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Abstract We consider an n× n input-queued switch with uniform Bernoulli
traffic and study the delay (or equivalently, the queue length) in the regime
where the size of the switch n and the load (denoted by ρ) simultaneously be-
come large. We devise an algorithm with expected total queue length equal to
O((n5/4(1−ρ)−1) log max(1/ρ, n)) for large n and ρ such that (1−ρ)−1 ≥ n3/4.
This result improves the previous best queue length bound in the regime
n3/4 < (1− ρ)−1 < n7/4. Under same conditions, the algorithm has an amor-
tized time complexity O(n+(1−ρ)2n7/2/ log max(1/ρ, n)). The time complex-
ity becomes O(n) when (1− ρ)−1 ≥ n5/4.

Keywords Input-queued switch · Queue-size scaling · Stochastic network ·
Large systems

Mathematics Subject Classification (2010) 68M20 · 60K25 · 60C05 ·
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1 Introduction

Input-queued switch models have been quite popular in the context of com-
puter communication networks, originally as models for the switching fabric in
Internet switches and more recently as models for data center networks. They
are also of independent interest to the applied probability and performance
analysis communities as prototypical models of queueing networks with inter-
acting resources. Mathematically, an input-queued switch can be viewed as a
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matrix of queues operating in discrete-time, with independent packet arrival
processes to each queue, which are often taken to be Bernoulli processes for
tractability. The key distinguishing property of an input-queued switch is the
following service constraint: at each time instant, we are only allowed to serve
at most one queue in each row and one queue in each column of the matrix
of queues. Additionally, when a queue is served, at most one packet can be
removed from it.

The input-queued switch model was first studied to design low-complexity
throughput-optimal scheduling algorithms. The scheduling algorithm called
the MaxWeight algorithm was presented in [22] where the authors showed
that scheduling using a maximum weighted matching, with queue lengths as
weights, is throughput optimal. The algorithm was designed for networks that
were more general than input-queued switches. The algorithm was rediscovered
in the context of input-queued switches in [13] where it was also shown that
lower-complexity scheduling algorithms such as maximum size and maximal
matchings fail to be throughput optimal. Additionally, in [24] and [6], it was
shown that the simpler maximal matching algorithm achieves at least half the
maximum throughput region.

Following throughput-optimality results, there has been much interest in
designing algorithms which are also delay optimal for input-queued switches.
Note that, since we can only serve at most one queue in each row and in each
column in each time slot, the total arrival rate to each column and to each
row must be less than one packet per time slot to ensure the stability of the
queueing network. Let ρ denote the maximum arrival rate to any column or
row in the network. It has been conjectured that there exists an algorithm
under which the total queue length in the network scales as O(n/(1 − ρ)).
Using Little’s law, this statement is equivalent to saying that the delay scales
as O(1/(1 − ρ)). Another variant of the conjecture states that such a scaling
holds for the MaxWeight algorithm. These conjectures have been difficult to
prove, so a number of variants of the problem have been considered in the
literature which we will review next.

It was shown in [14,16] that the total queue length in the switch scales
as O(n) under the maximal matching algorithm if ρ < 0.5. The result is
interesting due to two reasons: (i) it shows that the delay in the switch is
independent of the size of the switch at least when the traffic is light and (ii) the
result holds for the maximal matching algorithm which has low computational
complexity. The other extreme traffic regime is the heavy-traffic regime where
n is fixed and ρ→ 1. It was shown in [12] that product of the total queue length
and (1−ρ) converges to O(n) in the heavy-traffic regime under the MaxWeight
algorithm. The result in [12] builds upon a Lyapunov drift method developed
in [7] which was further motivated by fluid models of state-space collapse
exhibited by input-queued switches [21,2,19] operating under the MaxWeight
algorithm. A common feature of these results is that the underlying algorithm
does not require any knowledge of ρ and the results hold for non-uniform and
non-Bernoulli traffic.
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Since the above results do not fully address the O(n/(1−ρ)) queue length-
scaling conjecture, other relaxations have been considered for the scaling regime,
the traffic model and the scheduling algorithms. In [15], it was shown that an
algorithm which assumes an upper bound on ρ and uses a batch-scheduling
model can achieve a queue length of O((n/(1− ρ)2) log n). The work [18] pro-
posed an algorithm with exponential running time that has a queue length
of O(n/(1 − ρ) + n3). If 1 − ρ = 1/n, then the queue length scales as O(n3)
under both algorithms in [15,18] if neglecting logarithm terms. This motivates
the question of whether it is possible to get a smaller queue length in this
traffic regime. This question has been answered for the special case of uniform
Bernoulli traffic in [17] who showed a scaling of O((n3/2/(1−ρ)) log(1−ρ)−1),
which was further improved in [25] to O((n/(1− ρ)4/3) log max(n, (1− ρ)−1)).
It should be noted that the algorithms in [17,25] are batch-scheduling algo-
rithms of the type introduced in [15] but modified further to improve delay
performance. Additionally, the result in [25] does not require ρ = 1− 1/n but
does assume uniform, Bernoulli traffic. Our goal in this paper is to improve
the best known scaling result under uniform, Bernoulli traffic in the scaling
regime ρ = 1− 1/n or higher.

With this goal in mind, our main contribution in the paper is the fol-
lowing: we design a new algorithm for scheduling in input-queue switches
that which leads to an expected total queue length equal of O((n5/4(1 −
ρ)−1) log max(1/ρ, n)) for ρ such that (1 − ρ)−1 ≥ n3/4. The new result
improves the previously known queue length bound in the regime n3/4 <
(1 − ρ)−1 < n7/4. Our algorithm is of batching type, and builds upon an
integration of the Round-Robin idea in [17] and the lower envelope idea in
[25]. Crucially, the new algorithm utilizes the fact that Round-Robin allows
each queue to be served for an equal fraction of time. Such a property en-
ables successive implementation of Round-Robin and lower envelope match-
ing, leading to a better scheduling algorithm. Benefiting from the batch-
ing schedule, the proposed algorithm has a small amortized time complexity
O(n+ (1− ρ)2n7/2/ log max(1/ρ, n)). When (1− ρ)−1 ≥ n5/4, the complexity
becomes O(n), matching the optimal running time of other low-complexity
algorithms [11].

Notation: For two matrices A and B, we use A ≥ B to denote that every
element of A is greater than or equal to the corresponding element of B. We
denote the set {1, 2, · · · , n} as [n] for n ∈ Z+. This paper uses asymptotic
notations. Let x be a positive parameter, and f(x), g(x) be two positive real-

valued function. We write f(x) = O(g(x)) if lim supx→∞
f(x)
g(x) < ∞; f(x) =

ω(g(x)) if lim infx→∞
f(x)
g(x) =∞.

2 Model

Consider an n × n input-queued switch where there are n input ports and n
output ports, and ports are labelled from 1 to n on each side. For each pair of
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input port i and output port j, there is a queue Qij which stores packets that
arrive at input port i which need to be routed to output port j. We assume
time is slotted and takes values in {1, 2, · · · }. Every queue is empty at slot 1.
At a time slot τ , the following events happen sequentially.

First, the scheduler decides a schedule σ = (σij)n×n ∈ {0, 1}n×n. If σij = 1,
a packet in queue Qij is scheduled. But if there is no packet in the queue, the
service is wasted. Due to the internal structure of a switch, the schedule can
include only one packet out of an input port, and only one packet into an
output port. Mathematically, the constraint can be written as

∀i,
n∑

j′=1

σij′ ≤ 1; ∀j ,
n∑

i′=1

σi′j ≤ 1. (1)

In other words, the schedule σ must be a matching. We may interchangeably
use the terms matchings or schedules for convenience. Let S be the set of
perfect matchings, i.e.,

∀i,
n∑

j′=1

σij′ = 1; ∀j ,
n∑

i′=1

σi′j = 1. (2)

As we can see, if we denote σi to be the unique j such that σij = 1, then σ
is exactly a permutation of length n. On the other hand, if a queue matrix q
satisfying q ≥ σ for a perfect matching σ, then this schedule can serve exactly
n packets, which is the maximum amount of service per slot.

