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1 Introduction

In this work, we restudy the Ising chain and the Kitaev chain from a categorical point of
view. Physics oriented readers can skip this section and start from later sections directly,
and come back later for the historical development of the main idea. Throughout this work,
we use nd to represent a spatial dimension and n+1D to represent a spacetime dimension,
and all fusion (higher) categories are assumed to be unitary [42].

The study of topological orders and symmetry protected/enriched topological
(SPT/SET) orders has attracted a lot of attention in the recent years because it goes
beyond Landau’s paradigm of phases and phases transitions (see [57] for a review and ref-
erences therein). A topological order, as a macroscopic notion that defines the universal
class of quantum many body systems, can be described by observables in the long wave
length limit (LWLL). These observables often form categorical structures. For example, a
2d anomaly-free topological order can be described by the fusion and braiding structures of
its particle-like topological excitations (or anyons) up to chiral central charges, and these
fusion-braiding structures form a unitary modular tensor category (see [28] for a review).
A potentially anomalous 1d topological order can be described by a unitary (multi-)fusion
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category [29]. These two categorical descriptions can be checked directly from concrete lat-
tice models (see for example [3, 20, 27, 29, 47, 50]). The categorical descriptions of higher
dimensional cases can be found in [24, 34–36, 42, 46, 48]. Some of them were checked in
lattice models [4, 5, 33]. These categorical descriptions provide a unified approach towards
the classification of all topological orders.

Ever since the introduction of the notion of a SPT/SET order [8, 9, 11, 18], it is natural
to expect that it also has a categorical description. However, the story of developing
this description is full of twists and turns. We review this development in section 1.1,
and explain the main result of a unified classfication theory developed in [31]. However,
this classification theory is still one step away from a physically natural description of an
SPT/SET order. The last missing step was made in [42]. Based on the idea of topological
Wick rotation [40], a notion which is reviewed in section 1.2, two of the authors proposed
in [41, section 7][42, section 5.2] a unified categorical description of all gapped/gapless
quantum liquid1 phases with/without symmetries (far beyond SPT/SET orders) in terms
of enriched higher categories. The main goal of this work is to check the validity of this
proposal through concrete 1d models: Ising chain and Kitaev chain.

In section 2.3 and 2.4, by carefully analyzing the Ising chain and the Kitaev chain, we
prove that, in each gapped phase (an SPT order or a symmetry-breaking phase) realized
in these two models, observables in spacetime form a fusion category enriched in a braided
fusion category such that its monoidal center is trivial. In section 3, we provide a classifica-
tion and the categorical descriptions of all 1d gapped phases with a bosonic/fermionic finite
onsite symmetry. The notion of an enriched category is briefly explained in appendix A.
The hom spaces of all enriched categories appeared in this work are all computed in ap-
pendix A.

1.1 Towards a categorical description of SPT/SET orders

In 2d, a categorical description of bosonic SPT/SET orders with a finite onsite symmetry
was first introduced by Barkeshli, Bonderson, Cheng and Wang in [2] based on the idea of
gauging the symmetry by introducing 1d symmetry defects. Later, a new description for
both bosonic and fermionic 2d SPT/SET orders was introduced in [44, 45] also based on
the idea of gauging the symmetry but in a different way [49]. It is useful to recall the key
idea of [44, 45, 49]. In a 2d SPT/SET order, local (non-topological) excitations are given
by the symmetry charges. They form a symmetric fusion subcategory E in the braided
fusion category S of all local and topological excitations. Since the symmetry charges
cannot be detected via double braidings in S, this was viewed as a sign of “anomaly”
but somehow “protected by the symmetry” in a not-fully-understood way, which will be
clarified in this work (see remark 1.4 and 2.10). The idea of gauging the symmetry is to
introduce additional particles to S in a minimal way such that all old and new particles can
be detected by double braidings again. In mathematical language, it amounts to finding a
minimal modular extension of S [45, 53].

1There are non-liquid quantum phases (see for example [7, 19] and [59]).
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Although the idea of gauging the symmetry works and can be generalized to higher
dimensions [31], it is unsatisfying because the SPT/SET orders are well-defined before the
gauging. There should be an intrinsic but missing data canonically associated to S that
can characterize a 2d SPT/SET order without gauging the symmetry. This dissatisfaction
motivated a new description of SPT/SET orders without gauging the symmetry [31]. This
description is based on the idea of boundary-bulk relation [36, 37]. More precisely, an
anomaly-free nd SPT/SET order should have a trivial n+1d bulk, i.e. the trivial n+1d
SPT order, which has a categorical description in the minimal modular extension approach.
Using the fact that the bulk is the center of the boundary [36, 37], we obtain a mathematical
description of an anomaly-free nd SPT/SET order, summarized in the following physical
theorem [31, theoremph 1.1].

Theoremph 1.1. [31] For n ≥ 1, let R be a unitary symmetric fusion n-category viewed
as a higher symmetry. We call an nd (spatial dimension) SPT/SET order with the higher
symmetry R an nd SPT/SET/R order.

1. An anomaly-free nd SET/R order is uniquely (up to invertible topological orders)
characterized by a pair (S, φ), where S is a unitary fusion n-category equipped with
an embedding ιS : R ↪→ Z1(S) such that

the composed functor (R ↪→ Z1(S)→ S) is faithful (1.1)

and φ : Z1(R) → Z1(S) is a braided equivalence between the monoidal centers of R
and S, respectively, rendering the following diagram commutative (up to a natural
isomorphism):

RjJιR
ww

� t
ιS

''
Z1(R) '

φ // Z1(S).

(1.2)

2. When S = R, the pair (R, φ) describes an SPT/R order and (R, idZ1(R)) describes
the trivial SPT/R order. Moreover, the group of all SPT/R orders (with the multi-
plication defined by the stacking and the identity element by the trivial SPT order)
is isomorphic to the group Autbr(Z1(R), ιR), which denotes the underlying group of
braided autoequivalences of Z1(R) preserving ιR, i.e. φ ◦ ιR ' ιR.

Remark 1.2. It was noticed later in [42] that this classification automatically includes all
gapped symmetry-breaking phases if we drop the condition (1.1).

The physical meaning of theorem 1.1 is illustrated in figure 1. In particular, we re-
garded Z1(R) (resp. Z1(S)) as the 1-dimensional higher bulk of the nd SPT (resp. SET)
order, and vertical direction in figure 1 is the (n+1)-th spatial direction. The braided
auto-equivalence φ in (1.2) is precisely the missing data, and can be realized physically by
an invertible domain wall Yφ between Z1(R) and Z1(S). Note that when S = R, the pair
(R, φ) describes an nd SPT, which is precisely realized by the nd invertible domain wall Yφ.

Example 1.3. Let R = Rep(G) or Rep(G, z), where G is a finite group, and Rep(G)
is the category of finite dimensional G-representations, and Rep(G, z) denotes the same
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SR

Yφ

Z1(S)Z1(R)

Figure 1. This picture depicts the physical meaning of the classification theorem of nd SPT/SET
orders given in theorem 1.1. There are two ways to interpret this picture. One was provided in [31],
where Z1(R) is regarded as the 1-dimensional higher bulk of the SPT/SET order and the vertical
direction is the (n+1)-th spatial direction. The other one was provided in [42], where the vertical
direction is the time direction and Z1(R) is viewed as the background category of an enriched
n-category Z1(R)R or Z1(R)S (see appendix A), the hom spaces of which encode the spacetime
observables of the SPT/SET orders.

category but equipped with a new symmetric braiding respecting the fermion parity z.
All 1d anomaly-free SET/R orders are SPT/R orders. The group of 1d SPT/R orders is
isomorphic to the group Autbr(Z1(R), ιR) and to the Picard group Pic(R) of R [14], which
was computed below [6].

Pic(Rep(G)) ' H2(G,U(1))

Pic(Rep(G, z)) '

H2(G,U(1))× Z2 if G = Gb × 〈z〉;

H2(G,U(1)) if otherwise.
(1.3)

When G = Z2, there is a unique non-trivial fermionic SPT order, which can be realized by
Kitaev chain.

1.2 Topological Wick rotations

Although theorem 1.1 is successful in that it unifies all earlier classification results and is
generalized to all dimensions, the classifying data given there cannot be the direct descrip-
tion of the observables of an SPT/SET order in LWLL. Indeed, on the one hand, the crucial
data φ is associated to the categorical description of the 1-dimensional higher bulk; on the
other hand, in a concrete nd lattice model realization of an anomaly-free nd SPT/SET
order, its n+1d bulk is completely empty. Therefore, there should be a direct categorical
description of the observables in an nd SPT/SET order without using the bulk.

