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Efforts to reduce the carbon footprint associated with cement and concrete production have 

resulted in a number of promising lower-emissions alternatives. Still, research has emphasized 

a small subset of potentially useful precursor materials. With the goal of expanding the 

precursor pool, this work presents results of parallel literature mining and rate modeling 

activities. As a result of literature mining, materials with appropriate SiO2, Al2O3, and CaO 

concentrations were assembled into a comprehensive, representative ternary diagram. 23,000+ 

materials were extracted from 7,000 DOIs, and 7,500 materials from 6,000 DOIs with 80  SiO2 

+ Al2O3 + CaO  105 wt% automatically classified. Both supervised and semi-supervised models 

were used for dissolution rate prediction of glassy materials with all models pulling from a 

single data set (n = 802 reported dissolution rates from 105 different glasses). Supervised 

modeling utilized linear and decision tree regressions to determine features most predictive of 

dissolution rate, resulting in log-linear relationships between rate and pH, inverse temperature 

(1/K), and non-bridging oxygens per tetrahedron (NBO/T). Semi-supervised modeling was 

observed to be more robust to broader feature inclusion, providing similar predictive ability 

with a relatively larger set of descriptive features. Most importantly, results indicated that 

models trained on data from disparate scientific communities was adequately predictive (RMSE 

 1), particularly under pH  7 conditions relevant to the cement and alkali activation 

communities.

1. Introduction

With annual production volumes of 4.1 billion metric tons, ordinary Portland cement (OPC) is 

purportedly responsible for 5-11%1 of annual global greenhouse gas emissions.1–5 Separately, 

annual red brick production in India alone is estimated at 250 billion bricks, resulting in topsoil 

degradation and CO2 emissions to the tune of 40 million metrics tons per year.6 The search for 

alternatives, therefore, necessitates not only comparable structural properties and similarly 

1 Previous reports estimate 0.6-1.1 tons CO2 emitted per ton of cement produced. With 4.1 billion metric tons 

(BMT) of cement produced, CO2 emissions from cement are in the range of 2.46-4.51 BMT. Global Carbon Project 

data estimate emissions of 42.5 ± 3.3 BMT CO2 in 2018.4 Given these values, CO2 emissions from cement 

production represent 5-11% of annual global emissions, in line with previously published estimates.
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large quantities of available resources,2 but also lower-emission pathways to production. In this 

way, when used as a replacement for OPC or as primary precursors in alkali activated materials, 

alternative cementitious materials (ACMs) synthesized from industrial byproducts present a 

solution to the emissions problem associated with conventional building materials. 

Research into three specific ACM precursors—metakaolin, blast furnace slag, and coal fly ash—

has dominated the literature. Observed and projected supply shortages necessitate expansion 

into under-studied silicate and aluminosilicate alternatives.7, 8 In their 2016 review, Bernal, et 

al. meticulously examined many of the individual findings from across the ACM literature.9 Still, 

it is important to further comprehend relationships between material physicochemical 

properties and reactivity to effectively expand the set of useful precursors. Computational 

methods offer an opportunity to more broadly survey the literature and expound such 

connections. 

A rather vague term itself, reactivity has been investigated experimentally through a number of 

distinct methodologies. Tests such as the saturated lime test and the more-recently developed 

R3 (rapid, relevant, and reliable) method have focused on pozzolanicity with varied reports of 

success.10–13 Procedures based on calorimetry and thermogravimetric analysis have shown 

promise in differentiating between pozzolanicity and hydraulicity.14, 15 Still other approaches 

based on comprehensive material characterization—employing spectroscopic and diffraction-

based techniques, among others—have been useful for investigating in-situ reaction extent.16–

27

Given the aqueous nature of cement chemistry, material dissolution is vital to precursor 

reactivity,28 and direct tracking of dissolution has gained popularity in cement science in recent 

years.29–40 Studies, such as those by Snellings,30, 41 Schöler,35 and Oey39 have been instrumental 

2 While not the focus of this report, the authors stress the oft-ignored topic of resource availability—either in 

absolute global quantity or local. Resource reactivity is important, but only insofar as material supply can satisfy 

demand. For a more comprehensive review of supplementary cementitious material-availability, the readers are 

directed to Snellings’ 2016 work.7
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in applying concepts and methods long-used in geochemistry,42–56 glass science,57, 58 and 

nuclear waste containment59–74 to cement science. Still, there is a surprising dearth of 

dissolution-focused work in reactivity characterization, due in part to the experimental 

challenges of separating material dissolution from subsequent reaction product formation. 

Building upon this, in the present work we understand aqueous reactivity by proxy of 

dissolution rate. This understanding, which has been used previously by the authors,36, 37, 75 is 

vital to expanding the pool of useful precursor materials. With this interpretation, materials 

that readily yield vital elemental species (e.g., Si, Al) to solution can prove useful as 

cementitious precursors, while inert materials, which do not undergo even surface reactions, 

can promptly be disregarded. 

