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Abstract
The connections of a spatial truss structure play a critical role in the safe and efficient transfer of axial forces between
members. For discrete connections, they can also improve construction efficiency by acting as registration devices that lock
members in precise orientations. As more geometrically complex spatial trusses are enabled by computational workflows
and the demand for material-efficient spanning systems, there is a need to understand the effects of global form on the
demands at the connections. For large-scale structures with irregular geometry, customizing individual nodes to meet exact
member orientations and force demands may be infeasible; conversely, standardizing all connections results in oversized
nodes and a compromise in registration potential. We propose a method for quantifying the complexity of spatial truss
designs by the variation in nodal force demands. By representing nodal forces as a geometric object, we leverage the
spherical harmonic shape descriptor, developed for applications in computational geometry, to characterize each node by a
rotation and translation-invariant fixed-length vector. We define a complexity score for spatial truss design by the variance
in the positions of the feature vectors in higher-dimensional space, providing an additional performance metric during early
stage design exploration. We then develop a pathway towards reducing complexity by clustering nodes with respect to their
feature vectors to reduce the number of unique connectors for design while minimizing the effects of mass standardization.
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Introduction

The complexity of a structural design is often the restricting
factor to its realization. It is also difficult to define and
quantify. Variations in internal forces to be resisted and
the optimal member sizes required, anticipated fabrication
time and tooling, and the ease of assembly all contribute
to design complexity. For spatial truss structures, all of
these measures apply. Consider the spatial truss in Fig. 1,
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consisting of 185 nodes and 664 tubular steel elements.
Despite a regular planar grid spacing of nodes and relatively
regular member orientations, a significant variation in axial
forces is observed.

For many similar structures built around the world, two
missed opportunities are often evident: first, members are
typically uniformly sized, resulting in unnecessary material
consumption and the increase in structural mass. Often,
this uniform sizing comes from the reduction of material
procurement complexity and resulting cost reduction.
Second, the design and detailing of nodal connections are
also uniform, despite an equally large variation in force
transfer requirements. Generally, these nodes are often
heavy steel cylinders or spheres with mitered element
ends and welded connections. Although the connections
themselves come from easily fabricated parts, construction
complexity is increased by the lack of inherent registration
capacity of the nodes, as well as the time required to
miter weld the elements. Further, as the building industry
pushes towards facilitating the deconstruction and reuse of
building components, providing discrete nodes over welded
connections should be encouraged [10, 17].
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Fig. 1 A spatial truss design: a) problem formulation, b) displaced shape with internal force colormap, c) distribution of axial forces

Although the optimal sizing and orientation of spatial
truss elements has been the focus of much research, the
performance potential of the connections has been less
understood. Spatial truss nodes play an important role,
both as member registration devices that lock member
orientations and facilitate assembly, and as a critical force
transfer mechanism between elements. For shape-optimized
trusses, where orientations are often highly irregular and
transferred forces are large, the need for both registration
and strength is critical.

Ideally, all nodes in a spatial truss should be tailored to
their connected members and anticipated forces. However,
this adds significant complexity to all stages of the design,man-
ufacture, and construction process. Conversely, if a single
standardized connection is used, it must be oversized for
most of the structure, and providing registration for ele-
ments would be difficult for non-regular truss geometries.
In this case, complexity is inherent in the variation of the
force demands at each node, and represents the lost poten-
tial of customization. If the variations in nodal demands can
be quantified, designers can strategically reduce the antici-
pated complexity of design and manufacture by identifying
critical nodes that warrant customization, and nodes where
a standardized connector is sufficient.

We develop a method of consistent nodal demand
characterization and its resulting nodal complexity metric
to provide this insight to designers. By representing the
forces acting at a node by a single spherical object, we
leverage the spherical harmonic shape descriptor developed
in the field of computational geometry to characterize an
arbitrary number of force magnitudes and orientations with

a fixed-length feature vector. The conversion of forces into
a single geometric object resolves challenges in comparing
the similarity of nodes with different numbers of element
connectivity, and the use of the spherical harmonic shape
descriptor provides invariance to the orientation of the node,
allowing for recognition of similar nodal demands that are
rotated or translated throughout a spatial truss. The feature
vectors of all nodes provide the basis of a nodal distance
matrix, which is then used for a complexity metric when
evaluating multiple designs, and for clustering analysis
to strategically reduce the number of unique connections
required for design and fabrication.

Related work

Our method builds upon existing research in quantifying
design complexity, design rationalization, computational
geometry, and geometric representation of forces. We
present several key works in each field.

Design complexity and rationalization

In mechanical and industrial design, [4] defines a quan-
titative metric of design complexity by the depth and
breadth of the function trees of each component in the
product; the authors find a positive correlation with worker-
hours required at surveyed manufacturing plants. Design
for Assembly and Assembly-Oriented Design procedures
have been developed to integrate assembly feasibility in
the early design phase of product design [6, 13]. These
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procedures range from qualitative rubrics for engineering
feedback to rigorous data management for communication
between engineers, designers, and fabricators [15].