How to find such a description? The most obvious approach is to analyze a concrete
lattice model realization of an SPT/SET order, and collect all observables in LWLL to see
what mathematical structure they form. Ironically, this obvious approach has never been
seriously studied. Perhaps, a partial reason for the delay is that, without knowing what
you are looking for, it is rather difficult to walk through the labyrinth of rich ingredients in
a lattice model, often misguided by old conventions and misunderstandings, to crystallize
the hidden and unknown mathematical structures. In this work, we do the long-overdue
homework but with a new mathematical guidance.
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The guidance came from a rather mysterious process called topological Wick rotation,
which was first introduced in the study of gapless boundaries of 2d topological orders [40,
section 5.2], and was generalized to all dimensions [41, section 7]. In a special case, it
says that given an anomalous nd topological order, whose topological defects form a fusion
n-category S, and its n+1d bulk is described by the monoidal center (or the E1-center)
Z1(S) of S [37] (as depicted in the first picture in (1.4)), one can “rotate” the n+1d bulk to
the time direction to obtain an anomaly-free nd phase (potentially gapless) as illustrated
in the second picture in (1.4).

Z1(S)

(n+1)-th spatial direction

S
Z1(S)

the time direction

S

(1.4)

After the topological Wick rotation, the pair (Z1(S), S) represents a fusion n-category
Z1(S)S enriched in Z1(S) (or a Z1(S)-enriched fusion n-category). The enriched fusion n-
category Z1(S)S is called the topological skeleton2 of the anomaly-free nd phase. It turns out
that the topological skeleton Z1(S)S does not contain all the information of the anomaly-free
nd phase. The physical meaning of this topological skeleton is better explained together
with the missing information. In a 1+1D rational CFT, the missing information is the so-
called local quantum symmetry V , which is either a chiral symmetry (defined by a vertex
operator algebra (VOA)) or a non-chiral symmetry (defined by a full field algebra [21]),
together with a braided functor φ : Rep(V ) → Z1(S), where Rep(V ) denotes the category
of V -representations. In other words, the triple (V, φ, Z1(S)S) gives a complete information
of a 1+1D rational CFT. The braided equivalence φ endows the abstract enriched category
Z1(S)S with a precise physical meaning. In particular, the objects in Z1(S)S are objects in S,
and are topological defect lines (TDL) admitted by the local quantum symmetry. We illus-
trate these TDL’s and 0D defects among them in figure 2. The hom space homZ1(S)S(a, b)
for a, b ∈ S consists of (chiral or non-chiral) fields operators3 that respect the local quan-
tum symmetry (see [40, section 3.4] for more details). These cover all observables in a
1+1D CFT.

What we mean by respecting the local quantum symmetry is that the space
homZ1(S)S(a, b) of field operators is a V -representation, and the operator product expansion
(OPE) among these operators are defined by chiral vertex operators [51], or more pre-
cisely, by the intertwining operators of V [17]. By the representation theory of VOA’s [22],
it means that homZ1(S)S(a, b) can be viewed as an object in Rep(V ) and all the composition
maps among these hom spaces are morphisms in Rep(V ). This is just another way to say
that the category is enriched in Rep(V ). See [40, 41] for more details.

Remark 1.4. In the first picture in (1.4), before the topological Wick rotation, S is
anomalous as an nd (spatial dimension) topological order, and the anomaly is fixed by its

2One can also define the topological skeleton by S as in [42] because Z1(S)S does not contain more
information than S.

3They are also called boundary-condition changing operators in CFT.
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Ma,a

Mb,b

Mc,c

Mb,c

Ma,b

Mp,p

Mq,q

Mr,r

Mq,r

Mp,q

V V V

Figure 2. This picture depicts all observables in LWLL in a 1+1D CFT. In particular, V denotes
the local quantum symmetry, and Ma,b is a space of defects fields, and Ma,a defines a topological
defect line (TDL). AllMa,b, together with the labels a, b, c, · · · ∈ S, form an enriched category Z1(S)S

with homZ1(S)S(a, b) = Ma,b.

n+1d bulk. After the topological Wick rotation, the anomaly is fixed by operators in the
n+1D spacetime.

In [41, section 7], two of the authors proposed to generalize above picture (including the
topological Wick rotation) to higher dimensions to give a unified theory for gapped/gapless
phases without knowing how to include SPT/SET orders. Inspired by the classification
of SPT/SET orders in [31] and the observation that an onsite symmetry should be a
special case of local quantum symmetries, two of the authors proposed in [42, section 5.2]
to apply the topological Wick rotation to all boundary-bulk configurations (e.g. figure 1)
to obtain a new description of SPT/SET orders in terms of enriched higher categories.
This leads to a grand unification of all gapped/gapless liquid phases with/without onsite
symmetries (including symmetry-breaking phases). In particular, the results in theorem 1.1
can be reinterpreted by “rotating” the n+1d bulk in figure 1 to the time direction and
reinterpreting the pair (S, φ) as an Z1(S)-enriched fusion n-category Z1(S)S determined by
the braided equivalence φ : Z1(R) → Z1(S). In this process, the n+1d bulk excitations in
Z1(S) before the rotation are replaced by the topological sectors of symmetric non-local
operators in the n+1D spacetime after the rotation.

Example 1.5. For an nd SPT order with a finite onsite symmetry G, topological ex-
citations in S consist of all the symmetry charges and their condensation descendants.
They form a symmetric fusion n-category nRep(G) in the bosonic case or nRep(G, z) in
the fermionic case [31], where z ∈ G is the fermion parity. Therefore, an nd SPT order
with the bosonic onsite symmetry G should be categorically described by an enriched fu-
sion n-category Z1(nRep(G))S for S = nRep(G), which is defined by a braided equivalence
φ : Z1(nRep(G)) → Z1(S) preserving nRep(G) ↪→ Z1(S). In the fermionic cases, nRep(G)
is replaced by nRep(G, z).

Remark 1.6. The same topological skeleton Z1(S)S can be associated to different
gapped/gapless phases depending on what local quantum symmetry we assign. We discuss
a few examples for a fusion 1-category S.

1. Given two different unitary rational VOA’s V and V ′ with non-trivial central charges
and two braided equivalences φ : Rep(V ) → Z1(S) and φ′ : Rep(V ′) → Z1(S). Then
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the triples (V, φ, Z1(S)S) and (V ′, φ′, Z1(S)S) describe two different anomalous 1d gapless
phases. Any two holomorphic VOA’s are examples of such pairs of VOA’s. One can
also choose V ′ to be a modular invariant closed CFT (i.e. a rational full field algebra).
Then the triple (V ′, φ′, Z1(S)S) describes an anomaly-free 1d gapless phase [41].

2. Let S = Rep(G) for a finite group G. If we identify Z1(S) with RepV G by a braided
equivalence φ : RepV G → Z1(S), where V G is the G-invariant sub-VOA of a holomor-
phic VOA V equipped with a G-action (assuming the folklore conjecture [15, 16, 26]),
we obtain a 1d anomalous gapless phase. If we associate Z1(S) to an onsite sym-
metry G, which can be viewed as a proper orbifold theory4 of the trivial VOA
C, we obtain a 1d gapped SPT order. Moreover, there is the braided equivalence
φ : Z1(Rep(G)) → Z1(S) defining the SPT order (see [43, corollary 2.25, remark
2.26]). For example, if φ ' idZ1(Rep(G)), then it defines the trivial 1d SPT order; if
otherwise, then it defines a non-trivial SPT order.

Example 1.7. This enriched-category description of topological skeleton also works for
symmetry-breaking phases. Let nVecG be the category of G-graded n-vector spaces. Ap-
plying topological Wick rotations to remark 1.2, one can see that Z1(nRep(G))nVecG should
describe a symmetry-breaking phase. In this work, we prove this fact explicitly for n = 1
and G = Z2.

The operators (or chiral/non-chiral fields) in V should be viewed as symmetric local
operators. An object in Rep(V ) should be viewed as a topological sector of symmetric
nonlocal operators, i.e. an invariant subspace of all symmetric operators under the action
of all symmetric local operators. For example, the operators in Ma,b are all non-local
operators because they can only live at the end point of a non-trivial TDL unless both a

and b are the trivial TDL. Mathematical theory of local quantum symmetries for general
gapped/gapless liquids is far beyond this work and is developed in [43].

An object in S is a TDL (or a topological excitation from a spatial point of view). In
a lattice model realization of the phase, a TDL amounts to a topological sector of states
in the total Hilbert space Htot of the lattice model. By a topological sector of states, we
mean an invariant subspace of states in Htot under the action of symmetric local operators
and the symmetries. For example, in the 2d toric code model realization of the 2d Z2
topological order, the four particle-like excitations 1, e,m, f are precisely given by four
topological sectors of states.

In summary, the enriched fusion category Z1(S)S summarizes all observables in space-
time for all 1d gapped/gapless phases with/without symmetries up to the local quantum
symmetry. In a lattice model realization of a 1d gapped phase, we expect that

1. objects in S are the topological sectors of states in Htot;

2. objects in Z1(R) (or Z1(S)) are the topological sectors of symmetric non-local opera-
tors.