Quantitative theoretical and empirical relationships describing dissolution in terms of 

experimental features have been developed over the years. The following is a brief review of 

this development. For a more in-depth review, the reader is directed to Strachan (2017)76 and 

Palandri and Kharaka (2004).77

Initially developed by Aagaard and Helgeson (1982),42 expanded by Grambow (1985),59 and 

rederived by Oelkers (2001),78 Equation (1) has been suggested to describe the dissolution rate 

of mineral and glass species as a function of distance from equilibrium. 

(1)�= �(1― exp (― ��RT))

(2)�=― RTln(Q

K)

Here,  signifies the forward rate of reaction—implicitly incorporating any � [mol cm―2 s―1]

kinetically important pre-factors—and is multiplied by a thermodynamic Arrhenius expression, 

with chemical affinity, , Temkin’s average stoichiometric number,  (unitless), gas � [J mol―1] �
constant, , and absolute temperature, . Chemical affinity is further � [J K―1 mol―1] � [K]

described in Equation (2) as a function of ion activity product, , and equilibrium constant, . � �
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As discussed by Strachan, it is important to note that for glasses—thermodynamically 

metastable phases at best—the equilibrium constant, , cannot be explicitly defined.76 This is �
discussed further in Section 2.4 and Supplementary Information Section S.3.

This rate equation has been cited in many studies, including those recently focused on the 

dissolution of silicate glasses.30, 44 At far from equilibrium conditions (i.e., ), the overall Q K≪ 1

dissolution rate is equivalent to the forward rate, which is itself a function of pH and activation 

energy, as shown in Equation (3)42; 

(3)�= �= ���H + exp (― ��
RT)

where  is the forward rate constant,  (unitless) is the hydrogen ion � [mol cm―2 s―1] ��+

activity raised to an empirical factor,  (unitless),  is activation energy, and other � �� [J mol―1]

variables are as defined above. 

In glasses, for which molar chemistries are not universally defined, explicit stoichiometric 

factors are often expressed relative to an element or oxide set at one mole per mole glass (e.g., 

one mole Si or SiO2 per mole glass for silicate glasses). Furthermore, there is disagreement over 

the exact role aqueous elemental species play in dissolution processes, but their involvement is 

generally observed. Specifically, a number of studies have investigated the effect of initial 

aqueous aluminum species on aluminosilicate dissolution.47, 55, 76, 79, 80  Still, at low 

concentration, Strachan76 showed general dependence only on H+ and OH-, describing the 

dissolution rate as in Equation (4);

(4)�= ��[exp (
― ��H +

RT )��H

H
+ exp (

― ��H2O

RT ) + exp (
― ��OH―

RT )��OH

OH ]A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

wherein activities of H+ and OH- dominate in their respective regions of the pH scale, and a third 

term is introduced to describe the rate dependence in the near-neutral region. This follows a 

similar argument made by Palandri and Kharaka.77

Taking the logarithm of Equation (3), log-linear relationships between rate and the hydrogen 

ion activity exponent, , pH (i.e., ) and the inverse temperature, , are obtained as � log (�H + ) 1 T

shown in Equation (5);

(5)log (�) = log (�) +�log (�H + )― 1

2.303

��
RT

Throughout the literature, in order to measure direct relationships between each variable and 

rate, experiments are often designed to quantify specific variables while holding others 

constant. This is most frequently done to measure pH dependence75 (i.e., incorporating the  ��
term into  in Equations (3) and (5) through constant temperature experiments). �
In what follows, we explore two parallel methods of examining potentially useful precursors for 

the synthesis of cementitious materials.

First, we explore the compositional landscape of relevant materials through automated 

extraction of literature-reported calcium aluminosilicate chemistries. This section explores the 

compositions of crystalline, glassy, and heterogeneous materials without specific regard for 

discipline or direct discussion of associated reactivity. The data is visualized by plotting 7,500 

labeled samples (and an additional 15,500 yet unlabeled samples) on a ternary SiO2-Al2O3-CaO 

diagram. While such ternary plots are familiar within the cement science literature, they are 

typically schematic in nature. To the authors’ knowledge, this is the largest set of literature-

extracted data directly plotted as such, with data pulled from thousands of DOIs

Subsequently, we focus specifically on the dissolution of glassy materials. In order to elucidate 

specific feature-dissolution rate relationships, we use machine learning methods to model 
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reported dissolution rates as a function of chemical, physical, and experimental features. 

Reported rates (n = 802 rates from 105 distinct glasses) are extracted and aggregated from 33 

different papers—pulled from cement,29, 30, 33–36 geochemistry,44–48, 50, 52–56 and nuclear waste 

and glass science57, 60–74 literature. While other studies have analyzed published data to 

discover trends and ascertain relationships between driving factors and dissolution rates32, 81  or 

other material properties,82–84 as far as the authors are aware, this is both the largest data set 

specifically focused on glass dissolution and the first time such a study has tested cross-

discipline relationships. 

With ample evidence—both experimental and theoretical—supporting the claim that 

amorphous materials have a higher affinity for reaction than their crystalline analogues,38, 85–89 

this study aims to elucidate why certain glasses react (i.e., dissolve) more readily than others. 

