl - tQ) = I)‘q(r)/Ptq(t' - tQ)'

The data actually consist of observations on these forward prices.
With the CIR one-factor model, we have

A(r _ —B(t.—t.V)r
F(Piy(T)ts - tg) = W,(-)t—q)“ (B(r)-Blta=to))r

where A(-) and B(-) are defined by (6) and (7). With the CIR two factor model,

Fuy(Ro (7)1 = 1g) = A(:(-T- )tq) C(tc,'(z )t,,) ¢~ (B(r)-B(ta—ta))r ¢~ (D(r)-D(ts=t)ly
where C(-) and D(-) are defined by (18) and (19). All of our computations are done using these
two formulas. That is, although the discussion of the methodology in Section 3 was presented
in terms of bond prices and not forward prices, in actual computation we used these formulas.
This procedure is exactly correct.

We note that only the existence of a closed-form bond pricing formula enables us to be
exactly correct. While the relationship between the prices of bonds for cash settlement and the
forward prices is straightforward, we can not recover the prices for cash settlement via some
transformation of the data because we do not observe prices for cash settlement of bonds which

mature on the settlement date.

4 Selecting Among the Tractable Models

The basic one-factor and two-factor models of CIR, and their extended variants presented above,
comprise a set of four neatly nested economic models: the one-factor model with # = 0 and 7
unconstrained, and the two-factor model with ¥ = 0 and ¥ unconstrained. If, in the two-factor
CIR model, we let 6; = 0, fix 02 > 0, and consider the limit as x; — 0o, we obtain the one
factor model.!® In addition, we can obtain the basic CIR one and two-factor models from the
extended variants by letting ¥ = 0. Given our maximum likelihood approach, if the statistical
models were also so nicely nested we could select among the models simply by comparing the
logarithms of the likelihcod functions, i.e. by using the likelihood ratio test.

Unfortunately, the statistical models are not so nicely nested. In the one-factor models, we
impose one linear restriction on the errors in the statistical model of bond prices in order to

recover the interest rate r, while in the two-factor models we must impose two linear restrictions

'*We can also obtain the one-factor model from the two-factor model by setting o, = 1 (see equation (17)).
If we did this and interpretted the one-factor model as a special case of the two-factor model with ¢, = 1 the
test statistics below comparing the one and two-factor models would be distributed x? with one instead of two
degrees of freedom and our rejections of the one-factor model would be even more resounding.
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to recover r and y. Our statistical models are not nested, because we cannot get from the one-
factor model to the two-factor model simply by relaxing restrictions. It turns out that this
is not a great cause of concern because the translated two-factor model dominates the one-
factor models in spite of the stronger restriction imposed on the errors. Although the statistical
models for the one and two-factor bond pricing models are not nested, the likelihood ratio
statistic provides an informal way of comparing the one and two-factor models,?° and is the
appropriate test statistic for the nested statistical models. Therefore we focus on it in the
balance of this section.

In all of the results we set g, = p = 0. This restriction is never rejected by the data;
in fact, imposing this restriction affects the value of the likelihood function trivially, or not
at all. Also, in estimating the two-factor models we impose the restriction # = —10 (—1000
percent). This rostriction is imposed because, for 7 less than about —1 (-~100 percent), the
value of the likelihood function, while generally increasing in —7, is insensitive to the value of
7. Specifically, for each value of ¥ a constrained maximum of the likelihood function can be
found. These maxima are almost imperceptibly increasing in —#, and, as —f is increased, the
estimate of # increases in such a way that @ + 7 is constant, while the estimate of o2 steadily
decreases at a rate such that —o?7 is approximately constant. The somewhat arbitrary value
of # = —10 was chosen because the rate of increase in the value of the likelihood function is
very small by this point. With ¥ = —10, the behavior of r is very similar to the behavior of an
Ornstein-Uhlenbeck process,?! which corresponds to ¥ = —00, § = 0o, and 02 = 0, and the bond
prices are essentially identical. In the tables below results with ¥ = —10 are labelled as results
with “7 unconstrained,” and the degrees of freedom given for the test statistics are correct if
the value of the likelihood function with ¥ = —10 is equal to the unconstrained value. If the
value of the likelihood function with ¥ = —10 is not approximately equal to the unconstrained
value then the rejections we obtain would be even more resounding.

In our initial set of computations??

we used a data set including observations on bonds of
all 10 maturities, and estimated the models for the entire time period January 1972-December
1986, and two subperiods January 1972-September 1979 and October 1979-December 1986.
The choice of the subperiods was dictated by the fact that the Federal Reserve changed policies
in October 1979, and it is possible that the behavior of interest rates differs in the periods

before and after this date.

**Formal tests of non-uested hypotheses are available (see, for example Cox (1961, 1962) and White (1983)).
However, the translated two-factor model so dominates the one-factor models that simply comparing the loga-
rithms of the likelihood functions seems unlikely to cause one to draw an inappropriate inference.

21 With the obvious qualification that  is a lower bound on the interest rate process in the translated model.

#2The function e™*J4(z) which appears in the conditional densities was evaluated using the backward recursion
in Section 19.4.2 of Luke (1977), except when either = cr 7 was large. For large z and ¢ the bessel function was
evaluated using the asymptotic expansions in Oliver (1965).
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4.1 Overview of the Results

We start with a broad overview of the results in Table 1, which displays the values of the
logarithms of the likelihood functions for the various models estimated using the entire sample
and the two subperiods along with the likelihood ratio test statistics. For example, the value of
the likelihood function for the one-factor model under the restriction ¥ = 0 is £ = 4.50182 x 103,
and the value of the likelihood function when 7 is unrestricted is £ = 4.50738x103. The notation
“no feasible parameter values” for the two-factor models with ¥ = 0 indicates that no parameter
values for which r;; and y;, are nonegative for every time {; could be found.

Likelihood ratio tests of particular restrictions can be calculated by taking twice the differ-
ence of the log-likelihoods. The test statistic L for the likelihood ratio test of the hypothesis
7 = 0 is equal to twice the difference of the log-likelihoods, or L = 2x(4.50738—4.50182)x 103 =
11.12. The test statistic is distributed x? with degrees of freedom equal to the number of re-
strictions being tested. In this case only one restriction is being tested, so the test statistic is
distributed x?. If we use the customary significance level of one percent, the critical value is
6.6349, and we reject the restriction that ¥ = 0.

Looking at the likelihood ratio test statistics to see which restrictions on the translated two-
factor model may be rejected, we reject the one-factor model in favor of its translaied variant,
and reject both the basic and translated one-factor models in favor of the translated two-factor
model. Moreover, the data seems to be inconsistent with the ¢ntranslated two-factor model
because of our inability to find feasible parameter values. In the succeeding subsections we

present further analyses.

4.2 The One-Factor Model

The results for the basic CIR one-factor model and the translated model using 2 data set that
includes all of the bonds are shown in Table 2 for the entire period and the two subperiods.
To get a feel for the parameter estimates, consider the model with ¥ = 0 estimated using the
entire sample period January 1972-December 1986. The long run mean of the interest rate is
given by the estimate of 6, .08903. The estimate of x of .16939 implies relatively weak mean
reversion in the interest rate process. The “half-life” of the process, i.e. the future time when
the expectation of the interest rate has a value halfway between between the current level and
the long run mean, is given by l—",-}, or, with x = .16939, 4.09 years. The variance of the steady
state distribution of the interest rate is 1.}‘2, or 0.00275.

The first observation we make is that the estimated parameter values are significantly dif-
ferent in the two subsamples. A test of this can be performed by computing a likelihood ratio
test statistic equal to twice the log-likelihood for the entire period less twice the sum of the
log-likelihoods for the two subperiods. The test statistics for the test of the equality of the
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parameters across the two time periods for both the basic CIR one-factor model and the trans-
lated model are shown in the lower panel of Table 2, along with the critical values, which are
distributed x? with degrees of freedom equal to the number of parameter restrictions being
tested. Examing the test statistics, we see that the hypothesis that the parameters are equal
in the different time periods can be rejected at any reasonable level of significance.

Another question of interest is whether the basic cne-factor model can be rejected in favor
of the translated model for the entire period and for both subperiods, i.e., whether we can reject
the hypotheses that ¥ = 0 for the several periods. Examing the test statistics reported in the
first panel of Table 2, we see that tests of size .01 reject the restrictions # = 0 both for the
entire sample period and the second subperiod, and a test of size .05 rejects the restriction for
the first subperiod.

We can obtain some insight into the reasons for the rejection by examining how well pre-
dicted bond prices fit actual prices for both the basic and translated models. One measure of
this fit is provided by the estimated standard deviations of the residuals in the statistical model,
which are shown in Table 3.2 Examining these estimates of the standard deviations, it seems
that the translated model fits long term bond prices no better than the basic CIR one-factor
model, suggesting that the rejection of the basic model may be due to the fact that the density
for the translated model better explains the time series of recovered state variables r.

We can test the conjecture that the rejections are not due to the pricing of the long term
bonds by reestimating the model using only the Treasury bills. The results using only the
bills, along with the test statistics for the hypotheses that ¥ = 0 and that the parameters are
equal in different time periods, are shown in Table 4. Examing these results, we still reject the
hypotheses that 7 = 0. This suggests that the advantage of thc translated one-factor mcdel lies
in the fact that it provides a better approximation of the distribution of the interest rate. In
addition, we reject the hypotheses that the parameters are equal in different time periods when
we estimate the model using only the Treasury bills.

This ability to obtain these rejections using only the Treasury bills suggests the potential
of our approach of recovering the state variable r and making use of its conditional density in
estimation. We return to this point below in examining the results of the two-factor model,

where we also find that the results seem to be driven by the Treasury bills.

4.3 The Two-Factor Models

Parameter estimates for the two-factor models estimated using all 10 bonds for the entire sample

period and both subperiods are shown in Table 5, and estimates of the standard deviations of

3 These estimates of the standard deviations of the residuals were calculated under the assumption that the
means of the errors are zero, so they are also mean-squared errors.
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the residuals in the statistical model of bond prices are shown in Table 6.2 As indicated above,
we were not able to find feasible starting values for the basic CIR model with # = 0. Setting
this aside for the moment, the point estimate of x for the translated models is 7.45 for the
entire sample period, 14.51 for the subperiod 1972-1979, and 5.11 for the subperiod 1979-1986.
The point estimate of k3, the mean reversion parameter for the second state variable process,
is about .08 for the entire sample period, .46 for the first subperiod, and .13 for the second
subperiod. These values of the speed of adjustment parameter x are large enough to allow
relatively steeply rising yield curves for Treasury bills on days when r is below its long run
mean 8 + 7, combined with relatively steeply falling yield curves when r is above its long run
mean.? The values of 2 are small enough (i.e., the mean reversion is weak enough) to be
consistent with shifts in the level of the short end of the yield curve.

Specifically, in order to have steeply rising yield curves on some days, together with falling
yield curves on others, there must be at least one state variable process for which the speed of
adjustment parameter is large. The value of the state variable must be small on days when the
yield curve is rising, and large when it is falling. In order for the level of the yield curve to shift
from day to day, there must be at least one state variable for which the speed of adjustment
parameter is small. If the speed of adjustment parameters were large for all state variables,
the yields of longer term bonds would be approximately constant across days regardless of the
current value of the state variable. We observe relatively steeply rising yield curves on some
days, relatively steeply falling ones on others, and also observe that the level of the yield curve
shifts over time. These observations together cannot be reconciled with a one-factor model, but
can be explained by a two factor model in which the speed of adjustment parameter is large
for one state variable and small for the other.

One check on the values of the parameters is provided by examining the long run means
of the state variable processes. The long run mean of the instantaneous real interest rate r is
6 + 7, while the long-run mean of the expected drift in the price level is #;. The point estimate
of 8 +7 is 0.026 (standard error .005) for the entire sample period, —0.031 (standard error .063)
for the subperiod 1972-1979, and 0.041 (standard error .006) for the subperiod 1979-1986. The
point estimate of 8;, the long run mean for the expected rate of inflation, is about 0.093 for the
entire sample period, 0.093 for the first subperiod, and 0.1014 for the second subperiod.

We can obtain confidence in our interpretation of the process for r as the real interest

2 We found two local maxima of essentially the same magnitude, one with x > x; and one with s < 3, for
each of the models for which we are able to find feasible parameter values. We present only estimates froin
the local maxima with k > 2, i.e., the results we present associate the state variable with the larger speed of
adjustment parameter with the real model. We do this for the reasons below that lead us to believe that our
parameter estimates are plausible.

#In this discussion the steepness of the short end of the yield curve is measured by the difference in the yield
on the three and six month Treasury bills, the two shortest maturity bills in the sample.
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rate process by comparing our results to those of Gibbons and Ramaswamy (1986). These
authors estimated a one-factor model for real yields using Treasury bill data and obtained point
estimates of « of 3.9, 6.9, and 2.4 for the three periods 1964-1983, 1964-1979, and 1979-1983.
Gibbons and Ramaswamy obtained point estimates of 5.4, 2.2, and 3.2 for 02, and —4.6, ~8.5,
and —3.0 for A. These estimates, however, may not be directly compared to our estimates from
the translated model because both the local variance of the interest rate and the risk premium
depend upon the level of the interest rate. In the translated model the local variance of the
interest rate is given by var(r) = o%(r — 7) and the risk premium is Ar' = A(r — 7), while
in the basic CIR model we have var(r) = o?r, and the risk premium is Ar. Using the point
estimates of Gibbons and Ramaswamy to calculate the local variance of the interest rate and
the risk premium at the long-run mean of the interest rate, we obtain var(r) = 0.043, 0.004, and
0.096 and risk premiums of -0.036, -0.017, and -0.090 for their three sample periods. For our
translated model with ¥ unconstrained, performing similar calculations at the long run meau
of r gives us local variances of 0.004, 0.010, and 0.004 and risk premiums of -0.048, -0.221, and
-0.009 for our three sample periods.

These estimates of Gibbons and Ramaswamy, combined with our estimates of the long run
means of the state variable processes, lead us to interpret the first state variable as the real
interest rate and the second state variable as the expected inflation rate. While the estimates
of Gibbons and Ramaswamy differ from ours, some of the differences must be attributed to
the differing sample periods and sampling variation. Regardless, we interpret our estimates as
broadly consistent with those of Gibbons and Ramaswamy in that our estimates also imply
relatively strong mean reversion in the real interest rate.

Despite the reasonableness of the parameter estimates for the translated models, our inabil-
ity to find feasible parameters for the basic CIR two-factor model is troubling. The difficulty
arises from the fact that in the basic CIR model, both 7 and y must be nonnegative. If the
portion of the yield curve that we use to recover the state variables takes on many different
shapes during the sample period, it may be impossible to find a set of parameter values for
which r and y are nonnegative for every observation.

We can get some insight into the source of the problem by examining the time series of
recovered state variables for one of the translated models. Figures 1 and 2 display the time series
of recovered state variables r’ and y for the translated model with ¥ unconstrained estimated
using the entire sample. For this model, examination of Figure 1 suggests that the source of
the problem with estimating the basic CIR two-factor model might lie in the observations for
September 1974 and July, August, and September 1982. The values of the interest rate r for
these dates, —0.0292, —0.0293, —0.0379, and —0.0270 are more than .05 less than the long

run mean of 0.0264. These observations correspond to steeply rising yield curves; when ' is
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relatively small, the yields on shorter term bonds are small, but the yields on longer term bonds
are higher because of the strong mean reversion. When ' is near its long run mean the yield
curve is relatively flat.

