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Abstract

For many engineering systems, current design methodologies do not adequately quantify and manage
uncertainty as it arises during the design process, which can lead to unacceptable risks, increases in
programmatic cost, and schedule overruns. This paper develops new sensitivity analysis methods that can
be used to better understand and mitigate the effects of uncertainty in system design. In particular, a new
entropy-based sensitivity analysis methodology is introduced which apportions output uncertainty into
contributions due to not only the variance of input factors and their interactions, but also to features of the
underlying probability distributions that are related to distribution shape and extent. Local sensitivity
analysis techniques are also presented which provide computationally inexpensive estimates of the change
in output uncertainty resulting from design modifications. The proposed methods are demonstrated on
an engineering example to show how they can be used in the design context to systematically manage
uncertainty budgets — which specify the allowable level of uncertainty for a system — by helping to
identify design alternatives, evaluate tradeoffs between available options, and guide decisions regarding
the allocation of resources.

1 Introduction

The rise of complexity in engineering systems over the years has been a well-documented trend [Kim and
Wilemon, 2003; Brown and Eremenko, 2006; Warwick, 2010; Becz et al., 2010]. The challenges associated with
complexity in system design include ensuring the accuracy of computational models to simulate and predict
system behavior, committing considerable time and resources to conduct experimentation and testing, and
managing large, globally-distributed design teams. This complexity in modern engineering systems poses a
significant challenge to designers and decision-makers. Early-stage design decisions are critical because they
lock in many aspects of the system performance and cost. Yet these decisions are made when uncertainty is
greatest, making it difficult to guarantee a robust and reliable system. In light of these challenges, current
system design methodologies are no longer adequate for identifying and addressing performance, cost, and
schedule risks as they emerge during the design process. Instead, innovative uncertainty quantification
methods are needed in order to rigorously identify and mitigate various sources of uncertainty associated
with simulation models, numerical algorithms, experiments, and predicted quantities of interest [Smith,
2014].

This work proposes an approach in which we represent the design process as a stochastic process model.
In doing so, we create a mathematical model for quantification and management of uncertainty that casts
system design as a Bayesian estimation problem. Feedback of system sensitivities guides both design decisions
and resource allocation decisions. In this way, the design process becomes a series of decisions targeted to
achieve system specifications while also managing the associated uncertainty. The key steps of our Bayesian
system design framework are shown in Figure 1. Here, a system is defined as a collection of interrelated
elements that interact with one another to achieve a common purpose [NASA, 2007; Papalambros and Wilde,

∗Author to whom all correspondence should be addressed (e-mail: qche@mit.edu)

1

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting,
typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please
cite this article as doi: 10.1002/sys.21422

https://doi.org/10.1002/sys.21422
https://doi.org/10.1002/sys.21422


A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

2000]. This could be a physical entity, such as a vehicle, or an abstract concept, such as a software program
or procedure. The system, whatever its form, must satisfy a set of targets to be deemed successful. These
targets refer to functional requirements that dictate the system’s performance and level of uncertainty, as
well as additional constraints that stipulate conditions such as budget and time. From these system targets,
a designer must define a discrete set of parameters that map the targets to aspects of the design that can
be manipulated to satisfy those requirements [Suh, 1990]. These design parameters can include quantities
that define the system itself, such as individual component dimensions, as well as information describing
procedures for the system’s manufacture, operation, and maintenance [Deyst, 2002]. In addition to the
design parameters, there are also variables that describe features of the system’s performance that are of
interest to the designer. We refer to these variables generically as quantities of interest (QOI). Quantities of
interest are typically evaluated indirectly as functions of the design parameters. Once the design parameters
and the QOI have been specified, subsequent efforts in the design process typically involve the conception of
various design alternatives, the analysis of those options using computer models and simulation tools, and
the development and testing of prototypes to verify performance [NASA, 2007; Hazelrigg, 1996; Braha and
Maimon, 1997; Thomke and Bell, 2001; Browning et al., 2002]. This iterative procedure is represented in the
Bayesian system design framework by the design feedback loop in Figure 1, which terminates when a feasible
design is achieved that satisfies all system targets [Suh, 1990; Nightingale, 2000].

For most realistic engineering systems, the design process is made more difficult by the presence of non-
deterministic features that contribute to uncertainties in the system [Oberkampf et al., 2002]. This paper
presents novel sensitivity analysis methods that can be used in system design to identify the key drivers of
uncertainty, enumerate design options, and evaluate tradeoffs in the context of resource allocation decisions
for uncertainty mitigation. The information provided by our methods enable both an uncertainty feedback
loop, which is used to update requirements and parameter distributions in our stochastic process model
of the design process, as well as a resource allocation loop used to determine how to best use resources to
achieve design goals.

Our approach focuses on two measures of uncertainty in the QOI: complexity and risk. These measures
and their computational quantification were developed as part of the Defense Advanced Research Projects
Agency’s (DARPA) Adaptive Vehicle Make (AVM) initiative, which seeks to streamline the systems engi-
neering process and enable the development of newer, better defense vehicles more quickly and at lower cost
[Belfiore, 2012; Eremenko, 2013]. To date, the methods developed in our work have been tested on a first
principles-based infantry fighting vehicle model [He et al., 2012] and an infantry fighting vehicle bond graph
model developed by the Vanderbilt University Institute for Software Integrated Systems [Lattmann et al.,
2012; Allaire et al., 2012] to demonstrate their utility for designing and testing vehicle components. In this
paper, we apply our methods to the design and analysis of a high-pass filter circuit, which is another use
case of the DARPA-AVM program.

The rest of the paper proceeds as follows. Section 2 frames the context of the paper, introduces complexity
and risk as metrics for quantifying uncertainty, and provides a discussion of existing sensitivity analysis
methods. Section 3 describes the development of two new sensitivity analysis methodologies: an uncertainty
decomposition approach centered on the apportionment of output entropy power into contributions due to the
shape and extent of the input factors and their interactions, and a set of local sensitivity analysis techniques
that can be used to estimate changes in complexity and risk associated with a design update. Section 4
uses a circuit example to demonstrate the applicability of the proposed sensitivity analysis methods, as well
as introduce the idea of an uncertainty budget and describe its relevance to system design. In particular,
sensitivity information is combined with cost and uncertainty budgets to identify specific design options
that satisfy system constraints, visualize tradeoffs in the design space, and inform decisions regarding the
allocation of resources aimed at enhancing robustness and reliability. Finally, Section 5 summarizes the key
contributions of the paper and highlights some areas of future work.

2 Background

This section provides an overview of several topics relevant to the work presented in this paper: the quantifi-
cation of uncertainty in engineering system design (Section 2.1), the implications of uncertainty for system
robustness and reliability (Section 2.2), and existing methods for performing sensitivity analysis (Section 2.3).
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2.1 Characterizing Uncertainty

Uncertainty in engineering systems can come in many flavors; for example, it can be broadly categorized as
epistemic, owing to insufficient or imperfect knowledge, or aleatory, which arises from natural randomness
and is therefore irreducible [Smith, 2014; Roy and Oberkampf, 2011; Oberkampf et al., 2002; Ang and Tang,
2007]. Another classification of uncertainty focuses on the underlying source of the uncertainty in the design
process, and includes parameter uncertainty, parametric variability, residual variability, observation error,
model inadequacy, and code uncertainty [Kennedy and O’Hagan, 2001].1 Although we concern ourselves
mainly with parameter uncertainty in this paper, we note that the methods presented herein are intended
to be general enough to describe any of the aforementioned types of uncertainty, provided that they can be
described probabilistically.