Whether through metrics such as non-bridging oxygens per tetrahedron (NBO/T),31, 35, 89 optical 

basicity,90, 91 or number of constraints per atom,32, 38, 39, 92, 93 previous studies have observed 

dissolution rate dependence on glass network connectivity. That being said, such metrics are 

often applied in a siloed manner.3 Though beyond the scope of the current work, it is also 

important to note that thermal94–98 and mechanical99–104 histories of a given material will 

impact associated aqueous dissolution rates and reactivity in cementitious systems. While only 

limited studies have investigated the effect of thermal history on glass reactivity,94 previous 

work has shown the effect of thermal history on internal stress96 and glass structure,97 which 

are important determinants of dissolution propensity. More effort has focused on mechanical 

activation, surface roughness, and their effect on material reactivity in cementitious systems. 

These studies have demonstrated that milling and grinding not only increase reactivity by 

increasing particle surface area,101, 102 but they may also reveal more reactive surface 

chemistry.99, 100, 103, 104

3 While the number of constraints per atom, described in the context of topological constraint theory,92 has shown 

recent promise in its ability to represent material connectivity and reactivity,32, 38, 39, 93 it is not investigated in the 

current study. Here, only NBO/T and optical basicity are considered due to the ability to directly calculate their 

values from material oxide composition, where topological constraint calculations rely on molecular dynamics 

simulations for accurate valuation.
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Experimental variables, such as temperature, precursor concentration—as understood by 

liquid-to-solid (L/S), surface area-to-solution volume (SA/V), or surface area-to-flow rate 

(SA/FR) ratios—and solution composition (e.g., ionic strength, alkali concentration, pH), also 

play distinct roles in controlling such reactivity by dictating distance from equilibrium and 

influencing reaction kinetics. Furthermore, as most experimental dissolution studies operate 

under extremely dilute conditions (i.e., high L/S, low SA/V, or low SA/FR), results often do not 

directly translate to reaction kinetics of more concentrated systems. More explicitly, while 

dissolution experiments may involve milligrams to grams per liter of solution (i.e., L/S >> 1), real 

systems often have L/S < 1. In this way, real systems quickly become diffusion-limited as 

surfaces impinge, while dissolution studies are designed to be surface-limited to investigate the 

intrinsic reactivity of a given material. Such dissolution studies typically also normalize by 

metrics such as specific surface area, material mass, and solution volume to further discount 

exogenous parameters. As described below, data aggregated for this study was re-normalized 

where necessary.

2. Methods

2.1. Data extraction

From a database of over 2.5 million papers—accumulated as part of ongoing work towards a 

streamlined data extraction pipeline105–107—papers were analyzed for the presence of keywords 

as described in Supplementary Information Section S.1. and detailed in Table S1. Table-reported 

data from these papers were then extracted via text-mining techniques (e.g., regular 

expression), utilizing a comprehensive custom dictionary to ensure data were collected and 

stored in an accessible fashion. Data engineering tasks involved identifying table orientation, 

handling tables with multiple label columns/rows, and ensuring units were consistent. This 

resulted in a preliminary data set of 44,000 samples from 9,900 DOIs. 
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Once extracted, samples were filtered to those with 80  SiO2 + Al2O3 + CaO  105 wt%—of 

which there were 23,000 samples from 7,000 DOIs.4 Normalized data (SiO2 + Al2O3 + CaO = 100 

wt%) were plotted on a ternary diagram spanning the SiO2-Al2O3-CaO composition space. 

Further utilizing table-mined sample information, 7,500 samples from 6,000 unique DOIs were 

automatically labeled as belonging to one of eleven categories (in order of decreasing 

prevalence): cement, silica species, slag, fly ash, clay, glass, other ash, metakaolin, granite, 

alumina species, or lime species. While most calcined clays are included within the clay 

category, metakaolin samples were segregated due to their relative frequency in the literature.

2.2. Data engineering and normalization for dissolution rate analysis

In order to ensure inter-experiment comparisons were appropriate, only experimental results 

involving dissolution of silica-based glasses and where results were described based on Si-

extraction were used. Furthermore, solutions containing initial concentrations of species other 

than pH-influencing alkalis were excluded (i.e., experiments measuring dissolution in NaOH, 

KOH, HCl, NaCl, and other similar solutions were included, while those with initial Si, Al, or Ca 

concentrations were excluded due to their influence on dissolution and precipitation of 

secondary products). Finally, early-age steady state and initial rates of dissolution were 

included, while late-age steady state dissolution rates (often referred to as “residual” rates) 

were not. While informative, rates at very late age (on the order of months to years), are 

understood to reflect different phenomena than those at earlier age (hours to days), and thus 

were excluded. We note that while included data was chosen in a deliberate manner, there is 

no agreed upon methodology for measuring dissolution, nor do all materials dissolve in a 

completely congruent manner. With that in mind, we have chosen to include Si-based 

dissolution due to the role of silicon as the major network-former in most of the included glass 

species.