After scheduled packets leave, new packets arrive into the system. For each
queue Qij , we assume that a new packet arrives with probability ρ

n , and no
arrival arrives with probability 1 − ρ

n . We assume that packet arrivals are
independent among different queues. That is to say, the arrival of packets to
each queue follows an independent Bernoulli process with rate ρ

n . It is assumed
that ρ ∈ (0, 1), and ρ can scale with n. The load of the system is also ρ because
for each port, the arrival rate is exactly ρ, and the amount of service per slot
is at most 1.

With a little abuse of notation, we use Qij(τ) to denote the queue length
of queue Qij at the beginning of slot τ . Similarly, define Aij(τ) to be the
total number of arrivals to Qij , and Sij(τ) to be the total number of packets
scheduled in Qij during the first τ slots. We assume Aij(0) = Sij(0) = 0.
Let σ(τ) be the chosen schedule for slot τ . Then the queue matrix Q(τ) =
(Qij(τ))n×n evolves as

Qij(τ + 1) = (Qij(τ)− σij(τ))
+

+Aij(τ)−Aij(τ − 1)

Qij(τ + 1) = Aij(τ)− Sij(τ).
(3)

The main concern is this paper is to find a policy that can minimize the

expected queue length E
[∑

ij Qij(τ)
]

at every time slot τ .

4            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

An Algorithm for Improved Delay-Scaling in Input Queued Switches 5

3 Main Result

In this section, we present the main result of this paper. Define f = max(n, (1−
ρ)−1). Since we are considering a dynamical system, the amortized time com-
plexity of an algorithm is defined as the time-average computation, given by

limt→∞

∑t
i=1 T (i)

t where T (i) is the computation time at slot i.

Theorem 1 Consider an n×n switch with independent Bernoulli arrival pro-
cesses to each queue of rate ρ

n . Suppose (1− ρ)−1 ≥ n0.75. Then there exist a
scheduling policy such that

– the amortized time complexity is O(n+ (1− ρ)2n3.5/ log(f)).
– for every time slot τ , it holds that for large enough n,

E

∑
i,j

Qij(τ)

 ≤ 3n1.25(1− ρ)−1 log(f).

We would like to highlight that the policy claimed in Theorem 1 can be con-
structed, and its construction is postponed until Section 5. When the load ρ
scales as 1− 1

n , we have the following bound on the expected queue length. This

new boundO(n9/4 log n) improves the previous best known resultO(n7/3 log n)
in [25].

Corollary 1 Under the setting in Theorem 1, suppose ρ = 1− 1
n . Then there

exists a scheduling policy with amortized time complexity O(n1.5/ log(n)) such
that for every time slot τ , the following bound holds: for large enough n,

E

∑
i,j

Qij(τ)

 ≤ 3n2.25 log n.

4 Preliminaries

Before we describe our policy, we first introduce two known results which are
essential building blocks in the policy.

4.1 Minimum Clearance Time

The first result concerns the minimum clearance time of a queue matrix. Specif-
ically, the goal is to minimize the number of time slots to clear packets from a
fixed queue matrix q = (qij)n×n. We call a policy that has minimum clearance
time an optimal clearing policy.

Let γ be the maximum number of packets among all input ports and output
ports in q. Then the following theorem states that packets in q can be cleared
in exactly γ slots. The following theorem is adopted from [15, Fact 3].

5            
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Theorem 2 Let q = (qij)n×n be a queue matrix. For every 1 ≤ i ≤ n, 1 ≤
j ≤ n, denote

hi =

n∑
j′=1

qij′ ; cj =

n∑
i′=1

qi′j ,

and let γ = max {maxi hi,maxj cj} . Then there exists a sequence of γ match-
ings σ(1), · · · , σ(γ), such that

∑γ
p=1 σ

(p) ≥ q.

As noted in previous work, such a policy can be found using Maximum Size
Matching by augmenting a bipartite graph with additional edges to make all
node degrees equal [15] or using Node Weighted Matching [10]. However, both
algorithms have O(n2.5) complexity per time slot, and thus take O(γn2.5) time
to find the clearing policy, which is not desirable when γ scales with n.

We remark that we can indeed find such policy by finding a minimum edge
coloring on a bipartite graph. To see this fact, fix a queue matrix q = (qij)n×n.
We can create a bipartite graph G with n left nodes and n right nodes. If an
input port i has qij packets to output port j, we create qij edges from the ith

left node to the jth right node in G. Let γ denote the maximum number of
packets in all ports as defined in Theorem 2. We color each edge using one of
γ colors such that any two edges that share a common endpoint have different
colors. Then if we view one color as one time slot, the set of edges with the
same color forms a feasible matching for the corresponding time slot. We can
thus find an optimal clearing policy by edge coloring on a bipartite graph. A
similar technique is also used in [1,23].

The best known algorithm for bipartite edge coloring runs in O(m log n)
time [5] where m is the number of edges. Therefore, it can greatly improve the
time complexity in contrast to O(γn2.5).

4.2 Lower Envelopes

We can see Theorem 2 basically provides an upper bound type of result for a
given queue matrix, i.e., how many perfect matchings we need to cover q. Now
we describe a lower bound result that characterizes the maximum number of
perfect matchings we can find from q. Results in this section are from [25]. We
first define β−lower envelopes of a queue matrix q. Although the definition
here is slightly different from that in [25] for better illustration, the equivalence
of the two definitions is justified in [25, Remark 1].

Definition 1 A β−lower envelope of a queue matrix q is a sequence of β
perfect matchings σ(1), · · · , σ(β) such that q ≥

∑β
p=1 σ

(p).

The existence of a β−lower envelope is given by following result.

Theorem 3 [25, Proposition 1] Consider a queue matrix q = (qij)n×n. There
exists a β−lower envelope of q if and only if for any R, C ⊆ [n] with |R| = k
and |C| = `, we have

β(k + `− n) ≤
∑

i∈R,j∈C
qij . (4)

6            
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Although the work [25] did not analyze the explicit complexity to find a
β−lower envelope of a queue matrix q, we include one here for completeness.

We first describe how to find a β−lower envelope. The first step is to verify
the existence of a β−lower envelope of q. As in [25], we construct a directed
network graph G with a source s, and a sink t. The graph G has n left nodes,
n right nodes and the two nodes s, t. For each left node, there is an edge from
s to this node with capacity β. Similarly, for each right node, there is an edge
from this node to t with capacity β. Finally, for the ith left node and jth right
node, there is an edge eij from i to j with capacity qij .

We then find the maximum flow of G. If the maximum flow is not nβ, the
queue matrix q does not have an β−lower envelope [25]. Otherwise, the flow
on each edge eij constitutes a new matrix f = (fij)n×n where the sum of each
row and column is exactly β, and f ≤ q. By Theorem 2, we can find β perfect
matchings σ(1), · · · , σ(β) such that their sum is exactly f .

The time complexity of the above algorithm consists of two parts: to find
maximum flow and to find an optimal clearing policy. From the discussion
in Section 4.1, there is an O(βn log n) algorithm for the second part because
the sum of elements in f , which is the number of edges in the corresponding
bipartite graph, is βn. Note that β can depend on n, so it may not be a
constant. For the first part, although there are a vast amount of network
flow algorithms [9], we consider Goldberg’s push-relabel algorithm [8] for its
nice time complexity equal to O(n3), and even O(n2 log n) with a parallel
implementation. Summing up above discussions, the time complexity to find
a β−lower envelope is O(n(n2 + β log n)).

5 Policy Description

In this section, we describe our policy for the input-queued switch. Our policy
is a batching policy along the lines of previous work [15,17,25]. We first provide
an overview of the policy. Then we provide details on how the core component
of the policy, Recursive Clearing, is implemented. Finally, we give explicit
parameter settings used in the policy.

5.1 Policy Overview

We assume that time slots are separated into intervals of length b which we
call arrival periods, and the arrival period {kb+1, · · · , (k+1)b} is given index
k where k ∈ Z+. Fix an arrival period k, we will serve packets from this period
in its corresponding service period as shown in Figure 1.

Specifically, the policy follows a similar structure as in [17,25]. However,
it uses additional strategies to schedule packets that help reduce the expected
queue length.