In this work, we focus on the development of methods to understand and mitigate the effects of uncertainty
during the intermediate stages of system design, where requirements, design parameters, and quantities of
interest have already been defined, but no feasible design has yet been realized. Design parameters are
variables that relate the requirements in the functional domain to aspects of the design in the physical
domain that can be manipulated to satisfy those requirements [Suh, 1990]. We assume that all design
parameters within a system are independent, and denote them using the m× 1 vector x = [x1, x2, . . . , xm]ᵀ,
where xi is the ith design parameter among a total of m design parameters. Quantities of interest are used
to characterize aspects of the system’s performance that are of interest to the designer, and are typically
evaluated as functions of the design parameters using available models and analysis tools. We represent
them using the n× 1 vector y = [y1, y2, . . . , yn]ᵀ, where yj is the jth QOI out of a total of n. For simplicity,
we will assume that there already exist models and tools (may be black-box) with which to evaluate the QOI
of a system from the design parameters. We express this relationship as:

y = g(x), (1)

where g : Rm → Rn denotes the mapping from design parameters to QOI. For the jth QOI yj , this mapping
is given by:

yj = gj(x), (2)

where gj : Rm → R1, and j = 1, 2, . . . , n.
To characterize the propagation of uncertainty within a system, we employ continuous random variables

to represent design parameters and QOI, and model the time evolution of design as a stochastic process
whose outcome is governed by some probability distribution. We use X = [X1, X2, . . . , Xm]ᵀ and Y =
[Y1, Y2, . . . , Yn]ᵀ to denote vectors of random variables that correspond to the entries of x and y, respectively.

Using Monte Carlo (MC) simulation, we generate numerous estimates of each QOI, from which a proba-
bility density can be estimated. To quantify the uncertainty associated with a particular QOI Y , we employ
the metrics of complexity and risk. For complexity, we use the definition that it is the potential of a system to
exhibit unexpected behavior in the QOI, whether detrimental or not [Allaire et al., 2012]. The quantitative
metric associated with this definition is exponential entropy [Campbell, 1966], which is the exponential of
the differential entropy of Y :

C(Y ) = exp[h(Y )] = exp

[
−
∫

Y
fY (y) log fY (y) dy

]
. (3)

A related quantity to exponential entropy is entropy power [Shannon, 1948], which is proportional to the
square of exponential entropy, and denoted by N(Y ):

N(Y ) =
exp[2h(Y )]

2πe
=
C(Y )2

2πe
. (4)

1According to Kennedy and O’Hagan [2001], parameter uncertainty results from not knowing the true values of the inputs
to a model, parametric variability relates to unspecified conditions in the model inputs or parameters, residual variability is
due to the inherently unpredictable or stochastic nature of the system, observation error refers to uncertainty associated with
actual observations or measurements, model inadequacy is due to the insufficiency of any model to exactly predict reality, and
code uncertainty arises from not knowing the output of a model given a particular set of inputs until the code is run.
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Whereas C(Y ) is a measure of intrinsic extent and has the same units as Y ,2 N(Y ) exhibits properties of
variance and has the same units as Y 2. This provides an appealing analogy for the relationship between
standard deviation and variance to that between exponential entropy and entropy power.

In this work, we define risk as the probability that a system incurs an undesirable outcome, such as
violating a requirement or constraint. Suppose that a QOI is subject to the requirement that it must be
greater than or equal to a specified value r. In this case, risk corresponds to the probability that the random
variable Y takes on a value less than r, given by:

P (Y < r) =

∫ r

−∞
fY (y) dy. (5)

This notion of risk is illustrated in Figure 2, where P (Y < r) corresponds to the area of the shaded region
in which the requirement is not met.3

2.2 Designing for Robustness and Reliability

Uncertainty in engineering design is closely related to the robustness and reliability of the resulting systems.
Here, we use the definition that robustness is “the property of systems that enables them to survive unforeseen
or unusual circumstances” [Knoll and Vogel, 2009]. That is to say, to improve a system’s robustness is to
make it less susceptible to exhibit unexpected behavior in the presence of a wide range of stochastic elements
[Karl, 2013; Creveling et al., 2003]. Reliability, on the other hand, describes a system’s “probability of
success in satisfying some performance criterion” [Haldar and Mahadevan, 2000], and is closely tied to system
safety [Karl, 2013].4 Under this definition, reliability is the complement of risk, which instead describes the
probability of failure.

Graphically, we illustrate the distinction between design for robustness and design for reliability in Fig-
ure 2, in which our estimate of a QOI Y is updated from the red probability density to the blue. The dashed
line y = r represents a performance criterion below which the design is deemed unacceptable; the area of the
shaded region corresponds to P (Y < r). Figure 2(a) shows a constant scaling of fY (y) with no change in the
mean value, whereas Figure 2(b) depicts a constant shift (horizontal translation) of fY (y) with no change
in the standard deviation. Both activities have direct implications for the uncertainty associated with Y .
In practice, improvements in robustness and reliability can occur concurrently, as depicted in Figure 2(c).
In this paper, however, we will treat them as distinct activities in order to investigate how robustness and
reliability are related to our proposed measures of uncertainty — complexity and risk — as well as how
sensitivity analysis can be used to predict changes in these quantities.

2.3 Variance-Based Sensitivity Analysis

In the context of engineering system design, sensitivity analysis allows us to better understand the effects of
uncertainty in order to make well-informed decisions aimed at uncertainty reduction. For example, it can be
used to study how “variation in the output of a model ... can be apportioned, qualitatively or quantitatively,
to different sources of variation, and how the given model depends upon the information fed into it” [Saltelli
et al., 2000]. Existing sensitivity analysis approaches typically use variance as a measure of uncertainty.

2The intrinsic extent of a random variable Y is always less than or equal to the range of Y (i.e., the “true” extent)
[Campbell, 1966]. One interpretation of intrinsic extent is as “the equivalent side length of the smallest set that contains most
of the probability” [Cover and Thomas, 1991]. That is to say, whereas range gives the length of the interval (potentially infinite)
that contains all possible values y for which Y = y, the intrinsic extent represents the (finite) extent of Y once the various
values of y have been weighted by their probability of occurrence. In the case where Y is a uniform random variable, intrinsic
extent and range are equivalent.

3The probability of failure can also be defined as P (Y > r) in the case that the QOI must not exceed r.
4Alternate definitions of reliability also ascribe an element of time. For example, reliability is sometimes described as the

probability of failure within a given interval of time [Kapur and Lamberson, 1977], or the expected life of a product or process,
typically measured by the mean time to failure or the mean time between failures [Creveling et al., 2003]. We will not address
the temporal aspect of reliability in this paper.
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2.3.1 Global Sensitivity Analysis

In variance-based global sensitivity analysis (GSA), variability in a model’s output (i.e., a system’s QOI)
is apportioned into contributions from each of the factors (i.e., the design parameters), as well as their
interactions. This notion is illustrated in Figure 3.

A common approach for conducting GSA is the Sobol’ method, which utilizes MC simulation to char-
acterize the propagation of uncertainty [Homma and Saltelli, 1996; Sobol’, 1993, 2001, 2003]. The Sobol’
method is based on high-dimensional model representation (HDMR), which decomposes a function g(X)
into the following sum:

g(X) = g0 +
∑

i

gi(Xi) +
∑

i<j

gij(Xi, Xj) + . . .+ g12...m(X1, X2, . . . , Xm), (6)

where g0 is a constant, gi(Xi) is a function of Xi only, gij(Xi, Xj) is a function of Xi and Xj only, etc.
Although (6) is not a unique representation of g(X), it can be made unique by enforcing the following
constraints: ∫ 1

0

gi1,...,is(Xi1 , . . . , Xis) dxk = 0, ∀ k = i1, . . . , is,
s = 1, . . . ,m.

(7)

In the above equation, the indices i1, . . . , is represent all sets of s integers that satisfy 1 ≤ i1 < . . . < is ≤ m.
That is, for s = 1, the constraint given by (7) applies to all sub-functions gi(Xi) in (6); for s = 2, the
constraint applies to all sub-functions gij(Xi, Xj) with i < j in (6), etc. Furthermore, in (7) we have
defined all factors Xi1 , . . . , Xis on the interval [0, 1]; this is merely for simplicity of presentation, and not a
requirement of the Sobol’ method. With the sub-functions gi1,...,is(Xi1 , . . . , Xis) now uniquely specified, we
refer to (6) as the analysis of variances high-dimensional model representation (ANOVA-HDMR) of g(X).