4 The authors note that materials outside of this range (i.e., SiO2 + Al2O3 + CaO < 80 wt%) can also serve as useful 

precursors for cementitious binders, and, in fact, may also fall into one of the categories listed. This range was 

chosen to limit the total number of plotted samples and ensure the validity of the ternary diagram. Future work 

will expand this search to include broader chemistries.

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

To effectively compare between different dissolution studies, a standard normalization scheme 

was established, according to Equations (6)-(8). While similar to equations previously reported 

in the literature,30, 53 the authors note that these were developed in order to clarify comparison 

between samples from disparate fields. Specifically, these equations use commonly reported 

chemistry measurements from XRF (oxide wt%) and make straightforward the conversion 

between data reported as [g m-2 d-1] and [mol cm-2 s-1], respectively common in the nuclear 

waste glass and geochemistry literature.  

(6)������, ���[molox in glass

cm2 ⋅ s ] =
���� = Δ(��,���)Δ� �����������������1�� ������, �

(7)[
gglass

cm2 ⋅ s] =
���� = Δ(��,�)Δ� �����������������1��

(8)������,��� = ������,� ∗ ���� ∗ 1��
Here,  represents the forward dissolution rate of oxide ,  and  respectively represent the �� � �� ��
mole and mass fractions of oxide ,  and  respectively represent the � ��,��� [mol L―1] ��,� [g L―1]

concentration of oxide  in solution at time ,  represents the initial solution volume, � � [s] ����� [L]

 represents the initial mass of glass introduced,  represents the initial ������ [g] ������ [cm2 g―1]

BET specific surface area of the glass, and  represents the molar mass of oxide . �� [g mol―1] �
Applying these equations to experimental dissolution results enables further probing the 

intrinsic dissolution rates, and thereby reactivity, of the glasses in question. Full dimensional 

analysis is included in Supplementary Information Section S.2.

2.3. Dissolution rate modeling

Data were analyzed via a number of machine learning-based techniques in order to probe 

different potential relationships between material chemistry, experimental parameters, and 

dissolution rate. Features explored included pH, temperature, oxide compositions, chemistry-

based connectivity metrics (NBO/T and optical basicity—both of which were calculated directly 

from reported sample compositions), experimental design ratios (e.g., liquid-to-solid), and 

others. The full list of investigated features is included in the Supplementary Information in 
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Table S3. Additional information on the calculation of NBO/T and optical basicity is also 

included in Supplementary Information Section S.7.

The sample space was initially split into train (80%) and test (20%) sets, and the training set was 

further split into 5 cross-validation sets of approximately equal sample size used to optimize 

hyperparameters. Once optimized, the entire training set was used to train each model, then 

used to predict on the test set. To safeguard against prediction on correlated samples (i.e., 

samples of identical or similar origin)—which could yield deceptively effective model 

prediction—data were partitioned ensuring all samples from a single DOI were contained 

within a single set. Furthermore, we manually checked for feature overlap between DOIs in 

train and test sets in order to minimize potential bias. While there were few instances of 

composition overlap, there were no instances of overlap for the complete feature vectors (i.e., 

even where composition was identical, other features, such as pH and temperature differed 

across sets). Full train/test splits are detailed in Supplementary Information Tables S4 and S5.

Base 10 logarithm of dissolution rate (log(rate)) was modeled as a function of different subsets 

of the feature space to test potential predictive relationships. The use of log(rate) was chosen 

over absolute rates given previously reported log-linear relationships as described in the 

introduction (Equation (5)). All models were optimized to achieve highest R-squared (R2) and 

lowest root mean square error (RMSE) scores when comparing predicted and true log10 rates of 

dissolution. RMSE scores were deemed particularly relevant given they represent uncertainty in 

the units of the target (i.e., RMSE = 1 indicates predictions are correct to within 1 log(rate) unit 

or 1 order of magnitude in real rates). Modeling was completed in two manners:

1) Supervised Model: Log-linear regression models were optimized using the sci-kit learn 

package in Python. Feature importance was determined via linear and decision tree 

regression analyses on a manually curated and fully labeled dataset. Features were 

filtered to optimize for lowest R2 / highest RMSE of predicted vs. true log(rate).

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

2) Semi-Supervised Model: Generative embedding models based on Kingma (2014)108 were 

optimized (in an unsupervised manner) to learn a latent feature representation directly 

from a much larger set of incomplete and unlabeled data. The learned representation 

could then be leveraged as a set of high-level features to analyze the labeled data by 

means of supervised linear and non-linear models which map these features to a 

prediction (i.e., log rate of dissolution). 

Linear and decision tree regression models were initially fit using the full feature space in order 

to determine features with the greatest predictive relationships with log(rate). These models 

were chosen due to the interpretable nature of their results (i.e., predictive features could be 

easily identified). R2 and RMSE scores were observed to respectively increase and decrease 

upon lowering feature dimensionality. Features lacking predictive capacity were determined by 

exploring the modeled feature weights (i.e., features found to have heavier weight were 

determined to be more influential) and noting features absent from the produced decision 

trees. Those with low weights or found deep in the decision tree (i.e., uninfluential) were 

removed and models were again trained and fit until optimal R2 and RMSE scores were 

achieved. Similar analyses were also conducted by removing explicitly correlated features and 

calculating model scores to avoid over-emphasizing certain features. Prior to linear and decision 

tree regressions, all data was standardized to ensure proper comparison between feature 

weights. Additionally, for decision tree regression, the “max depth” hyperparameter was 

optimized by testing increasing maximum tree depths (from 2-10) and similarly optimizing for 

R2 and RMSE scores.