Define Qkij(t) to be the number of packets in queue Qij at the beginning

of time slot kb+ t that arrive in arrival period k. Let Qk(t) = (Qkij(t))n×n be

7            
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Fig. 1 Policy Overview

the whole queue matrix. Initially, Qkij(1) = 0 for all i, j. We assume that all

arrivals in the current period will directly join Qk. The policy works as follows
in each arrival period. Note that the word “phase” is used for a sub-interval
in an arrival period or a service period.

1. First, for a fixed parameter d, no arrival in the first d slots {kb+1, · · · , kb+
d} is served. This phase is labelled as I0 in Figure 1, which we call the
Idling phase.

2. Then for the next b − d slots, namely {kb + d + 1, · · · , (k + 1)b}, the pol-
icy sequentially goes through two kinds of phases, Round-Robin and
Packet-Collecting. Two different algorithms are used in these phases to
schedule packets arriving in the current arrival period. These phases are
labelled as Ru, u ≥ 0 for Round-Robin phases, and Iu, u ≥ 1 for Packet-
Collecting phases in Figure 1. Note that I0 is reserved for the Idling phase.
We assume there are in total l + 1 pairs of (Iu, Ru) where 0 ≤ u ≤ l. In
phase Ru with u ≥ 0, the scheduler can schedule all remaining packets in
Qk. But in phase Iu with u ≥ 1, the scheduler only schedules packets in
Qk that arrive before Iu. We note that I0 is indeed a special case because
Qk is empty at the beginning.
The whole phase, from R0 to Rl, is called Recursive Clearing because
we are recursively scheduling arriving packets. Details of algorithms in
Recursive Clearing is given in the next section.

3. The third phase is Normal Clearing of length s− b+d where s is a fixed
value related to n, ρ. This phase includes slots in {(k+1)b+1, · · · , kb+s+d},
and all packets in arrival period k have arrived. As a result, we can use
the optimal clearing policy introduced in Theorem 2 to clear remaining
packets in Qk. But to ensure a low time complexity, we first check whether
the maximum number of packets among all ports is below the phase length
s − b + d. If it is, then we evoke the algorithm in Section 4.1 to find the
optimal clearing policy. Otherwise, we skip this step, and put all remaining
packets into a backlog queue, as shown below.
Let Uk denote the number of left packets. We maintain a global backlog
queue B, and all remaining packets in Qk will be moved to the backlog
queue. Note that the queue B can include backlogs from previous arrival
periods. Therefore, the total number of packets in all queues at the time

8            
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slot τ is given by the sum of queue length Bk, the number of packets in
Qk, and new arrivals in the next period.

4. The final phase is Backlog Clearing of length b− s with slots {kb+ s+
d + 1, · · · , (k + 1)b + d}. We can see the total length of Normal Clearing
and Backlog Clearing is exactly d, which is equal to the length of the Idling
phase of the next arrival period.
As the name suggests, in Backlog Clearing, backlogs in queue B will be
scheduled. We assume that at each time slot in this phase, exactly one
packet from B will be scheduled (if any exists). Let Bk denote the number
of backlog packets in B at the beginning of arrival period k. Then we can
see that Bk has the following update equation:

Bk+1 = (Bk + Uk − (b− s))+ . (5)

We remark that the Idling phase of an arrival period k+ 1 is indeed the same
time interval as the Normal Clearing phase and the Backlog Clearing phase of
arrival period k. Therefore, the algorithm is trying to schedule for nearly all
time slots except the first I0 time slots of the first arrival period.

5.2 Recursive Clearing

We detail what algorithms are used in Recursive Clearing in this section. Note
that we may also denote Iu (or Ru) as the length of the phase Iu (or Ru).
The meaning should be clear from the context. Denote Tu = Iu + Ru for all
0 ≤ u ≤ l.

5.2.1 Round-Robin Phase

This phase is motivated by the Round-Robin algorithm in [17]. Fix a Round-
Robin phase Ru where 0 ≤ u ≤ l. We will run a Round-Robin policy that has
n permutation matrices σ(0), · · · , σ(n−1) of size n such that for σ(p), it satisfies

σ(p)(i, j) =

{
1, if j ≡ (i+ p) (mod n)

0, otherwise.
(6)

During Ru, we sequentially use σ(0), · · · , σ(n−1), σ(0), · · · as the scheduling
policy for Qk(τ − kb) for each time slot τ . Then if a cycle of {σp, p < n} is
used, every pair of ports (i, j) will be scheduled exactly once.

5.2.2 Packet-Collecting Phase

In Packet-Collecting, instead of scheduling in a Round-Robin manner, we sim-
ply schedule some perfect matchings of a queue matrix as in [25]. To be specific,

let us fix a Packet-Collecting phase Iu where u ≥ 1. Denote L =
∑u−1
p=0 Tp,

that is, the ending slot of the last phase. Then in Iu, we only schedule pack-
ets in Qk(L + 1). For any new arrivals during Iu, we will put them in a

9            
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backup queue. At the end of this phase, we relocate them into the initial
queue Qk. We try to find exactly Iu perfect matchings σ(1), · · · , σ(Iu) such
that Qk(L + 1) ≥

∑Iu
p=1 σ

(p). Such a set of perfect matchings is an Iu-lower

envelope of the queue matrix Qk(L+ 1) introduced in Section 4.2. Therefore,
there exists efficient network flow algorithms that can verify the existence of
such a set of matchings, and provide a specific solution if one exists.

The policy first tests whether such an Iu-lower envelope exists. If there
isn’t a feasible solution, the policy does nothing in this phase. On the other
hand, if there exists such a solution σ(1), · · · , σ(Iu), we schedule these perfect
matchings one by one for the Iu time slots in this phase.

5.3 Intuition of Phase Length and Delay Improvement

Before diving into details of the algorithm and the performance analysis, let
us first provide an intuitive explanation of the queue length bound given in
Theorem 1 and how to set the length of each phase.

Roughly speaking, the algorithm ensures that all packets arriving in an
arrival period will get service during Recursive clearing and Normal Clearing.
Then each arrival period is almost independent and the queue matrix q is
approximately zero at the start of an arrival period. Fix an arrival period.
The intuition behind the algorithm is to guarantee that for each time slot
t+ I0 in Recursive Clearing, the realized schedule is a perfect matching. Then
the expected queue length at time slot t + I0 is upper bounded by n(t +
I0)− nt = nI0, which only depends on the length of Idling phase. Then since
we use Round-Robin in the service period Ru to serve packets arriving in
Iu and Ru, we need about Ru

n ≤
Tuρ
n −

√
Tu

ρ
n log n to ensure that Qij(t +

I0) > 0 and no packets are wasted. Similarly, since we use Packet-Collecting
in Iu to serve all unserved packets by Round-Robin in Iu−1 and Ru−1, we
need Iu ≤ ρTu−1 − Ru−1 −

√
Tu−1ρ log n. The final constraint is to ensure

all remaining packets can be cleared in Normal Clearing, which requires that∑
Tu ≥ ρ

∑
Tu +

√
ρ
∑
Tu log n and gives

∑
Tu ≥ (1 − ρ)−2. Consider the

important special case where ρ = 1 − 1
n . The above constraints motivate us

to set Iu ≈ n1.25, Ru ≈ n1.5. It then shows that the queue length is about
O(n2.25), ignoring additional logarithmic factors.

5.4 Parameter Settings

In this section, we provide explicit settings of parameters for the policy, and
check that the above policy is well-defined. We assume n is large enough when
selecting parameters.

Define f = max(n, (1 − ρ)−1). Let R̃ be the largest multiple of n that is
no larger than 2n−0.5(1 − ρ)−2 log f . For all parameters, we assume they are
rounded up to integers as it will not affect the result when n is large enough.
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Let cd be a positive constant, and denote cp =

⌊
cd

16
√

19(cd+2)

⌋
. We set

I0 = d = cdn
0.25(1− ρ)−1 log f

R0 = R1 = · · · = Rl = R̃, l = cpn
0.5,

(7)

and for each u with 1 ≤ u ≤ l,

Iu = d− u ·
(

8
√

19(cd + 2)
)
n−0.25(1− ρ)−1 log f. (8)

Finally, we set

b =

l∑
i=0

(Ii +Ri), s = ρb+
√
csρb log f, (9)

where cs is a positive constant. Recall that cp is a function of cd. To guarantee
the nonnegativity of each phase in the policy, the constants cd, cs are chosen
such that

2cp −
√

6cscp ≥ 1, cd ≥ 6cp ≥ 2cp ≥ cs ≥ 1280

cd + 2 ≤ ρn0.5, n ≥ 4, 6cp log f ≤ f

40 ≤ cd
6cp
≤ cd ≤ (1− ρ)−1n−0.25.