In the design of buildings, [23] qualitatively defines
architectural complexity as the ratio of the quantity of infor-
mation required to geometrically represent the design to the
quantity of information required for fabrication and assem-
bly of the elements. These two measures are presented as
conceptually orthogonal axes, where both components can
either be minimized (highly regular, modular construction)
or maximized (highly customized, complex construction).
[32] provides insight on the relationship between geometric
complexity and the technology required for its realization
from the perspective of an architecture practitioner.

Reducing complexity in the manufacturing and construc-
tion process has a significant impact on material consump-
tion. [24] surveyed 23 steel framed buildings in the UK
and found an average utilization rate (design load of mem-
ber divided by the member capacity) of less than 50%,
indicating significant unnecessary material consumption. Of
the 23 buildings, the designers of 8 noted fabrication and
construction efficiency as the primary driver for oversizing
members.

When project circumstances permit the realization
of complex geometries, shape rationalization is often
performed to reduce fabrication and construction challenges
while maintaining architectural intent. In the case of free-
formed structural envelopes and facades, much of the focus
is in converting arbitrary surfaces to be either developable—
surfaces with 0 Gaussian curvature that can be flattened
without distortion, or ruled—surfaces that can be made of
linear elements. Pottmann et al. [28] provides an overview
of many of the challenges and solutions towards this
discretization, and notes the existing barriers to make any
technique completely generalizable.

Alternatively, designers can limit themselves with tools
that only generate developable and ruled surfaces to ensure
their initial intent can be readily realized. The hyperbolic
paraboloid concrete shell structures of Felix Candela were
based on ruled surfaces whose formwork can be assembled
with standard dimensional lumber [11]; [18] provides a
computational method for the same effect for developable
surfaces.

Complexity in design is not always considered detrimen-
tal. During the option evaluation phase of design, com-
plexity can be interpreted as diversity. Brown and Mueller
[9] investigated multiple metrics of diversity in the con-
text of parametric design exploration. The values of each
design-changing parameter are represented as components
of a point in R

n, with different points in the parame-
ter space representing different designs. Diversity is then

measured by the spread of the design points in parameter
space.

Rationalization for building efficiency is not restricted
to geometry. Stephen et al. [33] considered the domain
of regional load demands across the United States as
the basis of rationalization. By clustering similar load
demand regions, material-efficient emergency shelters can
be designed for a reduced set of loading requirements, rather
than a single oversized shelter.

For topology optimized truss structures, methods of
integrating construction complexity based on unit node
and element costs have been developed by [3] and [36].
These methods seek to minimize the accumulation of lower-
impact nodes and elements in the ground-based topology
optimization approach.

For the rationalization of spatial truss nodes, [21] pursued
an alternative method of characterizing nodal demands for
the purpose of complexity reduction. A best-fit reference
plane is placed among normalized element vectors acting
at a node using Principal Component Analysis, and a
consistent reference element is selected. All other elements
are characterized by the relative angle to this reference
element with respect to the reference plane. Dissimilarity
between two nodes is measured by the difference in the
ordered set of element angles. The nodal positions are then
optimized to maximize the number of similar nodes within
a set angle tolerance.

Shape similarity

By representing forces as a three dimensional shape,
we leverage shape recognition tools in the field of
computational geometry. Shape similarity plays a key role
in fields ranging from molecular biology to 3D animation.
Applications include indexing from expansive catalogs of
parts to feature recognition and shape interpolation for
character modeling. Biasotti et al. [5] provided a state of the
art overview of a wide range of proposed shape similarity
descriptors. The output for most shape descriptors is the
feature vector, a fixed-length vector representation of a
given shape. Dissimilarity between two shapes is measured
by the distance between feature vectors.

Two general categories of shape descriptors exist:
geometry-based and topology-based. For geometry-based
shape similarity, the exact positions of shape vertices, edges,
and faces are analyzed and compared. The challenge for
these methods is controlling invariance, where the same
shape in different orientations is not inherently captured
by the analysis. Chen et al. [12] used a series of evenly
spaced virtual cameras around a given 3D object to find 2D
projection images from all angles. An optimal alignment
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procedure, akin to rigidly rotating the positions of the
virtual cameras, is performed to compare two shapes
with minimum distortion. Advancements in view-based
shape recognition include hypergraph representations of
the captured 2D images [38], and various learning-based
processes, summarized by [29].

Topology-based methods consider the underlying con-
nectivity of vertices and edges of the input shape as the basis
of shape characterization; these methods exploit intrinsic
properties of the topology that are independent of refer-
ence frames and orientations. The Heat Kernel Signature,
the intrinsic characterization of simulated heat diffusion in a
meshed object, has been used to recognize shapes in varying
non-rigid deformations [8, 31], and for recognizing highly
detailed features on a specific shape [7].