Semi-supervised learning analysis on the other hand was conducted using an end-to-end 

computation pipeline that comprises (1) an unsupervised neural embedding model to project 

both labeled and unlabeled data onto a latent space;109 and (2) a supervised prediction model 

which makes prediction based on the latent representation of data.108 Both models can then be 

optimized simultaneously such that the prediction loss of the supervised model on labeled data 

(e.g., its RMSE) is used as a learning signal (along with an additional unsupervised information 
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summarization loss on unlabeled data) to refine the latent projection learned by the neural 

embedding model. The learned distributions over the latent values of any missing features can 

then be marginalized out (i.e., weight-averaged out) during prediction. Interested readers are 

referred to Nazábal, et al. (2020)110 for an in-depth discussion on marginalizing out missing 

features. For better clarity, a schematic diagram of this entire computation pipeline is also 

provided below in Figure 1. While this semi-supervised model reduces result interpretability, 

the latent projection enables the inclusion of unlabeled and potentially incomplete data in a 

way that would be impossible using standard supervised techniques.

2.4. Thermodynamic considerations

As expressed in Equations (1) and (2), dissolution rate is a function of species undersaturation in 

solution ( ). For small values of  (i.e., ), conditions are far from equilibrium Q K Q K Q K < 0.05

and dissolution is thus independent of  .30, 42  In this study, we assume the surface of the Q K

glass to be hydrated and its equilibrium constant to be a weighted sum of the equilibrium 

constants for the dissolution reactions of SiO2(am), Al(OH)3(am), FeO(OH), Ca(OH)2, and 

Mg(OH)2. This assumption implies that these hydroxides are rate limiting at the surface of the 

dissolving glass and also neglects other network forming elements, such as boron. Despite 

these limitations and assumptions, the model has been applied in previous literature with 

success30, 56, 59, 111 and approximates distance from equilibrium during dissolution. Further 

discussion of thermodynamic considerations and calculations involved can be found in 

Supplementary Information Section S.3.

3. Results and discussion

3.1. Expanding the precursor pool: Ternary diagram

As introduced in Section 2.1. above, automated data processing resulted in the extraction of 

over 23,000 sample chemistries, of which 7,500 have been labeled as cement, silica species, 

slag, fly ash, clay, glass, other ash, metakaolin, granite, alumina species, or lime species, as 

shown in Figure 2. 
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While such a ternary diagram is useful in its own right, delving into the compositional 

distributions within each material class sheds important light on the differences in material 

variability between industrial products, such as cement, and byproducts/wastes, such as coal fly 

ash. Figure 3A depicts the cumulative density functions for SiO2, Al2O3, and CaO content (wt%) 

(normalized to SiO2 + Al2O3 + CaO = 100 wt%) across all samples included in the ternary 

diagram. These data indicate the following trends:

 58% of samples contain  15 wt% CaO, there is a stable increase in total samples 

containing 15-70 wt% CaO (26% of samples), and a sharp jump from 70-74 wt% CaO 

(14% of samples), capturing 98% of samples,

 Only 6% of samples contain  21 wt% SiO2, 16% of samples contain 21-25% SiO2, and 

there is a relatively stable increase in samples containing 25-100% SiO2 (78% of 

samples), and

 Almost all (95%) of samples contain  45 wt% Al2O3.

Figures 3B and 3C respectively show distributions for cement and fly ash, and other 

distributions are included in Figure S2. The variance across each oxide dimension is significantly 

larger for the fly ash than the cement, epitomizing the differences in compositional variability 

between industrial goods (cement) and byproducts (fly ashes). While industrial grade products 

are produced to stringent specifications, inconsistencies in byproduct production yields 

significant sample-to-sample variability, demanding additional considerations for use as ACMs.

Still, category-level information—such as whether a material is a certain type of slag or ash—

can be useful in determining expected phase composition and, thus, the potential for reactivity 

in a cementitious system. While this work prioritizes glassy phases, byproduct heterogeneities 

necessitate attention to major phases present in any attractive materials. Two examples of 

byproduct phase estimation based on material category and processing have been 

demonstrated previously by the authors—one relating to the dissolution and reactivity of 

mixed-feedstock biomass ash,36 and another for steel and copper slag mineral phases75—

demonstrating the utility of this technique in both glassy and crystalline systems.
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3.2. Dissolution rate modeling

3.2.1. Supervised model

As described in Section 2.3, a combination of linear and decision tree regression analysis was 

used to comprehend the data. First pass modeling to determine important features displayed 

clear trend segregation between dissolution in high and low pH, as expected from previous 

studies32, 76 and clearly visible when simply plotting log rate as a function of pH for all samples 

explored, presented in Figure 4A. Figure 4B displays the same data with thermal information 

overlaid, demonstrating the trend towards faster dissolution with increasing temperature. 