This seems to provide the explanation of why we cannot find feasible parameter values for
the basic CIR two-factor model. It seems that in order to explain the steepness of the yield
curves for September 1974 and July, August, and September 1982, r must be about .05 below
its long run mean. If r must also be non-negative, the long run mean must be at least .05.
However, to have a relatively flat yield curve, 7 must be near its long run mean. If we observe
a flat yield curve at a level of less than .05, then the long run mean of r must be less than .05.
In short, the basic CIR model cannot simultaneously explain both steeply rising yield curves
and flat yield curves at a low level of interest rates.?8

As mentioned above, examination of the log-likelihoods and test statistics shown in Table 1
indicates that the translated two-factor models dominate the one-factor models. It is possible
to get some insight into why this occurs.

Echoing a similar observation made above when comparing the basic and translated CIR
one-factor models, the rejection of the one-factor models in favor of the translated two-factor
model does not seem to be due to better pricing of the long term bonds. Table 6 displays the
estimated standard deviations of the errors in the statistical model for the prices of bonds for
the two-factor models. Comparing these to the estimated standard deviations of the error model
for the one-factor model reported in Table 3, we see that the estimated standard deviations
for the two-factor model are smaller than the estimated standard deviations for the one-factor
model, but not dramatically so. This observation, while only suggestive, again leads one to
the conjecture that the dominance of the two-factor model ic not due to the better pricing of
long-term bonds.

Again, we can test this conjecture by reestimating the models using only the 13-week, 26-
week, and one-year Treasury bills. Table 7 displays tha values of the likelihood functions and the
likelihood ratio test statistics comparing the * asic and translated one and two-factor models for
the entire sample period and both subperiods for the models estimated using only the Treasury
bills. The point estimates of the parameters of the one-factor models were previously presented
in Table 3, while those for the two-factor model are shown in Table 8. Examing these tables,
we see that we can reject the one-factor models in favor of the translated two-factor models
using the bills alone.

A tentative conclusion is that the translated two-factor model dominates the one-factor

26We checked the conjecture that the problem lies in the observations for September 1974 and July, August,
and September 1982 by reestimating the two-factor models after dropping these observations from the sample.
Dropping the three observations allows us to obtain at least somewhat plausible parameter estimates for the
basic CIR two-factor model, and does not significantly affect the parameter estimates for the translated models.
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models, and of course also dominates the basic two-factor model for which feasible parameters
could not be found. However, recalling the estimated standard deviations from the statistical
model in Table 6, it does not seem to provide a good fit to the prices of long term bonds. This
suggests that the two-factor model does not provide a good description of the data. In the next

section we bring additional information to bear on the issue.

5 Tests Against a General Markov Model for Yields

The results above indicate that the two-factor model fits the data better than the one-factor
model. However, we have not yet compared the two-factor model to more general models. If
we restrict our attention to the three Treasury bills, we can nest the two-factor model in a
somewhat more general Markov model of yields as follows.

Defining Y;;(7;) = x'-lffL), from the bond pricing model (17)-(21) and the statistical model
(25)-(26), we have

In(A(n)C B D
Vin) = -RAMCDD ., B0, D0, (31
1 T 1
In(A(m2)C B D
}’t:(f2) _ n( (T:Z (T2)) +F+ S;?)r;‘ + (TZ)y!." (32)
In{ A(m3)C B D
Yo(rs) = -RARICEW) | o) B, DO, e (33)
T3 T3 T3
Write
Yi(n) = awo+anry + a2y, (34)
Yi(m) = o0+ anry, + a2y, (35)
Yi(13) = azo+aary, + any, + ey, (36)
If the translated CIR two-factor model is true, then
ajo = —In(A(;)C(7;))/7; + T, (37)
ajp = B(r;)/7j, (38)
aj; = D(r5)/75, (39)

for j = 1,2,3.
It is straightforward to see that the CIR model (31)-(33) imposes five restrictions on the
more general model (34)-(36). If a;; > 0, then equation (15) implies that A can be written as

a function of a;1, k and ¢ i.e., A = Aan,k,0). Also, using equations (37), (14), and (18), we
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can solve for 8, 6;, and T in terms of a;o, azo, @30, &, 7, K2, and 02. Assuming ay; > 0, doing
this, and substituting into (31)-(33), we see that the CIR model (31)-(33) can be written as

D(m
Yi(n) = am+aur{i+-%'—)yg,-, (40)
B(r.), D
Ya(r) = aw+ 22y 20, (41)
72 T
B(r: D(r:
Vi) = ast Dl 20Ny 4 g, (42)

Comparing (34)—(36) and (40)-(42), we see that the CIR bond pricing model gives five restric-
tions on the parameters of the general model (34)-(36).2” The conditional densities of r’ and y
are given by (23) and (27) with 6 and 6, given by the appropriate functions of the aj; and «,
0, K2, and o,.

If we neglect the small differences in the times to maturity 7; and time-steps ¢; — t;_; across
observations stemming from the different number of days in different months, the coefficients aj;
will be constant. Below we estimate the model (34)-(36) and test the restrictions is (40)—(42).

To see that (34)-(36) are equivalent to a particular Markov model for yields, and therefore
that a test of the restrictions in (40)-(42) is equivalent to a test of the CIR model versus a
general Markov model of yields, rewrite (34)-(36) to obtain

Y (n) = oo+ anf(l — e i7h-1)) 4 oagpfy(1 — emm2lti—ti-a))
tape  tiTti-pl 4o ggpemaltiztiay, 4
Yi(r2) = axn+an(l—e "t t-1)) 4 aynfy(1 — e~n2lti=tiz1))
+0216—“(t‘—“")";,~_, +aget—ti-ly L

}’t:(fs) = a3 + 0310(1 -_— e—"(ti_ti—l)) + 03202(1 — e-"?(‘i—ti—l))

+0318-"(“—“")1‘;‘_, + age2ti~tizy, g

where
mey = all(r;i — e'l‘(ti—ti—l)r:i-d — 0(1 - e-"(ti_ti-l)))
+a12(yfi - e—n(ti-ti-l)yt.’-) - 02(1 - e-"’("’“i-l))),
Tty = an (1‘:.. - e“"(fi*‘i—l)r;‘-l -6(1 - e—n(ta-t;_,)))

+an(yy, — e 1)y, | - 0y(1 - emmaltimtiay),

*"If a3y < 0 there is a sixth restriction a11 = B(r)/n.
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mey = 031(1';._ - e-n(!.’—ii—l)r;‘-l _ 0(1 _ e-n(t,—-—ti_,)))

tay(yy; — ety |~ 051 — em2ltimtma))) gy,

The variables 7, and 1,4, are linear combinations of “demeaned” non-central x? random
variables and 73, i5 a linear combination of two “demeaned” non-central x? random variables
and a normal random variable.

Solving (34) and (35) for r; __ and y;,_,,

re, = (a22Y_ (1) — a2y (12) — @210 + a12a320)/ F, (43)
Yo, = (—eaY_ (1) +anYy_ (72) + anaio — anax)/F, (44)
where
F = anaz — anzas.

Substituting into (43)—(43),

Yi(n) = B+ BuYs_ (1) + br2Ys_ (T2) + my,s (45)
Yi(r2) = Pao+ BaY:_ (1) + BrY_ (12) + 2, (46)
Yii(r3) = B+ BaYy,_, (1) + BY:,_, (72) + My, (47)

where the 3;; are the appropriate functions of the aj;, &, 6, K2, and o2. (Recall that 8 and 8,
can be expressed as functions of these variables.)

If we continue to neglect the small differences in the times to maturity 7; and time-steps
t; — ti—1 across observations stemming from the different number of days in different months,
the coefficients §;; will be constant. Except for the special structure on the errors 73;,, equa-
tions (45)-(47), which are equivalent to (34)—(36), comprise a regression model with nonlinear
restrictions on the parameters given by the bond pricing model (17)-(21). Therefore tests of
the restrictions in (40)—(42) can be interpreted as tests of the CIR two-factor model versus a
more general Markov model for discount yields.

The conditional density for the alternative Markov model of yields can be cbtained in a
straightforward fashion, and is given by equation (56) of the appendix. Letting f(Y3 |V _,)
denote this density, the conditional density for the logs of prices Y, is f(X3;|Ys,_,)n172m3. The
likelihood function can be obtained in the obvious fashion. Given this, the restrictions can be
tested using likelihood ratio test statistics. The likelihood function is written in terms of the
nine parameters a;; that appear in equations (31)-(33) rather the the nine parameters g;;, but

this does not affect the values of the test statistic.
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5.1 Results

The parametrization of the likelihood function in terms of the a;; is arbitrary and the parameter
estimates are difficult to interpret. Accordingly we present the results in terms of the f;;.
Table 9 displays the estimates of the coefficients §;; for the sample period 1972-1986 and
the two subperiods 1972-1979 and 1979-1986 calculated from the restricted and unrestricted
parameter estimates. The table also displays the values of the likelihood ratio test statistics for
tests of the restrictions implied by the bond pricing model. These statistics are considerably
larger than the critical values for tests of size .01 and indicate that the performance of the
general Markov model for yields is superior to the performance of the CIR two-factor model.

The distinctive feature of these results is that in the CIR model the estimates of the param-
eters fj3, which are the “regression coefficients” for the three month bill yield, are negative,
while the estimates of the parameters 8j2, which are the “regression coefficients” for the six
month bill yield, are positive. The sums j3;; 4+ ;2 are approximately equal to one for j = 1,2,3.
The interpretation of these estimates is that in the CIR model yields are predicted to decrease
sharply when the three month bill yield is larger than the yield on the six month bill, and
predicted to increase when the yield on the .hree month bill is below than the yield on the six
month bill.

In the general Markov model, the coefficients §;; are either positive, or negative and smaller
in absolute magnitude than those in the CIR model, and the ceefficients §;, are smaller. With
these unrestricted coefficients there is a weaker relationship between the slope of the short end
of the yield curve and predicted future yields. This suggests that the deficiency of the CIR
model is that it requires a relationship between the slope of the yield curve and future yields
that is not found in the data.

This rejection of the bond pricing model can be further understood by examining the mean
squared forecast errors of the predicted yields on the sample of discount bonds. That is, we take
the difference between actual and predicted yields on the sample of Treasury bills, and look at
the magnitude of the forecast errors. Table 10 displays the mean squared forecast errors of the
holding period returns of the 3 different Treasury bill maturities for the entire sample period
1972-1986 and both subperiods. The predicted yields used to form the forecast errors in the
first three columns were calculated using the parameter estimates from both the translated one
and two-factor models and the general Markov model for yields. The last column shows the
forecast errors from a naive “martingale model” iz which the predicted yield of the 3, 6, and
12-month bills are assumed to be equal to their current yields. We find that the mean squared
errors when the (estimates of the) expected yields are calculated using the restricted two-factor

model are larger than the mean squared errors when the expected yields are calculated using
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either the general Markov model or the naive martingale model.?®

One possible explanation for these results is as follows. The estimated two-factor medel
implies a particular relationship between the state variables and expected holding period re-
turns. We recover the state variables from the prices of the 13 and 26-week bills through the
assumption that the observed prices of these bills are equilibrium prices. In using the model to
compute expected holding period returns, we use the model to infer expected holding period
returns from the prices of the 13 and 26-week bills, i.e. from the level and slope of the short
end of the yield curve. If the two-factor model is not a reasonable approximation of the “true”
model, there is little reason to expect that the expected holding period returns calculated using
it will provide good predictions of actual holding period returns.

Our estimation procedure essentially forces the one-factor model to capture the level of the
short end of the yield curve, and forces the two-factor model to capture both the level and
the slope of the short end of the yield curve.”® If the relationship between the slope of the
yield curve and the expected holding period returns is not well approximated by the estimated
two-factor model, one might expect the general Markov and martingale models of yields to
provide better predictions of holding period returns than the two-factor model. Regardless, the
evidence suggests that the particular two-factor CIR model estimated here fails to provide a

good description of holding period returns.

6 Conclusion

We have developed an approach for estimating both one and two-factor term structure models
due to CIR using the method of maximum likelihood. Our procedure involves recovering the
unobservable state variables. This enables us to exploit their conditional density in estimation
and hypothesis testing, and to make use of both the time-series and cross-sectional information
in a sample of bonds that includes coupon bonds. The time series of state variables that we
recover enables us to examine whether factors other than the recovered state variables are useful
in explaining conditional expected returns.

We were unable to find feasible parameter values for the basic (untranslated) CIR two-factor
model. The results of a set of tests that select among the tractable models suggest that the
one-factor model should be rejected in favor of its translated variant, and that both the basic
and translated one-factor models should be rejected in favor of the translated two-factor model.

However, none of the tractable models provide a good fit for the prices of long term coupon

28 That the performance of the “martingale model” seems to be superior to that of the “general Markov model”
is not evidence of a computational error. While the coefficients 8,i of the general Markov model are unrestricted,
the errors are constrained to be highly correlated.

23 More precisely, in the one-factor model the fitted price of the 13-week bill will equal the observed price, while
in the two-factor model the fitted prices of the 13 and 26-week bills will equal their observed prices.
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bonds. Moreover, in further empirical analysis we are able to reject the restrictions on a Markov
model of yields implied by the bond pricing model.

Although we do not do so in this paper, our approach may also be used to estimate the
models of Vasichek (1978), Schaefer and Schwartz (1984), and Oldfield and Rogalski (1987)
in which one or more of the underlying state variables follow an Ornstein-Uhlenbeck process.
More generally, our approach may be applied to any asset. pricing model with unobservable state
variables in which the pricing functions are invertible and the density of the state variables may

be evaluated without excessive difficulty.
Appendix

A The restriction to obtain a constant factor rick premium

Equation (12) is a strong restriction on & and €. One indication of the strength of the restriction
is that it implies that the proportion of wealth invested in each of the technologies does not
depend upon a&. Sufficient conditions for equation (12) to hold are that there is only one
productive technology or that the rates on return on the productive technologies are equal.
Once we translate the physical rates of return o« (i.e., once we write a = &(Y' +Y)),
condition (12) is needed for the set of active technologies to remain unchanged when Y # 0.

To see this, suppose &'~ — -l—ln—_,’—a‘:'{r—ll 0 and n > 1. From the definition of a*,
0-11

10~1 ] L v 10-1210~1
a"1=[19 +Y+Y(&'Q-‘—M)}1=1.

1'Q-11 Y/' 1'Q-11

Also, -{—:—g—;—% = 1, implying X’;j;z (&'Q‘l - "91—_,10"’_'?1——11-) 1 = 0. But we have supposed that
&'0-1 — 1'Q-1a'0-11
Q-1
must be less. If Y < 0 then (Y’ +Y)/Y" takes on values in the interval (—o00,1), while if ¥ > 0
then (Y’ +Y)/Y’ takes on values in the interval (1,00). In either case, if we require a* > 0,

the set of active technologies must change (the signs of some elements of a* must change).
ogl g g g

# 0, so at least one element must be greater than zero and at least one

If we do not require that a* > 0 then we do not need to assume that (12) is satisfied, the
factor risk premium a*’GS’ has the form Ar/ 4+ ¢, the partial differential equation satisfied by

the bond price is
1/20% Pogr + K(8 = )Py — (A1’ + @) Py — (r' + F)P =0

and the solution is P(1) = A(T) e B, However, we do not use this formula because

we are not aware of a reasonable interpretation of negative elements of a*.
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It is our view that the strength of the restriction (12) iessens the theoretical interest of the

extension, but does not detract from its empirical utility.