Alternatively, we can write the ANOVA-HDMR in terms of the random variables Y , Zi, Zij , . . . , Z12...m to
denote the outputs of the original function and various sub-functions, respectively. That is, we let Y = g(X)
and Zi1,...,is = gi1,...,is(Xi1 , . . . , Xis), where the indices i1, . . . , is represent all sets of s integers that satisfy
1 ≤ i1 < . . . < is ≤ m. The ANOVA-HDMR can thus be expressed as:

Y = g0 +
∑

i

Zi +
∑

i<j

Zij + . . .+ Z12...m. (8)

Since all sub-functions in (6) are orthogonal and zero-mean, Zi, Zij , . . . , Z12...m (henceforth termed auxiliary
random variables) are all uncorrelated. Accordingly, the variance of Y is the sum of the partial variances of
Z1 through Zm and their higher-order interactions:

var (Y ) =
∑

i

var (Zi) +
∑

i<j

var (Zij) + . . .+ var (Z12...m). (9)

Normalizing by var (Y ), the proportional contribution to var (Y ) from each of the auxiliary random variables
is given by:

1 =
∑

i

var (Zi)

var (Y )
+
∑

i<j

var (Zij)

var (Y )
+ . . .+

var (Z12...m)

var (Y )
. (10)

A key result in GSA is the estimation of the main effect sensitivity index (MSI) for each factor. For a
system modeled by (1), the MSI of the ith factor, denoted by Si, represents the expected relative reduction
in the variance of Y if the true value of Xi is learned (i.e., the variance of Xi is reduced to zero):

Si =
var (Y )− E [var (Y |Xi)]

var (Y )
=

var (Zi)

var (Y )
. (11)

For a particular model,
∑m
i=1 Si ≤ 1; deviation from unity reflects the magnitude of the interaction effects.

The various factors of a model can be ranked according to MSI in a factor prioritization setting to determine
the factors that, once their true values are known, would result in the greatest expected reduction in output
variability; these correspond to the factors with the largest values of Si.
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2.3.2 Distributional Sensitivity Analysis

A related approach to global sensitivity analysis is distributional sensitivity analysis (DSA), which can be
used to evaluate the expected reduction in output variance when the variance of an input factor is only
partially reduced [Allaire, 2009; Allaire and Willcox, 2012]. Instead of assuming that input variability can
be decreased to zero through further research and improved knowledge, DSA instead treats the portion of a
factor’s variance that can be reduced as a random variable. Therefore, DSA may be more appropriate than
GSA for the prioritization of efforts aimed at uncertainty reduction, as it could convey for which input(s)
directed research will yield the greatest return. Assuming no interactions between the inputs, in many cases
DSA can be implemented without running additional MC simulations by reusing samples from a previous
Sobol’-based GSA.

Letting Xo
i be the random variable corresponding to the original distribution for factor i, and X ′i be the

random variable whose distribution represents the uncertainty in that factor after some design modification,
the ratio of remaining (irreducible) variance to initial variance for factor i is defined by the quantity δ:

δ =
var (X ′i)
var (Xo

i )
. (12)

When we do not know the true value of δ, we treat it as a uniform random variable on the interval [0, 1].
Whereas GSA computes for each factor Xi the main effect sensitivity index Si, the analogous quantity in
DSA is adjSi(δ), the adjusted main effect sensitivity index of Xi given that it is known that only 100(1−δ)%
of its variance can be reduced.5

3 Methodology

Building upon existing sensitivity analysis approaches, we present two new contributions in this section.
First, we extend the ideas of variance-based global sensitivity analysis to develop an analogous methodology
for entropy-based sensitivity analysis in Section 3.1. In Section 3.2, we develop local sensitivity analysis
techniques that linearize a system about the current design to enable the estimation of uncertainty as well
as the identification and evaluation of design options in subsequent iterations. Later, in Section 4, we will
discuss how these sensitivity analysis methods can be used in the context of an uncertainty budget to evaluate
design options and guide the allocation of resources.

3.1 Entropy-Based Sensitivity Analysis

In addition to variance-based sensitivity analysis, work has also been done in the development of methods
for global and regional sensitivity analysis using information entropy as a measure of uncertainty. One such
method uses the Kullback-Leibler (K-L) divergence,6 or relative entropy, to quantify the distance between
two probability distributions [Liu et al., 2006]. These distributions, represented by the random variables Y o

and Y ′, correspond to estimates of the QOI before and after some factor Xi has been fixed at a particular
value (e.g., its mean). The K-L divergence between Y o and Y ′ serves to quantify the impact of the factor
that has been fixed; that is to say, the larger the value of DKL(Y o||Y ′), the more substantial the contribution
of factor i to uncertainty in the QOI.

5The main effect sensitivity indices computed from GSA correspond to the case where δ = 0.
6For arbitrary continuous random variables W1 and W2, the K-L divergence from W1 to W2 is defined as [Kullback and

Leibler, 1951]:

DKL(W1||W2) =

∫ ∞

−∞
fW1

(w) log
fW1

(w)

fW2
(w)

dw

=

∫ ∞

−∞
fW1

(w) log fW1
(w) dw −

∫ ∞

−∞
fW1

(w) log fw2 (w) dw

= −h(W1) + h(W1,W2). (13)

The above relationship shows that DKL(W1||W2) is equal to the sum of two terms: the negative of the differential entropy
h(W1) plus the cross entropy h(W1,W2) between W1 and W2.

6
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The relative entropy-based approach can be used to perform both global and regional sensitivity analysis
by simply adjusting the limits of integration, and is suitable for distributions where variance is not a good
measure of uncertainty (e.g., bimodal or skewed distributions). However, the sensitivity analysis results can
vary depending on where a particular factor is fixed on its domain. Furthermore, the K-L divergence is
not normalized and does not have physical meaning — it can be used to rank factors, but does not have
a proportion interpretation such as shown in Figure 3 for variance-based sensitivity indices. Taking these
issues into consideration, we present a novel entropy-based sensitivity analysis methodology which builds
upon the concept of uncertainty decomposition from variance-based GSA. For this, we use entropy power as
the basis for our sensitivity analysis approach, recalling from (4) that entropy power is proportional to the
square of exponential entropy.

3.1.1 Entropy Power Decomposition

We desire to derive a similar decomposition expression to (10) for N(Y ), the entropy power of the QOI.
Although there is no general relationship between entropy power and variance [Mukherjee and Ratnaparkhi,
1986; Ebrahimi et al., 1999], for a given random variable, entropy power is always less than or equal to
variance, with equality in the case where the random variable is Gaussian. Therefore, we seek to relate the
disparity between variance and entropy power to the random variable’s degree of non-Gaussianity, quantified
using the K-L divergence. To do this, we define an equivalent Gaussian distribution, which is a Gaussian
random variable with the same mean and variance as the original random variable. For an arbitrary random
variable W , we denote its equivalent Gaussian distribution using the superscript G and define it as WG ∼
N (µW , σW ), where µW and σW represent the mean and standard deviation of W , respectively.

We compute the K-L divergence between each random variable in (8) and its equivalent Gaussian dis-
tribution to obtain DKL(Y ||Y G), DKL(Z1||ZG1 ), DKL(Z2||ZG2 ), etc. This allows us to write the following
sum, which we shall refer to as the entropy power decomposition, which relates the entropy power and
non-Gaussianity of the QOI to the corresponding quantities for the auxiliary random variables:

N(Y )exp[2DKL(Y ||Y G)] =
∑

i

N(Zi) exp[2DKL(Zi||ZGi )]

+
∑

i<j

N(Zij) exp[2DKL(Zij ||ZGij )]

+ . . .+N(Z12...m) exp[2DKL(Z12...m||ZG12...m)]. (14)

The derivation of (14) is provided in Appendix I, and is based on the observation that for any arbitrary
random variable W , var (W ) = N(W ) exp[2DKL(W ||WG)]. The implication of the entropy power decom-
position is that the variance of each of Y and Zi, Zij , . . . , Z12...m is equal to the product of the variable’s
entropy power and an exponential term, where the argument of the exponential is two times the K-L diver-
gence of the variable with respect to its equivalent Gaussian distribution. Thus, it follows that (9) and (14)
are equivalent up to a multiplicative factor of 2πe.

A key aspect in the derivation of the entropy power decomposition is that we have not made any additional
assumptions about the underlying distributions of Y or the auxiliary random variables beyond the require-
ments dictated by the ANOVA-HDMR: finite variance and uncorrelated auxiliary random variables.7 Having
obtained analogous expressions for the decomposition of output variance and entropy power into comprising
terms, we can normalize (14) to establish a similar interpretation in terms of proportional contributions from
the input factors and their interactions:

1 =
∑

i

N(Zi)

N(Y )

exp[2DKL(Zi||ZGi )]

exp[2DKL(Y ||Y G)]
+
∑

i<j

N(Zij)

N(Y )

exp[2DKL(Zij ||ZGij )]
exp[2DKL(Y ||Y G)]

+ . . .+
N(Z12...m)

N(Y )

exp[2DKL(Z12...m||ZG12...m)]

exp[2DKL(Y ||Y G)]
. (15)

7We emphasize the distinction between uncorrelated random variables Zi and Zj (i 6= j), for which the variance of the sum
is equal to the sum of the variances (i.e., var (Zi + Zj) = var (Zi) + var (Zj)), and independent random variables Xi and Xj ,
for which the joint probability density fXi,Xj

(xi, xj) is equal to the product of the marginal densities fXi
(xi) and fXj

(xj).