That said, given the correlated nature of many included features and anomalies in some 

included data, using the full feature space (as defined in Table S3) and all samples in linear 

regression analysis resulted in poor predictive capacity. In contrast, even with all features 

present, decision tree regression resulted in surprisingly good prediction (RMSE = 1.24), likely 

due to its non-linear handling of the data. 

Examining the decision tree with all features as shown in Figure 5, we see several interesting 

relationships appear. First, the root node split at T = 331.15 K (1/T = 0.003 1/K), indicating the 

importance of temperature as a predictor of rate. Further inspection revealed that most (74%) 

examined experiments were carried out at temperatures lower than 331.15 K. Furthermore, no 

clear relationship between temperature and log(rate) was apparent at moderate temperatures 

(273-331 K), and the lower quantity of experiments performed at higher temperature (>331.15 

K) showed more obvious correlation between temperature and log(rate). 

Moving to the second layer, we observe an expected split between low and high pH regions for 

the high temperature branch. For the moderate temperature branch, we initially observed 

roughness factor and surface area-to-flow rate (SA/FR) ratio splits on the lower temperature 

branch. For mixed flow reactors, the saturation state of the dissolution reaction is controlled by 

SA/FR. Given that the dependence of dissolution rate on the saturation state of the reaction has 
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been a subject of interest,65, 67, 69, 71, 72, 112, 113 further investigation into the saturation state of 

the included glass studies was carried out, as described in Section 2.4. Approximating the 

saturation state of the dissolution reactions enabled us to cross-check these computational 

findings with thermodynamic domain knowledge. It was possible to calculate the saturation 

state of 726 of the 802 total data points, and of these 726 samples, only 30 data points had 

values of Q/K > 0.05. In other words, the bulk of these experiments were carried out too far 

from equilibrium to comment on the effect of SA/FR or other such experimental variables (e.g., 

L/S, SA/V) on dissolution rate. Therefore, the presence of these variables in the decision tree 

represented spurious relationships brought on by the presence of such data for only a subset of 

the samples. 

Removing these features revealed a split over NBO/T for the moderate temperature branch. 

Examining the relationship between log(rate) and NBO/T first revealed an overarching positive 

correlation between NBO/T and log(rate). However, while the model output indicates a split at 

NBO/T = 0.074 influences rate prediction, such delineation was not visibly apparent in a plot of 

log(rate) vs. NBO/T. Returning to the pH split observed at high temperature, we see similar 

partitions in the third layer of the moderate temperature branch, all reminiscent of the distinct 

trends in low and high pH environments as observed in Figure 4A, yet all splitting at higher-

than-expected pH.

Given that linear regression indicated the same three features as important (i.e., such features 

exhibited large average feature weight and low standard deviation), the supervised modeling 

resulted in best fit models of log(rate) based only on pH, inverse absolute temperature (1/K), 

and NBO/T. While NBO/T is admittedly limited in its ability to differentiate between glasses 

with varied composition yet equivalent NBO/T values, the modeling here indicated its 

superiority to any other compositional features investigated. Therefore, further modeling was 

carried out with only these three features.5 

5 Activation energy of dissolution, while expected to be predictive of rate as per Equations (3)-(5), was not 

reported broadly enough to conclusively determine its influence. It should be noted, however, that when modeling 
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Decision tree regression at low dimension, not shown here, produced similar fit statistics as 

determined by RMSE and R2. This low-dimensional model also revealed an additional split along 

pH in the fourth layer of the tree (not shown), where we observe not only a clear delineation 

between rates at acidic and basic pH, but also a mid-range dependence reminiscent of the near 

neutral term in Equation (5).76, 77

Testing linear regression models on the three features and partitioning by pH resulted in 

significantly better predictive ability. In Figure 6, we compare prediction using only the three 

features on all samples (Figure 6A) and only on samples at pH   7 (Figure 6B), focusing for the 

rest of this work on the latter due to its relevance to cement science. While the former resulted 

in an RMSE of 1.53, fitting only pH  7 samples improved the RMSE to 0.97. 

Focusing on experiments conducted at pH  7, we probed additional relationships, including the 

influence of data from different scientific communities, different experimental set-ups, and 

presence of B2O3, given its relative prevalence in certain subsections of the scientific literature 

(i.e., nuclear waste glass science is significantly more interested in borosilicate glasses than 

cement scientists). While dissolution studies focused on industrial waste materials used as 

precursors for alkali-activated binders have only recently garnered attention, such studies in 

geochemistry, nuclear waste, and glass science have been carried out for decades. Given the 

relative history of dissolution studies in the listed scientific communities as compared to the 

cement and alkali-activation communities and the transferability of results as described below, 

it is important that we continue exploring fields not traditionally associated with cement. In this 

way, we can broaden our understanding of material reactivity and utility in cementitious and 

alkali activated binder systems.