(10)

Basically, as long as cd and n are large enough, above constraints are easily
satisfied.

5.5 Length Bound of Phases

Before we move forward to the policy analysis, we need to make sure the
policy itself is well-defined. The following lemmas justify it in the sense that
every phase has a positive number of slots. Throughout this section, we assume
assumptions in Theorem 1 hold.

The first lemma gives bound on each phase length Iu and Ru in Recursive
Clearing.

Lemma 1 For each u such that 0 ≤ u ≤ l, it holds that Iu ≥ 1
2d ≥ n, and

Ru ≥ n.

Proof For the bound on Iu, it suffices to prove it for Il because the length Iu
is decreasing. By definitions of l, Iu in (7) and (8), we have

Il = d− l
(

8
√

19(cd + 2)
)
n−0.25(1− ρ)−1 log f

= d−

⌊
cd

16
√

19(cd + 2)

⌋(
8
√

19(cd + 2)
)
n0.25(1− ρ)−1 log f

≥ d−
⌊cd

2
n0.25(1− ρ)−1 log f

⌋
≥ d− d

2
=
d

2
.

11            
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12 Wentao Weng, R. Srikant

To see d
2 ≥ n, recall d = cdn

0.25(1 − ρ)−1 log f . As (1 − ρ)−1 ≥ n0.75, cd ≥
1280, log f ≥ 1, we then have d ≥ 2n.

To show Ru ≥ n, we only need to show R̃ ≥ n as Ru = R̃. By definition of
R̃, it holds

R̃ ≥ 2n−0.5(1− ρ)−2 log f − n ≥ 2n log f − n = n,

where the first inequality is because R̃ is the largest multiple of n that is less
than 2n−0.5(1 − ρ)−2 log f , and the second inequality is because (1 − ρ)−1 ≥
n0.75.

The next lemma gives a tight bound on the arrival period length b.

Lemma 2 The period length b satisfies

2cp(1− ρ)−2 log f ≤ b ≤ 6cp(1− ρ)−2 log f.

Proof By definition,

b =

l∑
u=0

Iu + (l + 1)R0

≥ (l + 1)

(
d

2
+ 2n−0.5(1− ρ)−2 log f − n

)
≥ 2cp(1− ρ)−2 log f,

where we use Lemma 1 twice. Similarly, for the upper bound, we have

b =

l∑
u=0

Iu + (l + 1)R0

≤ (l + 1)
(
d+ 2n−0.5(1− ρ)−2 log f

)
≤ 6cp(1− ρ)−2 log f,

where the last inequality is because d ≤ n−0.5(1− ρ)−2 log f by the constraint
cd ≤ (1− ρ)−1n−0.25 in (10).

Lemma 3 The length of Backlog Clearing, b− s, is equal to cr(1− ρ)−1 log f
where cr = 2cp −

√
6cscp is larger or equal to 1.

Proof We have

b− s = b− ρb−
√
csρb log f

≥ 2cp(1− ρ)−1 log f −
√

6cscp(1− ρ−1) log f

= (2cp −
√

6cscp)(1− ρ)−1 log f.

By constraints in (10), cr = 2cp −
√

6cscp ≥ 1.

The final lemma provides the length bound of Normal Clearing.

12            
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Lemma 4 The length of Normal Clearing, s−(b−d), is at least 1280n0.25(1−
ρ)−1 log f .

Proof It holds that s−(b−d) = cdn
0.25(1−ρ)−1 log f−cr(1−ρ)−1 log f which

is at least (cd−cr)n0.25(1−ρ)−1 log f . We then complete the proof by noticing
that cd − cr = cd − 2cp +

√
6cscp ≥

√
6cscp ≥ 1280 because of (10).

6 Performance Analysis

In this section, we study the performance of the proposed policy. We first
summarize a sketch of the whole proof which consists of multiple parts. Then
we detail the proof of each part in separate sections. Proofs in this section
have a similar structure as [17,25,15]. The key difference is that our analysis
deals with two interchanging algorithms in Recursive Clearing while previous
work only has one or no algorithm for this phase. Throughout this section, we
assume conditions in Theorem 1 are satisfied. The switch size n is assumed to
be large enough.

Proof Sketch

Our goal is to analyze the expected queue length under the policy described
in Section 5. For each time slot τ , the key idea is to show the expected queue

length E
[∑

ij Qij(τ)
]

is of order O(nd) where d is the length of the Idling

phase.
Suppose the time slot τ lies in the kth service period, i.e., it is in the range

[kb + d + 1, (k + 1)b + d] for some k ∈ Z+. For the first d slots {1, 2, · · · , d},
the mean queue length is just bounded by ρnd since the mean arrival rate
to each port is ρ. Since our analysis is on each arrival period, to simplify
notations, define Akij(t) as the number of arrivals to queue Qkij , and Skij(t)

as the number of served packets in Qkij during the first t time slots in arrival

period k. That is, Akij(t) := Aij(t+kb)−Aij(kb), Skij(t) := Sij(t+kb)−Sij(kb).
Let Ak(t) = (Akij(t))n×n.

By definition of Qk and the backlog queue B, it holds

E [Q(τ)] = E
[
Qk(τ − kb)

]
+ E [Bk] + E

[
Ak+1((τ − (k + 1)b)+)

]
.

The last term is because new arrivals of the next period also contribute to the
queue length. But as τ ≤ (k + 1)b + d, the sum of elements in the last term
is no larger than nd. Then by bounding E

[
Qk(τ − kb)

]
and E [Bk] separately,

we can bound the total queue length.
We first bound the first term. Suppose t = τ − kb. It holds

n∑
i=1

n∑
j=1

Qkij(t) =

n∑
i=1

n∑
j=1

Akij(t)−
n∑
i=1

n∑
j=1

Skij(t). (11)

13            
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The expectation of the first term on the right hand side is equal to ρnt because
packets arrive in a Bernoulli process. To bound the second term, we make use
of the following key property: with high probability, we can schedule exactly
n packets for each time slot during Recursive Clearing. The intuition behind
this result is as follows. Fix an index u such that 0 ≤ u ≤ l. Let L =

∑u−1
p=0 Tp

where Tp = Ip +Rp.

– For a Round-Robin phase Ru, the requirement to guarantee no wasted
service is that Qkij(L+m) is positive for all Iu + 1 ≤ m ≤ Iu +Ru, i, j ∈ [n].
Since no packet arrives in Iu will be served (by the definition of the Idling
phase and Packet-Collecting phases), it holds that with high probability,
Qkij(L + m) ≥

(
ρm
n −

√
ρm
n log n

)
− m−Iu

n . The first term is because of
the concentration property of Bernoulli random variables, and the second
term is because we run Round-Robin in Ru. By carefully choosing phase
length Iu, Ru, we can then guarantee Qkij(L + m) is positive throughout
this Round-Robin phase.

– For a Packet-Collecting phase Iu with 1 ≤ u ≤ l, the requirement is to
guarantee Qkij(L) has an Iu-lower envelopes defined in 4.2. We use Theo-
rem 3 to justify that such lower envelope exists with high probability. A
key insight in the proof is to use the service regularity of Round-Robin
algorithm in Ru. If we only look at packets that arrive in phase Iu−1 and
Ru−1, the mean number of arrivals is uniform among all queues. As Ru−1
is a multiple of n, every queue in the switch will be scheduled for exactly
Ru−1

n times. Therefore, the mean queue lengths of all queues are almost
uniform as well. This result indicates that the queue matrix Qk(L) may
have a similar structure as a random graph where the analysis of lower
envelopes has been done in [25].

By above arguments, we can see E
[∑

i,j S
k
ij(t)

]
in (11) is equal to n(min(t, b)−

d) with high probability. Therefore, the mean queue length in (11) can be
bounded by ρnt− n(min(t, b)− d) ≤ 2nd.