7
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In (15), the proportion of output uncertainty directly due to Xi consists of two parts: one that is the
ratio of the entropy power of Zi to that of Y , and one that is the ratio of the exponential of twice the
K-L divergence from Zi to ZGi to the analogous quantity for Y . Recalling that exponential entropy —
proportional to the square root of entropy power — measures the intrinsic extent of a random variable, we
conclude that the first ratio is directly influenced by the intrinsic extent of Xi (and thus Zi). On the other
hand, the second ratio is directly related to the non-Gaussianity of Xi (and thus Zi). To illustrate this, we
introduce the entropy power sensitivity indices ηi and ζi, defined as:

ηi =
N(Zi)

N(Y )
, (16)

ζi =
exp[2DKL(Zi||ZGi )]

exp[2DKL(Y ||Y G)]
. (17)

The above expressions correspond to the main effect indices for factor i; analogous expressions can also be
derived for the higher-order interactions. Due to the equivalence of (10) and (15), ηi and ζi are related to
the variance-based main effect sensitivity index Si as follows:

Si = ηiζi. (18)

Substituting ηi and ζi into (15) gives:

1 =η1ζ1 + η2ζ2 + . . .+ η12...mζ12...m. (19)

The proportion of output uncertainty due to each factor directly can be divided into an intrinsic extent
effect characterized by the sensitivity index ηi, which is related to complexity, and a non-Gaussianity effect
characterized by the sensitivity index ζi, which is related to distribution shape. The product of the two
effects equals the MSI of the factor. This allows us to associate (15) with the uncertainty apportionment
notion depicted in Figure 3.

Note that in the previous paragraph we used the phrase “due to each factor directly” instead of “due to
each factor alone.” This choice of wording reflects the fact that a change in any auxiliary random variable
Zi can affect both the intrinsic extent and the non-Gaussianity of Y . Thus, the quantities N(Y ) and
DKL(Y ||Y G) are impacted, which indirectly affects the indices ηj and ζj of all other auxiliary variables Zj
where i 6= j. Because it is usually difficult to determine a priori how changing Zi would modify N(Y ) and
DKL(Y ||Y G), it is typically impractical to decouple the direct and indirect effects that alterations to Zi
would impose on the entropy power decomposition. Despite this limitation, the entropy power sensitivity
indices still reveal useful information about how the spread and distribution shape of each input factor
contribute to uncertainty in the output quantity of interest.

3.1.2 The Effect of Distribution Shape

The K-L divergence between Zi and its equivalent Gaussian distribution is invariant to design updates that
result in a shift in mean or scaling of fZi

(z) by a constant, as shown in Figures 2(b) and 2(a), respectively.
The first case is easy to intuit, since by definition Zi and ZGi have the same mean. To see the latter, we
examine the case where Z ′i = αZoi .8 It is easy to show that h(Z ′i) = h(Zoi )+logα [Cover and Thomas, 1991].
Making use of the relations fZ′

i
(z) = 1

αfZo
i
( zα ) and ξ = z

α , we can compute the cross entropy h(Z ′i, Z
′G
i ) as

follows:

h(Z ′i, Z
′G
i ) = −

∫ ∞

−∞

1

α
fZo

i
(
z

α
) log

[
1

α
fZoG

i
(
z

α
)

]
dz

= −
∫ ∞

−∞

1

α
fZo

i
(ξ) log

[
1

α
fZoG

i
(ξ)

]
α dξ

= −
∫ ∞

−∞
fZo

i
(ξ) log fZoG

i
(ξ) dξ + logα

∫ ∞

−∞
fZo

i
(ξ) dξ

= h(Zoi , Z
oG
i ) + logα. (20)

8Technically, Figure 2(a) shows a multiplicative scaling case where Zoi has a mean of zero. For nonzero values of µZo
i

, we can

introduce a constant shift of ∆µ = −µZo
i

to recenter Z′i at the origin, such that Z′i = α(Zoi −µZo
i

) and fZ′
i
(z) = 1

α
fZo

i
( z
α

+µZo
i

).

However, note that this shift is for illustrative purposes only, as the derivation in (20) does not require Zoi and Z′i to be zero-mean.
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Combining (13) and (20), we obtain:

DKL(Z ′i||Z ′Gi ) = DKL(Zoi ||ZoGi ). (21)

The above result implies that the non-Gaussianity of a random variable remains constant if its underlying
distribution maintains the same shape to within a multiplicative constant. For example, if Zoi and Z ′i are
both uniform random variables, but Z ′i has a narrower distribution, the fundamental shape of the probability
density is not affected, and therefore the two variables have the same degree of non-Gaussianity. However,
if Zoi and Z ′i are both triangular random variables, but one has a symmetric distribution and the other a
skewed distribution, then Zoi and Z ′i have differing levels of non-Gaussianity. This is because the underlying
distribution shape has changed, even though both variables are of the triangular family. Finally, as a note
of caution, we reiterate that even if a design activity has no effect on DKL(Zi||ZGi ), ζi can still be impacted
indirectly through changes to DKL(Y ||Y G) imparted by other factors.

Since it is a measure of distance, the K-L divergence is always non-negative. As a measure of non-
Gaussianity, DKL(Zi||ZGi ) equals zero if and only if Zi itself is Gaussian, and is positive otherwise. This
implies that in (15), exp[2DKL(Zi||ZGi )] ≥ 1. However, ζi can be greater than, less than, or equal to one,
depending on the relative magnitude of the numerator and denominator in (17). That is to say, ζi indicates
whether an auxiliary random variable Zi is less Gaussian (ζi > 1), more Gaussian (ζi < 1), or equally as
Gaussian (ζi = 1) as the QOI Y . Next, we consider the three cases separately for a system modeled by
Y = X1 + X2, where X1 and X2 are either uniform or Gaussian random variables. Note that this system
does not contain interaction effects, and thus Z1 = X1, Z2 = X2, and Z12 = 0.

For the first case, we let X1 and X2 be independent and identically distributed uniform random variables
on the interval [−0.5, 0.5] (Figure 4(a)). The sum Y = X1 + X2 has a symmetric triangular distribution
on the interval [−1, 1]. In this case, both ζ1 and ζ2 exceed one (Figure 5(a)), as moving from the design
parameters to the QOI corresponds to an increase in Gaussianity. Figure 4(b) shows an example where X1

is uniform and X2 is Gaussian, resulting in a distribution for Y that is more Gaussian than X1 but less
Gaussian than X2. In this case, the corresponding indices for non-Gaussianity are ζ1 > 1 and ζ2 < 1 (Figure
5(b)). Finally, if both X1 and X2 are Gaussian, then X1 +X2 is also Gaussian (Figure 4(c)), and ζ1 = ζ2 = 1
(Figure 5(c)).

3.2 Local Sensitivity Analysis

In the context of engineering design, once the key drivers of uncertainty in a system have been identified, the
task of uncertainty mitigation centers on making decisions regarding design modifications in the subsequent
iteration [NASA, 2007; Suh, 1990; Takeda et al., 1990]. Such decisions often relate to the allocation of
resources in order to improve one or more aspects of the design. Resources can be allocated to a variety
of different activities — for example, to direct future research, to conduct experiments, to improve physical
and simulation-based modeling capabilities, or to invest in superior hardware or additional personnel.

In the following setions, we develop local sensitivity analysis techniques for estimating complexity and
risk, which can inform how those quantities are affected by small changes in the mean or standard deviation
of a system’s design parameters or QOI, and thus guide decisions regarding the allocation of resources.

3.2.1 Relationship to Variance-Based Sensitivity Indices

Sensitivity indices from variance-based GSA and DSA can help designers understand the potential for re-
duction in output variance resulting from design activities that decrease variability in the inputs. Revisiting
Figures 2(a) and 2(b), we consider the separate cases of a constant shift that alters the mean versus a mul-
tiplicative scaling that shrinks the standard deviation. These design activities have direct implications for
system robustness and reliability.