4In [43], we provide an alternative mathematical theory of local quantum symmetries based on certain
nets of local operators.
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In this work, we check the validity of this proposal by rediscovering the topological
skeleton Z1(S)S from two concrete 1d lattice models: the Ising chain and the Kitaev chain.
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2 Ising chain and Kitaev chain

In section 2.1, we explain that a gapped quantum liquid phase can be described by the
observables in the long wave length limit (LWLL). In section 2.2, for 1d gapped lattice
models, we explain that there are two types of observables in LWLL: the topological sectors
of operators and those of states, and together they form an enriched fusion category with
a trivial monoidal center. In section 2.3 and 2.4, we show explicitly that observables in all
gapped phases realized by the Ising chain or the Kitaev chain indeed form enriched fusion
categories with trivial centers. We also show that the observables on the boundaries of
these phases form an enriched category such that the boundary-bulk relation holds, i.e.
the bulk is the center of a boundary [36, 37]. These results provide solid evidence of the
proposal in [42] that the enriched-categorical description works for all topological orders,
SPT/SET orders, gapped symmetry-breaking phases and CFT-type gapless phases. All
examples of enriched (fusion) categories that appear in this section are briefly reviewed in
appendix A.

2.1 Quantum phases and observables

Landau’s theory of phases and phase transitions is based on the idea of symmetry breaking.
This theory is so successful that it had led to the wrong belief that Landau’s theory
works for all quantum many-body systems until the discovery of exotic new phases beyond
Landau’s paradigm. In retrospect, we can see that Landau’s theory was not developed from
the first principle,5 by which we mean first defining the notion of a phase, then finding a
way to characterize a phase transition. Instead, Landau’s theory was developed from the
study of a concrete phase transition. The tools and the language developed from this study
automatically provide a way to distinguish different phases by the so-called order parameter

5The meaning of “first principle” varies as we change our point of view. From a categorical point of view,
a notion of a phase can be understood via its relation (i.e. domain walls or phase transitions) to all phases.
The point of view taken here is a reductionist one, i.e. defining a phase by its microscopic realizations or
macroscopic observables.
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and symmetries. However, it does not provide a priori reason for the completeness of the
characterization of a phase by its symmetries.

The discovery of new gapped quantum phases beyond Landau’s paradigm (such as
fractional quantum Hall states) provides us a chance and motivation to study the notion of
a gapped quantum phase from the first principle. Indeed, it has already motivated many
attempts to define the notion of a gapped quantum liquid phase precisely from both the
microscopic perspective [9, 59] and the macroscopic perspective (see for example [24, 28,
31, 34–36, 46, 48]).

First, since a gapped quantum liquid phase can be realized by lattice models, there
should be a microscopic definition based on lattice models. More precisely, a gapped
quantum liquid phase should be defined as an equivalence class of lattice models. The
physical description of the equivalence relation between two models was conjectured to
be a path connecting two models in the space of models without closing the gap and
without changing the ground state degeneracy anywhere on the path. In an interesting
attempt [9, 59], moving along the path is defined by properly enlarging the Hilbert space
and adding symmetry-allowed perturbations. This is, however, not the final word about the
mysterious equivalence relation. The real challenge lies in how to formulate this equivalence
relation precisely and prove its compatibility with the macroscopic definition.6

Secondly, the notion of a quantum phase is defined at the thermodynamics limit and
at zero temperature. At zero temperature, regardless gapped or gapless, only physically
relevant observables are those survived in LWLL. Therefore, a quantum phase should be
described by all observables (in LWLL) of a family of lattice models connected by small
symmetry-allowed perturbations. A careful analysis of all observables in a lattice model
should lead us to such a description. Indeed, this analysis was done for many lattice models,
such as the quantum double models [27] and the Levin-Wen models [50], and led to the
correct categorical description of 2+1D topological orders [27, 29]. Ironically, it has never
been carried out for symmetry-breaking phases within Landau’s paradigm. It turns out
that this study is not so easy if you do not know what you are looking for. In this work,
guided by the proposal in [42] that 1d quantum phases should be described by enriched
fusion categories (see section 1.2), we start to do this long-overdue homework for two simple
1d lattice models: the Ising chain and the Kitaev chain.

2.2 Topological sectors of operators and states

For a given 1d lattice model with a total Hilbert space Htot = ⊗i∈ZHi and a Hamiltonian
with only local interactions, many microscopic degrees of freedom are not observable in
LWLL. For example, individual states in Htot and microscopic local operators are not ob-
servable in LWLL. It is similar to our daily experience. A physical object is always screened
by the invisible cloud of microscopic degrees of freedom (or local operators) around the

6As far as we know, there is no work on how to connect microscopic definition with a macroscopic one.
For example, it is not clear or even puzzling that two lattice models defined at different RG fixed points
realize the same quantum phase, such as the Levin-Wen models [50], can be connected by a path without
closing the gap. One way out is to add local quantum symmetry to the description of a topological order [42]
(see also section 3).
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object. The observables in LWLL are those that can be moved in and out of the cloud
freely. They can come from non-local operators that are required to be unconfined (see
remark 2.1). For convenience, by a non-local operator we always mean a unconfined one
unless it is declared otherwise. Moreover, from the LWLL perspective, such a non-local op-
erator is necessarily screened by local operators. Therefore, observables in LWLL are not the
individual non-local operators but the subspaces of non-local operators that are invariant
under the action of local operators. Such an invariant subspace will be called a topological
sector of operators (see remark 2.2). The sector consisting of only local operators is denoted
by 1B. A morphism between two such sectors are operators that intertwine the action of
local operators. We denote the category of the topological sectors of operators by B. This
category B has an obvious monoidal structure defined by the multiplication of operators.
It turns out that B also has a braiding structure (see remark 2.2). As a consequence, we
expect the category B to be a braided fusion category. Similar to the situation in 2+1D
topological orders [27, 35], we expect that all sectors of operators can detect themselves
via double braidings, or equivalently, the braidings of B should be non-degenerate.

Remark 2.1. In this work, for convenience, we can treat a non-local operator as an
infinitely long string of operators. Such a string of operators is called unconfined if the
string remain tensionless under all symmetry allowed perturbations; it is called confined
otherwise.

Remark 2.2. A rigorous study of topological sectors of operators is beyond this work,
and is given in [43]. In a nutshell, “local operators” should be replaced by the net of local
operators as in algebraic quantum field theory. Then a topological sector of operators
indeed becomes a sector of the net. The fusion and braiding structures of B are defined
in [43]. Now we provide some intuition about the braiding structure on B. The braiding
structure on B is encoded by operators living in 2D spacetime. It is different from that of
anyons (or defect lines) defined in 2+1D spacetime. Two non-local operators x and y in
2D spacetime can be “braided” in the following sense:

x
y double braiding−−−−−−−−−−→ x

y  

y
ȳ

x
y

In the second step  , we introduce a local operator that creates a pair (y, ȳ) such that
the purple line breaks into two parts. The ȳy part becomes a local operator. This is
possible because B has duals (a natural physical requirement). Similarly, we introduce a
local operator that creates a pair (x, x̄) near x, then annihilates the x̄ with the original
x, we obtain the third picture. Comparing the third picture with the first one, we see an
additional local operator ȳx̄xyx̄x. By choosing x, x̄, y, ȳ properly, this local operator can
encode the information of the double braiding of the two sectors associated to x and y (see
section 2.3.1 for an example).

There is another type of observables, which are called topological excitations from
a spatial perspective, or equivalently, topological defect lines (TDL) from a spacetime
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perspective. It is well known from lattice model realizations of 2+1D topological orders,
such as the toric code model [27], a TDL (or an anyon) can be defined as a topological
sector (or superselection sectors) of states, which is defined to be a subspace of Htot that
are invariant under the action of local operators. The sector containing the vacuum is
called the vacuum sector denoted by 1S. The 1+1D cases are entirely the same.

It is clear that the topological sectors of operators act on those of states. We denote the
space of non-local operators mapping a sector of states a to another sector b by hom(a, b),
then hom(a, b) can be viewed as an object in B. The set of sectors of states, together
with the spaces of morphisms hom(a, b), form a category S] enriched in B. A portrait
of these hom(a, b) as observables on the 1+1D world sheet is given in figure 2 with Ma,b

representing hom(a, b). If we replace the hom space hom(a, b) in S] by a vector space
homS(a, b) := homB(1, hom(a, b)), we obtain an ordinary category S, which is reasonable
to be called the category of the topological sectors of states (or TDL’s or topological
excitations).

Both S] and S are equipped with fusion products because TDL’s can be fused. The
vacuum sector 1S plays the role of the tensor unit. Moreover, the fusion of two sectors
of states should be compatible with the fusion of operators that can create these two
sectors of states from the vacuum. This compatibility is rather complicated but can be
mathematically summarized by the condition that S is equipped with a braided monoidal
functor φ : B → Z1(S), where Z1(S) is the Drinfeld center of S [42]. The braided functor
φ provides a canonical construction of a B-enriched fusion category BS [52]. It is natural
to expect that S] = BS as B-enriched fusion categories.7 Note that, when we choose to
use BS instead of Z1(S)S, we have already include some information of the local quantum
symmetry (see section 1.2). By the boundary-bulk relation [36, 37], the enriched fusion
category BS can describe an anomaly-free 1d phase if and only if Z1(BS) = Vec.