Finally, to show E [Bk] is small, we use an analysis similar to [17,25]. Recall
the update equation (5) of Bk. We can view the backlog queue B as a discrete
time G/G/1 queue. Then as long as we can show Uk is small, the famous
Kingman bound [20] can be used to prove that E [Bk] is insignificant. To
bound Uk, notice that if the policy can clear all packets in Qk(b) within Normal
Clearing, then Uk = 0. By Theorem 2, we only require that the phase length
s− (b− d) is larger than or equal to the maximum number of packets of one
port in Qk(b) to guarantee Uk = 0. Then we can once again use the equation
(11), but now use it for one specific port. For any input port i, As argued
before, with high probability, the total amount of service

∑
j S

k
j (b) is equal to

b − d. And the amount of arrivals to port i is less than ρb +
√
ρb log n with

high probability by the concentration property of Bernoulli random variables.
Then, by the definition of s in (9), we have s−(b−d) ≥ ρb+

√
ρb log n−(b−d).

As a result, Uk = 0 with high probability, which completes the whole proof.
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6.1 Useful Facts

Before we proceed to the complete proof of our result, we first introduce several
useful facts on which our analysis relies.

Kingman Bound for discrete-time G/G/1 queue

Consider a G/G/1 queue {Z(τ), τ ≥ 0} with an arrival process {X(τ), τ ≥ 1}
and a service process {Y (τ), τ ≥ 1} where both {X(τ), τ ≥ 1} and {Y (τ), τ ≥
1} consist of i.i.d. random variables, and the two processes are independent
from each other. Suppose the queue evolves as

Z(τ + 1) = (Z(τ) +X(τ)− Y (τ))+.

Define λ = E [X(τ)],m2x = E
[
X2(τ)

]
, µ = E [Y (τ)], m2y = E

[
Y 2(τ)

]
. The

following result is from [17, Theorem 4.2].

Theorem 4 Suppose that Z(0) = 0 and that λ < µ. Then

E [Z(τ)] ≤ m2x +m2y − 2λµ

2(µ− λ)
, for all τ. (12)

Concentration Inequality

The following result is adapted from [4, Theorem 2.4].

Theorem 5 Let X1, · · · , Xn be independent random variables with

P(Xi = 1) = p, P(Xi = 0) = 1− p

for i ∈ [n], p ∈ [0, 1]. Let X =
∑n
i=1Xi. Then for any x > 0, we have

P(X ≥ E [X] + x) ≤ exp

(
− x2

2(E [X] + x/3)

)
, (13)

P(X ≤ E [X]− x) ≤ exp

(
− x2

2E [X]

)
. (14)

6.2 Service Analysis

In this part, we show that with high probability, there is no wasted service dur-
ing Recursive Clearing. We first present the analysis of Round-Robin phases,
and then the analysis of Packet-Collecting phases. Throughput the analysis,
we restrict the scope to the kth arrival period and service period.

15            
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6.2.1 Round-Robin Phase

Suppose we are considering Round-Robin phase Ru where 0 ≤ u ≤ l. Let
L =

∑u−1
j=0 Tj be the ending slot of Ru−1 as shown in Figure 1. If u = 0,

then L = 0. Recall that in a Round-Robin phase, we sequentially use a set of
permutations defined in (6). The next lemma shows that under such policy,
every queue Qkij is always non-empty as long as there are enough arrivals.

Lemma 5 Suppose t ∈ {L+ Iu, · · · , L+ Tu − 1}. For any i, j ∈ [n], if

Akij(t)−Akij(L) >
t− (L+ Iu)

n
+ 1,

then Qkij(t+ 1) > 0.

Proof It holds

Qkij(t+ 1) = Akij(t)− Skij(t)
= Akij(L) +Akij(t)−Akij(L)

−
(
Skij(L+ Iu) + Skij(t)− Skij(L+ Iu)

)
≥ Akij(t)−Akij(L)−

(
Skij(t)− Skij(L+ Iu)

)
,

where the last inequality is due to Akij(L) − Skij(L + Iu) ≥ 0 since in Iu, we
only schedule packets that arrive in the first L slots of the current period.

Then by the definition of Round-Robin policy in (6), every queue Qkij will
only be schedule once for every n slots. We thus have

Skij(t)− Skij(L+ Iu) ≤
⌈
t− (L+ Iu)

n

⌉
≤ t− (L+ Iu)

n
+ 1.

Therefore, if Akij(t)−Akij(L) > t−(L+Iu)
n + 1, we have Qkij(t+ 1) > 0.

As we can see, as long as the condition in Lemma 5 holds, the policy can
schedule exactly n packets for every time slot in Ru. We now show that the
condition holds with high probability. Define the event

Wk
ij(t) =

{
Akij(t)−Akij(L) ≤ t− (L+ Iu)

n
+ 1

}
for t ∈ {L + Iu, · · · , L + Tu − 1}. Let Wk

u be the event such that the event
Wk
ij(t) happens for some i, j ∈ [n], t ∈ {L+ Iu, · · · , L+ Tu − 1}. Then

Wk
u =

n⋃
i=1

n⋃
j=1

L+Tu−1⋃
t=L+Iu

Wk
ij(t).

Recall that f = max(n, (1 − ρ)−1). We can show that Wk
u happens with tiny

probability as in the next lemma.

Lemma 6 For the event Wk
u , it holds P

(
Wk
u

)
≤ f−16.
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Proof We first bound the probability P
(
Wk
ij(t)

)
, and then use the union bound

to get the desired result. Fix i, j ∈ [n], t ∈ {L + Iu, · · · , L + Tu − 1}. Let
X = Akij(t) − Akij(L). Then X is the sum of t − L i.i.d. Bernoulli random

variables with E [X] = ρ(t−L)
n . The event Wk

ij(t) is equivalent to

X ≤ ρ(t− L)

n
− (1− ρ)(t− L)

n
− Iu
n

+ 1,

which can be rewritten as {X ≤ E [X] − x} with x = −(1 − ρ) t−Ln + Iu
n − 1.

Notice that

x ≥ −(1− ρ)
Iu +Ru

n
+
Iu
n
− 1

=
1

n
(ρIu − (1− ρ)Ru − n)

≥ 1

n
(ρIu − (1− ρ)Tu − n) ,

where Tu = Iu + Ru. By definition, Tu ≤ b, and thus Tu ≤ 6cp(1− ρ)−2 log f
using Lemma 2. On the other hand, by Lemma 1, Iu ≥ 1

2d = 1
2cdn

0.25(1 −
ρ)−1 log f . We have

x ≥ 1

n

(
1

2
ρcdn

0.25(1− ρ)−1 log f − 6cp(1− ρ)−1 log f − n
)
.

By assumption, (1− ρ)−1 ≥ n0.75, and thus

x ≥ 1

n0.75
(1− ρ)−1 log f

(
1

2
ρcd − 6cpn

−0.25 − 1

)
.

We claim that 1
2ρcd − 6cpn

−0.25 − 1 ≥ 1
4cd.

Proof (Proof of the claim) To prove the claim, seeing that

1

2
ρcd − 6cpn

−0.25 − 1 ≥ 1

4
cd

⇐=
1

2
ρ
cd
6cp
− n−0.25 − 1

6cp
≥ 1

4

cd
6cp

⇐=

(
1

2
ρ− 1

4

)
cd
6cp
≥ 2.

(15)

Then by constraints in (10), we have n ≥ 4, and thus ρ ≥ 1 − n−0.75 ≥
0.6. Further with cd

6cp
≥ 40, we can justify the last inequality in (15) which

completes the proof.

As a result, we have

x ≥ cd
4n0.75

(1− ρ)−1 log f.

17            
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On the other hand, E [X] = ρ(t−L)
n ≤ Tu

n . By the concentration bound in
Theorem 5,

P (X ≤ E [X]− x) ≤ exp

(
− x2

2E [X]

)
≤ exp

(
− c

2
d

32
log2 f · n

−0.5(1− ρ)−2

Tu

)
.

Then notice that

Tu = Iu +Ru ≤ d+ R̃

≤ cdn0.25(1− ρ)−1 log f + 2n−0.5(1− ρ)−2 log f

≤ (cd + 2)n−0.5(1− ρ)−2 log f.

since (1− ρ)−1 ≥ n0.75. Therefore,

P (X ≤ E [X]− x) ≤ exp

(
− c2d

32(cd + 2)
log f

)
≤ f−21.