To evaluate the local sensitivity of complexity and risk with respect to updates that perturb the mean
or standard deviation of the QOI, we compute the partial derivative of C(Y ) and P (Y < r) with respect to
µY and σY . The partial derivatives can then be linearized about the current design to predict the change in
complexity (∆C) or risk (∆P ) associated with a perturbation in mean (∆µY ) or standard deviation (∆σY ).
These expressions are derived in He et al. [2012] and listed in (22)–(29).
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Sensitivity of C(Y ) with respect to µY and σY

Partial derivatives
∂C(Y )

∂µY
= 0 (22)

∂C(Y )

∂σY
=
C(Y )

σY
(23)

Local approximations

∆C(Y ) = 0 (24) ∆C ≈ ∆σY
σY

C(Y ) (25)

Sensitivity of P (Y < r) with respect to µY and σY

Partial derivatives
∂P (Y < r)

∂µY
= −fY (r) (26)

∂P (Y < r)

∂σY
=

(µY − r)
σY

fY (r) (27)

Local approximations

∆P ≈ −∆µY fY (r) (28) ∆P ≈ ∆σY
σY

(µY − r)fY (r) (29)

From (22), we see that perturbations in µY do not affect complexity. This is unsurprising, as we know
that C(Y ) contains no information about the expected value of Y . From (23), we see that the sensitivity of
complexity to σY is a constant, and simply equals the ratio of C(Y ) to σY . Since both C(Y ) and σY are
non-negative, this implies that as a local approximation, reducing standard deviation also reduces complexity.

More interestingly, (26) and (27) show that the sensitivity of risk to both µY and σY is proportional
to the probability density of Y evaluated at the requirement r. Since fY (y) ≥ 0 for all values of y, this
implies that the sign of ∆µY or µY − r determines whether risk is increased or decreased (see (28) and (29)).
Figure 6 helps to illustrate this point for (29), where a reduction in standard deviation can alter risk in either
direction, depending on the relative locations of r and µY .

Another contribution of this paper, presented below, is the derivation of expressions that relate the local
uncertainty approximations shown in (25) and (29) to sensitivity indices computed from variance-based GSA
and DSA and entropy power sensitivity analysis. In this derivation, we let Y o and Y ′ represent initial and
new estimates of the QOI (the red and blue densities in Figure 6, respectively) corresponding to a design
activity that reduces variance (and thus standard deviation). Similarly, we let var (Y o) and var (Y ′) represent
the variance of the QOI before and after the update, respectively. If the activity is one that results in learning
the true value of factor i, then we know from (11) that:

var (Y ′) = var (Y o)− Sivar (Y o). (30)

The ratio of var (Y ′) to var (Y o) is given by:

var (Y ′)
var (Y o)

= 1− Si. (31)

We can relate the above ratio to the quantity ∆σY /σY from (25) and (29):

∆σY
σY

=

√
var (Y ′)−

√
var (Y o)√

var (Y o)

=

√
var (Y ′)
var (Y o)

− 1

=
√

1− Si − 1. (32)

This allows us to rewrite (25) and (29) as:

∆C ≈ (
√

1− Si − 1)C(Y ), (33)

∆P ≈ (
√

1− Si − 1)(µY − r)fY (r), (34)
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noting that C(Y ), µY , and fY (r) in the above expressions refer to the complexity, mean, and probability
density (evaluated at r) of the QOI for the initial design. Finally, if the design activity is instead one that
reduces the variance of factor i by 100(1− δ)%, then (30) can be modified to:

var (Y ′) = var (Y o)− adjSi(δ)var (Y o), (35)

and we can similarly substitute adjSi(δ) for Si in (33) and (34). Since both Si and adjSi(δ) can only assume
values in the interval [0, 1], the above local approximations imply that a decrease in variance is concurrent
with a reduction in complexity, as well as in risk if µY − r > 0. While an attractive result, these relations
are simply local approximations and should not be generalized.

3.2.2 Local Approximation of Risk

In order to use sensitivity information about the QOI to update the design, it is necessary to translate this
information into tangible actions for modifying the design parameters. For this, we extend (26) and (27) to
compute the sensitivity of risk to perturbations in the mean or standard deviation of the design parameters.

We define the vectors µX = [µX1
, µX2

, . . . , µXm
]ᵀ and σX = [σX1

, σX2
, . . . , σXm

]ᵀ, which consist of the
mean and standard deviation estimates of the entries of X, respectively. Using the chain rule, the partial
derivative of P (Y < r) with respect to µXi

is given by:

∂P (Y < r)

∂µXi

=
∂P (Y < r)

∂µY

∂µY
∂µXi

. (36)

To estimate ∂µY /∂µXi
, we use (2) and make the following approximation for µY :

µY = E [g(X)] ≈ g(E [X]) = g(µX). (37)

This approximation is exact if g(X) is linear. Therefore, we have:

∂µY
∂µXi

≈ ∂g(µX)

∂Xi
. (38)

Combining (26), (36), and (38), we obtain:

∂P (Y < r)

∂µXi

≈ −fY (r)
∂g(µX)

∂Xi
, (39)

∆P ≈ −∆µXi
fY (r)

∂g(µX)

∂Xi
. (40)

Similarly, the partial derivative of P (Y < r) with respect to σXi
is given by:

∂P (Y < r)

∂σXi

=
∂P (Y < r)

∂σY

∂σY
∂σXi

. (41)

To approximate ∂σY /∂σXi
, we can use results from DSA to estimate ∆σY /∆σXi

. The adjusted main
effect sensitivity index adjSi(δ) relates the expected variance remaining in Y (given by (35)) to the variance
remaining in factor i (given by (12)) as δ ranges between 0 and 1, which allows us to compute ∆σY /∆σXi

as follows:

∆σY
∆σXi

=

√
var (Y o)− adjSi(δ)var (Y o)−

√
var (Y o)√

δvar (Xo
i )−

√
var (Xo

i )

=
σY (

√
1− adjSi(δ)− 1)

σXi(
√
δ − 1)

. (42)

11
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Thus, we can combine (27), (41) and (42) to obtain:9

∂P (Y < r)

∂σXi

≈ fY (r)(µY − r)(
√

1− adjSi(δ)− 1)

σXi(
√
δ − 1)

, (43)

∆P ≈ ∆σXifY (r)(µY − r)(
√

1− adjSi(δ)− 1)

σXi
(
√
δ − 1)

. (44)

The key result of this section is that we can relate system risk to the specific changes in the design
parameters. As an example, let ∆P denote the desired change in risk. Rearranging (40) and (44), we can
estimate the requisite change in the mean and standard deviation of the ith design parameter in order to
achieve that goal. For small values of ∆P , these changes are approximated by:

∆µXi ≈ −
∆P

fY (r)

[
∂g(µX)

∂Xi

]−1
, (45)

∆σXi ≈
∆P σXi

(
√
δ − 1)

fY (r)(µY − r)(
√

1− adjSi(δ)− 1)
. (46)

The above expressions allow the designer to obtain a first-order estimate of the parameter adjustments
needed to achieve a desired decrease in risk. They can also highlight different trends, tradeoffs, and design
tensions present in the system. However, we note again that these relations are merely local approximations
whose predictive accuracy cannot be guaranteed. Furthermore, they do not account for interactions among
the design parameters, nor do they imply that the suggested changes in mean or standard deviation are
necessarily feasible, as limitations due to physical or budgetary constraints are not accounted for. It is the
responsibility of the designer to use these tools as a guideline for cost-benefit analysis of various design
activities, and ultimately select the most appropriate action for risk mitigation.