A unique group of shape descriptors are those that
exploit orthonormal basis functions on the circle (2D
shapes) and sphere (3D shapes). These methods are not
topology-based, but have intrinsic invariance to object
orientation. In general, the input shapes are transformed
into periodic circular or spherical functions, that are then
expanded as sums of basis functions using Fourier series
(2D) or spherical harmonics (3D). the unique coefficients
of the expanded functions allow for a fixed-length vector
representation of the shape they represent. 2D shape
recognition using Fourier expansion was first proposed by
[27]. The contour of an input shape is represented as a
periodic function, which is then represented as a weighed
sum of cosine functions of increasing frequency; the scalar
coefficients of each term provides the rotation-invariant
feature vector. The use of Fourier shape descriptors have
been expanded for finer resolution of more complex shapes
[40, 41], as well as for shapes with holes for spatial
geography applications [39] .

The 3D equivalent is the decomposition of the input
shape into its expanded spherical harmonics. The spherical
harmonic shape descriptor, first proposed by [20], intersects
a given shape with a series of concentric spherical shells.
The points of intersection for a given shell represent the
shell’s spherical function, which can then be decomposed
as a weighed sum of spherical harmonic basis functions;
by taking the L2-norm of the frequency components of
each expansion series, a rotation-invariant characterization
of the given shape can be determined. This inherent
rotation invariance is the key to consistent characterization
and comparisons between shapes, and is the method
chosen for adaption in this paper; the mechanics of
this process is described in detail in “Methodology”.
Advancements on this method have been proposed by [38],
who optimized the expansion coefficients for more complex

shapes with detailed feature, and by [16] for applications in
convolutional neural networks.

Geometric representation of force

Geometric representation of force for analysis and design is
most recognized in the field of Graphic Statics. Developed
in its current form in the 19th century, graphic statics
represents the axial forces of linear elements of a form
diagram with a reciprocal force diagram [22, 30]. In 2D, the
reciprocal force diagram represents a loaded linear element
with an equivalent line whose length is proportional to the
internal force; in 3D, it is represented by a 2D polygon
whose area is force-proportional. Nodal equilibrium is
represented as a closed polygon (2D) or polyhedron (3D).
Although initially used as a procedural method of analysis
and design, recent algebraic formalizations of graphic
statics principals have allowed computational graphic statics
to resurge as a modern tool in design and analysis [1, 19, 25,
26, 37].

Research gap and contributions

In [9], a quantifiable measure of design variation was
presented. However, the method quantifies inter-design
variation, rather than variation within a single design, and
does not consider internal force magnitudes. We develop
a similar metric of design complexity, but focus on the
internal force demands of a single design.

In [21], a method of spatial truss node rationalization was
developed. One drawback is the omission of force magni-
tude when characterizing a structural node. We present an
alternative method that includes force magnitudes, and fur-
ther, does not require a reference frame alignment process
for each node.

We adapt the spherical harmonic shape descriptor
method by [20] by converting nodal force demands into
geometric spherical objects, and extending the resulting
shape descriptors to useful applications in the building
design, both as a performance metric in the early
design phase, and as the basis of clustering for design
rationalization. We bypass the concentric shells method and
directly convert nodal forces to a single spherical function.
Along with reduced computation, it also omits the need to
calibrate the number and spacing of these shells to fully
characterize a given shape.

Although the equilibrium shapes of graphic statics are
the most natural geometric representations of force demand,
current computational tools for the analysis of spatial truss
structures are limited to self-stressed networks or specific
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typologies. Further, using polygons and polyhedra requires
either secondary processing to ensure rotation invariance
during comparison, or the concentric shell method if using
spherical harmonic descriptors. We present an alternative
geometric representation of force that streamlines inter-
nodal comparisons.

Our methodology is summarized in Fig. 2.

Methodology

This section provides a detailed overview of the conversion
of an arbitrary spatial truss node and its force demands
to a rotation-invariant feature vector using the spherical
harmonic shape descriptor developed by [20]. We modify
the process to be readily applicable for spatial truss analysis
by providing a deterministic method of converting nodal
force demands to a single spherical force function, and
calibrate the resolution of the feature vector to ensure the
force function is well represented. Multiple visualization
methods are also developed to provide designers with rapid
insight on nodal complexity for a given spatial truss form.
The process is summarized in Fig. 3.

The examples provided in this section are based on the
structure in Fig. 1; multiple variations of this spatial truss
are also analyzed for comparison throughout this paper.
All variations contain the same topology, number of nodes
and elements, and overall enclosed planar area. Linear
elastic analysis is performed to extract all internal forces. In
total, 100 variations were generated using Latin hypercube
sampling of a parameterized model [14]. The model has six
design variables which correspond to the z-coordinates of
control points of a bilaterally symmetric NURBS surface
used to define the upper curved geometry of the two-layer
trussed roof. In this model, the bottom layer and positions of
the columns and supports remain constant. The parametric
model is intended to generate a range of designs of varying
efficiency achieved through structural morphology, as a
proxy for design alternatives that would be considered in
early-stage structural exploration.