Remark 2.3. If the 1d phase is anomaly-free, i.e. Z1(BS) = Vec, then the vacuum sector
1S of states provides a condensation of B [39]. More precisely, A := homBS(1S, 1S) defines a
Lagrangian algebra in B and is condensed on the vacuum sector 1S of states [30]. Moreover,
S can be recovered from A as the category BA of right A-modules in B. This condensation
interpretation is rather convenient in later studies.

When we do not impose any symmetry, all non-local operators are confined by in-
troducing arbitrary perturbations. In other words, without imposing any symmetry, we
obtain B = Vec. If the phase is anomaly-free, then it is necessary that S = Vec. This
is just another way to see that there is no non-trivial anomaly-free 1d topological order.
Moreover, we also recover the fact that an anomalous 1d topological order can be described
by a fusion category S.

If we impose an onsite symmetry given by a finite group G, then all the small perturba-
tions are required to respect the symmetry. In this case, the term “local operators” needs
to be replaced by “symmetric local operators”, and the topological sectors of operators

7A lengthy proof of this fact in the case of 1+1D CFT’s was given in [40, section 6]. We expect that a
similar proof works for gapped 1d phases (with symmetries) with the vertex operator algebra in [40, section
6] replaced by a more general local quantum symmetry, which will be clarified elsewhere.
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need to be replaced by those of symmetric operators. More precisely, in the presence of an
onsite symmetry, we again have two categories B and S:

1. an object in S is a TDL (or a particle-like topological excitation) or a topological
sector of states, which is defined by an invariant subspace of Htot under the action
of symmetric local operators and the symmetries.

2. an object in B is a topological sector of symmetric operators, which is defined by a
subspace of all (potentially non-local) operators invariant under the action of sym-
metric local operators and the symmetries (see remark 2.5).

Altogether they form an enriched fusion category BS defined by a braided equivalence
φ : B → Z1(S). We demonstrate this picture in later sections through concrete 1d lat-
tice models.

2.3 Ising chain

Consider a 1d Ising chain:8 Htot = ⊗i∈ZC2
i with the Hamiltonian defined as follows:

H = −
∑
i

BXi −
∑
i

JZiZi+1,

where Xi and Zi are Pauli matrices

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

We set |0〉i, |1〉i ∈ Ci to be the eigenstates of Zi, i.e. Zi|0〉i = |0〉i and Zi|1〉i = −|1〉i,
and set

|+〉i = 1√
2

(|0〉i + |1〉i), |−〉i = 1√
2

(|0〉i − |1〉i).

It is clear that Xi|±〉i = ±|±〉i.

2.3.1 The J = 0 case

Now we consider the case J = 0 and B ≈ 1. In this case, the ground state is

|Ω〉 = | · · ·+ + + + · · · 〉.

The system is gapped. Note that Xi is a local Z2 symmetry, and U = ⊗iXi defines a global
onsite Z2 symmetry.

If we do not impose any symmetry, the only topological sector of states is the vacuum
sector, denoted by 1. The only topological sector of operators is the trivial one. Indeed,
in this case, all non-local operators can be confined by adding proper small perturbations.
For example, the operators

mi = ⊗k≤iXk and Umj

8Note that ⊗i∈ZC2
i is not mathematically well-defined but should be viewed as a proper N → ∞ limit

of ⊗−N<i<NC2
i spanned by finite energy states.
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are confined by adding the term −
∑
iKZi to the Hamiltonian. As a consequence, when

J = 0, the phase is the trivial 1d topological order and can be mathematically described by
the category Vec of finite dimensional vector spaces, which has a unique simple object 1.

Now we impose the U -symmetry. The ground state |Ω〉 preserves the U -symmetry. We
call an operator P preserving the U -symmetry (i.e. [P,U ] = 0) a U -symmetric operator.
For example, both the identity operator 1 and ZiZi+1 are U -symmetric local operators,
and mj is a U -symmetric non-local operator. Although the operator Zi breaks the U -
symmetry as a local operator, it can be viewed as a U -symmetric non-local operator because
Zi = ⊗k≥i(ZkZk+1) (see remark 2.4). Moreover, Zi and mj are unconfined by any U -
symmetric perturbations of the Hamiltonian.

Remark 2.4. We set Zi,j := ⊗i≤k≤jZkZk+1. Strictly speaking, Zi is not the same as
Zi,∞ because the later has another Zj at j ≈ ∞. However, Zi catches all the corrected
local properties of Zi,∞ near the site i. So it is harmless and convenient to apply this
identification Zi = Zi,∞. Alternatively, one can use the string operator Zi,j with the string
length |j − i| much longer than the given characteristic length (or simply Zi,∞). The final
result is irrelevant to the choice.

Now the total Hilbert space splits into two topological sectors of states labeled by
symmetry charges. We denote the sector associated to the vacuum |Ω〉 by 1, and the sector
associated to the non-trivial symmetry charges by e. The trivial sector 1 is viewed as a
trivial particle or a 1-particle. The lowest energy states in the sector e are

|e〉i := Zi|Ω〉 = | · · ·+ +−i + + + · · · 〉, ∀i ∈ Z,

each of which represents an e-particle located at site i. The following state

ZiZj |Ω〉 = | · · ·+ +−i + + +−j + + + · · · 〉

represents two e-particles located at site i and site j. This immediately implies the following
fusion rules: 1⊗e = e⊗1 = e, e⊗e = 1, which coincide with those in the category Rep(Z2)
of Z2-representations.

A topological sector of U -symmetric operators is invariant under the action of U -
symmetric local operators and the symmetries. For example, all U -symmetric local op-
erators and U are in the trivial sector; and Yk, Zk belong to the same topological sector
because Yk = −iZkXk. The operator mi is a U -symmetric non-local operator. Although
mi does not create a new particle from |Ω〉, it plays a non-trivial role in the model.

By abusing the notation, we denote the topological sectors associated to the U -
symmetric operators 1,mi, Zj ,miZj by 1,m, e, f , respectively. For x, y = 1, e, we denote
the space of U -symmetric operators that map from x to y by homJ=0

bulk(x, y). Then we
immediately obtain

homJ=0
bulk(1, 1) = 1⊕m, homJ=0

bulk(1, e) = homJ=0
bulk(e, 1) = e⊕ f, homJ=0

bulk(e, e) = 1⊕m.
(2.1)

Note that we have given the topological sectors associated to the operators
1,mi, Zi,miZj the same notations as those of anyons in the 2d toric code model or the
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simple objects in Z1(Rep(Z2)) (see appendix A and remark 2.5) because these topological
sectors of operators provide a physical realization of Z1(Rep(Z2)). Indeed, first note that
these topological sectors of U -symmetric operators automatically satisfy the same fusion
rule (defined by multiplying operators) as that of Z1(Rep(Z2)). Moreover, they also recover
the braidings in Z1(Rep(Z2)). For example, one can recover the double braiding between e
and m in Z1(Rep(Z2)) by first creating a pair of “m-particles” at site i and j for i < j (by
applying mimj to |Ω〉), then applying Zk for i < k < j, then annihilating two m-particles,
then annihilating Zk, one obtains ZkmimjZkmimj = −1, which is precisely the double
braiding between e and m in Z1(Rep(Z2)). One can recover the double braiding between
m and e by mkZiZjmkZiZj = −1.

Remark 2.5. For a 1d gapped quantum system with a finite onsite symmetry G, the
category of topological sectors of operators is Z1(Rep(G)). This fact can be reformulated
precisely and proved rigorously (see [43, corollary 2.25, remark 2.26]).

Comparing (2.1) with (A.4), we obtain our first main result.

Theoremph 2.6. The Ising chain when J = 0, B ≈ 1 realizes the trivial 1d Z2 SPT order,
which can be described mathematically by the enriched fusion category Z1(Rep(Z2))Rep(Z2).

Remark 2.7. Strictly speaking, we have to check the identity morphisms (A.15), the com-
positions of morphisms (A.16)–(A.17) and the horizontal fusion morphisms, such as (A.20),
before we make the claim in theoremph 2.6. Since these defining structures of enriched fu-
sion categories are mathematically technical, and checking their coincidence with lattice
models is straightforward and rather trivial in the Z2-symmetry case, we decide to leave
this checking as an exercise for all cases in this work. But for a non-abelian onsite symmetry
G, this exercise can be non-trivial and interesting.

Remark 2.8. Before we impose any symmetry, the category of the topological sectors
of operators is trivial. After we impose the U -symmetry, the category of the topological
sectors of U -symmetric operators becomes Z1(Rep(Z2)), which does not depend on the
Hamiltonian, but only depends on the symmetry. This provides a justification of the
earlier proposal that the bulk Z1(Rep(Z2)) of the 1d phase defined by Rep(Z2) should be
viewed as the categorical symmetry of the 1d phase [23, 32] (see also remark 3.6). Moreover,
our results suggest that one can define the categorical symmetry associated to an onsite
symmetry G by the category of the topological sectors of G-symmetric operators.

Remark 2.9. The trivial action of mi on |Ω〉 can be interpreted as a condensation of
the “m-particles” (or equivalently, the Lagrangian algebra 1 ⊕m [30]) in the categorical
symmetry provided (recall remark 2.3). The multiplication of the Lagrangian algebra 1⊕m
is given by (A.16) and the unit is given by (A.15).