B The likelihood function for the general model

To obtain the general model for the yields of the three discount bonds we suppose that the
observed yields are linearly related to the two state variables r’ and y, and that the observed

yield of the third bond also depends upon a third random variable €3,:

Yi(n) = e+ oanrg + anzy, (48)
Y (m) = a0+ ann, + any,, (49)
Yi(m3) = aso+asry, + any, + €y, (50)

The parameters a;;, for i = 1,2,3 and j = 0,1,2, are unrestricted. The densities of r{, and y,

are

cucy [V q/2
17t 1) = e ()7 na(un)), (51)
where
_ 25
¢ = 0?(1 — e~rlti=tiz1))’
u = cr{i_le"‘(“"‘—'),
v = cry,
2x0
9 = 7-L
and
murmnn (V222
£ ) = e (2) 7 1 2w, (52)
where
¢ = 2&2

a%(] - e—nz(t.‘-t.‘-x))’

— ~ra(ti—ti-
Uy = coyy_ el
v2 = CaV¥t;»

_ 25201
qQ = ) - 1.

a2
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Also, €34, ~ N(0,02).
From (48)-(50),

re. = (aY(n) - a2Ys(m2) + az2ai0 — a1202)/F, (53)
v = (—aaY(n)+anY;_ (m2) - anai + anaxn)/F, (54)
€y = - (0!30 + azi(ax — a12)Ye (1) + az2(en — an)Y;(52) (55)

+ azg(azaie — ajzaze — azjaye + ayjax) + Yy (13)) / F.

where F = ajjag — ajpag.
Let Y3 | denote the vector of yields (Y;;_ (m1),Y;;_(72),Y;_,(73)). The joint density for

the observations Y3, conditional on Y3,  is

FQEXE ) = FO Lm0 | yoa ) f (€3 | €y )/ F (56)

Examining the density function (51) along with (48), one can see that the parameters aj;,

K, 6, and o are not separately identified. For convenience, we chose the independent parameters
to be ay;, i = 1,2,3, x and 0, and set # = 8, an arbitrary constant.

Similarly, the parameters ay;, i = 1,2,3, k2, #2, and o, are not separately identified. We

choose the independent parameters to be ay;, k2 and o3, and set §; = 8;, a constant. With

these choices, there are 14 independent parameters: the aj;, for j = 1,2,3 and i = 0,1,2, and

K, 0, K2, 02, and g.. The logarithm of the likelihood function is

L(a0y...,032,K,0,K2,02,0,) = lnf(ln}z,z,...,ln}zmlln}z,,)

N
= lan(lnf’_:‘ “nzt.'-l)

=2
N ~ ~
= Elnf(lnL.. flnY, ).
=2
where now
v\ 9/2
17 1) = e (2)7 12,
with
2k
c = ,
o3(1 — e~nlti=ti-1))
u = cr{i_,e"“(""“"),
v = ery,
2x0
9 = -1




and

-\ 2/2
o) = exem27 ()™ L,

where

_ 2K2
€2 = 0;"(1 —_ e""?(‘i—ti-l))’
uy = cayy,_ e tivh-1),
v2 = C2V,,
g _ 2K202 1
2 = - 4
o}

€ar, ~ N(0,0?), and 1}, y,, and €3, are given by (53), (54), and (55).
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Table 1
Likelihood Function Values for the Various
Models Estimated Using All 10 Bonds®

1972-1986 1972-1979 1979-1986
One-factor Model

F=0 4.50182 x 103 2.77703 x 103 2.13685 x 103
¥ uncons. 4.50738 x 10® 2.77977 x 10°® 2.14515 x 10°

Two-factor Model

=0 no feasible parameter values
 uncons. 4.93078 x 10 2.93477 x 10° 2.41822 x 103

Likelihood Ratio Test Statistics

Hy vs. Hy 1972-1986 1972-1979 1979-1986
One-factor ¥ = 0 vs. 11.12 6.38 16.60
Ore-factor f uncons. (x?) (x3) (x3)
One-factor ¥ = 0 vs. no feasible parameter values

Two-factor =0

One-factor 7 uncons. vs. 846.80 310.00 546.14
Two-factor 7 uncons. (x3) (x3) (x3)

Two-factor ¥ = 0 vs. no feasible parameter values
Two-factor 7 uncons.

One-factor 7 = 0 vs. 857.92 315.48 554.44
Two-factor  uncons. (x3) (x3) (x3)

3°The asymptotic distributions of the test statistics for the hypotheses that # = 0 in the one-factor model are
x2. The asymptotic distributions of the test statistics comparing the one-factor model with 7 unconstrained and
the two-factor model with 7 unconstrained (f = —10) are x3 if one takes the value of the likelihood function with
7 = —10 as equal to the unconstrained value, and the distributions of the test statistics comparing the one-factor
model with 7 = 0 and the two-factor model with ¥ unconstrained are x3 if one takes the value of the likelihood
function with ¥ = —10 as equal to the unconstrained value. ‘The .05 fractiles of the x? distributions with 1, 2,
and 3 degrees of freedom are 3.8415, 5.9915, and 7.8147, and the .01 fractiles are 6.6349, 9.2103, and 11.3449.
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Table 2
Parameter Estimates for the One-Factor
Model Estimated Using All 10 Bonds3!

Subsample

and Model InL K o 0 A 1"
1972-1986

F=0 4.50182 x 163 0.16939  0.10232 0.08903 -0.04544

(0.0862) (0.0056)  (0.0450) (0.0857)

Funcons. 4.50738 x 103 0.17739 0.12622  0.06231 -0.05883 0.02991
(0.1621) (0.0079)  (0.0569) (0.1617) (0.0028)

Ho:7=0 11.12
03)
1972-1979
F=0 2.77703 x 10°  0.47588 0.09269  0.09087 0.07791

(0.0594) (0.0070)  (0.0110) (0.0588)

7 uncons.  2.78022 x 10° 0.47791 0.12315  0.05970 0.07543  0.02669
(0.2445) (0.0129)  (0.0304) (0.2411) (0.0039)

Hy:7=0 6.38
(x})
1979-1986
F=0 2.13685 x 103 0.20368 0.11425  0.07936 -0.12165

(0.1387) (0.0086)  (0.0372) (0.1376)

Funcons. 2.14515x 108  0.41112 0.16354  0.03310 -0.25236 0.05245
(0.2620) (0.0118) (0.02110) (0.2615) (0.0006)
Ho:7=0 16.60
(x})

Test Statistics for the Hypotheses that the Parameters
are Constant Throughout the Sample Period

Model Test Statistic

Ff=0 810.66
(x3)

f uncons. 835.98
(x3)

3!Standard errors are in puentheses The asymptotic distributions of the test statistics for the hypotheses
that f= 0 in the first panel are x3. The asymptotic distributions of the test statistics in the second panel are
X3 and x3. The .05 fractiles of the x? distributions with 1, 4, and § degrees of freedom zre 3.8415, 9.4877, and
11.0705, and the .01 fractiles are 6.6349, 13.2767, and 15.0863.
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Table 3
Estimated Standard Deviations of the Errors in the
Statistical Model for Bond Prices for the One-Factor Model3?

Subsample Bond Maturity
and Model .5 year 1year 2years 3years 4years 5 years 7 years 10 years 30 years

1972-1986

r=0 .00157 .00530 .01496 .02725 .03844 .06661 .06107 07905  .12238
f uncons. .00157 .00531 .01498 .02725 .03842 .06665 .06111 07941 12357

1972-1979

F=0 .00124 .00408 .01050 .01779 .02471 .03416 .02912 .03932 .05587
T uncons. .00124 .00408 .01050 .01779 .02471 .03415 .02911 .03927  .05689

1979-1986

F=0 .00179 .00598 .01633 .02782 .03645 .06827 .05957 07269 .12261
T uncons. .00179 .00600 .01635 .02784 .03645 .06827 .05963 07311 .12498

32The estimated standard deviations are computed under the assumption that the mean of the residuals is
zero, and hence are mean-squared errors.

78



Table 4
Parameter Estimates for the One-Factor
Model Estimated Using 3 Treasury Bills®

Sample Period

and Model Inl K o 4 P T
1972-1986
=0 2.49727 x 10°  0.39363 0.10146 0.08695 -0.10678
(0.0986) (0.0054) (0.0201) (0.0918)
7 uncons. 2.50600 x 103  0.44218 0.12790 0.05772 -0.16246  0.02880
(0.1462) (0.0079) (0.0185) (0.14199) (0.0020)
Ho:7=0 17.46
(x})
1972-1979
F=0 1.37141 x 10®  0.58862 0.09154 0.08148 -.08166
(0.1524) (0.0068) (0.0185)  (0.1344)
T uncons. 1.37417 x 10°  0.62868 0.11973 0.05517 -.13105 0.02530
(0.2438) (0.0124) (0.0207) (0.2323) (0.0041)
Ho:7=0 5.52
(x?)
1979-1986
r=0 1.15540 x 10®° 0.41064 0.11373 0.08547 -0.13383
(0.1465) (0.0087) (0.0276) (0.1332)
T uncons. 1.16552 x 10°  0.51827 0.16727 0.03723  -0.26577 0.05175
(0.2989) (0.0130) (0.0210) (0.2933) (0.0008)
Hyo:7=0 20.24
(x})

Test Statistics for the Hypotheses that the Parameters
are Constant Throughout the Sample Period

Model Test Statistic

F=0 59.08
(x3)

7 uncons. 66.78
(x3)

*Standard errors are in parentheses. The asymptotic distributions of the test statistics for the hypotheses
that ¥ = 0 in the first panel are x7. The asymptotic distributions of the test statistics in the second panel are
% and x?. The .05 fractiles of the y? distributions with 1, 4, and 5 degrees of freedom are 3.8415, 9.4877, and
11.0705, and the .01 fractiles are 6.6349, 13.2767, and 15.0863.
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Subsample

and Model
1972-1986
F=0
 uncons.

Ho:7=0

1972-1979
F=0
f uncons.

Ho:7=0
1979-1986

F=0
f uncons.

Ho:7=0

Table 5
Parameter Estimates for the Two-Factor
Model Estimated Using All 10 Bonds3*

InCl & o

no feasible parameter values
4.93110 x 10> 7.45252  0.01969
(0.6269)  (0.0014)

[0 o)
()

no feasible parameter values
2.93718 x 10>  14.50615  0.03209
(3.7655)  (0.0108)

o0
(x})

no feasible parameter values
2.41844 x 10°  5.11342  0.01868

(0.4660)  (0.0015)

(x})

0.02641
(0.0053)

-0.03148
(0.0628)

0.04070
(0.0057)

-0.00479
(0.0017)

-0.02211
(0.0113)

-0.00093
(0.0022)

K2
0.07974

(0.0089)

0.45896
(0.0281)

0.13172
(0.0150)

g2

0.11703
(0.0080)

0.07482
(0.0287)

0.15634
(0.0118)

Test Statistics for the Hypotheses that the Parameters
are Constant Throughout the Sample Period

Test Statistic

F=0 no feasible parameter values

T uncons.

34Standard errors are in parentheses. The parameter 7 =
asymptotic distributions of the test statistics for the hypotheses that ¥ = 0 in the first panel are x} if one
takes the value of the likelihood function with # = —~10 as equal to the unconstrained value. The asymptotic
distributions of the test statistics in the second panel are x7 and x3, again if one takes the value of the likelihood
function with # = —10 as equal io the unconstrained value. The .05 fractile of the x* distribution with 1 degree
of frecdom is 3.8415, and the .01 fractile is 6.6349. The .05 fractiles of the x? distributions with 7 and 8 degrees

(x3)

849.04

(x3)

of freedom are 14.0671 and 15.5073, and the .01 fractiles are 18.4753 and 20.0902.
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0.09296
(0.0064)

0.09267
(0.0627)

0.10138
(0.0063)

—10 in the results labelled “F uncons.”



Table 6
Estimated Standard Deviations of the Errors in the
Statistical Model for Bond Prices for the Two-Factor Model3®

Subsample Bond Maturity

and Model 1 year 2years 3 years 4 years 5 years 7 years 10 years 30 years
1972-1986

F=0 no feasible parameter values

T uncons. .00206 .01052 .02182 .03286 .06069 .05346 .07021 .31121
1972-1979

F=0 no feasible parameter values

f uncons. .00175 .00863 .01595 .02392 .03291 .02678 03584 .05449
1979-1986

Ff=0 no feasible parameter values

¥ uncons. .00226  .00946 .01973  .02555 .05892  .04519 05660 .10760

*The estimated standard deviations are computed under the assumption that the mean of the residuals was
zero, and hence are mean-squared errors.
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Table 7

Likelihood Function Values for the Various
Models Estimated Using 3 Treasury Bills3

1972-1979 1979-1986

1.15540 x 10°
1.16552 x 103

1.37141 x 103
1.37417 x 103

no feasible parameter values

1.45573 x 10° 1.26995 x 103

Likelihood Ratio Test Statistics

1972-1986

One-factor Model

F=0 2.49727 x 103
f uncons. 2.50600 x 10°
Two-factor Model

r=0

¥ uncons. 2.69932 x 103

Hy vs. Hy

One-factor ¥ = 0 vs.

One-factor ¥ uncons.

One-factor 7 = 0
Two-factor F = 0

One-factor ¥ uncons.
Two-factor ¥ uncons.

Two-factor 7 = 0

Two-factor ¥ uncons.

One-factor F = 0

Two-factor ¥ uncons.

3 The asymptotic distributions of the test statistics for the hypotheses that # = 0 in the first panel are x3.
The asymptotic distributions of the test statistics comparing the one-factor model with ¥ unconstrained and the
two-factor model with ¥ unconstrained (F = —10) are x3 if the value of the likelihood function with # = —10 is
taken to be equal to the unconstrained value, and the distributions of the test statistics comparing the one-factor
model with # = 0 and the two-factor model with ¥ unconstrained are x32 if one takes the value of the likelihood
function with # = —10 as equal to the unconstrained value. The .05 fractiles of the x? distributions with 1, 2,
and 3 degrees of freedom are 3.8415, 5.9915, and 7.8147, and the .01 fractiles are 6.6349, 9.2103, and 11.3449.

VSs.

1972-1986 1972-1979 1979-1986

17.46 5.52 20.24
(x?) (3) O3)

no feasible parameter values

386.64
(x3)

163.12
(3)

208.86
(x3)

no feasible parameter values

202.05
(3)

168.64
(x3)

229.10
(x3)
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Table 8
Parameter Estimates for the Two-Factor
Model Estimated Using 3 Treasury Bills®”

Sample Period

and Model Inl K o 8+ F A K2 o2 82
1972-1986
F =0 no feasible parameter values
f uncons. 2.69932 x 10° 8.80420 0.02244 0.02741 -0.00678 0.18168 0.13339  0.06337
(0.9418) (0.0023) (0.0037) (0.0022) (0.0327) (0.0093) (0.0066)
Ho:7=0 0o
(x})
1972-1979
F=0 no feasible parameter values
Ff=-—10 1.45573 x 10°  16.40774  0.03734 -0.03182 -9.02754 0.31688  0.07111 0.09426
(4.3838) (0.0141) (0.0642) (0.0150) (0.0633) (0.0284) (0.0643)
Ho:¥=0 o
(x?)
1979-1986
F=0 no feasible parameter values
T uncons. 1.26995 x 10° 7.35352  0.02255 0.03942 -0.00276 0.26459 0.17031 0.07070
(0.9283) (0.0025) (0.0047) (0.0028) (0.0508) (0.0148) (0.0067)
Ho:7f=0 (o)
(x})

Test Statistics for the Hypotheses that the Parameters
are Constant Throughout the Sample Period

Model Test Statistic
F=0 no feasible parameter values
2
(x7)
T uncons. 52.72
2
(xs)

*7Standard errors are in parentheses. The parameter # = ~10 in the results labelled “F uncons.” The
asymptotic distributions of the test statistics for the hypotheses that f = 0 in the first panel are x? if one
takes the value of the likelihood function with # = —10 as equal to the unconstrained value. The asymptotic
distributions of the test statistics in the second panel are x7 and x3, again if one takes the value of the likelihood
function with 7 = ~10 as equal to the unconstrained value. The .05 fractile of the x* distribution with 1 degree

of freedom is 3.8415, and the .01 fractile is 6.6349. The .05 fractiles of the x? distributions with 7 and 8 degrees
of freedom are 14.0671 and 15.5073, and the .01 fractiles are 18.4753 and 20.0902.