The last inequality is because cd ≥ 1280 and
c2d

32(cd+2) is an increasing function.

Then for every i, j ∈ [n], t ∈ {L + Iu, · · · , L + Tu − 1}, it holds P
(
Wk
ij(t)

)
≤

f−21. Notice that b ≤ 6cp(1 − ρ)−2 log f by Lemma 2, and 6cp log f ≤ f by
constraints (10). Finally, by the union bound, we have

P
(
Wk
u

)
≤ n2bf−21 ≤ f−16.

6.2.2 Packet-Collecting Phase

We now proceed to the analysis of Packet-Collecting phases. Suppose we fix
a Packet-Collecting phase Iu where 1 ≤ u ≤ l. As before, let L =

∑u−1
j=0 Tj

which is the ending slot of the previous phase. To ensure that the policy can
schedule exactly n packets for every slot in Iu, we require the existence of an
Iu-lower envelope of the queue matrix Qk(L+ 1). Define Pku as the event that
Qk(L + 1) does not have an Iu-lower envelope. The following lemma shows
that it is unlikely that Pku will happen.

Lemma 7 For the event Pku , it holds

P
(
Pku
)
≤ f−16.

This lemma is similar to [25, Theorem 5]. Indeed, [25, Theorem 5] shows
that Condition (4) in Theorem 3 holds with high probability when qij ∼
Binomal(Tu−1,

ρ
n ). In our algorithm, due to the effect of Round-Robin, we

would subtract Ru−1

n on each qij . Condition (4) would naturally hold since
qij still roughly follows a binomial distribution, which completes the proof.
Nevertheless, for completeness, we provide a formal proof as follows.
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Proof The idea is to use Theorem 3. For any subset R, C of [n] and t ∈ {L−
Tu−1, · · · , L+ 1}, define

QkR,C(t) =
∑

i∈R,j∈C
Qkij(t), A

k
R,C(t) =

∑
i∈R,j∈C

Akij(t),

SkR,C(t) =
∑

i∈R,j∈C
Skij(t).

It suffices to show for any subset R, C ⊆ [n], it holds

QkR,C(L+ 1) ≥ Iu(|R|+ |C| − n). (16)

We can see

QkR,C(L+ 1) = AkR,C(L− Tu−1) +AkR,C(L)−AkR,C(L− Tu−1)

−
(
SkR,C(L−Ru−1) + §kR,C(L)− SkR,C(L−Ru−1)

)
≥ AkR,C(L)−AkR,C(L− Tu−1)

−
(
SkR,C(L)− SkR,C(L−Ru−1)

)
.

(17)

The last inequality holds because in Iu−1, the policy will only serve packets
in Qk(L − Tu−1 + 1), and thus Akij(L − Tu−1) − Skij(L − Ru−1) ≥ 0 for all
i, j ∈ [n].

Notice that Ru−1 is a multiple of n by definition, and we run a Round-
Robin policy (6) in {L−Ru−1 + 1, · · · , L}. We have

SkR,C(L)− SkR,C(L−Ru−1) =
|R||C|Ru−1

n
. (18)

Define XR,C = AkR,C(L)−AkR,C(L− Tu−1). Then XR,C is a Binomial random
variable with parameters Tu−1|R||C| and ρ

n .

Fix |R| = k, |C| = m. Let

X(k,m) = min
R,C⊆[n] : |R|=k,|C|=m

XR,C .

Using (17) and (18), the condition (16) is satisfied if we have

X(k,m)− kmRu−1
n

≥ Iu (k +m− n) (19)

for any k,m ∈ [n].

Without loss of generality, assume k ≥ m and k + m ≥ n + 1 since we
can swap the role of input ports and output ports, and (19) trivially holds
when k +m ≤ n. To show that X(k,m) is usually large, let us fix two subsets
R, C ⊆ [n] with |R| = k, |C| = m. Denote p = ρ

n . Recall that XR,C is a
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binomial random variable with mean kmTu−1p. By the concentration bound
in Theorem 5, it holds

P
(
XR,C ≤ kmTu−1p−

√
38(n− k +m)kmTu−1p log f

)
≤ exp

(
−38(n− k +m)kmTu−1p log f

2kmTu−1p

)
= f−19(n−k+m).

The number of such pair of R, C is equal to
(
n
k

)(
n
m

)
which is bounded by

nn−k+m. Then by the union bound,

P
(

X(k,m) ≤ kmTu−1p−
√

38(n− k +m)kmTu−1p log f
)

≤
(
n

k

)(
n

m

)
P
(
XR,C ≤ kmTu−1p−

√
38(n− k +m)kmTu−1p log f

)
≤ nn−k+mf−19(n−k+m)

≤ f−18(n−k+m) ≤ f−18.

To prove that (19) happens with high probability, it remains to show

kmTu−1p−
√

38(n− k +m)kmTu−1p log f − kmRu−1
n

≥ Iu(k +m− n).

Dividing both side by m, it is equivalent to show

kTu−1p−
√

38
n− k +m

m
kTu−1p log f − kRu−1

n
≥ Iu

k +m− n
m

.

Since n < k+m, we have n− k+m ≤ 2m, and 2− n
k = 1− n−k

k ≥ 1− n−k
m =

k+m−n
m . It is thus sufficient to verify

kTu−1p− 2
√

19kTu−1p log f − kRu−1
n

≥ Iu
(

2− n

k

)
. (20)

Let x = k
n , and recall that p = ρ

n . Then (20) can be rewritten as

ρxTu−1 − 2
√

19ρxTu−1 log f −Ru−1x ≥ Iu
(

2− 1

x

)
,

which can be further written as

x (Iu−1 − (1− ρ)Tu−1)−
√

76ρTu−1 log f
√
x ≥ Iu

(
2− 1

x

)
. (21)

Notice that
Tu−1 ≤ d+ R̃ ≤ (cd + 2)n−0.5(1− ρ)−2 log f,

and thus
(1− ρ)Tu−1 ≤ 4

√
19ρTu−1 log f
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since cd + 2 ≤ 304ρn0.5 by (10). By the definition of Iu in (8), it holds

Iu = d− u
(

8
√

19(cd + 2)
)
n−0.25(1− ρ)−1 log f

= Iu−1 − 8
√

19(cd + 2)n−0.25(1− ρ)−1 log f

≤ Iu−1 − 2 · 4
√

19ρTu−1 log f

≤ Iu−1 − (1− ρ)Tu−1 − 4
√

19ρTu−1 log f. (22)

Therefore, To show that (21) is true, we only need to show

x (Iu−1 − (1− ρ)Tu−1)− 2
√

19ρTu−1 log f
√
x

≥
(
Iu−1 − (1− ρ)Tu−1 − 4

√
19ρTu−1 log f

)(
2− 1

x

)
.

By manipulating terms, the above inequality is equivalent to

.

(
x+

1

x
− 2

)
(Iu−1 − (1− ρ)Tu−1)

≥ 2

(√
x+

2

x
− 4

)√
19ρTu−1 log f.

(23)

As k + m > n and k ≥ m, we have x = k
n ≥

1
2 . As a result, x + 1

x − 2 ≥
1
2 (
√
x+ 2

x − 4). Combining inequality (22) with the fact that Iu ≥ d
2 shown in

Lemma 1, it holds

Iu−1 − (1− ρ)Tu−1 ≥ 4
√

19ρTu−1 log f.

Therefore, we establish (23), and thus (19). We now have shown

P (X(k,m) ≤ Iu(k +m− n)) ≤ f−18.

Note that we have assumed k ≥ m, but swapping k,m does not affect the
result.

Finally, to complete the whole proof, we use the union bound. Note that

Pku =

n⋃
k=1

n⋃
m=1

P (X(k,m) ≤ Iu(k +m− n)) .

As a result,

P
(
Pku
)
≤ n2f−18 ≤ f−16.
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6.3 Backlog Analysis

In this section, we bound the expected number of backlogs, E [Bk]. The analysis
is similar to [17,25]. We include it here for completeness.