Spherical function representation

The spherical harmonic shape descriptor was initial
developed to be generalizable to any 3D object, where
the intersection of spheres of increasing radius with the

Fig. 2 Methodology overview:
1. the nodal force demands are
converted to spherical functions
that encode force magnitudes
and orientations, 2. the force
functions are expanded into
spherical harmonic basis
functions, 3. the feature vector is
extracted from the harmonic
decomposition, 4. the distance
matrix between all feature
vectors is determined, 5.
clustering analysis and
complexity metrics are enabled
by the distance matrix

Extract nodal forces

Spherical force functions
Section 3.1

Harmonic expansion
Section 3.2  

Feature Vector
Section 3.3

Clustering
section 4.2

Distance matrix
Section 3.4

1

2

3

4
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Fig. 3 Overview of the
conversion of nodal force
demands to a rotation-invariant
fixed-length feature vector
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given object creates binary spherical functions. This step
takes added computation to sample the intersection points,
and requires calibration of the number of spheres required
to capture small details. We bypass this step by directly
creating a single representative spherical function that
captures all information of nodal force demand.

We first convert the set of forces acting at a node to its
equivalent function by considering the spherical coordinates

of entry (for compression forces) and exit (for tension
forces). At each coordinate, the scalar function value is
equal to the respective axial force magnitude. To provide the
smooth, square-integrable function required for spherical
harmonic expansion, we convert the singular axial force
values as Gaussian distributions on the surface of the sphere:

fi(θ, φ) = f (θi, φi)e
−δ

(
(θ−θi )

2+(φ−φi)
2)

(1)
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Where f (θi, φi) is the magnitude of force i acting
at θi, φi . We take the physics convention of θ as the
angle from the polar axis z, and φ as the angle from
the x axis in the xy plane. Because the end result of the
spherical harmonic shape descriptor is invariant to rotation,
a consistent reference axis is not required when determining
the spherical force function, but is taken as the global
XYZ axes for convenience. For a node with n forces, the
spherical force function is then the sum of all Gaussian force
distributions:

f (θ, φ) =
n∑

i

fi(θ, φ) (2)

Fig. 4 Spherical functions of varying values of δ. We take δ = 20
for subsequent analyses for good representation of all force sets while
remaining computationally efficient

The selection of the variation factor δ requires calibra-
tion. Large values approaches a dirac delta function of a
singular spike at the location of the force, resulting in poor
approximations when expanding into spherical harmonics;
small values smooth the forces over large regions of the
sphere, and result in the loss of individual force delineation.
We show a range of values for δ in Fig. 4. We take δ = 20 for
all subsequent analyses for good delineation between close
force vectors and good approximation by spherical har-
monic expansion (“Spherical harmonic expansion”). Struc-
tures with closely packed elements at nodes may require a
larger value for better individual force delineation.

The conversion of force demands into spherical functions
is performed for all nodes of the structure; a sample is
provided in Fig. 5. The depth of the indentations and
protrusions are proportional to the forces within each
node, but are not to scale when comparing two nodes.
This deformation of the spherical surface is intended for
better visualization, but the force function itself remain

Fig. 5 Spherical force functions for varying nodal force demands
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scalar-valued one-to-one functions on the surface of the unit
sphere, S2.

Spherical harmonic expansion

With suitable spherical representation of nodal force
demands, we then decompose each function into a weighed
sum of the spherical harmonic basis functions. The spherical
harmonics are the eigenfunction solutions to Laplace’s
equation on the sphere: ∇2f (θ, φ) = 0, where ∇2 is the
Laplace Operator, the divergence of the gradient of the
scalar function f . The solutions, denoted Ym

l (θ, φ), are
grouped into frequencies (degree), l, and harmonics (mode),
m, and form a complete orthonormal set of basis functions
on the sphere. Frequencies span from zero to infinity in
integer increments, with each frequency containing 2l + 1
modes that span from [−l, l]; the spherical harmonics of
the first 8 frequencies and their corresponding harmonics
are shown in Fig. 6, with red regions indicating negative
function values and blue regions indicating positive values.
The shapes are determined by scaling the radial component
of the spherical function, r , by the magnitude of the function
value.

As the spherical harmonics form a complete orthonormal
set of basis functions, any square-integrable function
f (θ, φ) can be represented as a summation of these
harmonics by:

f (θ, φ) =
lmax∑

l=0

l∑

m=−l

almYm
l (θ, φ) (3)

Where alm is the associated scalar coefficient specific
to the input function f . As lmax → ∞, an identical
representation of the input function is determined. The
precision of the harmonic expansion of a spherical function
depends on the resolution of lmax taken by the summation in
Equation 3. The relative error of this resolution for a given
spherical force function f is taken as:

errorlmax = ‖f − ∑lmax

l=0

∑l
m=−l almYm

l ‖2
‖f ‖2 (4)

We expand a representative nodal force function to
varying degrees of lmax and observe the resolution error
in Fig. 7a. Steady reduction in error is observed with
increasing resolution, especially in the early stages, with a
slower convergence to zero past lmax ≈ 14. We perform this
error analysis on all 185 nodes of the example structure in
Fig. 7b, and observe similar frequency-error relationships.
We take lmax = 16, or the first 17 frequencies, for all
subsequent analyses, with a mean relative error of 1%.