83



Table 9
Constrained and Unconstrained Estimates of the Parameters 3;;3®

Subsample

and Model InC Bro B B2 Bao B21 Ba2 Bso B B2
1972-1986

CIR model 2629.32 -0.0024 -0.1133 1.1111 -0.0008 -0.6364 1.62900 0.0030 -0.9448 1.802¢

general model 2729.09 -0.0000 0.5879 0.4092 0.0010 -0.0374 1.0343 0.0051 -0.4340 1.3929
Ho : CIR model 62.68

(x3)
1972-1979

CIR model 1455.73 -0.0039 -0.2419 1.2488 -0.0013 -0.6648 1.6574 0.0039 -0.8580 1.7230
general model 1474.46 -0.0032 0.3422 0.6797 0.0008 -0.0731 1.0725 0.0063 -0.3508 1.2800
Hy : CIR model 43.44

(x?)
1979-1986

CIR model 1269.95 -0.0023 -0.0989 1.1013 -0.0003 -0.6314 1.6238 0.0057 -0.9350 1.8760
general model 1284.36 0.0031 0.1954 0.7625 0.0023 -0.3713 1.3448 0.0079 -0.7107 1.6372
Hp : CIR model 29.56

(x3)

Test Statistics for the Hypotheses that the Parameters
are Constant Throughout the Sample Period

Model Test Statistic
CIR model 52.72
(x3)
general model 59.46
(X%s)

% The asymptotic distributions of the test statistics in the first panel for the hypotheses that the constraints
are satisfied are x7. The asymptotic d'stributions of the test statistics in the second panel are x3 and x35. The
.05 fractile of the x? distribution with 5 degrees of freedom is 11.0705, and the .01 fractile is 15.0863. The .05
fractile of the x? distributions with 8 and 13 degrees of freedom are 15.5073 and 22.3621, and the .01 fractiles
are 20.0902 and 27.6883.
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Table 10
Predictive Performance of Various Models:
Mean Squared Prediction Errors3?

Mean Squared Prediction Errors (x10%)

Forecast One-Tactor Two-Factor General Markov Martingale

Error Model Model Model Model
1972-1986
Y*(n)-Y () 0.7124 0.8311 0.7303 0.6905
Y*(r2) =Y (r2)  0.6465 0.7325 0.6647 0.6495
Y*(r3)-Y (13)  0.6939 0.6838 0.6394 0.6047
1972-1979
Y*(n)-Y (nn)  0.3890 0.3681 0.3186 0.3455
Y*(r)-Y (r)  0.3140 0.2817 0.2495 0.2588
Y*(m3) =Y (m3)  0.3510 0.2848 0.2675 0.2456
1979-1986
Y*(n)-Y"(n)  1.0557 1.3384 1.2075 1.0593
Y*(r2) =Y (r)  0.9998 1.2211 1.1413 1.0672
Y*(r3) =Y (13)  1.0430 1.0946 1.0464 0.9886

3 The forecast errors are the differences between the actual and predicted yields. The predicted yields were
calculated using the parameter estimates of the translated one and two-factor models and the general markov
model for yields est.nated using 3 Treasury Bills and the naive martingale model.
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Figure 1
Time Series of the Interest Rate r for
the Translated Two-Factor Model, 1972-198640

0.1
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-0.05 !
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

“The estimates of the values of the state variable were calculated using the parameter estimates of the
translated two-factor model estimated using all 10 bonds.
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Figure 2
Time Series of the State Variable y for
the Translated Two-Factor Model, 1972-1986%!

0.15
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'The estimates of the values of state variable were calculated using the parameter estimates of the translated
two-factor model estimated using all 10 bonds.
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CHAPTER 3
AN EXTENDED SIMULATED MOMENTS ESTIMATOR
OF CONTINUOUS TIME ASSET PRICING MODELS

Abstract This essay presents an extended simulated moments estimator (ESME)
of the parameters of continuous time asset pricing models in which the underlying
state variables follow a (vector) diffusion process and asset prices can be expressed as
condition. 1 expectations of known functions of the sample path of the state vector.
The ESME allows the estimation of models in which the asset pricing function is
neither known in closed form nor easily evaluated numerically. The idea underlying
the estimation strategy is that, when asset prices can be expressed as conditional
expectations, it is possible to simulate the moments of certain functions of asset
prices even when it is not feasible to compute the ascet prices as functions of the
underlying state variables. Specifically, moments of certain functions of the asset
prices are obtained by constructing a discrete approximation of an expanded system
of stochastic differential equations related to the stochastic differential equation de-
scribing the motion of the underlying state variables and using the approximation
to simulate the moments of certain functions of the sample path of the expanded
system. If these functions are chosen appropriately, probability limits of normalized
sums of these functions are equal to the probability limits of normalized sums of
certain functions of the data when the simulation is performed using the true param-
eter vector, and not otherwise. I show the consistency and asymptotic normality of
the estimator and demonstrate its computational feasibility by using it to estimate
a one-factor term structure model due to Cox, Ingersoll, and Ross.

1 Introduction

The last twenty years has seen the development of a number of continuous time asset pricing
models in which the prices of certain assets can be expressed as conditional expectations of
functions of the sample paths of underlying state variables. These state variables may be
observed or unobserved, and may include the prices of other assets. For example, in the option
pricing model of Black and Scholes (1973) there is a single underlying state variable, the price
of the common stock, and the price of a European option is equal to the conditional expectation
(under the appropriate probability measure) of a function of the stock price on the expiration
date of the option. In the term structure model of Cox. Ingersoll, and Ross (1985b) the bond
price can be written as the conditional expectation of a function of the sample path of the
unobservable instantaneous riskless rate of interest, while in the stochastic volatility option
pricing models of Wiggins (1987), Scott (1987), and Melino and Turnbull (1988) the prices of
options depend upon the price and (unobservable) instantaneous volatility of the underlying
asset. Empirical implementation of such models is hindered by the fact that maximum likelihood

and method of moments estimators require that the econometrician know either the conditional
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density or the moments of the data generating process, and analytic expressions for these are
known only for very special cases of diffusion processes. A second difficulty is that for many
models an analytic expression for the asset pricing function (i.e., the appropriate conditional
expectation) is known only for special cases of the underlying state variable process, or not at
all. This makes estimation using existing techniques extraordinarily difficult, if not impaossible.

The first difficulty, that of adducing cither the conditional density or the moments of the
data generating process, can be circumvented by using the estimation strategy of Dufile and
Singleton (1989) (DS). They advance a simulated moments estimator (SME) of the parameters
of asset pricing models in which the underlying state variables follow general markov processes
and the asset pricing function is eithc: known in closed form or easily evaluated numerically.’
The basic idea of their approach is to simulate the moments of the data generating process
and choose the estimate of the parameter vector to minimize the (appropriately measured)
distance between the simulated and sample moments. In essence, they use simulated moments
to replace the population moments in the generalized method of moments (GMM) of Hansen
and Singleton (1982), in which the parameter vector is chosen to minimize the distance between
the population and sample moments. The simulated moments of continuous time processes are
obtained by simulating a finely spaced discrete approximation of the state process, computing
the asset prices as functions of the state vector, and then sampling the approximating processes
at an interval corresponding to the observ-tion interval of the econometrician.

This essay addresses the second problem hindering the empirical implementation of con-
tinuous time asset pricing models, namely that in many models the asset pricing function is
known in closed form only for very special cases of the underlying state variable process, or not
at all. I present an extended simulated moments estimator (ESME) of the parameters of asset
pricing models in which the underlying state variables follow continuous time markov processes
and the endogenously determined asset prices can be expressed as conditional expectations of
known functions of the sample paths of the state variables.? The idea underlying the estimation
strategy in this paper is that, when asset prices can be written as conditional expectations, it
is possible to simulate the moments of functions of asset prices even when it is not possible to
compute the asset prices as functions of the underlying state variables.

The estimation strategy is as follows. The point of departure is the SME of DS. The first step
is to simulate the underlying state variable process exactly as in DS. At this point the approach

of DS would involve computing the asset prices as functions of the underlying state variables

!Lee and Ingram (1989) have also proposed a simulated moinents estimator of time series models MacFadden
(1989) and Pakes and Pollard (1989) have studied siinulation-based estimators in cross-sectional settings.

3The requirement that the endogenously determined asset prices be expectations of known functions of the
underlying state variables precludes using the ESME with assets that have an “American” feature unless it can be
shown that this feature has no value, as, for example, is tae case with an American call option on a non-dividend
paying stock.
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and forming a moment condition using moments of functions of the simulated state variables
and asset prices and moments of the same functions of the data. However, in this paper it is
assumed that the asset prices, i.e. the conditional expectations of functions of the sample paths
of the state variables, cannot be computed. Therefore functions of the simulated asset prices
cannot be computed and the moment condition cannot be formed. The estimation strategy of
the ESME is to replace the functions of the simulated asset prices with estimates consisting of
certain functions of simulated sample paths of an expanded set of stochastic processes related
to the state variable processes. Under the appropriate probability measure, the conditional
expectations, and therefore expectations, of the differences between the functions of asset prices
and the estimates have mean zero. Under regularity conditions these differences satisfy a law
of large numbers, and moment conditions constructed using the simulated asset prices can be
replaced with moment conditions constructed using the estimates of the simulated asset prices.

To be more precise, let f : R4 — RB be a measurable function, where A is the dimension
of the data vector to be used in estimation and B is the dimension of the moment condition.
In the simulated moments estimator of DS, estimates are obtained by choosing the estimates
to minimize the (appropriately measured) distance between certain sample moments calcu-
lated from the data and the sample moments of a simulated stochastic process generated using
the equation of motion which describes the data. The DS moment condition is of the form
,} Z;T:o fi - 7(1’1'5 ):Z;‘Z’ f8, where f, is a function of the data observed at time ¢ and f# de-
notes the same function of a sequence simulated using the parameter vector 8. The simulated
moments are used to replace the expectation in the GMM moment condition of Hansen and Sin-
gleton (1982) = ST fi— E( /), where the expectation is taken with respect to the stationary
distribution of the data generating process.

I perform additional simulations to construct estimates /5 of the functions f? used in the DS
moment conditions. Let P be the probability measure on the space on which the simulations
are defined,® and let G, denote the sigma-field of events distinguishable at time s. I use a
moment condition m;(T) (B) = ’}‘E'{:o fi - ﬂ‘ﬂ 2';‘? f8, where EP(ff - £5|G,) = 0 and the
sequence of differences ff’ — fP admits a law of large numbers. This estimation strategy is useful
when the asset price is given by the conditional expectation of a function of the sample path
of a stochastic process and this conditional expectation cannot be computed in closed form.
In this case the vector f? also cannot be computed, and the DS moment condition cannot be
formed. In this paper I describe how to construct certain functions j," that have the property
that EP(f8 — fB|G,) = 0. Estimation can then be based upon simulated moments of these

functions.

3The simulated process is independent of the data generating process. The probability space underlying the
estimator is the product space formed from the probability space upor nich the process assumed to generate
the data is defined and the probability space upon which the simulation is defined.
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While the estimator involves a great deai of simulation, it is computationally feasible even
when the state space is of relatively high dimension. In contrast, maximum likelihood, GMM,
and SME estimators are not computationally feasible when the asset pricing function is un-
known and cannot be computed at reasonable cost. The simulated ‘moments estimator of DS
overcomes the problem of adducing the conditional density or moments of the underlying state
variables, but still requires that one be able to compute the asset prices. While asset prices in
the continuous time models of interest satisfy partial differential equations, solution of these
equations by finite difference methods is extraordinarily difficult and costly when the state
space is of even moderately high dimension. For this reason, estimation of models for which an
analytic expression for the asset pricing function is not known and the state space is of even
moderately high dimension is essentially impossible using existing techniques.

The key to the approach in this paper is to perform the simulation on the appropriate
probability space. The simulated state variable process is defined on a filtered probability
space (, F,F, P) which is a “copy” of the probability space upon which the process assumed
to generate the data is defined. Ergodicity assumptions that give a law of large numbers and
a central limit theorem are made about processes defined on this probability space. However,
the asset prices are given by conditional expectations with respect to probability measures Q"
equivalent to the conditional probabilities of P. No such property holds under the conditional
probabilities of P. I need to construct a probability space, set of stochastic processes defined
on this space, and estimates of asset prices that mimic the property of Q* that asset prices are
given by expectations and also allow a law of large numbers and a central limit theorem. I must
also chose the functions f? so that EP(f# — f%|G,) = 0.

In order to accomplish these goals, the simulated state variable process is, as above, de-
fined on a “copy” of the probability space upon which the data generating process is defined.
Addivional simulated processes related to the state variable process are used to construct the
functions ff’, for s = 0,1,...,7. These are defined on probability spaces (2!, F?,F?, P?), for
s=0,1,...,7 and i = 1,...,M, where M is the order of the highest order moment used in
estimation. The entire set of simulations used to generate both the state variable process and
the functions ff’ is defired on a rather complicated product space constructed from (2, F,F, P)
and (¢, F?,F2,P?),fors=0,1,...,7,and i = 0,1,..., M. The probability measure P on this
space is constructed from both P and the Pf.4 This probability space, the processes defined

4One need not be concerned about the fact that the probability space upon which the simulated processes
are defined has a different structure than the probability space upon which the processes assumed to generate
the data are defined. The estimator requires that the moments of the simulated processes and the moments of
the data have the same probability limits when the simulation is performed using the true parameter vector, and
have different probability limits otherwise, but no other features of the simulated processes, or the probability
space upon which they are defined, are important. In particular, it is not necessary that the probability space
upon which the simulated processes are defined have the same structure as the probability space upon which the
processes assumed to generate the data are defined.
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on it, and the functions f7 have the property that Ep(ff’ - fP1G,) = 0.

Bossaerts and Hillion (1989) have advanced a simulation-based estimator of models of the
pricing of “European™ type contingent claims which can be used when an analytic expression
for the asset pricing function is not known and the state vector is observable.> Their procedure
involves choosing the model parameters to minimize the distance between a time-series cross-
section of observed contingent claims prices and estimates of theoretical prices obtained by
simulation. At each point in time, a cross-sectional simulation using a moderately large number
of draws is used to estimate each asset price.® The limitation that the siate vector must be
observed arises because the values of the state variables at each point in time are needed to
simulate the contingent claims prices. Another limitation of the procedure is that it does not
exploit any knowledge of the dynamics of the underlying state vector that the econometrician
might possess. That is, Bossaerts and Hillion do not make any use of the implications of tue
underlying model about the time-series properties of asset prices. In particular, they do not
use second or higher order moments of the contingent claims prices, or of lagged moments.

The estimation strategy in this paper, including the construction of the probability space
upon which the simulated processes are defined, the processes to be simulated, and the con-
struction of the moment conditions, is somewhat complicated. In order to make clear the basic
idea, in the next section of the paper (Section 2) I present the approach in the context of a
simple one-factor bond pricing model. I begin by discussing the SME of DS, and then show
how the ESME can be constructed by expanding the probability space on which the simulated
process is defined and performing additional simulations.

Section 3 presents the setting for which the estimator is intended, the simulated processes,
and the estimator.

In the models I consider, the underlying state variables follow diffusion processes. Moments
of certain functions of the asset prices are obtained by constructing discrete approximatinns
of the stochastic differential equation describing the motion of the underlying state variables
and the additional processes used to construct the estimates of the asset prices and using the
approximating processes to simulate the moments of the functions ff’ Existing literature on
approximating stochastic differential equations in mean square provides bounds on the mean
square error only over a fixed time interval [0, 7] (see, for example, Pardoux and Talay (1985)
or Gard (1988)). However, in the asymptotic theory one must let 7 — oo, and the existing
results are not adequate because the bound on the mean square error is a function of 7.