Remark 2.10. Mathematically, the categorical description Z1(Rep(Z2))Rep(Z2) is anomaly-
free in the sense that this enriched fusion category Z1(Rep(Z2))Rep(Z2) has a trivial Drinfeld
center [39], i.e.

Z1(Z1(Rep(Z2))Rep(Z2)) = Vec. (2.2)
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It is worthwhile to compare the “anomaly-fixing” mechanics in this approach with that
in the gauging-the-symmetry approach and that in the boundary-bulk-relation approach
introduced in [31].

(1) In the gauging-the-symmetry approach, since the category Rep(Z2) of symmetry
charges cannot be detected by the braidings, it was viewed in some sense as “anoma-
lous”. The anomaly is fixed by the gauging process of introducing new particles. The
total particles after gauging form a multi-fusion 1-category Fun(Rep(Z2),Rep(Z2)),
which has a trivial monoidal center [31, section 2.2.1].

(2) In the boundary-bulk-relation approach, the category Rep(Z2) of symmetry charges
is also viewed as anomalous, and the anomaly is fixed by the 1-dimensional higher
bulk Z1(Rep(Z2)). In particular, the m-particles in the bulk can detect the e-particles
via the half-braidings, thus fixed the anomaly [31, section 3.2].

(3) What we have shown in this subsection is that once we impose the U -symmetry, the
category of the topological sectors of symmetric operators is changed to Z1(Rep(Z2)).
By replacing Rep(Z2) with Z1(Rep(Z2))Rep(Z2), we fix the “anomaly” in Rep(Z2) by
operators in 1+1D spacetime in the sense that an e-particle is now detectable by a
U -symmetric local operator mimj as explained in the paragraph below (2.1).

Notice that (2) and (3) are essentially equivalent if we apply topological Wick rotation
(see section 1.2). Moreover, one can recover the category Fun(Rep(Z2),Rep(Z2)) in (1) by
closing the fan around the left-bottom corner of picture (b) in figure 3 as the consequence
of the following identity:

Fun(Rep(Z2),Rep(Z2)) = Rep(Z2)�Z1(Rep(Z2)) Rep(Z2).

See [36, eq. (3.4)] for more details, and see [31, 32] for more discussion of this closing-fan
realization of gauging the symmetry.

2.3.2 Two gapped boundaries when J = 0

It is also natural to consider the model with a gapped boundary, i.e. Htot = ⊗i≥0C2
i .

If we do not impose any symmetry, there is only one possible boundary condition.
The precise boundary Hamiltonian is irrelevant because there is no non-trivial particles
and no non-trivial (unconfined) non-local operators. Therefore, the boundary phase can
be described mathematically by the category Vec. We illustrate this fact by the follow-
ing picture.

VecVec Vec (2.3)

If we impose the U -symmetry, there are two choices of boundary conditions.

1. U -symmetric boundary condition: the precise boundary Hamiltonian is irrelevant as
long as it preserves the U -symmetry. For convenience, we can choose the following
boundary Hamiltonian that preserves the U -symmetry:

H = −
∑
i≥0

Xi.
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In this case, there are still two topological excitations on the boundary: 1 and e.
On the boundary m0 becomes a U -symmetric local operator now, so are U and
Um0 because the U -symmetry is preserved on the boundary. Hence, we obtain the
following topological sectors of operators:

homJ=0
s−bdy(1, 1) = 1, homJ=0

s−bdy(1, e) = homJ=0
s−bdy(e, 1) = e, homJ=0

s−bdy(e, e) = 1.
(2.4)

Comparing (2.4) with (A.6), we conclude that the boundary phase can be described
by the RepZ2-enriched 1-category RepZ2RepZ2.

2. U -symmetry broken boundary condition: for example, we can choose the following
boundary Hamiltonian to break the U -symmetry only on the boundary:

H = −Z0 −
∑
i>0

Xi.

In this case, the ground state is |1 + + + · · · 〉, and Z0 does not create a new sector of
states from the vacuum. Or equivalently, we can say that e-particles condense on this
boundary. Moreover, Z0 becomes a local operator because the U -symmetry is broken
on the boundary. So is Z0,∞ because Z0Z0,∞ is now a local operator. Although m0
becomes a local operator, Um0 remains a non-local operator and defines a non-trivial
topological sector of operators because the U -symmetry is broken on the boundary.
As a consequence, we obtain

homJ=0
sb−bdy(1, 1) = 1⊕m. (2.5)

Comparing (2.5) with (A.9), we see that the observables on the U -symmetry broken
boundary form an enriched category VecZ2 Vec.

Remark 2.11. If we consider the boundaries on the right side, i.e. Htot = ⊗i≤0C2
i . The

categorical descriptions of the boundaries remain the same.

Remark 2.12. It is clear that the observables in the bulk act on those on the boundary.
Therefore, the categorical description of a boundary is necessarily a module over that of the
bulk. Indeed, RepZ2RepZ2 and VecZ2 Vec are both closed modules over Z1(Rep(Z2))Rep(Z2)
(see [41, Definition 3.18]). By [38, corollary 4.39], and the boundary-bulk relation (i.e. the
bulk is the center of a boundary) [37] holds for both boundaries, i.e.

Z0(RepZ2RepZ2) = Z1(Rep(Z2))Rep(Z2) = Z0(VecZ2 Vec), (2.6)

where Z0 denotes the E0-center of an enriched category [38, section 4.4]. The identity (2.2)
automatically follows from (2.6) by the fact that the center of a center is trivial [38, re-
mark 5.28]. This fact is the mathematical counterpart of the obvious physical fact that the
bulk of a bulk is trivial.

In picture (a) of figure 3, we illustrate the 1d Z2 SPT order, together with its two
gapped boundaries that are constructed in this subsection. Picture (b) of figure 3 depicts
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Z1(Rep(Z2))Rep(Z2)

Rep(Z2)Rep(Z2) VecZ2 Vec

Rep(Z2)

Rep(Z2) VecZ2

Rep(Z2) Vec

Z1(Rep(Z2))

(a) (b)

Figure 3. These pictures illustrate two gapped boundaries of the trivial 1d Z2 SPT order in two
different ways.

a 2d Z2 topological order described by Z1(Rep(Z2)), together with two gapped boundaries
described by two fusion 1-categories Rep(Z2) and VecZ2 , respectively, and the trivial do-
main wall (defined by Rep(Z2)) in Rep(Z2) and an invertible domain wall (defined by Vec)
between Rep(Z2) and VecZ2 . In particular, the vertical direction is the 2nd spatial direc-
tion. We see that picture (a) can be obtained from picture (b) by applying the topological
Wick rotation [40] (see also section 1.2).

2.3.3 The B = 0 case

Now we consider the case B = 0 and J ≈ 1. we have H = −
∑
i ZiZi+1. In this case,

U = ⊗iXi is still a global symmetry, but Xi is not a local symmetry. The following
two states

| · · · 000 · · · 〉 and | · · · 111 · · · 〉

are both ground states representing U -symmetry broken phases.
If we do not impose any symmetry and if we ignore perturbations, then total Hilbert

space splits into four sectors Hab for a, b = 0, 1, where Hab is spanned by states
(⊗k<i|a〉k)(⊗k≥i|b〉k) for i ∈ Z. We denote the topological sector associated to Hab by
sab. Then we see immediately the fusion rules among them:

sab ⊗ scd = δbcsad. (2.7)

Similar to the no-symmetry case when J = 0, there are no non-local operators. Therefore,
this phase is described mathematically by the unitary multi-fusion 1-category that consists
of four simple objects s00, s01, s10, s11 satisfying the fusion rules (2.7). Mathematically,
this multi-fusion category is precisely the category Fun(VecZ2 ,VecZ2). However, this nice
mathematical description requires fine tuning and is not stable under perturbations. By
adding a small perturbation term say −

∑
iKZi for 0 < K � 1, all sectors s01, s10, s11 are

gone. We obtain again the trivial phase described by Vec.

Remark 2.13. Although it needs fine tuning, the mathematical description
Fun(VecZ2 ,VecZ2) of a 1d bulk is natural and anomaly-free because the E1-center (or
Drinfeld center) of Fun(VecZ2 ,VecZ2) is trivial, i.e. Z1(Fun(VecZ2 ,VecZ2)) = Vec. It natu-
rally appears in the process of dimensional reductions of a 2d topological order [1, 36] (see
remark 2.20).
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Now we impose the U -symmetry. Note that none of sab for a, b = 0, 1 are U -symmetric
because the ground states break the symmetry. They form two U -symmetric topological
sectors of states:

1 := s00 ⊕ s11, m = s01 ⊕ s10,

The fusion rules are 1⊗m = m⊗ 1 = m and m⊗m = 1, coinciding with those in VecZ2 .

Remark 2.14. Although the states in the sector s00 ⊕ s11 (such as | · · · 000 · · · 〉 ±
| · · · 111 · · · 〉) can carry different “U -charges”, it is physically meaningless to split s00⊕ s11
further into two sectors according to the “U -charges” because the relative phase factors
in the superposition of two states in two different superselection sectors are meaningless
according to [58].9 The sector m is similar.