In Figures 7A and 7B, data for samples at pH  7 is re-segregated by subject area: 

was conducted only on samples for which activation energies were originally reported, the inclusion of the 

activation energy term only served to maintain or decrease the predictive capability of the model.
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1) Cement and alkali activation29, 30, 33–36, 57

2) Nuclear waste and glass science60–74

3) Geochemistry44–48, 50, 52–56

while data are segmented by B2O3-presence and experimental set-up (batch and flow) in 

Figures 7C and 7D, respectively.

Data in Figure 7A are trained as labeled and tested on the other two subject areas, while the 

opposite is true in Figure 7B. While in Figure 7A, predictions are biased to faster log(rate) at low 

true log(rate) and to slower log(rate) at high true log(rate), in Figure 7B, these biases disappear. 

This is most apparent in the cement-literature trained model, and is likely due to both the 

relatively smaller sample set (n = 53) and more homogeneous experimental parameters in the 

cement literature-based samples. Comparing predictions based on the other two subject areas 

in Figure 7A and all predictions in Figure 7B with those above in Figure 6B, it is clear that cross-

field learning results in adequate predictive capabilities when larger and more varied data sets 

are employed, as all are able to predict dissolution rates to within approximately 1 log(rate) 

unit. 

Similarly, in Figures 7C and 7D, we observe that segregating by either B2O3 content or 

experimental set-up result in RMSE  1. Biases observed in Figure 7C can be explained as 

resulting from slower mean log dissolution rates for B2O3-absent glasses than B2O3-containing 

glasses, respectively yielding underestimation of rates for the model trained on the former and 

overestimation when train on the latter. Full statistical parameters are included in the 

Supplementary Information in Table S6. While there is also some apparent bias at low log(rate) 

for experiments split on experimental set-up (Figure 7D), the ability of batch and flow 

experiments to reliably cross-predict is pleasantly surprising. By separating the data in these 

ways, we observe that these models based on pH, inverse temperature, and NBO/T are indeed 

predictive across both literature and chemistry.

3.2.2 Semi-supervised model
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Semi-supervised machine learning analysis was conducted using the same data as input into the 

supervised linear and decision tree regression analyses discussed above. The primary goal was 

to observe the predictive performance of a black-box model in comparison to the supervised 

model. 

In Figure 8, we present RMSE as a function of training epochs and size of training set, as 

labeled. In Figure 8A, we present results for a model trained on the full feature set, while in 

Figure 8B, results are for a model trained only on pH, inverse temperature, and NBO/T 

(comparable with Figure 6A). Finally, in Figure 8C, we compare predictive ability of the models 

trained on all samples with those trained on experiments at pH  7 (comparable with Figure 

6B). 

As discussed, while linear modeling did not yield predictive capability with all features included, 

in Figure 8A, we observe an RMSE of ~2, indicating that, similar to the decision tree regression, 

this model was able to handle the presence of less-predictive features well. Additionally, 

comparing Figures 8B and 6A, we observe similar predictive capacity for models trained on only 

the three most relevant features, yielding performance improvements over full-feature models. 

Finally, in comparing Figures 8C and 6B, we again see additional performance improvement for 

models focused only on pH  7 samples.

Examining model performance in its own right, we observe that models are fully trained after 

only a few hundred epochs. Additionally, with identical test sets, model performance is 

consistent down to 20% of the training set (n ≈ 128), with minor performance degradation 

down to 5% of the training set (n ≈ 32), revealing the utility of such models. This is particularly 

relevant to our situation, as dissolution rates for most materials in the ternary diagram 

(discussed in Sections 2.1 and 3.1) are unknown. We note that for the model trained on the 

least data and full feature set, there is a potential for overfitting after many training epochs, as 

is visible in Figure 8A where model performance degrades in some cases. Figure 8B, however, 

shows that when only 3 features are used, performance on the test set remains stable or 
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continues to fall even for large numbers of epochs. This demonstrates that, given the small data 

set, restricting the feature set adequately reduces the potential for model overfitting.

4. Conclusions

Through this work, we demonstrated the ability of computational methods to both (1) extract 

data for potential cementitious and alkali activation precursors reported in the literature and 

(2) learn dissolution models based on data from separate scientific disciplines, with various 

levels of detail and often distinct methodological eccentricities. These efforts resulted in the 

largest sets of literature-extracted sample data and dissolution rate modeling data compiled 

and analyzed to date. As methodologies and data reporting conventions vary significantly 

between fields, substantial effort was necessary to ensure data and units were compatible. 

Log-linear models were useful in confirming previously reported relationships between 

log(dissolution rate) and pH, inverse temperature, and NBO/T over the input data, and machine 

learning models proved more robust to anomalous or incomplete data, arriving at similar 

predictive capability. The results described herein indicate that while simpler linear methods 

perform better when only the most relevant attributes are provided as input features to the 

model, non-linear embeddings and data standardization are capable of learning from sparse 

and irregular data. This is quite promising given the involved and potentially bias-introducing 

process of manually reducing feature dimensionality. The trade-off, however, is in reduced 

model interpretability. Proposed enhancements to the model include implementing a (1) an 

attention-based model (2) a relaxed decision tree model and (3) a mixture of experts model, all 

of which would improve the discovery of important feature-rate relationships by segmenting 

the data and would increase model interpretability.