There is a circular relationship between the variance
factor δ used in the force function representation of nodal
demand, and the error of approximation when choosing

Fig. 6 Spherical harmonics for l ∈ [0, 7]; m ∈ [−l, l]

lmax . Larger values of δ will sharpen the positions of the
force values and require more terms during the spherical
harmonic expansion to approximate its shape. As noted
in “Spherical function representation”, the value of δ will
require verification depending on the design of the specific
spatial truss structure, and accordingly, lmax may have to be
adjusted. Our selection of lmax = 16 equals the value taken
in the original method by [20].

Frequency accumulation and feature vector
representation

We continue to follow the spherical harmonic shape
descriptor process by summing the weighed basis functions
in each frequency, l, to create a single spherical function for
each frequency:

fl =
l∑

m=−l

almYm
l (5)

This summation provides the key characteristic of
rotation-invariance. The set of all harmonic functions within
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Fig. 7 The effect of lmax on the effective representation of a spherical force function using spherical harmonic expansion: a) for a single node, b)
for 185 nodes

a fixed frequency, Y−l
l , ..., Y l

l , is a representation of the
rotation group SO(3). Any partial feature on the input
function that is represented by the specific set of harmonic
functions of frequency l is represented by the same set of
functions irrespective of its orientation in space. Although
the corresponding coefficients of the harmonic functions
alm may be rearranged depending on the orientation of the
reference axes, the overall summation within the frequency
does not change. As such, the overall contribution of a given
frequency in representing a shape can be defined as the L2-
norm of the summed function, or its energy. This scalar
positive energy value then creates the components of the
rotation-invariant feature vector:

FV (f ) = [‖f0‖2, ..., ‖fn‖2] (6)

The feature vector is the final outcome of the conversion
process, and the arbitrary sets of forces acting on different
structural nodes can now be compared.

Measuring dissimilarity

By expanding all nodal functions to the same value
of harmonic frequencies, a fixed-length feature vector
representation of each nodal force function is determined.
The dissimilarity between two nodes is captured by the
L2-norm of the difference between their respective feature
vectors:

d(node1, node2) = ‖FV1 − FV2‖2 (7)

This distance can be measured between any two nodes,
regardless of the number of connected elements and
its position on the structure, and represents both force
orientations and magnitudes. By taking all inter-nodal
distances within a structure, a symmetric distance (or
dissimilarity) matrix is created, as seen in Fig. 8.

The distance matrix provides a visual overview of the
variation of nodal force demands across the structure. Rows
(or columns) with consistently large distances indicate
connections with highly unique force demands, and are
ideal targets for more intensive connection design and
detailing. The dark bands of consistent dissimilarity in
Fig. 8 represent the four support connections at the
base of the example structure. An alternative visualization
to represent the dissimilarity of structural nodes is
through classical multidimensional scaling (MDS) of the n-
dimensional feature vectors into parsable lower dimensions.
Classical MDS is a dimension reduction technique that
embeds higher dimensional points into an arbitrarily lower
dimension while best preserving the initial distance matrix
[35].

An example of how the distance matrix can be used
for visual understanding of nodal force demand variation,
as well as a Classical MDS embedment in R

2, is shown
in Fig. 9. Four designs with the same topology, planar
dimensions, and materials as in Fig. 1 are shown along with
their distance matrices and the 2 dimensional embedment
of their nodal feature vectors. The absolute coordinates of
the embedded points hold no significance, but the distances
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Fig. 8 Distance matrix of all
nodes. Darker regions indicate
nodes that are dissimilar from
each other

Node

N
od
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D
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nc

e

between them are representative of the Euclidean distances
in R

n. By visual inspection, it is evident that designs with
greater inter-nodal dissimilarity have more dark regions in
the distance matrices, as well as a greater dispersion of
embedded feature vector points. During the project ideation
phase, designers can look to both the distance matrix and
embedded point visualizations of the nodal feature vectors
to indicate designs that are better or worse suited for either
mass customization or standardization of the joints. Larger
dispersions of the embedded points (or darker distance
matrices) indicate a greater penalty in standardization.

Geometric analysis of forces allow for a wealth of
visualizations during each stage of the analysis process. We
show 5 equivalent representations of nodal force demands in
Fig. 10, each useful for varying stages of analyses or visual
understanding of force demand variance. We introduce the
superimposed parallel coordinate plot of feature vectors in
Fig. 10e as an alternative to the MDS embedded points as
a method of visualizing the degree of similarity between
nodes. The visually distinct line group in the parallel
coordinate plot again represent the unique force demands
acting at the compression supports in Fig. 1.