3.2.3 Local Approximation of Complexity

Next, we use the results from entropy power decomposition to approximate complexity in the QOI resulting
from a design update. For simplicity, we will consider a system consisting of two factors, X1 and X2, although
the approach can be extended to higher dimensions. We let Xo

1 and Xo
2 denote the design parameters

corresponding to the initial design, and X ′1 and X ′2 denote the updated estimates for those parameters after
the design modification. Similarly, letting i = 1, 2, we write the following relations:

Zoi = gi(X
o
i ) Z ′i = gi(X

′
i)

Y o = g(Xo
1 , X

o
2 ) Y ′ = g(X ′1, X

′
2)

ζoi =
exp[2DKL(Zoi ||ZoGi )]

exp[2DKL(Y o||Y oG)]
ζ ′i =

exp[2DKL(Z ′i||Z ′Gi )]

exp[2DKL(Y ′||Y ′G)]

Based on (15), the entropy power of Y o can be written as:

N(Y o) = N(Zo1 )ζo1 +N(Zo2 )ζo2 +N(Zo12)ζo12. (47)

For the new design, we employ the following local approximation to predict N(Y ′), which uses the non-
Gaussianity indices ζo1 , ζo2 , and ζo12 evaluated at the initial design:

N(Y ′) ≈ N(Z ′1)ζo1 +N(Z ′2)ζo2 +N(Z ′12)ζo12. (48)

The relationship between each input factor and the corresponding auxiliary random variable can be
obtained from the ANOVA-HDMR (computed either analytically or numerically). Thus, we are able to
calculate N(Z ′1), N(Z ′2), and N(Z ′12) based on X ′1, X ′2, and X ′12, which then allows us to estimate N(Y ′)

9While (42) is a valid statement of ∆σY /∆σXi
for any value of δ ∈ [0, 1), the choice of δ can greatly affect the accuracy of

the local approximation ∂σY /∂σXi
≈ ∆σY /∆σXi

, especially for small values of δ (corresponding to large reductions in factor
variance), or if the relationship between var (Y ′) and var (X′i) is highly nonlinear.
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without having to explicitly evaluate Y ′ using MC simulation. Finally, recognizing that entropy power is
proportional to the square of complexity, we can rewrite (48) to obtain an estimate of C(Y ′):

C(Y ′) ≈
√

2πe[N(Z ′1)ζo1 +N(Z ′2)ζo2 +N(Z ′12)ζo12]. (49)

The methods presented in this section allow designers to estimate complexity and risk using sensitivity infor-
mation about the system, which can then inform design strategies and tradeoffs. These local approximations
can be especially valuable in engineering scenarios in which direct evaluation of the QOI is computationally
expensive or intractable.

4 Application and Results

In this section, we demonstrate the sensitivity analysis methods introduced in this paper on an engineering
example to show how they can be used in the design context to identify uncertainty mitigation options
and visualize tradeoffs between design alternatives. We also present the third contribution of this paper
by introducing the notion of an uncertainty budget, which can be used in conjunction with sensitivity
information to ensure constraint satisfaction and inform resource allocation decisions.

4.1 Problem Setup

Consider a high-pass filter circuit shown consisting of a resistor and a capacitor in series. The design
parameters of the system are resistance (R) and capacitance (C), which have nominal values of 100 Ω and
4.7µF, respectively. The corresponding component tolerances are Rtol = ±10% and Ctol = ±20%. We select
the quantity of interest of the system to be the cutoff frequency fc, which has a nominal value of 339 Hz. To
achieve the desired circuit performance, the cutoff frequency must exceed 300 Hz. A schematic of the system
is shown in Figure 7.

We use the random variables X1, X2, and Y to represent uncertainty in R, C, and fc, respectively. Due
to stochasticity in the system, the functional requirement on the QOI will be treated as a probabilistic design
target (i.e., the probability that the cutoff frequency falls below 300 Hz must not exceed a specified limit).
The relationship between the design parameters and the QOI is given by:

Y =
1

2πX1X2
. (50)

We model X1 and X2 as uniform random variables on the intervals specified by their component tol-
erances, such that X1 ∼ U [a1, b1] = U [90, 110] Ω and X2 ∼ U [a2, b2] = U [3.76, 5.64]µF. Using 10,000 MC
samples, the histogram of Y for the nominal design is shown in Figure 8. The corresponding uncertainty
estimates are: var (Y ) = 2015 Hz2, C(Y ) = 181 Hz, and P (Y < 300 Hz) = 18.6%.

4.2 Identifying the Drivers of Uncertainty

Global sensitivity analysis of the R-C circuit system reveals that approximately 80% of the variance in Y
can be attributed to X2 (capacitance), and the remaining 20% to X1 (resistance), with interactions playing
a negligible role (Figure 9(a)). These results are corroborated by the entropy power sensitivity indices ηi and
ζi shown in Figure 9(b). We see that Si is similar to ηi for both factors, and that ζi is equal to or slightly
greater than one. This indicates that uncertainty apportionment using variance and entropy power produce
similar results. Furthermore, it reveals that Gaussianity increases in moving from the input factors to the
QOI. Both types of sensitivity analysis point to prioritizing uncertainty reduction in X2.

4.3 Cost and Uncertainty Budgets

In this work, we assume that there is a cost associated with each activity that mitigates uncertainty in
the QOI; this cost can be estimated from historical data, using cost estimation relationships, or through
the elicitation of expert opinion. As an illustrative example, let us consider the notional curves shown in
Figure 10(a) for the R-C circuit, which depicts the cost associated with a 100(1 − δ)% reduction in the
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variance of X1 or X2. In Figure 10(b), the same information is visualized as contour lines of equal cost with
respect to different proportions of variance reduction in the two factors. We observe that although reducing
var (X2) is more effective in abating output uncertainty than decreasing var (X1), it is also more expensive
to implement. Furthermore, the reduction in var (X2) is capped at 75% (that is, 25% of the variability in
X2 is irreducible), whereas var (X1) can be reduced by as much as 99%.

The third contribution of this paper is to establish the idea of an uncertainty budget in design and to
show how the proposed sensitivity analysis methods provide a systematic way of identifying design options
and uncertainty reduction activities that meet system requirements as well as satisfy budget constraints.
Unlike a cost budget, which specifies the amount of resources that can be expended to improve the design,
an uncertainty budget refers to the total level of uncertainty that is deemed tolerable for the system. For
both the cost and uncertainty budgets, we seek to determine how much of the prescribed amount ought to
be allocated to each design parameter. For the R-C circuit, we impose the following budgetary constraints:

• Complexity: The complexity with respect to the QOI shall not exceed 150 Hz.

• Risk: The probability of violating the cutoff frequency requirement shall not exceed 10%.

• Cost: The cost of uncertainty reduction shall not exceed 20 units of cost.

Next, we examine each constraint individually in turn to study the resulting optimal allocation. Figure 11
overlays contours of variance, complexity, and risk in the QOI (solid colored lines) with those corresponding
to cost of implementation (dashed green lines). These contours allow us to consider the cost and uncertainty
budgets in conjunction. We see that for a given cost, the maximum possible uncertainty reduction is achieved
by decreasing the variance of both X1 and X2 simultaneously, rather than focusing on either factor alone.
Table I lists the lowest possible uncertainty and cost estimates for the system when each of the budgetary
constraints (C(Y ) ≤ 150 Hz, P (Y < 300 Hz) ≤ 10%, Cost ≤ 20) is in turn made active. Of the three
budgets, the complexity constraint is the cheapest to satisfy; however, the resulting allocation of factor
variance reduction does not satisfy the risk constraint. To ensure that risk does not exceed 10%, a minimum
cost of 14.8 is required; this corresponds to a complexity of 132 Hz. Finally, a cost budget of 20 is more than
adequate to guarantee that the uncertainty budgets are also satisfied. As we observe in Figures 11(b) and
11(c), the expenditure of 20 units of cost is sufficient to decrease var (X2) by up to 67%; even without a
simultaneous reduction in var (X1), it is enough to reduce complexity and risk to acceptable levels of 125 Hz
and 8%, respectively.

The results in Table I suggest that the cost and uncertainty budgets for the R-C circuit design are mutually
compatible and achievable. There are a host of solutions that satisfy all three budgetary constraints, which
lie within the shaded region in Figure 11(d). The main tradeoff in these solutions is between cost and risk:
when both of those constraints are satisfied, the complexity budget is automatically satisfied as well. In
the following section, however, we will consider the cost and uncertainty budgets alongside available design
options, which can lead to different conclusions regarding their feasibility.

4.4 Identifying and Evaluating Design Alternatives

Building upon the discussion on design budgets, we next study how the nominal value and tolerance of the
components in the R-C circuit trade against one another in terms of contribution to uncertainty in the QOI.
This analysis enables designers to visualize strategies for uncertainty mitigation in terms of actionable items
in the design space.