One strategy is to take the approximating discrete-time process as the true probability

model, and assume that asset prices can be expressed as conditional expectations of sample

®Bossaerts (1989) studies the extension of the ideas of Bossaerts and Hillion (1989) to the case when the
option may be exercised at any of a finite number of times prior to expiration.
8 Bossaerts and Hillion (1989) use between 20 and 100 draws to estimate each option price.
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paths of the approximating process. This approach is taken in Section 4, where the consis-
tency and asymptotic normality of the estimator are shown under the assumption that the
approximating process is the true probability model.

An alternative strategy is to show that the approximating process for the state variables
converges in mean square to the underlying diffusion process for all times s € [0,00). In Section
5 I pursue this strategy for certain bond pricing models. I show that the approximating process
converges in mean square to the underlying diffusion for all s € [0,00), and that the same
convergence holds for the moments to be used in estimation. This allows me to obtain the
stronger result that the ESME is consistent and asymptotically normal for the parameters of
the continuous time bond pricing models.

In Section 6, I demonstrate the computational feasibility of the ESME by using it to estimate
the parameters of a term structure model. The model I estimate is the basic one-factor model of
the price of a real bond due to CIR (1985b) in which the instantaneous riskless rate of interest
follows a mean-reverting process with linear drift and diffusion coefficient proportional to the
square root of the interest rate. For the purpose of demonstrating the feasibility of the ESME
I reinterpret this model as a model of the prices of nominal bonds. This particular model was
chosen because analytic expressions for the moments of ¢he bond prices can be obtained and
the model can be estimated by the GMM. This allows me to compare the estimates from the
ESME to those obtained using GMM.

Section 7 concludes the paper.

2 An Example

The ideas can be illustrated in the context of a one state variable model for bord prices due to
CIR (1985b). The relevant features of this model are as follows.

2.1 The Model

Fix a filtered probability space (ﬁ,f' ,f‘,ﬁ) for the time set [0, T)] where F= {j':g;t > 0} is the
filtration generated by a standard Brownian Motion in ®. On this probability space define a

stochastic process

d(t) = ro(fo ~ 7(1))dt + a0\ [F(1)dF (1), (1)

with initial condition 7(0) = fp. The partial differential equation satisfied by the price at time
t of a bond with maturity 7, H(#(t), 8c), is (CIR (1985b))

1/2027 H:+ + (Koo — (Ko + Ao)7)Hz — H, — 7FH = 0, (2)
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with boundary condition H(#(t + 7),0, Po) = 1. Here Ag denotes the market price of interest
rate risk, and Sy = (%o, 90,60, Ao)’.

Alternatively, the bond price can be expressed as an expectation.

Let £4(t'), for ¢’ > tand t = 0,1, . ,T, be the processes defined by’

NP 1 (¥ A2 (u)
tiyf - -_— -—-————0 PR ————o
E(t') = exp [ /t . dW(u) 2/‘ p du
with initial condition £!(t) = 1. Define probabilities Q*,¢ =0,1,...,T by

Q'(A) = EP[Lug(t 4+ 7) | ), for A€ Fuyr (3)

The probability P and its conditional probabilities are to be interpreted as the beliefs of the
agents in the economy, while Q* is a “risk-adjusted” probability. For t' € [t,t + 7], the interest

rate satisfies

di(t') = (Kobo — (Ko + Ao)F(1'))dt' + oor/F(t)dWH(t'),

where by Girsanov’s theorem W'(t') = W(t) + f:' ﬁ{,:Edu is a Brownian Motion under Q*.
From CIR (1985b), the price at time ¢ of a bond with maturity 7 is given by the expectation
(= Q* -f”r (u)du | T
H(7(t),00) = E~ (e Js | ¢ ). (4)

Now consider another probability space (', F*, F*, P!) for the time set [t,t + 7], and define

dri(t') = (rofo — (Ko + Ao)r(t'))dt! + oor/ri(t)dW!(t),

where r!(t) = 7(t) and W' is a Brownian Motion under P‘. Conditional on the information

. . . —f”f rt(u)du
available at time t, the random variable e~ J:

t4r _
e~ Jo W4 has under Qt, and, similar to (4),

has the same distribution under P! as

(£ 34

(), p0) = P (e 7T | 7). (5

This expression for the bord price is the basis of the estimation procedure.®

"Throughout, time superscripts on processes indicate that the processes start at that time. For example, the
process £*(t') is defined for t' > t.
®From CIR (1985b),

F(7(1), Bo) = A(r, Bo)e~B(mPaIN®),

where

2ye(THA4R)T/2 ] 2x8/0”
’

Alr fo) = [(7 FA+R) (e —1) ¥ 27
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While the GMM or the SME of DS could be used to estimate this particular bond pricing
model, in general the bond pricing function is known only for very special cases of the underlying
state variable process. Since DS assume that the asset price is a known function of the state
variables and it is only the moments of the asset price that are unknown, in general their
approach cannot be used.® The problem in estimating bond pricing models is precisely that
the bond pricing function is known only for very restrictive assumptions about the dynamics
of the underlying state variables. The object is to see how this difficulty can be overcome using

an extension of the simulated moments estimator.

2.2 The Simulated Moments Estimator

As a point of departure, I describe the simulated moments estimator of DS might be applied
to this bond pricing model.!® It is assumed that the data are generated by (1) and (4), and
therefore that 8y = (Ko, 0,80, Ao)’ is the true value of the parameter vector. The econometrician
observes the values of the process (4) at times t = 0,1,...,T.

Consider a second probability space (Q, F,F, P) on the time set [0, 7] where F = {¥,;s > 0}
is the filtration generated by a standard Brownian Motion in ®. On this probability space define

a stochastic process

dr(s) = k(8 — r(3))ds + o\/r(s)dW(s), (6)

with initial condition r(0) = ro. Define another stochastic process

H(r(s),8) = A(r,)e”BrAIrC), (7)

where 8 = (x,0,0,) and A(7,() and B(r,[) are defined in footnote 8. It is assumed that the
econometrician simulates the processes (6) and (7). In estimation, the econometrician will use
values of the process (7) observed at times s = 0,1,...,7.

The probability space underlying the SME is the product space (Q xQ,FxF,Px P) where,
for any A € ¥, B € F,, (P x P)(A x B) = P(A)P(B).

2(e"" -1)
(r+A+8) (e —1)+ 29
(s + A)? 4+ 26°)'72.

B(T, BO)

¥

? While finite difference methods could be used to compute the asset prices in models with only one state vari-
able, they are not computationally feasible when the state space is of higher dimension because most estimation
problems require that the asset pricing function be evaluated hundreds or thousands of times.

190f course, the generalized method of moments of Hansen and Singleton (1982) could be applied to this model
because the joint distribution functions of the interest rate are known and analytic expressions for the moments
of both yields and prices can be found.
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Let Z, = [H(r(t), o), H(r(t — 1),B0), ..., H(r(t — £),50)] and Z, = [H(r(s),B), H(r(s -
1),8),...,H(r(s — £),B)] for some positive integer £ < oo, let f : R — RB, where B > 4,
be a measurable function, and consider the sequences {f; = f(Z;)}L, (the data) and {f? =
f(Z,)}_, (the simulated observations). In the simulated moments estimator, estimation is
based upon sample moments of these two sequences. Specifically, the econometrician foiins a

moment condition

. 1T, . 1 (T) 5
mpy (ﬂ)sfgft—_f(—ﬂgf.’ (8)

and chooses the estimator b1 to make this moment condition close to zero.

I emphasize that the probability space upon which the simulation is performed need not be
a “copy” of the probability space (Q, F, F, P) upon which the processes assumed to generate the
data are defined, and the simulated process need not be a “copy” of the process used to generate
the data.!! It is necessary only that those moments of the simulated process used in estimation
agree with the moments of the data generating process when 8 = [y and disagree otherwise.
While the simulated moments estimator of DS does not require that the econometrician take
advantage of this freedom, I exploit it below with the extended simulated moments estimator. I
find it necessary to introduce a complicated probability space upon which to define the simulated
processes. The simulated processes defined on that s:ace are of much higher dimension that

the processes assumed to generate the data.

"' For example, consider a filtered probability space (2, F, F, P) on the time set [0, 7] where F = {F,;s > 0}
is the filtration generated by a standard Brownian Motion in R?. On this probability space define stochastic
processes r(s) and H(r(s), ) as follows:

r(s) = 28 for0 < s <1,
r(s) = r(l)+/ K(G—r(u))du+/ { 705\/,7('“_) %m 'll [ :w;g:i fors 51
H(f(a)'ﬂ) = A(T, ﬁ)e_a("‘)'(').

Simulated moments estimation could be based upon this process because the ergodic distribution of H(r(s), #)
is identical to that of H(#(t), fo) when 8 = fo.

While this is a silly example, it makes the points that the probability space upon which the simulated process
is defined need not be identical to the probability space upon which the process assumed to generate the data is
defined, and the simulated process need not be identical to the process assumed to generate the data. All that is
required is that the econometrician define a simulated proces and construct sequéences of functions {f.}.T.o and
{ff}ﬁg') with the property that my(f) = %Zf_o fi - T(,'ﬂz:r::) f? — 0 in probability when 8 = f, and
not otherwise.

In practice, noone would ever define the simulated processes on a probability space more complicated than
the probability space on which the data generating process is defined, and noone would ever define a simulated
process that differed from the data g:zaerating process unless inabiiity to observe the initial condition of the data
generating process forced one to do so. In this case the econometrician presumably would construct a simulated
process that differed from the data generating process only in the initial condition. It is nonetheless true that
the econometrician has some f dom in constructing the simulation.
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2.3 The Extended Simulated Moments Estimator

The idea of the extension is to replace the simulated functions f? with estimates ff, where
EP(f8 - P|G,) = 0 and the sequence of differences {f8 — P} admits a law of large numbers.
(Here P denotes the probability measure on the probability space upon which the simulation
is defined, while G, is the sub-sigma-field of events distinguishable at time s.) It turns out that
it is not necessary that the functions f# be precise estimates of the functions f°. Moment
conditions to replace the condition (8) of DS can be formed using only a few simulations to
obiain the estimates ff used to replace the functions f? used in (8). In particular, it is not
necessary to perform enough additionai simulation or other computation to obtain a precise
estimate of the function for each s € {0,1,...,7}.

The data is assumed to be generated by the model described in subsection 2.1 above. There
is an underlying filtered probability space (ﬁ,f', l'~‘,13) for the time set [0, T], the interest rate
follows (1), and the observed bond prices are given by the conditional expectation (4). I proceed
by first simulating the state variable process on a “copy” of the probability space underlying
the data generating process. I then construct a product space and a set of processes defined on

it and use these to construct the functions f5.

2.3.1 The simulated processes

The state variable process
Fix a filtered probability space (R, F,F, P) for the time set [0,7] where F = {F,;s > 0} is
the filtration generated by a standard Brownian Motion in . On this probability space define

a stochastic process for the underlying state variable

dr(s) = k(6 — r(s))ds + a\/r(s)dW(s), (9)
with initial condition r(0) = rg. This is the same probability space used in the SME in
Subsection 2.2 above, and the state variable process (9) is identical to (6).

Let £(s'), for s’ > s and s = 0,1,...,7T, be the processes defined by

£°(s’) = exp [— /’8' A '; o dW(u) - 1/’, Mr. "'du] )

2/, o?

Define probabilities Q?, for s = 0,1,...,7, by Q°(A) = EP[14€°(s 4 7)|F,], for A € Fuyr.

The process on [s,s + 7| defined by W(s) =0, dW*(s') = dW(s') + 3./r(s")ds’ is a Brownian

Motion under Q*, and, for s’ > s, the simulated state variable process (9) can be written
dr(s') = (K8 — (K + M)r(s"))ds’ + a/r(s")dW (s'), (10)

The simulated bond price is given by the conditional expectation
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H(r(s),p) = E@(e S r4v | £

The strategy below is to construct random variables that have the same conditional distribution

st
as integer powers of e~ JU77 v}y 314 use these random variables in the moment conditions.

The product space and the processes defined on it

For each integer s, # = 0,1,...,7, construct M probability spaces (Q?,F/,F?, P’), for i =
1,...,M, on the time set [s,s + 7] where F} = {¥{,;5 < u < s+ 7} is the filtration generated
by a standard Brownian Motion in . Construct the product space § x (x;o (xfilﬂ,’)), with
product sub-sigma-field at time u given by G, = ¥, x (xizo (xﬁ,f,{u)), where j is the largest
integer less than or equal to u. The filtration is G = {G,;s > 0} and the product measure P
is P(B) = P(A x (x3o (xM,45)) = P(A)[Iioo[1¥, P/(A}) where B € G, A € F,, and
A€ 7L,
On each of the probability spaces (R}, F?,F{, P?), define a process

dri(s') = (k8 — (x + A)ri(s'))ds' + ay[/r(s")dW)(s'), (11)
Define!? Hy(r(s),B) = e'f-'“':(")d", for ¢ = 1,...,M. The processes (11) are identical in

distribution to the simulated state variable process under Q* given by (10), and the distribution
—~ 4T
of Hi(r(s),B) under P! is identical to the distribution of e~ J7 T e e Q°. Below I

]

repeatedly use the following fact:

EP(Hi(s,8)16,) = EN(His,B)|F)
- EQ'(e— f:+'r(u)du l ]_-.)

= H(r(s),B)-

The first equality follows from the construction of the probability P, the second follows from
the fact that the conditional (on F,) distribution of H;(r(s),8) under P? is identical to the
234

conditional distribution of e~ L rw)du under @Q°, and the third equality is a property of the
bond pricing model.

2.3.2 A law of large numbers for the first moment

It is now possible to obtain a law of large numbers under P, i.e., to show that certain functions
of the simulated processes converge in probability to certain functions of the data when 8 = fq.

That this is possible for the first moment is suggested by the fact that

'2Throughout this section, the exposition is as though one could actually compute this function.
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EP(Hi(r(s),8) - H(r(s),B) | o)
= EP (EP(H(r(s),8) ~ H(r(s),8) | G,) | %o)
= EP (EP(Bi(r(s),8) - H(r(s),8) | F£,) | Fo)
= EF(0 | Fo)
=0,

fori=1,...,M, and the differences H;(r(s), 8) — H(r(s),B) are bounded. What I actually use
is the fact that after appropriate rescaling of the time variables in (11) each of the sequences

{Hi(r(s),8) — H(r(5),8),Gosr} 55 (12)

is a martingale difference sequence.
Suppose 7 < 1, and consider the sequence (12). The sequence {H;(r(s),8)—H (r(s),ﬂ)}T(T)

58=0

is adapted to the sequence {g.,+f},7=(§), and

EF{(Hi(r(s),8) - H(r(s),8) | FL,)
= 0,

EP(Hi(r(s),8) — H(r(s),8) | Gs)

so (12) is a martingale difference sequence. The sequence (12) is not a martingale difference
sequence when 7 > 1. However, one can make 7 < 1 by appropriate rescaling of the time
variable in the stochastic processes (11). Below, without loss of generality I assume 7 = 1
whenever it is useful for (12) or a similar sequence to be a martingale difference sequence.

That (12) is a martingale difference sequence, combined with the geometric ergodicity of
the state variable process, allows one to prove a law of large numbers for a moment condition
involving the first moment. Specifically, TEt:O H(#(t), Bo) - ﬂ-—; Y a=0 M g Hi(r(s),) — 0 in
probability when 8 = fp.

From the triangle inequality,

T(T)
—-Z_JOH(r(t), Bo) - = (T, Z Ai(r(s),P)
H : T(T)H ) H g,
= | = (1 T T
E (), B0) = 2y 2 A, ﬂ)+,,(T)§o( (r(s),8) = Hi(r(s), ﬂ))l
T(T) (T)
=) H(TF H(r H(r(s H;
< t}_; (7(t), o) T(T)‘E_.O (r(s),8)] + T(T).Z_%( (r(s),8) - Hi(r(s), ﬂ))
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The first term to the right of the inequality converges to zero in probability exactly as in DS.