Characteristics of the feature vector

The feature vector representation of nodal force demands
has two key characteristics. First, the feature vectors scale
linearly to the input function:

FV (cf ) = cFV (f )

When only member orientations are of concern when
calculating inter-nodal dissimilarity, force demands can first
be normalized before harmonic expansion and analysis.
Second, we observe that smooth variations of the input
spherical force functions result in smooth changes in the
output feature vector. From a representative node and its
associated forces, we move one force along an arc (shown
in Fig. 11), and plot both its feature vector in parallel
coordinate form and its relative R

2 embedded position to
all other sampled force positions. All other forces acting on
the node remain at the same position, but their magnitudes
are changed at each iteration to maintain equilibrium.
We observe small changes in the feature vector with
small changes of the force position, best observed by the
incremental distances between the embedded feature vector
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Fig. 9 Distance matrix and 2D embedment of feature vectors using MDS for four design alternatives

points in Fig. 11b. This gradual increase is smooth, but not
predictable; the start and end positions of the moving force
vector have greater similarity than regions in between.

Third, as normed frequency energies are taken as the
components of the feature vector, they are invariant to
direction of the force acting at the node:

FV (f ) = FV (−f )

This represents a loss of information once a feature
vector is calculated for a given node, resulting in a non-
bijective map from nodal force demands to the space of
feature vectors. It is not possible to invert the feature vector
to the input distribution of compression and tension forces.
This limitation means that tasks such as interpolating new
force vector sets is not possible directly, but could be achieved
through iterative optimization methods in future work.
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Fig. 10 Equivalent
representations: a) force vectors
acting on node, b) spherical
force functions, c) feature
vectors, d) embedded points in
R
2, e) superimposed parallel

coordinate plots of feature
vectors

a) b)

c) d)

e)

Finally, it is emphasized that the components of the
feature vector do not directly correspond to a specific
force acting on a node. Rather, they represent overall
regional features of the force function captured by a given
frequency. A large component in the feature vector should
not be interpreted as a particularly large, singular force.
However, this lack of direct correspondence between the
feature vector and its associated node is key to its function:
any truss node, with an arbitrary number of elements and
orientations, can be represented by a vector of the same
dimension.

Methodology summary

The procedure to characterize and compare a set of
structural nodes and their force demands require the
following steps: 1. conversion into a spherical force
function, f (θ, φ), created as a sum of Gaussian distributions
of individual force components on the surface of the sphere;
2. expansion into spherical harmonic basis functions; 3.
the summation and L2-norm of the frequency energies,
FVl(f ) = ‖∑l

m=−l almYm
l ‖2. This feature vector is of

dimension n = lmax , chosen by the user, and taken by
the authors as 16. Each feature vector can be considered as
points in n dimensional space, and the Euclidean distance
between any two feature vectors are representative of the
dissimilarity between the force demands of their respective
structural nodes, both in magnitude and orientation.

Applications in spatial truss design

We present two immediate applications of the feature
vector representation of nodal force demands and its
corresponding distance matrix. First, as a performance
metric of design complexity, measured in proxy as the
magnitude of distribution of the feature vectors. Second, as
the basis of clustering analysis for strategic reduction of
unique connections that are designed and manufactured.

Complexity and structural performance

When evaluating multiple design options, a metric of
complexity may help reduce design, fabrication, and
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Fig. 11 Smooth changes of
input: a) the transition path of a
single force in a nodal force set,
b) the resulting positions of the
feature vectors embedded in R2

using MDS, c) the spherical
force functions of the altered
force directions, d) parallel plot
of changing feature vectors

a)

c)

d)

b)

construction costs. In the case of spatial truss nodes,
designers may seek to limit the variations in nodal force
demands if limited to a single standardized connection.
Conversely, designers should be informed when a large
standardization penalty would incur, and suggest the
selection of alternative designs.

By considering the nodal feature vectors as embedded
points in R

17, we take the radius of the minimal bounding
hypersphere as the metric of nodal dissimilarity within a
given spatial truss. Comparing the size of the bounding
hyperspheres from different designs provides a numeric
measure of node complexity, and provides an additional
performance metric to work in tandem with structural
performance. We note this measure of complexity should
only be used comparatively, as the feature vectors do not
have direct physical meaning.

A comparison of three alternative designs, as well as
their 2D embedded points and minimal bounding circle,
is shown in Fig. 12. In the follow examples, the radius
of the 2D minimal bounding sphere is exactly the radius
of the bounding sphere in the full feature vector space
(R17). We observe significant variation in the complexity
scores of each design, despite equal numbers of nodes and
elements and overall enclosed area. Designers seeking to
minimize standardization penalties for connections or who

seek to create a reduced number of unique joints should seek
designs with smaller bounding circles.