The U -symmetric non-local operator Zi (or rather Zi,∞ recall remark 2.4) acts on the
vacuum | · · · 000 · · · 〉 trivially. Using the same analysis as in section 2.3.1, we immediately
obtain

homB=0
bulk (1, 1) = 1⊕e, homB=0

bulk (1,m) = homB=0
bulk (m, 1) = m⊕f, homB=0

bulk (m,m) = 1⊕e.

Comparing it with (A.5), we obtain the following result (recall remark 2.7).

Theoremph 2.15. The Ising chain when B = 0 and J ≈ 1 with the U -symmetry realizes a
symmetry-breaking phase, which can be described mathematically by the enriched fusion
category Z1(Rep(Z2))VecZ2 .

Remark 2.16. The trivial action of Zi on the vacuum can be interpreted as the con-
densation of the “e-particles” (or equivalently, the Lagrangian algebra 1 ⊕ e [30]) in the
categorical symmetry provided by the vacuum sector of states (recall remark 2.3).

Remark 2.17. Note that Rep(Z2) = VecZ2 as fusion categories. We can identify
Z1(Rep(Z2))VecZ2 with Z1(Rep(Z2))

m↔e Rep(Z2). The enrichment in Z1(Rep(Z2))
m↔e Rep(Z2) is twisted

by the braided auto-equivalence (e ↔ m) of Z1(Rep(Z2)). Note that this braided auto-
equivalence does not preserve the symmetry (i.e. Rep(Z2) ↪→ Z1(Rep(Z2)). This coincides
with the fact that H2(Z2,U(1)) is trivial.

2.3.4 Two gapped boundaries when B = 0

Now we consider the same model with a boundary on the left side, i.e. Htot = ⊕i≥0C2
i .

Without imposing any symmetry, and without fine tuning, there is only one sector
of states associated to the lattice with a boundary. It consists of the lowest energy state
|000 · · · 〉. The same boundary condition can be imposed on the right side. We illustrate
two side boundaries in the following picture:

VecVec Vec (2.8)
9This fact is compatible with the fact that the difficulty of creating a Schrödinger Cat state grows

exponentially (i.e. ∼ 2N ) as the number of qubits N approach ∞ (see a discussion of this fact from a
modern perspective [54]).
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Remark 2.18. It is worthwhile to discuss the boundaries of the fine tuned bulk (consisting
of four sectors sab, a, b = 0.1) without imposing any symmetry because they often occur in
the process of dimensional reductions. There are only two non-trivial sectors s′0 and s′1 of
states associated to the lattice with a boundary. The sector s′0 consists of the state |000 · · · 〉.
The sector s′1 consists of the state |111 · · · 〉. There is no unconfined non-local operators.
Therefore, the boundary phase can be described by the category VecZ2 (forgetting its
monoidal structure). Moreover, we have the following fusion rules:

s′a ⊗ sbc = δabs
′
c, ∀a, b, c = 0, 1.

This fusion rule endows the category VecZ2 with a structure of right Fun(VecZ2 ,VecZ2)-
module. Similarly, if we choose a boundary on the right side, i.e. Htot = ⊕i≤0C2

i . Again
the boundary phase can be described by the 1-category VecZ2 with two simple objects s′′a
and the fusion rules:

sab ⊗ s′′c = δbcsa, ∀a, b, c = 0, 1.

This fusion rule defines a structure of a left Fun(VecZ2 ,VecZ2)-module on VecZ2 . We
illustrate them in the following picture:

Fun(VecZ2 ,VecZ2 )VecZ2 VecZ2 (2.9)

If we impose the U -symmetry, there are two choices of boundary conditions.

1. U -symmetric boundary condition: for example, we can choose the boundary Hamil-
tonian as H = −

∑
i≥0 ZiZi+1. Now m-particles condense on the boundary. Only

surviving particle on the boundary is 1. Hence, the category of boundary particles
is Vec (forgetting the monoidal structure). In the neighborhood of the boundary,
m0 and Um0 become local U -symmetric operators. The operator Z0 is still a U -
symmetric non-local operator. Therefore, we obtain

homB=0
s−bdy(1, 1) = 1⊕ e.

Comparing it with (A.8), we see that the observables on this gapped boundary form
the enriched category Rep(Z2)Vec.

2. U -symmetry broken boundary condition: for example, we can choose the boundary
Hamiltonian as H = −Z0 −

∑
i>0 ZiZi+1. In this case, U -symmetry is broken on the

boundary. There are still two sectors of states consisting of

|0000 · · · 〉 and Um0|0000 · · · 〉 = |0111 · · · 〉,

respectively. Note that a bulk m-particle acts on the two boundary sectors of states
as a non-trivial permutation. Hence, the boundary particles form the category VecZ2

(forgetting the monoidal structure). The operator Z0 is now a local operator. The
only non-trivial sector of operators consists of U (because the symmetry is broken on
the boundary). Therefore, we obtain

homB=0
sb−bdy(1, 1)=homB=0

sb−bdy(m,m) = 1, homB=0
sb−bdy(1,m)=homB=0

sb−bdy(m, 1) = m.
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Z1(Rep(Z2))VecZ2

Rep(Z2)Vec
VecZ2 VecZ2

VecZ2

Rep(Z2) VecZ2

Vec VecZ2

Z1(Rep(Z2))

(a) (b)

Figure 4. These pictures illustrate two gapped boundaries of the Z2-symmetry broken phase in
two different ways.

Comparing it with (A.7), we see that the observables on this gapped boundary form
the enriched category VecZ2 VecZ2 .

Remark 2.19. By [38, corollary 4.39], the boundary-bulk relation still holds, i.e.

Z0(Rep(Z2)Vec) = Z1(Rep(Z2))VecZ2 = Z0(VecZ2 VecZ2).

Figure 4 (a) illustrates the Z2-symmetry broken phase with two gapped boundaries.
In figure 4 (b), we depict a 2d topological order Z1(Rep(Z2)), together with two different
gapped boundaries Rep(Z2) and VecZ2 and two 0d domain walls VecZ2 and Vec. In partic-
ular, the vertical direction is the 2nd spatial direction. Again figure 4 (a) can be obtained
from figure 4 (b) via a topological Wick rotation (see section 1.2).

Remark 2.20. If we fuse the left vertical line in figure 4 (b) with the horizontal line, we
obtain a 1d bulk phase with a boundary as depicted in (2.8); if we fuse the right vertical
line with the horizontal line, we obtain a fine-tuned 1d bulk with a boundary as depicted
in (2.9).

Remark 2.21. When J = B = 1, the system is at the critical point of a phase transition.
We denote the Ising vertex operator algebra by VIs, its right moving counterpart by VIs
and the Ising unitary modular tensor category by Is, i.e. Is = ModVIs . Then this critical
point (as a 1+1D gapless phase) might10 be described by a pair (VIs ⊗C VIs,

Z1(Is)Is) [41].
This also means that the enriched-category description works for both gapped and gapless
phases.

Remark 2.22. One can also use a domain wall to connect two 1d gapped phases realized
by the Ising chain by considering the following Hamiltonian

H = −
∑
i<0

BXi −
∑
i≥0

JZiZi+1

for J = B ≈ 1. Note that both m−1 and Z0 acts trivially on the vacuum | · · ·+++000 · · · 〉.
Similar to remark 2.9 and 2.16, all “particles” in the categorical symmetry are condensed

10There are other candidates. For example, one can replace VIs ⊗C VIs by the full field algebra A =
1� 1⊕ψ � ψ, i.e. a condensation algebra in Z1(Is), we obtain another pair (A, Z1(Rep(Z2))Rep(Z2). This is
an interesting direction to explore.
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by the vacuum sector 1wall of states on the wall, i.e. hom(1wall, 1wall) = 1 ⊕ m ⊕ e ⊕ f .
Comparing it with (A.14), it is clear that the wall can be described by the enriched category
Z1(Rep(Z2))Vec, which is an invertible Z1(Rep(Z2))Rep(Z2)-Z1(Rep(Z2))VecZ2-bimodule. This
implies that two different gapped phases realized in the Ising chain are Morita equivalent.
Actually, the representation theory of enriched fusion categories predicts that there are
other bimodules or domain walls. We illustrate one in the following picture:

Z1(Rep(Z2))Rep(Z2)

Rep(Z2)Rep(Z2) VecZ2 Vec

VecZ2 Vec � Rep(Z2)Vec
Z1(Rep(Z2))VecZ2

Rep(Z2)Vec
VecZ2 VecZ2

By the spatial equivalence introduced in [41, 60], all of this bimodules or domain walls are
spatially equivalent due to the lack of thermodynamic limit of “0d phases”.

Remark 2.23. Our restudy of the Ising chain explicitly shows that the enriched-category
approach is capable of unifying the SPT orders with symmetry-breaking orders.

2.4 1d Kitaev chain

Consider the Kitaev chain [27].

H =
⊗
j

Hj ,

H = −µ
∑
j

c†jcj − t
∑
j

(c†j+1cj + c†jcj+1) + ∆
∑
j

(cjcj+1 + c†j+1c
†
j),

where Hj is the super vector space of dimension 1|1. We can rewrite the Hamiltonian by
Majorana operators:

γj,1 = cj + c†j , γj,2 = i(cj − c†j).