For each of X1 and X2, there are two parameters that can be modified: the nominal value of the circuit
component (R or C) and the tolerance (Rtol or Ctol). We vary R and C from their nominal values by up
to ±20%, and decrease Rtol and Ctol from the initial tolerances of ±10% and ±20%, respectively, down to
±1%. Figures 12 and 13 show contour lines for complexity (left) and risk (right) for different combinations
of the four quantities; a black X in each figure denotes the location of the nominal design.

From Figure 12, we see that raising either R or C lowers complexity in the QOI but also increases risk,
and vice-versa; this indicates the presence of competing objectives. Figure 13 shows that when trading Rtol

against Ctol, decreasing the latter is more effective for reducing both complexity and risk, which is consistent
with the trends observed in Figures 11(b) and 11(c).
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The colored contours in Figures 12 and 13 were generated using 10,000 MC simulations to evaluate Y
at each design parameter combination. The dashed black lines correspond to local approximations obtained
using local sensitivity information, and can be produced without performing additional MC simulations. In
particular, the complexity approximations obtained using (49) closely match the colored contours generated
from brute force MC simulation. The largest discrepancies occur in Figure 13(a) for small resistor tolerances.
As for risk, although the local estimates vary in accuracy, the overall trends due to changing R, C, Rtol,
and Ctol are correctly captured, especially for design parameter combinations close to the nominal design
(Figures 12(b) and 13(b)). Thus, our local approximation techniques provide an easy way to visualize trends
in complexity and risk and identify regions in the design space that warrant additional analysis — toward
which additional MC simulations can be directed to generate more rigorous estimates of uncertainty.

Figures 12 and 13 depict tradeoffs among R, C, Rtol, and Ctol as continuous within the design space,
implying infinitely many design combinations. For many engineering systems, however, the design space
instead contains a discrete number of feasible options dictated by component availability. Thus, we next
investigate how local sensitivity analysis results can be used to identify distinct design options.

Using the expressions from (45) and (46), we can compute the requisite change in the mean and standard
deviation of X1 and X2 needed to achieve a desired decrease in risk. In this case, we set ∆P = −0.086 so as
to meet the constraint that P (Y < 300 Hz) ≤ 10%. Table II lists the change in mean and standard deviation
of each factor required to achieve this risk reduction as predicted using local sensitivity information, as
well as the corresponding component nominal value and tolerance. Consistent with the risk contours in
Figure 12(b), we see that reducing risk requires decreasing R or C. This suggests that we use a resistor
with a nominal value of no more than 96.6 Ω, or a capacitor with a nominal value of no more than 4.54µF.
Alternatively, we can reduce risk by using components with tighter tolerances. For the resistor, the change in
the standard deviation of X1 needed to satisfy the risk constraint is −8.4 Ω; however, initially, σX1

= 5.8 Ω,
which implies that it is not possible to achieve the requisite risk reduction by decreasing Rtol alone. For
the capacitor, we observe that the risk constraint can be met by decreasing the standard deviation of X2 by
−0.17µF, which corresponds to a component tolerance of ±14.4%.

The local sensitivity analysis predictions point the designer to values of R, C, Rtol, and Ctol that would
satisfy the uncertainty budget for risk. Consulting standard off-the-shelf resistor and capacitor values [Irwin
and Nelms, 2005], we identify four design alternatives — Options A–D — which correspond most closely
to the desired component specifications shown in Table II. These options are listed in Table III along with
their associated estimates of variance, complexity, risk, and cost of implementation. Each option perturbs
one of R, C, Rtol, and Ctol from its initial value. We assume in this analysis that it is comparatively cheaper
to purchase components with different nominal values (Options A and B) than it is to acquire components
with significantly tighter tolerances (Options C and D).10 The locations of the four options within the design
space are indicated in Figures 12 and 13.

Figure 14 illustrates the tradeoffs between complexity and risk for the various options. Immediately, we
see that none of the options satisfies both the cost and uncertainty budgets. Options A and B fall well within
the cost budget and reduce risk to virtually zero; however, they both increase complexity to unacceptable
levels, and thus can be eliminated from consideration.11 In Option C, the resistor tolerance is reduced to
just ±1% at a cost of 13.2; yet, there is virtually no change in risk compared to the initial design. Option
D appears to be the most promising choice, as it is the only one to satisfy both the complexity and risk
constraints. However, it exceeds the cost budget of 20.

These results suggest that in order to meet both the cost and uncertainty budgets, the designer must
either seek alternative options, or relax one or more of the constraints. In Figure 14, we see that Option
D falls well within the region of acceptable uncertainty. Focusing on the top right corner of that region,
we find that when Ctol = ±12.5%, the system achieves C(Y ) = 150 Hz and P (Y < 300 Hz) = 10.0% at a
cost of 18.3, which satisfies all design budgets. However, while this design is mathematically possible, it is
not realistically feasible given limitations in component availability, as standard capacitor tolerances include
±20%, ±10%, ±5%, ±2%, and ±1%. From this analysis, we conclude that the most promising course of

10Assuming that X1 and X2 are both uniform random variables, a decrease in Rtol from ±10% to ±1% in Option C
corresponds to a 99% reduction in var (X1), and a decrease in Ctol from ±20% to ±10% in Option D corresponds to a 75%
reduction in var (X2). The associated costs of implementation correspond to the rightmost red and blue points in Figure 10(a),
respectively.

11Had we instead identified options that raised the nominal values of R and C, the result would have decreased complexity
and increased risk, which is similarly undesirable.
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action is to allocate resources toward improving capacitor tolerance; furthermore, we recommend increasing
the cost budget so that all uncertainty targets can be satisfied using standard components.

5 Conclusions and Future Work

This paper presented new sensitivity analysis methods which can be used to better understand and mitigate
the effects of uncertainty in engineering system design. First, building upon existing variance-based global
sensitivity analysis, an analogous interpretation of uncertainty apportionment was derived based on entropy
power. This process informed that a factor’s contribution to output entropy power consists of two effects,
which are related to its spread (as characterized by intrinsic extent) versus distribution shape (as character-
ized by non-Gaussianity). Furthermore, local sensitivity analysis techniques were developed, which can be
used to predict changes in the complexity and risk of the quantities of interest resulting from various design
modifications. These local approximations are particularly useful for systems whose simulation models are
computationally expensive, as they can be used to identify tradeoffs and infer trends in the design space
without performing additional model evaluations. Finally, the proposed techniques were demonstrated on
an engineering example to showcase how they can be connected with budgets for uncertainty and cost in
order to identify options for improving robustness and reliability and inform decisions regarding resource
allocation.

There are a number of possible extensions to the present work; two specific areas are discussed here.
The first is to reduce the computational burden associated with pseudo-random Monte Carlo simulation.
The use of efficient sampling methods, such as Latin hypercube or quasi-random Monte Carlo, could be
explored to decrease computational cost. In particular, it would be interesting to study how such techniques
can be combined with acceptance/rejection sampling or importance sampling to enable sample reuse in
distributional sensitivity analysis. Another possible avenue of future work could focus on broadening the
applicability of the proposed sensitivity analysis methods to problems of higher dimensionality. Although
the theory underlying the methodologies can be extended to higher dimensions, implementation issues often
hinder their use in practice. For example, density estimation — upon which entropy estimation is prefaced —
is typically straightforward in 1-D; for higher dimensions, however, it becomes much more challenging, or even
downright intractable. It is expected that advancements in the area of high-dimensional density estimation
will allow the proposed sensitivity analysis methods to be applied to larger classes of engineering problems.
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Appendix I

In this section, we derive the entropy power decomposition presented in (14) and reproduced below:

N(Y )exp[2DKL(Y ||Y G)] =
∑

i

N(Zi) exp[2DKL(Zi||ZGi )]

+
∑

i<j

N(Zij) exp[2DKL(Zij ||ZGij )]

+ . . .+N(Z12...m) exp[2DKL(Z12...m||ZG12...m)].