For the second term, it was shown above that {H(r(s), 8) — Hi(r(s),8),Gssr} o is a mar-
tingale difference sequence under P. Also, from the properties of the exponential function,
EP(|H(r(s),B8) — Hi(r(s),B)|*|Go) < 1 for all s. Therefc ~ the second term converges to zero
almost surely, and hence in probability (White (1984), Theorem 3.77, Exercise 3.78).

2.3.3 A law of large numbers for the second moment

The moment conditions involving the higher moments are slightly more complicated. Construct
7 = ~ st+T

H;(r(s), ) as before and then construct H;(r(s), ) as H;(r(s),B) = e~ [ riwydu where r#(u)
(7 # 1) is given by (11). Then

EP(Hi(r(s),B)H;(r(s),8) | G;) = EF*Fi(Hi(r(s),8)H;(r(s),8) | Fs)
= ER(Hi(r(s),B) | Fo)E (H;(r(s),8) | )
_ (EQn(e_ LH-T r(u)du | ]:"))2

= H(r(s),0)%.

Here P} x P} is the product measure on the product space constructed from (2}, 77, F}, F;)
and (9, F;,F3, P7). The first equality follows from the construction of the probability P, the
second follows from the independence of H;(r(s),8) and H;(r(s),) given F,, the third follows
from the fact that the conditional (on F,) distribution of H;(r(s),8) under P is identical to
the conditional distribution of e~ J T r(wd under @°, and the fourth equality is a property of
the bond pricing model.

Also, after rescaling the time variables in (11), the sequence {H;(r(s),8)H;(r(s),B) —
H (r(s),ﬂ)z,g,+,}f=(§) is a martingale difference sequence. This, together with the geomet-

ric ergodicity of the state variable process, allows one to conclude that

1T p T@ R
7 ZH(F(t), Bo)? - ia) }: Hi(r(s),)H;(r(s),8) = 0 (13)
t=0 =0

in probability when 8 = fo.

Conditions involving the higher moments can be constructed using additional interest rate
processes 73, k # 1,7.

As indicated above, the estimates of bond prices H;(r(s), ) cannot be computed exactly.
Also, in general, the econometrician will not be able to simulate exactly the state variable

process. The strategy is to use the discrete time approximation described in subsection 3.3
below.
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3 The Extended Simulated Moments Estimator

In this section I describe the setting for which the estimator is intended and then turn to the

simulated processes and the construction of the moment conditions.

3.1 The data generating process

Fix a filtered probability space (ﬁ,f' ,f‘,f‘) for the time set [0,T] where F= {f-};t > 0} is the
filtration generated by a standard Browniarn Motion in ®P. On this probability space define an

L-dimensional stochastic process

dX(t) = w(X(t), Bo)dt + a(X(t), Bo)dW (2), (14)

with initial condition X(0) = Xo, where W(t) = [Wi(t), ..., W,(t)] is a standard Brownian
Motion in RP. Here By € © C R? denotes the vector of unknown parameters to be estimated.
This process describes the motion of a vector of state variables which may include the prices

of certain assets. It is not necessary that the econometrician observe the state variable process

~

X.

The econometrician observes a K-dimensional vector of asset prices H(t) which are functions
of the state vector X (), the time to maturity or expiration of the asset 7, and the vector of

unknown parameters Sy,

H(t) = H(X(2), ho). (15)
The econometrician knows neither an analytic expression for the function H nor the dynamics
of the asset prices (i.e., the functional form of the drift and diffusion coefficients).> However,

there exists a measurable function g : Xt x @ — RX, known to the econometrician, and a

probability Q! such that, for every time ¢,

H(X(t),B0) = E?'(g(2*,80) | Fo), (16)

where X! denotes the set of sample paths of the process X on [t,t + 7] and Z' denotes one

element of X*. The process X satisfies a stochastic differential equation

dX (u) = p(X (u), Bo)du + o (X (v), Bo)dW*(u), (17)
on the time set [, ¢ + 7], where Wt(u) = [Wi(u),... ,VT’,‘,(u)]’ is a Brownian Motion in ®? under
Q".

13The case when the dynamics of the asset prices are known has been treated by DS. If the dynamics of
some elements of the vector H(t) are known or some elements of X (t) are observable the approach here may be
combined with that of DS.
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For example, in the bond pricing model of CIR given by (1) and (4) above the state variable
process is dX(t) = di(t) = ko(do — 7(t))dt + 0o\/7(1)dW(t), and the bond price at time t,
H(#(t),B0), is given by H(#(t),B0) = EV'(e” o ;(“)d"\f,), where Q! is defined by (3). For
u > t, dX(u) = di(u) = (kobo — (Ko + AoF(w)))du + oo /Fu)dW*(u).

The functions p, i, and o satisfy growth and uniform Lipshitz conditions for all 8 € ©.
That is, there exists a constant K > 0 such that

|l‘(za .B) - I‘(yaﬂ)l + lﬂ(za ﬂ) - ﬂ(yaﬁ)l + IU(Z, .B) - U(yrﬁ)l Kl.’t - y|1
|u(z, B) + 1a(z, B)* + lo(z,B)1* < K*(1+|z])%.

IA

This assumption is made for all 8 € O in order to include the simulated processes below.

3.2 The simulated processes

Ideally, the econometrician would simulate a continuous-time state variable process along with
the set of “risk-adjusted” processes used to generate estimates of the functions ff . In general,
it is impossible to simulate exactly the continuous time processes, and a discrete time approx-
imation must be used. I begin by indicating the underlying continuous-time process that the
econometrician will approximate, and then indicate the discrete approximation.
The state variable process

Fix a filtered probability space (R, F,F, P) for the time set [0,7] where F' = {F,;s > 0} is
the filtration generated by a standard Brownian Motion in 7. On this probability space define

an L-dimensional stochastic process for the simulated state variable

dX(s) = p(X(8),8)ds + o(X(s), B)dW (s), (18)

with initial condition X(0) = Xy, where W(s) = [W(8),...,Wpy(s))’ is 2 Brownian Motion in
RP.

The simulated processes are constructed so as to inherit certain properties of the state
variable process. In particular, for all 8 € O, there exists a measurable function g : X*x0 — ®K

and a probability @? such that, for every time s, the simulated asset prices

H(X(s),B) = E¥'(g(z*,8) | F») (19)

are well defined, where X* denotes the set of sample paths of the process X on [s,s + 7] and

z*® denotes one element of X°. The process X satisfies the stochastic differential equation
dX (u) = (X (u), B)du + o( X (u), B)dW*(u), (20)
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on the interval [s, s + 7], where W*(u) = [W2(v),... ,W;,’(u)]’ is a Brownian Motion under Q*
defined on [s,s + 7.

The product space and the “risk-adjusted” processes defined on it

Let M be the order of the highest order moment used in estimation. For each integer s,
s=0,1,...,T, construct M probability spaces (2}, F?,F?, Pf), for: = 1,...,M, on the time
set [8,8+ 7] where Ff = {F?,;8 < u < s+ 7} is the filtration generated by a standard Brownian
Motion in RP. The simulation is performed on the product space  x (X,T_o (x,_IQ’)) with
sub-sigma-field at time u given by G, = Fy X (xi__.o ( MF )) where j is the largest integer
less than or equal to u. The filtration is G = {G,;8 > 0}, and the product measure P is
P(B) = P(A x (x}o (xM,43)) = P(A)[Fo 1, P2(A?) where B € Go, A € F,, and
A} € Fi,. For each 5,5 =0,1,...,7, define M stochastic processes on the time set [s,8+ 7]

dX}(s) = p(X{(u), B)du + o(Xi(u), B)dW{ (u), (21)

with initial condition X?(s) = X(s), ¢ = 1,...,M, where W/(u) defined on [s,s + 7] is a
standard Brownian Motion under P in ®P.

Let z? denote a sample path of the process X?(u). The estimation strategy is to re-

place the simulated asset prices (19) with functions g(z?,3) where the differerces g(z?,8) —

EP(g(z,B)|G,) form a martingale difference sequence. The law of large numbers below requires

that one control certain moments of the martingale difference sequence. A law of large numbers

holds if, for all B € © and all s € {0,...,7T}, EP[(9(z},8) — EP(g9(=2,8)1G:))¥|Go) < A < x
for some ¢ > 1.

3.3 Approximation of the simulated processes

The state variable process

Divide each unit of time in n equal subdivisions, and consider the equally spaced partition

0=38)< 8 <... <8 <...< 8y =T of the interval [0,7]. Draw a sequence of normal
random variables {e(k)}}Z,. Define

X"(SO) = X(O),
X"(sk41) = X"(sk) + AX"(sk), (22)
AX"(sk) = hp(X"(sk),8) + Vho(X™(s),B)e(k + 1),

where h = 1/n. The sequence {X"(sx)}}27Z, is the approximate solution to (18). Construct a
sequence {X#" (.fzn,)}.,_0 = {X™(s)}L, from every n-th term of {X™(sx)}}Z,. The time incre-
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ments between elements of this sequence are equal to the observation interval of the econome-
trician.
The additional simulated processes

Let M denote the order of the highest order moment used in estimation. For each element
of {XP"(s)}L,, generate M sets of innovations {€f(k)}iZ,, i = 1,...,M, and construct M

simulated processes X;"" on the interval [s,s + 7] as follows:

XP(s) = X"(s),
XPM(s+h(k+1) = X["(s+hE)+ AXI"(s + hk), (23)
AX{™(s+hE) = BA(XI™(s +hE), B) + VRa(XP", Bei(k +1),
X™(w) = X;™(skg) fors+hk<u<s+h(k+1).

Then, for each element of {X"(s)}7_,, construct the functions g(z{™,8), i = 1,...,M. For
fixed 7, the mean square convergence of the approximation is a standard result (see, e.g.,
Gard (1988)) when X™(s) = X™(s): EP[X]"(v) — (X¢())?|Go) < Kh and EP[(X]™"(u) -
X2(u))?|Go) < Khfors<u<s+1ash—0.

3.4 Construction of the estimator

Estimation of the vector fo is based upon functions of the data f; = f(H(X(t),B0)) and
simulated state process ff" = f(g(z;?'",ﬂ). The j-th components of these functions are given
by

om0

ft.j = HH(X(t_e(z’]))aﬂO)a (24)
i=1

. m(j)

AR | GO (25)
=1

where 1 < m(j) < M and £(i,5), for i = 1,...,m is a nonnegative integer less than oo.
Suppose that a sample of T observations {fj, f2yeens fr} defined by (24) is available for
estimation. For any particular § € © and simulation sample size T(T'), one can generate T(T')
simulated observations {f; fon .f", . fjﬂ,?T)} defined by (25) from representation (22) of the
state variable process { X"} and representation (23) of the processes {X;""}. Let mT(T) 10—

RB be defined by

i 1L ™
n [ n
mp = ;ft T(T) X_% £ (26)
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Let {Wr} be a sequence of M X M positive semi-definite matrices (possibly depending on the
sample information) of rank greater than or equal to Q. The (extended) simulated moments

estimator for Bp is then the sequence defined by

by = argmin my” "(8YWrmy” 1)(p).

4 Large sample properties

Proving the consistency of the estimator described above requires that one control the approxi-
mation error in (22) as 7 — oo. Unfortunately, it is not sufficient simply to let n — oo. Existing
literature on approximating stochastic differential equations in mean square provides bounds
on the mean square error only over a fixed time interval [0,7]. However, in the asymptotic
theory one must let 7 — oo, and the existing results are not adequate because the bound on
the mean square error is a function of 7. In fact, the bound is typically exponential in 7, and in
general the consistency of the estimator will require that n grow more than exponentially with
T. Given that the total number of psuedo-random variables required to compute the moment
condition is of the order of n7, such a result is of limited value.

One strategy is to take a discrete-time process such as (22) as the true probability model for
the data, and assume that asset prices can be expressed as conditional expectations of sample
paths of the discrete-time process. In this section the consistency and asymptotic normality of

the ESME are shown under this assumption.

4.1 The data generating process

The process assumed to be followed by the data is as follows. Divide each unit of time into n
equal subdivisions, and consider the equally spaced partition 0 = 2y < t; < ... <t < ... <

tar = T of the interval [0, T]. Draw a sequence of normal random vectors {e(k)}?Z,. Define

Xrto) = X(0),
XMtey) = Xn()+AX"(t), (27)
AX™t) = hu(X™(tk),Bo) + Vho(X™(x), Bo)e(k + 1).

For the balance of this section, let (ﬁ,f, F, 13) denote the probability space in which the

elements of  consist of sequences {e(k)};:gl, F is the sigma-field generated by the sequences
{e(k)}pT,, the filtration F = {F;;t > 0}, and e(k) ~ N(0,I,) under P, where I, denotes the

p-dimensional identity matrix.
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Assumption 1 For every time t there ezrists a stochastic process Xt" defined on [t,t+ 7], a
measurable function g : X!t x R, x 0 = KX, and a probability Q*™ such that

H™(X™(),B0) = E9"(9(3"",8) | ) (28)

where X! denotes the set of sample paths of the process X and " denotes one element of
X!. The process Xt"(u) is defined by

Xty = X(@),
Xth(t+h(k+1) = X'"(t+hk)+ AX""(t+ hE), (29)
AX'™(t+hk) = hp(X""(t+ k), Bo) + Vho(XI™, Bo)e(k + 1),
Xt"(u) = X'"(t4+hk) fort+hk<u<t+h(k+1).

where (k) ~ N(0,I,) under Q™.
The processes (27), (28), and (29) are approximations of (14), (16), and (17).
Assumption 2 The data are generated by (27) and (28).

The econometrician observes a sequence of K-dimensional vectors of asset prices

{H™(X™(t), Bo)} L, given by (28) and makes use of this sequence in estimation.

4.2 The simulated processes

Given that the data are assumed to follow a discrete time process, I proceed by making as-
sumptions about the discrete time data generating processes (27) and (28) and the discrete
time simulated processes (22) and (23). For the balance of this section, let (2, F,F, P) denote
the probability space in which the elements of  consist of sequences {e(k)}}?Z k=1, let F denote
the sigma-field gencrated by the sequences {€(k)}}?7,, let the filtration F = {F,;s > 0}, and
let e(k) ~ N(0,I,) under P. Also, use (2f,F?,F},F}) to denote the probability spaces in
which the elements of Q! consist of sequences {€!(k)}rL,, F{ is the sigma-field generated by
the sequences {€(k)}7L,, the filtration F} = {F ;s <u < s+ 7}, and €}(k) ~ N(0,I,) under
P?.

1

Assumption 3 For all § € © and for every time s there ezist M stochastic processes X;™,
i=1,2,...,M, defined on [s,s + 7] by (23), a measurable function g : X* x @ — KK, and M

conditional probabilities Q* such that the simulated asset prices
H(Xn(s),ﬂ)IEP;’(g(z:vn’ﬂ) ' .7.-’) (i: 1,2,..-,M)
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are well defined, where X? denotes the set of sample paths of the process X™ and z" denoies

one element of X°.
Let the j-th component of ft, denoted ft,,-, be defined by

m(j)
foi = [I HX"(t - £(3,5)), Bo), (30)

=1
and let f7 be defined by (25).
The following assumptions and preliminaries (which, except for assumption (4), are identical
to or variants of assumptions in DS) are needed to obtain the asymptotic properties of the

estimator.

Assumption 4 Forallf € O, E”[(ffzl - ff;‘ | Go)**] < A < oo for some ¢ > 1, all j, and ell

8.

Assumption (4) restricts the moments of the terms of the martingale difference sequence and
is needed for the law of large numbers below.