We have γ†j,a = γj,a and {γj,a, γk,b} = 2δjkδab for a, b = 1, 2. Then we obtain

H = µ

2
∑
j

(1− iγj,1γj,2) + t−∆
2

∑
j

iγj,1γj+1,2 −
t+ ∆

2
∑
j

iγj,2γj+1,1

There is a fermion parity operator

U = ⊗j iγj,1γj,2.

The U -symmetric local operators are generated by γj,1γj,2 and γj,1γj+1,2. There are
U -symmetric nonlocal operators

mk =
∏
j≤k

iγj,1γj,2, fk =
∏
j≤k

γj,2γj+1,2, ek = mkfk.

There are again four simple sectors of symmetric operators 1,m, f, e associated to the
identity operator, mk, fk, ek, respectively. The category of the topological sectors of oper-
ators form the braided fusion category Z1(sVec). As a braided fusion category, Z1(sVec) is
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braied equivalent to Z1(Rep(Z2)), but the symmetry charges are embedded into Z1(sVec)
according to 1 7→ 1, f 7→ f .

It is helpful to compare this model with the Ising chain under the correspondence
Xj 7→ iγj,1γj,2 and Zj 7→ γj,2. However, different from Zj , the operator γj,2 is a super
operator. Thus the category Rep(Z2) is generally replaced by the category sVec of finite
dimensional supervector spaces in this model. Note that Rep(Z2) and sVec are the same
fusion category but different in their braidings. It is helpful to remind the readers of
three different fusion subcategories of Z1(Rep(Z2)) given in (A.2), which also explains our
notations.

2.4.1 The case µ = 1 and t = ∆ = 0

In the bulk, there are two topological sectors of states (or bulk excitations) labeled by
symmetry charges 1 (the even parity) and f (the odd parity) with the following obvious
fusion rules:

1⊗ 1 = f ⊗ f = 1, 1⊗ f = f ⊗ 1 = f.

Moreover,

homkc1
bulk(1, 1) = homkc1

bulk(f, f) = 1⊕m,
homkc1

bulk(1, f) = homkc1
bulk(f, 1) = f ⊕ e.

Comparing it with (A.10), we see that the observables in this 1d phase form the enriched
fusion category Z1(sVec)sVec. According to Example 1.5 (see also remark 1.6), this phase is
the trivial fermionic 1d SPT order with a Z2 onsite symmetry.

When there is a boundary on the left defined by the same Hamiltonian restricting
i ≥ 0, there are two boundary excitations 1, f , and we have

homkc1
bdy(1, 1) = homkc1

bdy(f, f) = 1,

homkc1
bdy(1, f) = homkc1

bdy(f, 1) = f.

Comparing with (A.12), we see that the observables on this boundary form the enriched
category sVecsVec. The 1d bulk phase and its boundary can be obtained from the 2d spatial
configuration depicted on the left side of figure 5 via a topological Wick rotation.

Remark 2.24. By [38, corollary 4.39], the boundary-bulk relation holds, i.e.

Z0(sVecsVec) ' Z1(sVec)sVec.

2.4.2 The case µ = 0 and t = −∆ ≈ −1

This case is obtained from the previous one by making a replacement γj,2 7→ γj+1,2 thus is
related to the previous case under the involution m↔ mf .

In the bulk, there are two topological sectors of states (or bulk excitations) 1, f with
the following fusion rules:

1⊗ 1 = f ⊗ f = 1, 1⊗ f = f ⊗ 1 = f.
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sVec

sVec sVec
Ym↔e

sVec Vec

Z1(sVec)

Z1(sVec)

Figure 5. This picture depicts a 2d spatial configuration that can realize two 1+1D gapped
phases appeared in 1d Kitaev chain and their boundaries via topological Wick rotation. We use
Ym↔e to denote the invertible domain wall associated to the braided auto-equivalence Z1(sVec)→
Z1(sVec) defined by m ↔ e. By [39], Ym↔e can be mathematically described by the category
FunsVec|sVec(Vec,Vec) of sVec-sVec-bimodule functors.

Moreover, we have

homkc2
bulk(1, 1) = homkc2

bulk(f, f) = 1⊕ e,
homkc2

bulk(1, f) = homkc2
bulk(f, 1) = f ⊕m.

Comparing it with (A.11), we see that the observables in this 1d phase form the enriched
fusion category Z1(sVec)

m↔e sVec, where the enrichment is twisted from the standard one by the
involution m ↔ e. According to eq. (1.3) and Example 1.5 (see also remark 1.6), this 1d
phase is the unique non-trivial fermionic 1d SPT order with a Z2 onsite symmetry, which
is also called a 1d p-wave topological superconductor.

When there is a boundary on the left by restricting the model to i ≥ 0, there is only
one boundary excitation 1′ and we have

homkc2
bdy(1′, 1′) = 1⊕ f.

Comparing it with (A.13), we see that the observables on this boundary form the enriched
category sVecVec. The 1d bulk phase and its boundary can be obtained from the 2d spatial
configuration depicted on the right side of figure 5 via a topological Wick rotation.

Remark 2.25. By [38, corollary 4.39], the boundary-bulk relation holds, i.e.

Z0(sVecVec) ' Z1(sVec)
m↔e sVec.

Remark 2.26. One can construct a domain wall between two 1d gapped phases realized in
the Kitaev chain. We leave it as an exercise to show that it can be described mathematically
by the enriched category FunsVec|sVec(Vec,Vec)Vec (see figure 5).

Remark 2.27. Note that sVec ' Rep(Z2) ' VecZ2 as fusion categories. Therefore, we
can simply identify them. As a consequence, we can have the following identifications:

Z1(sVec)sVec = Z1(Rep(Z2))Rep(Z2) and Z1(sVec)
m↔e sVec = Z1(Rep(Z2))VecZ2 .

In other words, enriched fusion categories appeared in Kitaev chain and those appeared in
Ising chain are entirely the same. However, the bosonic symmetry charges Rep(Z2) and
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the fermionic symmetry charges sVec play different roles in Z1(Rep(Z2)), i.e.

Rep(Z2) ↪→ Z1(Rep(Z2)) sVec ↪→ Z1(Rep(Z2))
1, e 7→ 1, e 1, f 7→ 1, f. (2.10)

This difference provides different physical meanings to the topological skeletons in bosonic
and fermionic cases. This observation leads us to a classification of all fermionic 1d gapped
quantum phases given in theoremph 3.4.

3 Classification of 1d gapped quantum phases

In [41, section 7] and [42, section 5.2], a unified mathematical framework was proposed for
the study of all gapped/gapless quantum liquid phases with/without onsite symmetries in
all dimensions. In particular, a quantum liquid phase X can be described by a pair X =
(Xlqs,Xsk), where Xlqs encodes the information of the so-called local quantum symmetry and
Xsk is the topological skeleton, which is mathematically described by an enriched (higher)
category. In a 1+1D chiral (resp. non-chiral) CFT, Xlqs is given by a vertex operator
algebra (resp. a full field algebra). For gapped phases, Xlqs is more subtle. A proper
treatment of Xlqs requires us to work within the framework of a proper generalization of
conformal nets. Indeed, in a recent work [43], local quantum symmetries and topological
skeletons are unified into a single mathematical theory of topological nets. Many subtle
issues related to local quantum symmetries are clarified there.

In this work, we have focused on the topological skeleton. Although we have checked
only two simple lattice models in 1d, we believe that the unifying power of the enriched-
category description revealed in these two models is very convincing. It is certainly im-
portant to check more known lattice models in higher dimensions. We want to emphasize,
however, that it is already interesting and non-trivial to check more 1d models. One can
start from more general onsite symmetry given by a finite group G. In this case, the
categorical symmetry (recall remark 2.8) should be given by Z1(Rep(G)). All possible
topological skeletons associated to it can be classified by fusion categories S equipped with
a braided equivalence φ : Z1(Rep(G))→ Z1(S), or equivalently, S = (Z1(Rep(G)))A, where
A is a Lagrangian algebra in Z1(Rep(G)) and (Z1(Rep(G))A denotes the category of right
A-modules in Z1(Rep(G). Moreover, the Lagrangian algebras in Z1(Rep(G)) are classified
by pairs (H,ω), where H is a subgroup of G and ω ∈ H2(H,U(1)) [13]. We denote the
Lagrangian algebra associated to (H,ω) by A(H,ω). As a consequence, we have rediscovered
the following well-known classification result.

Theoremph 3.1 ([10, 55]). The 1d bosonic gapped quantum phases11 with an onsite
symmetry are classified by a triple (G,H, ω), where G is the onsite symmetry defined by a
finite group, H is a subgroup of G and ω ∈ H2(H,U(1)) is a 2-cocycle.

Moreover, the general theory in [42] provides us with the following new result begging
to be checked in concrete lattice models.

11All gapped quantum phases in 1d are liquid phases.
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Theoremph 3.2. The topological skeleton of the 1d bosonic gapped phase associated to
(G,H, ω) is given by the enriched fusion category Z1(Rep(G))((Z1(Rep(G)))A(H,ω)).