For simplicity, we shall consider a system consisting of only two input factors (m = 2), although the
results can be generalized to higher dimensions. For such a system, the ANOVA-HDMR representation and
variance decomposition (from (8) and (9), respectively) reduce to:

Y = g0 + Z1 + Z2 + Z12, (51)

var (Y ) = var (Z1) + var (Z2) + var (Z12). (52)

The auxiliary random variables Z1, Z2, and Z12 are uncorrelated, although not necessarily independent.12 For
this two-factor system, the distributions of the equivalent Gaussian random variables and the corresponding
probability densities are:

ZG1 ∼ N (µZ1
, σZ1

) fZG
1

(z) =
1√

2πσ2
Z1

exp

[−(z − µZ1
)2

2σ2
Z1

]

ZG2 ∼ N (µZ2
, σZ2

) fZG
2

(z) =
1√

2πσ2
Z2

exp

[−(z − µZ2
)2

2σ2
Z2

]

ZG12 ∼ N (µZ12
, σZ12

) fZG
12

(z) =
1√

2πσ2
Z12

exp

[−(z − µZ12
)2

2σ2
Z12

]

Y G ∼ N (µY , σY ) fY G(z) =
1√

2πσ2
Y

exp

[−(z − µY )2

2σ2
Y

]

To verify the entropy power decomposition, we need to show that:

exp[2h(Y, Y G)] = exp[2h(Z1, Z
G
1 )] + exp[2h(Z2, Z

G
2 )] + exp[2h(Z12, Z

G
12)], (53)

where h(Z1, Z
G
1 ) represents the cross entropy between Z1 and its equivalent Gaussian random variable ZG1

(and likewise for Y , Z2, and Z12). By definition, h(Z1, Z
G
1 ) is computed as:

h(Z1, Z
G
1 ) =−

∫ ∞

−∞
fZ1(z) log fZG

1
(z) dz

=−
∫ ∞

−∞
fZ1(z) log





1√
2πσ2

Z1

exp

[−(z − µZ1)2

2σ2
Z1

]
dz

=−
∫ ∞

−∞
fZ1(z) log


 1√

2πσ2
Z1


dz −

∫ ∞

−∞
fZ1(z) log

{
exp

[−(z − µZ1)2

2σ2
Z1

]}
dz

= log
√

2πσ2
Z1

∫ ∞

−∞
fZ1

(z) dz +
1

2σ2
Z1

∫ ∞

−∞
(z − µZ1

)2fZ1
(z) dz. (54)

12Since Z12 is a function of both X1 and X2, it is necessarily dependent on both Z1 and Z2, which are respectively functions
of X1 and X2 alone. However, Z1 and Z2 are independent, due to our assumption of design parameter independence.
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Noting that

∫ ∞

−∞
fZ1

(z) dz = 1 and

∫ ∞

−∞
(z − µZ1

)2fZ1
(z) dz = σ2

Z1
, (54) simplifies to:

h(Z1, Z
G
1 ) = log

√
2πσ2

Z1
+

1

2
. (55)

Multiplying both sides by two and taking the exponential, we get:

exp[2h(Z1, Z
G
1 )] = exp

[
2 log

√
2πσ2

Z1
+ 2

(
1

2

)]
= exp

[
log(2πσ2

Z1
) + 1

]
= 2πeσ2

Z1
. (56)

Similarly, the other terms of (53) are given by:

exp[2h(Z2, Z
G
2 )] = 2πeσ2

Z2
, (57)

exp[2h(Z12, Z
G
12)] = 2πeσ2

Z12
, (58)

exp[2h(Y, Y G)] = 2πeσ2
Y . (59)

Substituting (56)–(59) into (53), we obtain:

2πeσ2
Y = 2πeσ2

Z1
+ 2πeσ2

Z2
+ 2πeσ2

Z12
, (60)

σ2
Y = σ2

Z1
+ σ2

Z2
+ σ2

Z12
. (61)

We have already established that (61) is true, as it is equivalent to (52). We conclude therefore that (53)
also holds true. Using (13) to relate cross entropy to differential entropy and K-L divergence, we can express
(53) as follows:

exp[2h(Y ) + 2DKL(Y ||Y G)] = exp[2h(Z1) + 2DKL(Z1||ZG1 )]

+ exp[2h(Z2) + 2DKL(Z2||ZG2 )]

+ exp[2h(Z12) + 2DKL(Z12||ZG12)]. (62)

Using (4), we can rewrite (62) in terms of N(Y ):

(2πe)N(Y ) exp[2DKL(Y ||Y G)] = (2πe)N(Z1) exp[2DKL(Z1||ZG1 )]

+ (2πe)N(Z2) exp[2DKL(Z2||ZG2 )]

+ (2πe)N(Z12) exp[2DKL(Z12||ZG12)]. (63)

Dividing both sides by 2πe, the result becomes:

N(Y ) exp[2DKL(Y ||Y G)] = N(Z1) exp[2DKL(Z1||ZG1 )]

+N(Z2) exp[2DKL(Z2||ZG2 )]

+N(Z12)exp[2DKL(Z12||ZG12)], (64)

which is exactly (14) for m = 2. Thus, we have verified the entropy power decomposition for the two-
dimensional case.
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Table I: Best achievable uncertainty mitigation results given individual budgets for cost and uncertainty.
Entries in red denote budget violations.

Active constraint var (Y ) C(Y ) P (Y < 300 Hz) Cost
Complexity 1378 150 13.4% 8.8

Risk 1055 132 10% 14.8
Cost 780 114 6.4% 20
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Table II: Local sensitivity predictions for the change in mean and standard deviation (SD) of each factor
required to reduce risk to 10%

Component
Change mean only Change SD only

∆µXi
Nominal value ∆σXi

Tolerance
Resistor −3.4 Ω R = 96.6 Ω −8.4 Ω N/A

Capacitor −0.16µF C = 4.54µF −0.17µF Ctol = ±14.4%
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Table III: Uncertainty and cost estimates associated with various design options. Entries in red denote
budget violations.

Option R (Ω) Rtol C (µF) Ctol var (Y ) C(Y ) P (Y < 300 Hz) Cost
Nominal 100 ±10% 4.7 ±20% 2015 181 18.6% N/A

A 82 ±10% 4.7 ±20% 2997 221 0% 5
B 100 ±10% 3.9 ±20% 2927 218 0% 5
C 100 ±1% 4.7 ±20% 1627 154 18.1% 13.2
D 100 ±10% 4.7 ±10% 788 115 7.1% 22.5
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Figure 3: Apportionment of output variance in GSA [Allaire, 2009, Figure 3-1]
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(c) Case 3: Example with ζ1 = ζ2 = 1

Figure 4: Examples of Y = X1 + X2 with increase, decrease, and no change in Gaussianity between the
design parameters and QOI
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(a) Case 1: X1, X2 ∼ U [−0.5, 0.5]
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(b) Case 2: X1 ∼ U [−0.5, 0.5], X2 ∼ N (0, 0.25)
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(c) Case 3: X1, X2 ∼ N (0, 0.25)

Figure 5: Sensitivity indices Si, ηi, and ζi for three examples of Y = X1 + X2. For each factor, Si equals
the product of ηi and ζi.
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(b) µY − r < 0

Figure 6: The relative locations of r and µY greatly impact the change in risk associated with a decrease in
σY . Moving from the red probability density to the blue, P (Y < r) decreases if µY − r > 0, and increases if
µY − r < 0.
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Figure 7: Block diagram of the circuit system
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Figure 8: Histogram of cutoff frequency generated using 10,000 MC samples (dashed black line indicates the
required cutoff frequency of 300 Hz)
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(b) Entropy power sensitivity indices

Figure 9: Variance and entropy power sensitivity analysis results for the R-C circuit

35



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

1−δ

C
os

t

 

 

X
1
: Resistance

X
2
: Capacitance

(a) Cost of reducing variance of X1 or X2

5

5 7.5

7.5 10

10 12.5

12.5
15

15

17.5

17.5

20

20

22.5

22.5
25

27.5
30

Relative reduction in var(X
1
)

R
el

at
iv

e 
re

du
ct

io
n 

in
 v

ar
(X

2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Lines of constant cost

Figure 10: Notional cost associated with a 100(1− δ)% reduction in the variance of X1 or X2
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Figure 11: Contours for variance, complexity, and risk corresponding to reductions in factor variance (solid
colored lines) overlaid with contours for cost of implementation (dashed green lines)
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Figure 12: Uncertainty contours for variations in resistance and capacitance, generated from 10,000 MC
simulations (solid colored lines) or approximated using local sensitivity analysis results (dashed black lines)
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(b) Lines of constant risk

Figure 13: Uncertainty contours for variations in resistor and capacitor tolerance
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Figure 14: Tradeoffs in complexity and risk for various design options. Dashed green lines bound region
where both complexity and risk constraints are satisfied.
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