Node complexity is not the only metric of design perfor-
mance. More commonly, the global structural performance,
measured by the structural material quantity required to
withstand the expected loads, drives the design process. We
analyzed 100 variations of the initial example structure to
investigate the relationship between nodal complexity and
structural performance, with the bi-objective plot shown in
Fig. 13.

Each structure is given the same initial loading condition
and loads as in Fig. 1. An iterative member sizing process is
performed for all structural members by sizing each hollow
tube section to withstand its internal load. As cross section
properties change the stiffness and force distribution in
the structure, this process was repeated until convergence.
A minimum cross section area of 400mm2 was chosen
to represent the smallest standard structural hollow tube
section (HSS42.2X3.6). The total mass of this structure was
then divided by the enclosure area of 100m2 to provide a
normalized score of structural performance. The minimal
bounding hypersphere found from the nodal feature vectors
of each plot make up the other axis. We highlight the
highest performing structure for each objective, as well as a
simultaneously poorly performing structure. The bounds of
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2308

2284

Complexity = 14930

Fig. 12 Comparing three alternative designs with their nodal complexity scores, measured by the radius of the minimal bounding hyperspheres of
the nodal feature vectors in R17

the figure have been adjusted to exclude severe outliers that
perform poorly for both objectives, with the largest offender
having a hypersphere radii of approximately 15000 and a
minimum mass of 150kg/m2. We observe that the design
with the best complexity performance does not perform well

structurally, but achieves its high degree of nodal similarity
due to relatively parallel top and bottom chord planes. The
most structurally performant design is more conventional,
with a deeper cross section at the support region that tapers
towards the cantilever.
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Fig. 13 Bi-objective plot of structural material quantity vs. hypersphere radius for 100 spatial truss designs; deflected shapes and internal forces
of three key designs highlighted
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Clustering

A method of reducing the standardization penalty without
extensive customization is by strategically designing fewer
connections to meet the demand of multiple configurations.
To achieve this, similar nodal demands must be identified
to minimize the variation within each design target. We
use K-means clustering on the nodal feature vectors
analyzed in “Methodology” to reduce the nodes into 10

similar groups; the results are shown in Fig. 14. The 2D
embedded points are coloured by their cluster assignments
along with the individual bounding spheres for each
cluster. An immediate measure of the reduction in nodal
complexity is the change in size of the overall bounding
hypersphere to those of the individual clusters. The
superimposed feature vectors, as well as highlighted feature
vectors for each cluster are shown as parallel coordinate
plots.
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Fig. 14 Clustering structural nodes into 10 similar groups. Clusters are ordered in increasing cluster complexity (hypersphere radius of clustered
feature vectors). Clusters 1 and 2 contain identical nodal demands, and have a complexity score of 0



Architecture, Structures and Construction

The symmetry of the design and its loading condition
is recognized, with each feature vector having at least
one identical feature vector across the symmetry plane
between the supports. Due to the odd nodal grid spacing
transverse to this plane, nodes along the centerline between

the supports do not have a symmetric twin, but are clustered
with their adjacent nodes as their geometries and internal
forces remain similar. Symmetric node groups with highly
unique force demands, such as the large compression forces
experienced by the dark blue supports, are isolated in their

Fig. 15 Four designs with 10
nodal clusters. The colours of
the clusters are ordered in
increasing complexity as in
Fig. 14. Despite the same
topology, best performing
clusters are not consistently
located in the structure
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own cluster, with an associated zero radius hypersphere due
to their identical loading conditions. Groups with higher
numbers indicate larger variation within the cluster, but all
feature vectors show similar patterns of peaks and troughs
in their highlighted parallel coordinate plots, with small
variations of magnitude in each component.

An additional four structures and their clustered node
groups are shown in Fig. 15. Clusters are coloured in
the same increasing hypersphere radius order as shown
in Fig. 14. Symmetry is again recognized, with the two
compression supports being uniquely separated in all cases.
During design iterations of the same topology, observing
this consistent grouping provides an indicator that certain
regions of the structure are deserving of specialized
connection design. This is further evident by observing the

embedded 2D feature vector points in Fig. 14, where simply
providing two connection designs—one for the compression
supports and one for all other nodes–would drastically
reduce the overall nodal complexity score for the entire
structure. It is also from the colour ordering of the clusters
that despite a consistent topology and loading condition,
the most similar nodes are not consistently located across
the structure. For example, the green clusters shift from the
central region to the structure to the cantilevered corners
between two design iterations.

Despite significant variation of performance observed
in Fig. 13, we note a dense region of designs with both
similar complexity performance and structural performance,
16 representative samples are shown in Fig. 16. It is
clear that even with an added performance constraint when

Fig. 16 16 designs with a narrow range of both structural perfomance and nodal complexity. Designers are not restricted in achievable forms
when considering performance metrics; rather, they can make more informed decisions when selecting a final design
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evaluating designs, a large variation in architectural form
can be achieved, as observed by the relatively small changes
in both performance scores. The nodal complexity analysis
can help designers narrow down and refine a wide range of
designs while still maintaining design freedom.