Remark 3.3. In the well-known classification [10, 55], G is the symmetry group of the
Hamiltonian, and the ground state breaks the symmetry G to a subgroup H. This coincides
precisely with the fact that the vacuum sector of states provides a condensation of the
Lagrangian algebra A(H,ω) in the categorical symmetry Z1(Rep(G)) (recall remark 2.9
and 2.16).

We use the pair (G, z) to denote a fermionic finite onsite symmetry. In particular, G is a
finite group and z is an element in the center of G defining the fermion parity. We denote the
category of G-representations equipped with a new braiding structure that are compatible
with the fermion parity by Rep(G, z). Since Rep(G) = Rep(G, z) as fusion categories,
we can also identify their Drinfeld centers, i.e. Z1(Rep(G)) = Z1(Rep(G, z)). But keep in
mind that bosonic symmetry charges Rep(G) and fermionic symmetry charges Rep(G, z)
are embedded in Z1(Rep(G)) differently (recall the Z2-case (2.10)). We immediately obtain
the classification of all 1d gapped quantum phases with onsite fermionic symmetry (G, z).

Theoremph 3.4. 1d gapped quantum phases with a finite fermionic onsite symmetry
(G, z) are classified by the same triples (G,H, ω) as the bosonic cases, and the associated
topological skeleton is Z1(Rep(G))((Z1(Rep(G)))A(H,ω)), where A(H,ω) is a Lagrangian algebra
in Z1(Rep(G)). The fermionic symmetry charges are embedded in Z1(Rep(G)) canonically
according to Rep(G, z) ↪→ Z1(Rep(G, z)) = Z1(Rep(G)).

Remark 3.5. Each topological skeleton Z1(Rep(G))((Z1(Rep(G)))A(H,ω)) is associated to two
1d gapped quantum phases. One is bosonic, and the other is fermionic. Note that, in the
fermionic cases, the fermion parity never breaks by a boson condensation.

Remark 3.6. The appearance of the enriched category BS is rare in literature, but B

and S have appeared in various contexts under different names. The category S of TDL’s
was called an “algebraic higher symmetry” in [23, 32], but was called a “fusion categorical
symmetry” in [56] and was called a “categorical symmetry” by many others. Before we
apply the topological Wick rotation, the category B can be viewed as the bulk of the
gapped boundary phase S, and was called the “categorical symmetry” in [23, 32].

Remark 3.7. The importance of enriched fusion categories in the study of topological
phases was discovered in the study of gapless phases [40, 41]. Its higher dimensional
analogues were proposed to give a unified framework to study all gapped/gapless liquid
phases with/without symmetries [40–42]. Its relevance in the study of topological phase
transitions was demonstrated in [12]. However, its significance has not yet been recognized
by condensed matter theorists. Perhaps a partial reason for this delay is the abstractness of
the categorical language. We hope that through the restudy of two simple and well-known
lattice models in this work we can help some readers to break the language barrier.
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A Enriched categories

We briefly explain all mathematical results that are needed in this work.
Given a fusion category C and a finite simple left C-module M with a left C-action

� : C ×M → M, there is a C-enriched category CM obtained from the so-called canon-
ical construction [25]. The objects in CM are precisely objects in M. The hom spaces
homCM(x, y) for x, y ∈ M are given by the so-called internal hom: [x, y], which is defined
by the following conditions:

homM(a� x, y) ' homC(a, [x, y]), ∀a ∈ C, x, y ∈M.

The hom spaces homCM(x, y) = [x, y] ∈ C for x, y ∈ M determines the structure of CM

completely. In particular, the composition of morphisms and identity morphisms:

[y, z]⊗ [x, y]→ [x, z] and 1C → [x, x] (A.1)

are naturally induced by the universal property of the internal homs. If, in addition, C is
braided, and M is monoidal and is equipped with a braided functor φ : C → Z1(M), then
CM becomes a C-enriched fusion 1-category [40, 52].

Let Vec be the category of finite dimensional vector spaces. Let Rep(Z2) be the
category of Z2-representations and VecZ2 the Z2-graded finite dimensional vector spaces.
Let sVec be the category of finite dimensional super vector spaces. Note that Rep(Z2),
VecZ2 and sVec are all equivalent as fusion categories. Therefore, their Drinfeld centers
can be identified, i.e.

Z1(Rep(Z2)) = Z1(VecZ2) = Z1(sVec).

We denote the only simple object of Vec by 1. We denote the two simple objects of Rep(Z2)
by 1, e, and those of VecZ2 by 1,m, and those of sVec by 1, f , and those of Z1(Rep(Z2))
by 1, e,m, f (i.e. the same four simple anyons in 2d toric code model). These notations are
justified by three different braided embeddings:

Rep(Z2) ↪→ Z1(Rep(Z2)) VecZ2 ↪→ Z1(Rep(Z2)) sVec ↪→ Z1(Rep(Z2)) (A.2)
1 7→ 1, e 7→ e, 1 7→ 1,m 7→ m, 1 7→ 1, f 7→ f. (A.3)

The non-trivial fusion rules of Z1(Rep(Z2)) are e⊗ e = m⊗m = f ⊗ f = 1, e⊗m = f .
Now we give a few examples of enriched (fusion) categories all obtained from the

canonical construction. All of them are used in this work.

1. Z1(Rep(Z2))Rep(Z2):

[1, 1] = 1⊕m, [1, e] = [e, 1] = e⊕ f, [e, e] = 1⊕m. (A.4)

2. Z1(Rep(Z2))VecZ2 :

[1, 1] = 1⊕ e, [1,m] = [m, 1] = m⊕ f, [m,m] = 1⊕ e. (A.5)
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3. Rep(Z2)Rep(Z2):

[1, 1] = 1, [1, e] = [e, 1] = e, [e, e] = 1. (A.6)

4. VecZ2 VecZ2 :
[1, 1] = 1, [1,m] = [m, 1] = m, [m,m] = 1. (A.7)

5. Rep(Z2)Vec:
[1, 1] = 1⊕ e. (A.8)

6. VecZ2 Vec:
[1, 1] = 1⊕m. (A.9)

7. Z1(sVec)sVec:
[1, 1] = [f, f ] = 1⊕m, [1, f ] = [f, 1] = f ⊕ e. (A.10)

8. Z1(sVec)
m↔e sVec with the enrichment twisted by the non-trivial braided auto-equivalence

of Z1(sVec) defined by m↔ e.

[1, 1] = [f, f ] = 1⊕ e, [1, f ] = [f, 1] = f ⊕m. (A.11)

9. sVecsVec:
[1, 1] = [f, f ] = 1, [1, f ] = [f, 1] = f. (A.12)

10. sVecVec:
[1, 1] = 1⊕ f. (A.13)

11. Z1(Rep(Z2))Vec:
[1, 1] = 1⊕m⊕ e⊕ f. (A.14)

Remark A.1. This paper is written for physicists. In order to keep the paper not too
mathematically technical, we decide to hide some technical parts in remarks. In eq. (A.4)–
(A.14), we have only presented all internal homs as objects (recall (A.1). We have not given
the identity morphisms and the compositions of morphisms. In this remark, we illustrate
them in a single example: the enriched category Z1(Rep(Z2))Rep(Z2):

1. Identity morphisms:
1

11⊕ 0−−−→ 1⊕m = [1, 1] = [e, e]. (A.15)

Since the only morphism from 1 to m is the zero morphism, we will not spell out this
type of zero morphisms explicitly from now on.

2. Compositions of morphisms:

[1, 1]⊗ [1, 1] = (1⊕ 1)⊕ (m⊕m) (11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1⊕m = [1, 1], (A.16)

[1, e]⊗ [e, 1] = (1⊕ 1)⊕ (m⊕m) (11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1⊕m = [e, e], (A.17)

[e, 1]⊗ [1, e] = (1⊕ 1)⊕ (m⊕m) (11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1⊕m = [1, 1], (A.18)

[e, e]⊗ [e, e] = (1⊕ 1)⊕ (m⊕m) (11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1⊕m = [e, e]. (A.19)
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Moreover, since the enriched category Z1(Rep(Z2))Rep(Z2) is also monoidal, it has another
defining data: the horizontal fusion morphism [x′, y′] ⊗ [x, y] → [x′ ⊗ x, y′ ⊗ y], which is
canonically induced from the following morphism (via the universal property of the internal
hom [x′ ⊗ x, y′ ⊗ y]):

([x′, y′]⊗ [x, y])� (x′ ⊗ x) '−→ ([x′, y′]� x′)⊗ ([x, y]� x)→ y′ ⊗ y,

where “'” uses a half-braiding to exchange [x, y] with x′ and the second morphism is defined
by the universal morphisms of the internal homs [x′, y′] and [x, y]. Explicit computation
gives the following horizontal fusion morphisms:

[1, 1]⊗ [1, 1] = (1⊕ 1)⊕ (m⊕m) (11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1⊕m = [1, 1]. (A.20)

We leave the rest of horizontal fusion morphisms as exercises.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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