Let ¥ = (e1,...,¢€x) denote the sequence of random variables used to construct the simulated
state variable process X#*(s) and view f%" = EP(ff"|F,) as a function from ®P* x © to R5,

ie. f’ﬁn = f;(ék,ﬂ),

Definition 1 The family {fP"} = {f*(¢*,B) : B € ©;s = 1,2,...} is locally Lipschitz-smooth if

(i) for each a € © there is a § > 0 and Lipschitz constant Ky(€*) such that, with ||3 — a|| < 6,
173(¢5,8) = f2 (¥, el < Ko(e¥)1B - all,

where K,(e*) may depend on a, and the sequence {T~' Y"1, K,(€*)}32, is bounded in proba-
bility.

Lemma 1 Suppose, jor each B € ©, that {X™} is ergodic and that E(|f?"|) < oo. Suppose, in
addition, that E(f") is a continuous function of B and the family {f°"} is Lipschitz-smooth.
Then, for any € > 0,

P ﬁn__l_T fn
E°(fs) TZf.

s=1

lim P [sup > e] =0.
T—o0 B€eO

The proof may be found in DS.
For g € (0,00), let || X]l; = [E(||X]|?)]}/ denote the L? norm of the random variable X.

Assumption 5 For all 8 € O, {||ff"||245; t = 1,2,...} is bounded for some § > 0. The family
{fP"} is Lipschitz-smooth and EP(fE") is a continuous function of 3.
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Assumption 6 For all 8 € O, the state variable processes {X}'} given by (27) and the simu-
lated state variable process {XI'} given by (22) are geometrically ergodic.

Sufficient conditions for the geometric ergodicity of a process are discussed in DS.
Define
~ w e -~ 4 -~ -~ bt -~
£r= Y EF((fi - EP(fllfe-s - EP(Ji-s)))
j=—o00

and

Sr= S BP(fA - EP(RMIFRT - EPGRD).

j=—00
Assumption (6) guarantees the convergence of these sums.
Assumption 7 T/T(T) - c as T — oo and Wr — Wp = (f) + ci")'l, in probability.
Assumption 8 m% T (oY Womia T)(Bo) < mia DBy Womd T)(B) for B € ©, 8 # fo.

Let F denote expectation with respect to the probability on the product space formed from
(@, F,F,P) and (2 x (xLo (xM,0¢)),6,G,P), let ff* = EP(ff"|G), and define ¢ =
ff" — fP™. We have the following theorem.

Theorem 1 Under assumptions 1-8, the extended simulated moments estimator converges in

probability to the true parameter By as T — oo.

Proor. We have

(T)

T
(-,11: S -7 2 f"") ~ (Efoo ~ EfET)
t=0

LT ) , T(T) 5
< |mQ_fi—Efeo|+|Efs — 5"

T2 T(T)?:;,

1 & F B 1 & B
= ’T’th—Efoo + Efoo - (m ‘Zo(fa +¢a))

T(T) 5 (T)
~ Efo| + |EfER " 4

A R At b

The first two terms on the right-hand side converge to zero in probability as in DS Theorem 1.
The third term on the right-hand side converges to zero a.s. and hence in probability from
Assumption 3 and the fact that {,,G,+.} form a martingale difference sequence.
The balance of the proof follows the proof of Theorem 1 in DS.
|
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Assumption 9 (i) By and the estimators {br} are interior to O. (ii) fBn is continuously
differentiable with respect to f for all s. (iii) Do = E(8f%"/8p) ezists, is finite, and has full

rank.

Assumption 10 The family {3‘% ff" :8€0,8=1,2,...} is Lipschitz-smooth. For all p € O,
E(la% f87)) < o0, and E(b% fBrY) is a continuous function of B.

Then

Theorem 2 Suppose T/T(T) — ¢ as T — o0, and let £" = S + ¢E". Under Assumptions
1-10, VT GT(T)(ﬂo) converges in distribution to a normal random vector with mean zero and

covariance matriz X" = ¥ 4 cZ".

Proo¥F. From the definition of mﬂT) (8),

T(T) vT 1 @D
\/—m (Bo) = ( E[ft E(foo)]) - \/TIT(T— (\/T(_T Z[f‘a""_E(fﬁ"")])

t—O 8=0

The two terms on the right hand side are independent. As in DS Theorem 2 (p. 15), the
limiting distribution of the first term is N[0, f)] For the second term,

JT T(T) X _
T (\/’T(_T EU”jo E(ffé’)]) = N[0,cX"].
Together, we have
VT (6,) — N[0,Z"].

Corollary 1 Under the assumptions of Theorem 2, v/T(br — Bo) converges in distribution to

a normal random vector with mean zero and covariance matriz
A= (D{,(E")'IDO)'I.

PROOF. See the discussion in DS pp. 14-16. 1

The covariance matrix is larger than the one obtained in DS because the functions j5™
are replaced by estimates ff" Still, if the simulated sample size T(T') is large relative to
T, it is theoretically possible to obtain the covariance matrix of the GMM estimator. More
computation will be required because $ 4+ ¢E" > £. Nonetheless, this estimator eliminates the

need to evaluate the asset pricing function at each draw of the simulation.
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5 Simulated Moments Estimation of a Class of Bond Pricing
Models

A limitation of the preceding strategy is that it was assumed that the discrete approximation is
the true probability model. This assumption was made because the mean square convergence
of the discrete approximation to the underlying diffusion is, in general, known only for a fixed
interval [0, 7], while in the asymptotic theory we must let 7 — oo. In this section we show the
mean square convergence of the discrete approximation to the underlying diffusion process for
all times s € [0,00) for a class of bond pricing models. This allows us to prove the consistency
and asymptotic normality of the estimator for the parameters of the underlying continuous time
model.

I consider the following class of bond pricing models. The rate of interest 7(t) follows the

process

dii(t) = ko(Bo — 7(1))dt + o(7(t))dW (2), (31)

where W(t) is a scalar Brownian Motion and the diffusion coefficient o(7) satsifies a growth
condition and a uniform Lipschitz condition with Lipschitz constant 5. The price at time ¢ of

a bond with maturity 7, I~I(1”',T, Po), satisfies

1/20%7 Hs; + (Koo — kof — M(F))Hz — H, — H =0 (32)

with boundary condition H(7(f + 7),80) = 1. Here the function A(7) is assumed to satisfy
growth and Lipschitz conditions.’* The price at time t of a bond with maturity 7 is given by

the expectation
~ +7 ~
H(#(t),B0) = EQ' (e" ft‘ 7(u)du | ft) ,

where the probability Q! is defined as in Section 2.

The first goal of this section is to approximate the simulated state variable process

dr(s) = k(0r(s) — r(s))ds + o(r(s))dW(s) (33)

11t is relatively easy to choose state variable processes in the equilibrium model of Cox, Ingersoll, and Ross
(1985a) such that these assumptions are satisfied. For example, if one makes all of the assumptions in CIR
(1985b) except for the assumption made about the dynamics of the state variable Y, and instead assumes that
the state variable follows a process

dY (t) = ((Y (1) + §)dt + v(Y (1))dW (¢),

where v(Y) = vY for Y <Y and »(Y) = vY for Y > Y then the interest rate is a constant multiple of Y and
the function A(7) satisfies a growth condition and a uniform Lipschitz condition.
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corresponding to (31) in mean square on the interval [0,00).7® That is, I want to show that
EP[(r"(sx) — 7(sk))?] < Kh for some constant K as b — 0. I assume 2x > 5.

5.1 Convergence of the Discrete Approximation to the Diffusion Precess

Consider the stochastic difference equation given by the Euler approximation

T"(So) = 1‘(0),

{ 0 if 7™(sk) + Ar"(sx) < 0,

" (Sk+1) r(sk) + Ar™(sg)  if 0 < r7(sk) + Ar™(sk), 9

Ar™(sg) = h(k8 — kr(s¢)) + VRo(r"(sk)))e(Sk41)-

It is well known that the local error of this approximation is O(h?) and that the error over
a fixed interval of time [0,7] is O(h). That is, as h — 0, EP[(r"(sk41) — 7(sk)?] < Kh? if
™(st) = r(sk) and EF[(r"(sk) — r(sk))?] < Kh if kh < T (Milshtein (1974), Pardoux and
Talay (1985), Gard (1988)). However, in the asymptotic theory one must let 7 — oo, and
the existing results are not adequate because the constant K depends upon 7. However, for
the process (33) above and the approximating process (34) it is relatively easy to show that
EP[(r"(sk) — r(sk))?] < Kh for all s € [0,00), i.e. the bound X is not a function of 7.

Let 8(sx) = r"(sx) — r(si) denote the approximation error at the k-th time step. I am
interested in the expectation of its square, EF §(s)2.

First, note that if r*(s;) = r(sx) then, as h — 0, EP(8(sx)?) < Kh? for some constant K.
The next step is to bound the approximation error EF§(sx41)? in terms of EF§(s)?. The error
at the (k + 1)-th time-step 8(sg) = r™(8k4+1) — T(Sk+1) is given by the sum of the preceding

period’s error and the error this period,!€ or

8(sk41) = 8(sk) + h(k — Kr"(sk)) + Vho(r"(sk))e(sk41)
_ / :H K(0 — r(u))du — / k"“ o(r(u))dW (x).

This can be rewritten

8(sk41) = O(sk)(1— Kh)+ h(k — kr(sk)) + Vho(r(sk))e(sk+1) + VR((sk)e(sk41)
/’ (0 — r(u))du — / ! o(r(u))dW (w), (35)

k 3k

15Mean square convergence of the discrete approximations (23) to the continuous time processes (20) is (subject
to certain conditions) given by standard results because the process (20) is defined on a finite interval [s,s + 7].

16 This analysis does not consider explicitly the “trimming” of the approximating process at zero in equation
(34) above. However, this trimming always reduces the magnitude of the approximation error.
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where ((s;) = a(r™(sk) — 6(r(sx)) and |({(sx)| < 7|6(sk)]- This last inequality follows from the
Lipschitz condition satisfied by the function o(r). The four terms

h(r8 — kr(si)) + VEo(r(sk))e(sks1) — / :"“ k(0 — r(w))du — / " o (r(w))dW ()

L7
comprise the “local error” at the (k+1)-th time-step. Squaring (35) and taking the expectation
at s =0,

EP§(sk41)? < (1— (26— 8%) b+ k2h2) 6(sk)? + 2K, k%2 [EP6(si)2 + Koh2.  (36)
as h — 0. I claim that EP§(s;)? = O(R).
The assumption that —2« 4+ &% < 0 implies that there exists a constant ¢ > 1 such that

K2 2K, K
~2%%+5 +—+7‘+—2<0

(i) First, suppose EF§(s)? > ch for some time si. Then it follows from (36) that

EP8(s641)? < EP(6(s%)?) (1 ~ (2x-5%)h+ ——h + 2—\’}11; + ﬁh)

and EP6(sk41)? < EP6(sk)2.
(ii) Alternatively, suppose that EF§(sx)? < ch for some time s¢. Then, from (36), as h — 0,

EP8(sksr)? < EP8(si)? (1- (26— 52) b+ ek?h® + 2v/cK1h? + cKzh?)
< EP8(sk)? + (ck* + 2v/cKy + cKo)h
< (c+ck® 4 2\/cK; + cK2)h
< Kh,
where K = ¢ + ck® 4+ 21/cK; + cKo.

Parts (i) and (ii) together show that, as h — 0, EP§(sx41)? < (c+ ck? +2K1/c + ckK)h =
O(h) regardless of the magnitude of EF§(s¢)?. This proves the following proposition.
Proposition 1 Let 6(sx) = r"(sx) — r(sg) where r(sg) is the value of the process (33) at
time t = kh and r™(sy) is the value of the Euler approzimation (84). Then, as h — 0,
EP(6(sk)?) < Kh for all s € [0,00).

A similar proposition can be proved for the approximation

™(to) = 1(0),
0 if P™(sg) + Ar”(sg) < 0,
t™(sk) + Ar™(sg)  if 0 < 77(sk) + Ar™(sg),

Ar(sk) = (sk)e™™ +0(1 — €7 )~ (i) + o (r"(s8))e(sk+1).

™ (Sk+1) (37)
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This approximation agrees with (34) in mean square to O(h?) when r™(s;) = r(sg). The
difference is that with this approximation EP(r"(s541)|r"(sk) equals the expectation of the
original continuous time process when r™(sx) = r(sk), so that one source of approximation

error is eliminated. With this approximation one obtains

Bonn) = Blon)e™™ +0(1- e+ o(r"(sk))e(oksn)
_ /u"“ k(0 — 7(s))ds — / " a(r(s))dW (s),

3k

and, similar to (36) above,

EP6(sk41)? < (e~2~h + &2h) EP§(si)? + 2K1h%2\[EP§(s1)? + Kb, (38)

Observing that 3k :> 0 such that e~?** + 32k < 1 provided —2x + &2 < 0 and arguing as before

I obtain the following result.

Proposition 2 Let §(sx) = r™(sx) — r(sk) where now r™(3;) denotes the vaiue of the approzi-
mating process (38). Then, as h — 0, EF(6(s)?) < Kh for all s € [0,00).

Similar propositions can be proved for multivariate process that satisfy the appropriate

Lipschitz continuity conditions and parameter restrictions.

5.2 Approximation of the furctions ff

I now turn to showing that the mean square convergence of the discretized state variable
processes to the underlying diffusion processes implies the convergence of ff" to ff Let r?
denote the risk-adjusted process corresponding to {20), and let r{"" denote the approximating

process corresponding to (23). The next result bounds the discretization error ff» — f8.

Proposition 3 Let £ = ff" - ff denote the discretization error in computing ff . Ash — 0,
EP((€3)’) < Kh.

PRrOOF. It suffices to show that E? (e~ ST s e EACLE ’ < Kh as h — 0.

First, it follows immediately from Proposition 1 and standard results on approximating
stochastic differential equations (see, e.g., Gard (1988), Theorem 7.2) that, as h — 0, EP (r™*(s;)—
r*(sk))? < Kh for each s such that s < s < s+ 7. Next,

2| ([t - ris) |
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<27 |([ - atwpan) |+ 87 | ([t - rie) |

where g(u) is the simple function given by q(u)=r?(s) for sy < u < si41.
Considering the first term to the right of the inequality, let

[17i™(se) —a(se) 1]

= max
8 €{s,s+1/n,...,s47}
Then

E” [( / ) - q(u))du)z] < EV [(/+ o )2]

EP [(rd"y’]
< T2EP[(d™)?).

IA

The fact above that EP(r*"(s)— r*(sk))? < Kh as h — 0 for each sy such that s < s < s+ 7
implies that E?[(d")?] < Kh. Therefore, as h — 0, there exists some (different) constant K
such that

EP [( [ 07 - a(wyan) 2] < Kh.

The mean square convergence to zero of the second term to the right of the inequality is a

standard result. We conclude that there exists a constant K such that, as h — 0,

EP [( / ) — r;-’(u))du)z] < Kh.

Finally, define n = [**7 r™(u)du — [**7 r?(u)du. By Taylor’s theorem,

exp [— '/s " rf’"(u)du] = exp [— ( ‘/; " rf(u)du + 17)]
= exp [— ./:‘H rf(u)du] — exp [- (’/”H ri(u)du + x)] n,

where z € [[**7 r#(u)du, [**7 r#(u)du + 9] if n > 0 and z € [[2*7 ri(u)du + 9, [7F7 ri(u)dy] if

17 < 0. Now exp[—(f**" r}(u)du + z)] is bounded if [**” r?(u)du +z > 0 (it is), and I conclude
47 _n,. “r _, 2

that, as h — 0, EP (e' f,* (e _ - I (")"") ] < Kh for some constant K.

i
With this proposition, I have shown that the moment conditions can be constructed using

the discrete approximations of the stochastic differential equations.
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5.3 Consistency and Asymptotic Normality

Define
B= 35 B PPy B

and o

£= 3 EP(ff - EP(FPNIFE; - EP(F2)D):

Let E denote expectation with respect to the probability on the product space formed from
(@, F,F, P) and (2 x ( Lo (x:)) ,6,G,P), let £ = EP(j2|G,), define ¢, = f7 - f7.
and define ¢r = fOn — f6

Theorem 3 Suppose T/T(T) — ¢ and T/n? — 0 as (T,n) — oo, and suppose Wr — Wy =
(f.‘. + cf))“l, in probability. The eztended simulated moments estimator converges in probability

to the true parameter By as (T,n) — oo.