We first show that for any arrival period k where k ∈ Z+, there is a
high probability that all packets in arrival period k will be cleared in Normal
Clearing. Fix k ∈ Z+. For any i, j ∈ [n], define

Hk
i =

n∑
j′=1

Akij′(b), Ckj =

n∑
i′=1

Aki′j(b),

which are the total number of arrivals to input port i and the total number of
arrivals to output port j during the arrival period k, respectively.

Define the event

Ek =
{
∃i∈[n], Hk

i > s
}
∪
{
∃j∈[n], Ckj > s

}
as the event when some ports may receive excessive packets. The following
lemma shows that such event is rare.

Lemma 8 For all k ∈ Z+, we have P (Ek) ≤ 1
2f
−13.

Proof First consider the event {Hk
1 > s}. As Hk

1 is a binomial random variable
with parameter nb and ρ

n , the concentration bound in Theorem 5 implies that

P
(
Hk

1 > s
)

= P
(
Hk

1 > ρb+
√
csb log f

)
= P

(
Hk

1 > E
[
Hk

1

]
+
√
csb log f

)
≤ exp

(
− csb log f

2(ρb+
√
csb log f/3)

)
≤ exp

(
−csb log f

2s

)
≤ exp

(
−csb log f

2b

)
≤ f−cs/2.

As cs is assumed to be at least 30 in (10), we have P
(
Hk

1 > s
)
≤ f−15. Since

arrival rates are uniform among each pair of input ports and output ports, it
holds that for every i, j ∈ [n],

P
(
Hk
i > s

)
≤ f−15, P

(
Ckj > s

)
≤ f−15.

Then by the union bound, we have

P
(
Ek
)
≤ 2nf−15 ≤ 1

2
f−13

because we assume n ≥ 4 in (10).
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Now we combine above arguments with previous analysis of Recursive Clear-
ing. Define

Wk =

l⋃
u=0

Wk
u , Pk =

l⋃
u=1

Pku .

We have the following lemma claiming that Uk = 0 with high probability.

Lemma 9 For a fixed k, the following results hold.

1. The number of remaining packets Uk is zero if none of Wk, Pk, Ek occurs.
2. The probability P

(
Wk ∪ Pk ∪ Ek

)
is bounded by f−13, and thus P{Uk >

0} ≤ f−13.
3. On any sample path, Uk ≤ n2b.

Proof For a fixed k and i, j ∈ [n], define

H̃i =

n∑
j′=1

Qkij′(b+ 1), C̃j =

n∑
i′=1

Qki′j(b+ 1).

By the optimal clearing policy in Theorem 2, if γ = max
(

maxi H̃i,maxj C̃j

)
is no larger than the length of Normal Clearing, s− b+ d, then there exists a
scheduling that can clear all packets in Qk(b+ 1) within Normal Clearing.

To prove the first result, assume that none of Wk, Ck, Ek occurs. Notice
that if neither Wk nor Pk occurs, then for every time slot τ in {kb + d +
1, · · · , (k + 1)b}, the policy will schedule exactly n packets. To justify this
claim, suppose τ is in a Round-Robin phase Ru. When Wk does not happen,
by Lemma 5, all queues Qkij(τ−kb) have at least one packet. Any schedule that
is perfect matching can serve exactly one packet from each input port, and
to each output port. On the other hand, suppose τ is in a Packet-Collecting
phase Iu. Since Pk does not occur, schedules in Iu form an Iu-lower envelope
of the queue matrix at the beginning of this phase. By the definition of an
Iu-lower envelope, the policy can schedule exactly n packets at time slot τ .
Therefore, for any i, j ∈ [n], it holds

n∑
j′=1

Skij′(b) = b− d,
n∑

i′=1

Ski′j(b) = b− d.

Moreover, as Ek does not occur, we know Hk
i ≤ s, Ckj ≤ s for any i, j ∈ [n].

Therefore, for any i ∈ [n],

H̃i =

n∑
j′=1

Akij′(b)−
n∑

j′=1

Skij′(b) = Hk
i − (b− d) ≤ s− b+ d.

Similarly, we have C̃j ≤ s− b+ d for any j ∈ [n]. As a result, the maximum γ

among H̃i, C̃j is upper bounded by s− b+d. Using Theorem 2, we know there
exists a sequence of γ matchings that can clear the queue matrix Qk(b + 1).
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As s − b + d ≥ γ, we can schedule these matchings during Normal Clearing,
and thus Uk = 0.

We can now prove the second result. By Lemma 6, we have P{Wk
u} ≤ f−16

for any 0 ≤ u ≤ `. Then by the union bound, it holds

P{Wk} ≤ `f−16 = cpn
0.5f−16 ≤ f−15

because cp ≤ cd ≤ ρn0.5 in (10). Similarly, we can bound P{Pk} by

P{Pk} ≤ `f−16 ≤ f−15

using Lemma 7. Together with Lemma 8, it holds

P (Uk > 0) ≤ P
(
Wk ∪ Pk ∪ Ek

)
≤ 2f−15 +

1

2
f−13 ≤ f−13.

Finally, to prove the third result, we have

Uk ≤
n∑
i=1

n∑
j=1

Akij(b) ≤ n2b

because every queue has at most one arrival per time slot in a Bernoulli arrival
process.

Based on the above result, we can bound the expected number of backlogs in
the backlog queue B.

Lemma 10 It holds E [Bk] ≤ 1 for all k.

Proof Recall that the queue length Bk updates as

Bk+1 = (Bk + Uk − (b− s))+

with B0 = 0. As b− s ≥ 1 by Lemma 3, Bk is stochastically dominated by B̃k
which evolves as

B̃k+1 = (Bk + Uk − 1)
+

where B̃0 = 0. The new process can be viewed as a discrete-time G/G/1 queue,
and thus Kingman bound Theorem 4 applies. Using the same notation as in
Theorem 4, we have µ = 1,m2y = 1. By Lemma 9, it holds

λ = E [Uk] ≤ n2bP (Uk > 0) ≤ n2bf−13 ≤ f−8

because b ≤ 6cp(1 − ρ)−2 log f by Lemma 2, and 6cp log f ≤ f by (10). Simi-
larly,

m2x = E
[
U2
k

]
≤ n4b2f−13 ≤ f−3.

As a result,

E [Bk] ≤ E
[
B̃k

]
≤ m2x +m2y − 2λµ

2(µ− λ)
≤ f−3 + 1

2(1− f−8)
≤ 1.
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6.4 Queue Length Analysis

This section presents the formal proof for the bound of the average total queue
length in Theorem 1.

Lemma 11 It holds that for every time slot τ ,

E

 n∑
i=1

n∑
j=1

Qij(τ)

 ≤ 3nd.

Proof Fix a time slot τ , and we bound the expected queue lengths in Q(τ).
First, if 1 ≤ τ ≤ d, then

E

 n∑
i=1

n∑
j=1

Qij(τ)

 ≤ n∑
i=1

n∑
j=1

E [Aij(τ − 1)] ≤ ρnτ ≤ nd.

We can thus assume τ ∈ [kb + d + 1, (k + 1)b + d] for some k ∈ Z+, i.e., τ is
in the kth service period. We consider different cases.

First, if kb + d + 1 ≤ τ ≤ (k + 1)b, then τ is in Recursive Clearing. As a
result,

n∑
i=1

n∑
j=1

Qij(τ) = Bk +

n∑
i=1

n∑
j=1

Qkij(τ − kb).

Let t = τ − kb. We have

E

 n∑
i=1

n∑
j=1

Qkij(t)

 = E

 n∑
i=1

n∑
j=1

Akij(t− 1)−
n∑
i=1

n∑
j=1

Skij(t− 1)


= ρn(t− 1)− E

 n∑
i=1

n∑
j=1

Skij(t− 1)

 .
As in the proof of Lemma 9, if neither Wk nor Pk happens, we have

n∑
i=1

n∑
j=1

Skij(t− 1) = (t− 1− d)n.

Since P
(
Wk ∪ Pk

)
≤ f−13 by Lemma 9, we have

E

 n∑
i=1

n∑
j=1

Qkij(t)

 ≤ ρ(t− 1)n− (t− d− 1)n
(
1− f−13

)
≤ ρ(t− 1)n− ρ(t− d− 1)n

= ρnd.
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Together with Lemma 3, we have

E

 n∑
i=1

n∑
j=1

Qij(τ)

 ≤ E [Bk] + ρnd ≤ 1 + ρnd ≤ 2nd.