Furthermore, while these models perform well for glasses, further work is necessary to 

incorporate complex, heterogeneous materials into this model. Many of the industrial 

byproducts of interest as supplementary and alternative cementitious materials are 

heterogeneous in nature, containing multiple phases known to dissolve and react according to 
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distinct mechanisms and at different rates. Equation (9) depicts our initial hypothesis of how 

understanding the aqueous reactivity of such heterogeneous systems could be understood;

(9)�material = ∑��phase � �phase �
where  represents the overall dissolution rate of a given material,  represents the �material �phase �
fraction of phase  in said material, and  represents the dissolution rate of phase . In this �  �phase � �
way, dissolution of heterogeneous materials can be modeled as a weighted sum of dissolution 

rates of each component material. A similar concept was introduced by Gudbrandsson, et al. 

(2011) in their discussion of heterogeneous crystalline basalt rock dissolution.114 Here, we 

suggest that this idea can similarly be applied to a broader array of heterogeneous materials. 

Further work will be necessary to confirm this hypothesis.
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Figure Captions:

FIGURE 1 Schematic diagram of our semi-supervised learning analysis that spans multiple domains of data. 

Unlabeled and labeled data (X) were first entered into a probabilistic encoder Q(Z|X) that maps to a space of latent 

feature representation (Z), which were re-directed to a probabilistic decoder P(X|Z) that generates a standardized 
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data summarization (X*). The distributional discrepancy between X and X* (conditioned on Z) is then used as an 

unsupervised loss on information summarization while the latent representation Z that corresponds to the labeled 

data is used to optimized for a latent predictor that maps from Z to the corresponding outcome Y. All component 

parameterizations in the above pipeline are customized following the guiding principles in Kingma (2014),108 which 

can be optimized end-to-end via gradient backpropagation.

FIGURE 2 Ternary SiO2-Al2O3-CaO diagram depicting different material categories of interest to the cement 

community. All chemistry and category data extracted from tables in the literature. The numbers below each 

category label reflect the number of samples over the number of unique DOIs (i.e., Samples/DOIs). Data points 

shown in yellow are as yet unlabeled, reflecting an additional 15,500 samples.

FIGURE 3 (A) Cumulative density functions of normalized oxide content (SiO2, Al2O3, and CaO) for all extracted 

samples; (B)-(C) Frequency density of normalized oxide content of cement species (n = 3,133 from 2,592 DOIs) and 

fly ash species (n = 725 from 496 DOIs), respectively. The sum of the three oxides (SiO2, Al2O3, and CaO) was 

normalized to 100%.

FIGURE 4 (A) Plot of log rate as a function of pH for all samples extracted from the literature (n = 802). Different 

colors represent distinct DOIs. (B) Same plot with overlaid thermal information (low temperature = darker, high 

temperature = lighter). Trendlines are schematic to show opposing trends in acidic and basic regions.

FIGURE 5 Decision tree regression trained on samples from 29, 30, 33, 34, 36, 44-47, 52–54, 57, 60, 61, 63, 65, 66, 68–74 (n = 636) and 

all features as listed in Tables S3 (excluding roughness factor and SA/FR, as described in text). Testing the 

regression on samples from 35, 48, 50, 55, 56, 62, 64, 67 (n = 166) with a max depth of 3 (optimized) yielded RMSE = 1.24 

and R2 = 0.40.

FIGURE 6 Linear regression trained on all samples from 29, 30, 33, 34, 36, 44-47, 52–54, 57, 60, 61, 63, 65, 66, 68–74 and tested on 

samples from 35, 48, 50, 55, 56, 62, 64, 67. (A) Train (n = 636) and test (n = 166) sets included all samples and resulted in 

respective RMSE values of 0.95 and 1.53; (B) Train (n = 442) and test (n = 116) sets included samples from 

experiments with pH  7 and resulted in respective RMSE values of 0.66 and 0.97.

FIGURE 7 Graphs of predicted vs true values of log10(dissolution rate) for data with pH  7. In (A) the model is 

trained on a single data set as listed (cement, nuclear, or geochem), while in (B) the opposite is true—the model is 

trained on 2/3 sets and tested on the third set as listed. In (C), the model is trained and tested on B2O3-containing 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

or -absent glasses as labeled. In (D) the model is trained and tested on batch or flow experiments as labeled. 

Number of samples in training set (n) and RMSE scores of prediction on test sets are listed on each plot.

FIGURE 8 (A) RMSE of machine learning models as a function of number of training epochs. Input consisted of full 

feature set as defined by Table S3, with size of training set varied as labeled. (B) RMSE of machine learning models, 

where input consisted of only 3 key features (pH, 1/temperature (1/K), and NBO/T) and size of training set varied 

as labeled. (C) Comparison between RMSE of four input sets: (1) All features, all samples, (2) 3 features, all 

samples, (3) All features, samples with pH  7, and (4) 3 features, samples with pH  7
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