We perform another clustering analysis on a higher
density structure with 1548 nodes and 6427 elements in
Fig. 17 (design from [34]). The structure was designed
for 3D printed linear extrusion using PLA, with overall
dimensions of 40×5×8.5cm. A 1N load was placed at each
node for structural analysis, and supports are placed along
the two lowest lines of nodes (captured by Cluster 4, red).

We observe again one cluster of identical nodes, as
well as the detection of structural symmetry. Further, we
observe three natural candidates for clustering by the
bunched parallel coordinate plot lines that are distinct from

other feature vectors. By visual inspection of the parallel
coordinate plots, it is possible to deduce the ideal starting
number of clusters to minimize joint complexity while
designing as few unique joints as possible. In the case of
3D printed lattice structures that lack discrete joints, the
nodal demand analysis and subsequent clustering may be
used in identifying critical joint regions and optimizing the
extrusion path to reinforce these joints with varying amounts
of material.

Other applications

The presented method can be easily extended to multiple
load cases when a more in-depth analysis is performed.
Nodal feature vectors for each load case can be concatenated
into feature matrices, with the same L2-norm distance
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Fig. 17 Clustering analysis of 3D printed lattice structure with 1548 nodes and 6427 elements. At least three distinct and suitable candidates for
clustering are observed by the distinct bands in the superimposed parallel coordinate plot. They are captured by Clusters 1,4/5, and 10
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matrix. The feature matrix is more akin to the initial
methodology by [20], where each shape contains multiple
spherical functions that capture different features of the
input geometry.

As the spherical harmonic node descriptor captures both
force magnitude and geometry, it can also be used to capture
the force capacity and ideal member orientations of existing
structural components. Amtsberg et al. [2] processed the
forks of felled trees to act as structural nodes in a timber
grid shell. The matching of tree fork geometries to the
nodes of the design required all tree forks to be of the same
valence as the nodes of the structure (three branches), and
did not consider the comparison of fork force capacity and
the expected internal forces of the design. By representing
tree fork capacities and geometries using the presented
method, both the feature vectors of the tree forks can be
matched to the feature vectors of the designed structural
nodes irrespective of valence and with consideration of
force magntiudes.

For conventional spatial trusses, the nodes of a decom-
missioned structure can be indexed by their representative
feature vectors before storage, and can later be recalled to
optimally fit the expected forces and member orientations
of a new spatial truss design. An optimal assignment of an
existing node to the proposed structure is one that minimizes
the distance between the nodal capacity feature vector of the
existing node and the nodal demand feature vector of the
new design. Because only the feature vector is required to
capture both force magnitudes and orientations, databases
of existing structural components can be readily maintained
with low memory storage requirements.

Conclusion and future work

We present an application of the spherical harmonic shape
descriptor in the domain of nodal force demands in a spatial
truss structure. By representing an arbitrary number of
forces acting at a node as a single spherical surface, and
by characterizing this surface with the spherical harmonic
feature vector, we develop a consistent characterization
of nodal force demands and a measure of inter-nodal
dissimilarity. By representing the range of this dissimilarity
by the size of the minimal bounding hypersphere in n

dimensional feature vector space, we provide a metric
of relative nodal complexity when evaluating multiple
designs. Further, we use the distance matrix of the nodal
feature vectors in a given structure as the basis of node
clustering, which can minimize the penalty of connection
standardization and allow for the strategic design of a
reduced set of customized components.

Two questions are left to be resolved, and will be the
focus of future work. First, the practical materialization

of a single custom connection for similar, but not
identical, nodal force demands is not trivial. Additive
manufacturing in conjunction with multiple load case
topology optimization should be investigated as method
of designing and manufacturing truss nodes with slight
variations in force magnitudes and orientations. Second, as
discussed in “Frequency accumulation and feature vector
representation”, the map of nodal force demands to feature
vectors is not bijective, and thus computational optimization
in the feature vector space is not straightforward. We intend
to investigate the efficiency of numeric autodifferentiation
tools to provide a similar pathway of altering a design to
reduce nodal complexity as in [21].

The ability to characterize structural nodes with arbitrary
loading conditions while capturing both force magnitude
and relative member orientations allows for greater insight
during the design of spatial truss structures. As digital
tools facilitate rapid design iterations, they should also
provide more metrics of performance that recognize
practical constraints of time, tooling, and cost. To minimize
material consumption and enable a circular economy of
building materials, we expect the proliferation of form
and element optimized spatial truss structures with discrete
nodal connections. These nodes will play a critical role in
improving construction efficiency, by acting as registration
devices, and in deconstruction and reuse, by reducing
permanent miter-and-weld connections. We provide a
method of characterizing the complexity in the demands of
these discrete nodal connectors, and methods towards its
strategic reduction.
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