Proor. Note that

T _ (T) " 5
(Tzf o 2 )—(Ef - B/f)
T(T)
< th Efoo| + |Ef% - T(T) >
t=0 s=0
, ;T ; .
= Tgft Efoo + Efoo— (T(T) ,Zo(f +¢a+€a))
T(T) ,
E [o o] 00
S TZ(:)ft f + T(T) ; f
1 T(T) 1 %T:)
Hrm & 5 )

The first two terms on the right-hand side converge to zero in prebability as in DS (Theorem
1, pp. 13-14).

The third term on the right-hand side converges to zero a.s. and hence in probability because
all momeats of 1, are bounded and {,,G,+.} forms a martingale difference sequence.

By Proposition 3, each of the terms £ converges to zero in mean square, and hence in
probability, as n — oc. Therefore the last term on the right-hand side converges to zero in
probability

The rest of the proof follows the proof of Theorem 1 in DS.
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|
One also has

Theorem 4 Suppose T/T(T) — ¢ and T/n? — 0 as (T,n) — oo, and let & = E+ ¢S
Then \/Tmzq(-T)(ﬂo) converges in distribution to a normal random vector with mean zero and

covariance matriz 2.

PRrOOF. Note that T/T(T) — ¢ and T/n? — 0 as (T,n) — oo imply T(T)/n? — co. From the
definition of m,, (T) (B),

T(T)
Tnl®) = (e 3l B - J%( s LU - E(f”"“)])
+VT (E(fé’:)—E(fé’:"))

From Proposition 3 and the assumption that T/n? — 0, im7_,co VT(E(f2) - E(f%™)) = 0
and the limiting distribution of \/Tmz-q(-m(ﬂo) is equal to the limiting distribution of

1 T _ ﬁ 1 (T) 200 .
(ﬁ;,[ft - E(foo)]) - W (m Z[f "= E(ffg")]) )

8=0

These two terms are independent. As in DS Theorem 2 (p. 15), the limiting distribution of the
first term is N[0, ). For the second term,

1\ jn E(ffom)] = i — E(f00) 4 ¢n
m;[f - (foo )] - \/ﬂﬁ,z_(:)[f (foo)+£a]
T(T) - ﬂ T(T)

where E[(£7)?] < K/n. Since T(T)/n? — 0, for T(T') sufficiently large

™ \? (T
S &) <K T
\/TiTi = - n
and
(T)
> &
2w 2
in mean square and therefore in probability. Hence the limiting distribution of
; T )
\/ﬂTj Z [f'gon - E(fgg“)]
8=0
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is identical to that of

LS8 iy
T(T) =0 *
and
VT A . ) .
_— — E(f%)]| = N[0,cE].
Together,

VTmIT (o) — N0, 3.
|
Suppose Do = E[dfP /8] exists, is finite, and has full rank. Then

Corollary 2 Under the assumptions of Theorem 4, VT(br — Bo) converges in distribution to

a normal random vector with mean zero and covariance matriz
A= (D{,E'IDO)‘I.

PRroOF. See the discussion in DS pp. 14-16. 1§

The following proposition allows one to construct an estimate of Wy using an estimate of
$n,

Proposition 4 Let (T(T),n) — 0. Then £" — £ in probability.

PROOF. It is enough to show that lim,—..o E([f?" — E(ff")][ff" - E(ff)) = E([ff -
E(fO)f8 — E(fP)Y). Write ffr = fP + £2, where E[(£7)?] < Kh as h — 0 by Proposi-
tion 3. Letting (™ = €7 — E(¢7), [E(€M)]? < Kh by Jensen’s inequality and E(?(™ < Kh.
Then

lim B((f7" — E(fPINFe ~ B
= Jlim E((f - B(D)+ "I - G+ )
= Jlim E((f} - BGOSR - BN + 2E(f7 - E(FOC) + E(CC™)
= E((f} - EGON - B
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6 Computational Feasibility of the ESME

Although the ESME described above requires only that the econometrician generate a simulated
sequence of estimates of the bond prices and therefore does not require that the econometrician
evaluate the bond pricing function, it nonetheless requires a non-trivial amount of computation.
In this section I use the ESME to estimate the bond pricing model due to CIR (1985b) discussed
in Section 2 in order to demonstrate its computational feasibility. For this exercise I interpret
the model as a model of the prices of nominal bonds. This particular model was selected because
the steady state moments of bond prices can be calculated, allowing one to estimate the model
by the GMM and compare these estimates to those obtained from the ESME.!?

The data set consists of the Treasury bill data taken from the CRSP Government Bond
Master File. In particular, for each month between December 1971 and December 1986 I took
from the Government Bond Master File the price (and other data) for the (just auctioned) 13
and 26-week bills. The prices used consist of the mean of the bid and asked prices on the last
business day of the month. By including the (just auctioned) 13 and 26-week bills, the sample
includes the most actively traded discount bonds. It seems reasonable to treat the observed
prices of these securities as approximations of the equilibrium prices.

The following four moment conditions are used in estimation.

1 T 1 (T) N
-f Z (f(t)’ TlaﬂO) - ﬁﬂ 2 Hl(T(S), Tl’ﬂ),
=0 8=0
1 T 1 T(T)
T Z (T(t),‘rz,ﬂo) - T(T) Z H2(T(3), T2, ﬂ)
t=0 =0
1 T(T)
—ZH(T(t TlaﬂO)H(r(t)a T2aﬁ0) - T(T) Z HI(T(S), T],ﬂo)Hg(T(S) T2aﬂ)7
t_.O 8=0
T 1 T(T)
T; Z (T(t)’ T],ﬂg)H(T(t - 1)’T1’ﬂ0) - T(T) z HI(T(S), T1, )HQ(T(S - 1))Tl’ﬂ)
t=0 =0

where 7, = 3 months and 7, = 6 months.

Results for the ESME with several simulation sample sizes and time steps of n = 1 and
n = 5 (per month) along with GMM results are shown in Table 1. Analytic expressions for
the moments used in the GMM estimation are derived in the appendix. With four moment
conditions, the parameters are exactly identified, and the estimates were computed using the

identity matrix as the weighting matrix. The estimates of the standard errors were computed

17This particular bond pricing model does not satisfy the assumptions of Section (5). Specifically, the diffusion
coefficient of the state variable process does not satisfy a uniform Lipschitz condition. In this section I ignore
this issue.
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using an estimate of Wy = (f)" +c f)")‘l. The matrix & was calculated using the Newey-West
(1987) procedure with twelve autocovariances, 5" was estimated using twelve autocovariances
of the simulated data at the estimates, and ¢ = T/T(T).

Table 1
Comparison of Estimates
Treasury Bill Monthly Data 1972-19868

T(T)

ESME 2400

n=1
4800
9600

19200

ESME
n=>5

2400

4800

9600

19200

K
0.90790
(0.5330)
0.52191
(0.4356)
0.40619
(0.3971)
0.33590
(0.2593)

0.93452
(0.5669)
0.52101
(0.4581)
0.39625
(0.3593)
6.36080
(0.2788)

0.32066
(0.1293)

g
0.18958
(0.0676)
0.12939
(0.0489)
0.09804
(0.0391)
0.08943
(0.0371)

0.18838
(0.0601)
0.12839
(0.0487)
0.10369
(0.0399)
0.08645
(0.0373)

0.08396
(0.0184)

0
0.07756
(0.1303)
0.07937
(0.1225)
0.07559
(0.1378)
0.08266
(0.1319)

0.07690
(0.1275)
0.07982
(0.1465)
0.08093
(0.1213)
0.07844
(0.1307)

0.07913
(0.0675)

A
-0.30860
(0.2715)
-0.23647
(0.2713)
-0.23296
(0.2533)

-0.19153
(0.2671)

-0.34414
(0.2733)
-0.24046
(0.2743)
-0.20509
(0.2657)
-0.20593
(0.2571)

-0.19570
(0.1387)

The distinctive feature of these estimates is the relatively large simulatior samplc size 7(T")
needed to obtain estimates of x and o reasonably close to those obtained from the GMM.
It is possible that the need for such large simulation sample sizes is related to the apparent
weak mean reversion of the interest rate process,® but establishing this would require an
additional study. Regardless, I interpret this limited set of computations as demonstrating the
computational feasibility of the estimator. The simulation required to obtain estimates which

approximate the GMM estimates can be performed on a personal computer.

18 Asymptotic standard errors of the estimates are in parenthesis.
19The GMM estimate of k = 0.32066 implies that the half-life of the interest rate process is 2.16 years.
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7 Conclusion

This paper presents an estimated simulated moments estimator (ESME) which extends the
SME of DS to cases where an analytic expression for the asset pricing function is net known
and demonstrates the computational feasibility of the ESME. The estimator requires that the
underlying state variable process be geometrically ergodic. This assumuption is satisfied in a
number of the bond pricing models that have appeared in the finance literature, and these
models and generalizations of them could be estimated using the ESME. A simple example of
this appears in Section 6.

The prices of common stocks are usually assumed to follow processes that are not geomet-
rically ergodic, and at first glance it seems that the ESME is not well suited to option pricing
models. However, appropriate transformation of the data can make certain stock and option
price processes geometrically ergodic, and the domain of the ESME is not as limited as the
discussion in terms of a bond pricing model in Sections 2 and 5 and the application in Section 6
might suggest. Moreover, the use of this estimation strategy is not restricted to continuous-time
financial models. Asset prices can be written as the conditional expectations of the products of
their payoffs and ratios of marginal utilities in a number of models that have appeared in the
‘macroeconomic literature, and those models in which sequences of appropriately transformed
consumption and asset prices are geometrically ergodic may be estimated using the ESME.

Consistency of the ESME for the parameters of the underlying continuous-time model re-
quires that the number of steps per unit time in the stochastic difference equations used to
approximated the underlying state variable process must grow with the simulation sample size.
A limitation of my analysis is that I have shown that the required rate of growth to be reason-
able (i.e., polynomial) only for a limited class of bond pricing models. While a similar result
could be obtained for certain (appropriately transformed) option pricing models, I have not pro-
vided a general set of conditions sufficient to ensure that only polynomial growth is required.
The alternate strategy of taking the approximating process as the true probability model seems
like a reasonable approach in applications, but does not provide consistent estimates of the

parameters of the parameters of the underlying continous time model.

Appendix

A Bond Price Moments

This appendix presents the calculation of the moments E(P(t,7;)), E(P(t,7;)P(t,7x)), and
E(P(t,1;)P(8,1k)), for s > t, for the one-factor model in CIR (1985b). For this model,
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P(t,7) = A(r)e”BU), (39)

where

(v+A+x)T/2 2x6/0?
A(r) = 2ve ] ,
(Y +A+K)(eT —1)+2y
YT
B(r) = e 1)

(r+A+r)(e™~1)+27
v = ((k+A)?+20%)12,

First moment

The steady state distribution of the interest rate is gamma, with density function

wU

10) = gyt (40)
where
w = 2/o?,
v = 2k8/o.

The first moment is

EP(tr) = [ A B f(ryar

- /°°A(r)e-5<f)fi"-r"-le-wfdr (41)
) I'(v)

= 40 (55%5) [ @+ BTt o g

A(T) (ﬁm)y .

The last equality follows from the fact that the integrand is the density function of the gamma

distribution.

Second moment

The second moment is
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E(P(,Y) = [ Al AGm)e BEHEOI firyar

Vv
= /; = A(r,-)A(r,,)e-(B<f,~)+B(n))rf‘~(’_;5,u-le-m i

A(r)Am) (WB(T;‘)’ +B(,k)> (42)

X / oo(ca.: + B(75) + B(r))'T(v)~1r¥~ e~ (w+B(r)1+ Bl gy
0

w v
A(75)A(7x) (w + B(7;) + B(fk)) '

Again, the last equality follows from the fact that the integrand is the density function of the

gamma distribution.

Lagged second moment

The lagged second moment is

E(P(t, ‘rj)P(s, Tk))

/'ooo -/(;°° P(t, T_,-)P(s, Tk)f(rt)ra)drgdrt
/ooo A“’ P(t, TJ')P("’Tk)f("t)f(falrt)dr,dn
= /Ooo (P(t,‘rj)f(rt) /Ooo p(s,r,,)f(r,m)dr,) dre,

where r; and r, denote r(t) and r(s), respectively. The inner integral can be evaluated as
follows. The density for r, conditional on ry, for 8 > t, is (CIR (1985b))

m— W/ 1/2
frur) = e~ (1) L2un)), 43)
where
_ 2k

¢ = 1Dy

u = ere "8,

v = ery,
2k6

¢ = —5-1

and I,(-) denotes the modified Bessel function of the first kind of order ¢.2° Then

20Gee Oliver (1965) for the properties of the modified Bessel function.
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) oo q/2
7 P, mistdrdre = [ amye B e (1) paqun) 2,
oo q/2 [ = i+qa/2yi+a/2
— A ~B(7x)rs pp—t ,—v (2) - u - d R
[ Atme B e e (2 jg,r(1+1)r(y+1+q) ’

OOA ~B(m)r —ug—er
- /o (Tk)e « Z < T(j + DI(j Y179
o -(C+B(Tk))"qucJ+qu+q
/o (rdee™ (Z TG+ 10 +1+4q) ) "
- /oo A(1g)ee™™
0
s ita 3= (c+B(mk))rs j+g
y (Z (o) e ((c + B(r))rs) ) wn
J=

< \c+ B(1) rG+1rG+1+9)

Exchanging the order of integration and summation,

- ) i+ —ugd
/(; P(s, i) f(rslre)drs = A(me)e (c+ E(Tk)) q P‘(BJ' ':1)

=0

00 g=(c+B)rs((c + B(rg))rs e
y / . dr
A T(j+1+4q)

Then letting y = (¢ + B(7%))rs,

o [
[ pemisedrin = A0 (7 57m0)
Jte gmuyi oo e—vyite

X c
XJ.; (c+ B(Tk)) G+ Jo TG+1 +q)d

o e pmuyd

= 40 (50) ?_% (c 5e)  TGED
(c+ B(7 )) /I‘(j th @)

9+l uc
= A(m) (c + B(mx) (c + B(Tk))
—uB(7)

) ©

)
= A(m) (c T B(Tk))q+l P (c+ B(rk))
= A0 (g B(T,,))W (—ce :: z;ifk()rk)n)

= kl(*rk)e""( Ul

= A(Tk) (C+B(Tk)
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where

+1
k() = A(m) (my ,
[ ce~*-)B(n)
kz(Tk) = ( c+B(Tk)k ) .

The second equality follows from the representation of the gamma function

M@= [ ylevay,

and the fourth follows from

| 8,

(> 2]
=3
1=0

Using (44), the lagged second moment becomes

J
it

E(P(t,7;)P(s,m)) = L = A(Tj)klTk)e—(B('rj)-!-kz("‘k))re f(re)

oo - . T wu v—1_ ~—wr
/0 A(7)ka(m e~ (Bl Hhal "))"F(-V—)": Te " dry

= A(rj)k(mi) (w + B(75) + ka(7k) )

oo
X / (w + B(7;) + ka2(m))’T(v)~r¥ e~ (w+B(m)+ha(m)re gy,
0

= A(rj)ka(7x) (w + B(r;) + "2(")) .
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