Consider the second case where (k + 1)b < τ ≤ (k + 1)b + d. The time slot τ
is thus in Normal Clearing or Backlog Clearing. We can see

E

 n∑
i=1

n∑
j=1

Qij(τ)

 ≤ E

 n∑
i=1

n∑
j=1

Qij((k + 1)b)


+ E

 n∑
i=1

n∑
j=1

(Aij(τ − 1)−Aij ((k + 1)b− 1))


≤ 2nd+ nd = 3nd.

Summarizing above discussions completes the proof.

6.5 Generalization to Poisson Arrivals

We remark that our queue length bound can be naturally generalized to
other arrival processes, such as Poisson arrivals. In particular, since our proof
does not make use of the boundedness of Bernoulli random variables, it is
sufficient to generalize our result if we could have a similar concentration
bound as Theorem 5. Indeed, recall that the sum of n i.i.d. Poisson random
variables of rate λ is again a Poisson random variables but with rate nλ.
Therefore, the concentration of the sum is a concentration of a Poisson random
variable. Indeed, we have the following concentration bound for a Poisson
random variable from [3], whose form is very much similar to Theorem 5.
Theorem 6 Let X ∼ Poisson(λ) for λ > 0. Then for any x > 0, it holds

P (|X − λ| > x) ≤ 2e
−x2

2(λ+x) . (24)

Our proof above would then hold by replacing the use of Theorem 5 by The-
orem 6.

7 Complexity Analysis

This section analyzes the time complexity of the proposed policy with a discus-
sion on the delay-complexity trade-offs. Results in this section also conclude
the proof of Theorem 1.
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7.1 Time Complexity

To calculate the average time complexity per time slot, our approach is to sum
up all computation requirement during one service period, and then divide the
sum by the period length b. The following lemma presents the amortized time
complexity of our policy described in Section 5.

Lemma 12 With the same setting in Theorem 1, the amortized time com-
plexity of the policy in Section 5 is O(n+ (1− ρ)2n3.5/ log(f)).

Proof As the policy is fixed in each service period, and each service period
is the same, the average computation in one service period is exactly the
amortized time complexity of the whole policy. Fix a service period k. We
study the complexity in each phase separately.

1. For a Round-Robin phase Ru, the scheduling policy at one time slot τ can
be calculated in O(n) by the definition of a Round-Robin policy (6).

2. For a Packet-Collecting phase Iu, we need to calculate an Iu-lower envelope
at the beginning of this phase. Recall the algorithm introduced in Section
4.2. The total complexity to verify the existence of an Iu-lower envelope
and to find out one solution is O(n3+nIu log n). Since Iu ∈ [d2 , d] by Lemma
1, the time complexity for one Packet-Collecting phase is O(n3 +nd log n).
Note that if there is no such lower envelope, the policy does nothing by
definition. It will not change the time complexity because such events are
rare by Lemma 7.

3. For Normal Clearing, we consider the expected time complexity to find an
optimal clearing policy. Through the discussion in 4.1, the time complexity
is O(m log n) where m is the sum of all elements in Qk(b + 1). In the
policy, we first check whether the maximum number of packets at each
port is below the phase length. It takes O(n2) time to check the maximum
number of packets. If the maximum exceeds the phase length, we directly
skip finding the optimal clearing policy. Otherwise, when that number is
below the phase length, the number of packets in Qk(b+ 1) is bounded by
n(s−b+d). The time complexity in this case is thus O(n2+n(s−b+d) log n),
which is indeed O(n(s− b+ d) log n) by Lemma 4.
The final algorithm in Normal Clearing is to move packets in Uk into the
backlog queue B. However, as we could see, every incoming packets to the
switch will be put into the backlog queue for at most once. The amortized
complexity to move packets to the backlog queue B is O(n) because by the
law of large numbers, only ρn packets will join the switch in time average.
The total computation to move packets into the backlog queue is thus
O(n(s− b+ d)) in Normal Clearing. To sum up, the total time complexity
in this phase is bounded by O(n(s− b+ d) log n).

4. Finally, for Backlog Clearing, we only schedule at most one packet from the
backlog queue. Therefore, the total computation is bounded by O(b− s).
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As a result, the total computation in a service period k is given by∑̀
u=1

O(nRu) +
∑̀
u=1

O(n3 + nd log n) +O(n(s− b+ d) log n) +O(b− s),

which is equal to

O(nb+ n7/2 + n7/4(1− ρ)−1 log n log f) (25)

because ` = O(n1/2), d = O(n1/4(1 − ρ)−1 log f), s − b + d = O(d) by their
definition in (7) and Lemma 4.

The amortized time complexity per slot in one service period is thus equal
to (25) divided by b, which is

O

(
n(1− ρ)−2 log f + n7/2 + n7/4(1− ρ)−1 log n log f

(1− ρ)−2 log f

)
= O(n) +O

(
n7/2

(1− ρ)−2 log f

)
+O

(
n7/4 log n

(1− ρ)−1

)
.

We now bound the last two terms. If n7/2

(1−ρ)−2 log f <
n7/4 logn
(1−ρ)−1 , it immediately

implies n7/4/ log f < (1− ρ)−1 log n. But in this case,

n7/4 log n

(1− ρ)−1
<

(1− ρ)−1 log n log f

(1− ρ)−1
= log n log f.

Then if log n log f = ω(n), we have log f = ω(n/ log n). Note that f =
max(n, (1 − ρ)−1). It thus hold (1 − ρ)−1 = exp(ω(n/ log n)). As a result,
n7/4 logn
(1−ρ)−1 = o(1). We then have

O(n) +O

(
n7/2

(1− ρ)−2 log f

)
+O

(
n7/4 log n

(1− ρ)−1

)
=O(n) +O

(
n7/2

(1− ρ)−2 log f

)
,

which completes the proof.

Lemma 12 shows that, if n is fixed, the complexity of the policy is decreasing as
the traffic becomes heavier. The main reason is that, the policy will spend more
time following Round-Robin policies, and less time finding lower envelopes
when we have a larger ρ. Since Round-Robin policies takes O(n) computation
time instead of O(n3) time needed to find lower envelopes, the amortized
complexity is reduced.

Using Lemmas 11 and 12, we can finish the proof of our main theorem,
Theorem 1.

Proof (Proof of Theorem 1) The proposed policy in Section 5 has an average
total queue length O(n5/4(1−ρ)−1 log f) by Lemma 11, and its amortized time
complexity is O(n + n7/2(1 − ρ)2/ log f) by Lemma 12. Therefore, the policy
satisfies requirements in Theorem 1, which concludes the proof.
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1.0 1.5 2.0
logn((1 ))

1.0

1.5

2.0
logn(Delay)
logn(Complexity)

Fig. 2 Trade-offs between Delay and Complexity

7.2 Delay-Complexity Trade-offs

From Lemma 12 and Little’s Law, the average delay is of order O(n1/4(1 −
ρ)−1 log f), while the amortized time complexity is O(n+n7/2(1− ρ)2/ log f).
Suppose n is fixed, and it is large enough. Assume ρ = 1−n−α, and α > 0.75.
Then by changing α, we can plot the curve of delay and time complexity
(taking logarithm with base n) as in Figure 2. The dot in Figure 2 refers to
α∗ = 1 + 1

12 . When α < α∗, we can see that the average delay is strictly below
the amortized time complexity. Therefore, to improve the overall performance,
we can reduce the complexity of the algorithm by trading off certain extent of
delay performance. One solution is to adjust the traffic intensity ρ by introduc-
ing a stream of pseudo arrivals. Scheduling packets in this new environment
can then automatically decrease the time complexity. Certainly, when α > α∗,
the average delay dominates the time complexity. In this case, increasing the
traffic intensity in our system may not help a lot.

We remark that other batching policies may have similar delay-complexity
trade-offs. For example, the recent work [25] has an average delay O((1 −
ρ)−4/3 log f) for all ρ < 1. Although this work did not provide the time com-
plexity of the algorithm, it can be bounded by O(n log n+n3(1− ρ)4/3/ log f)
through the same technique in Section 7.1. We can see increasing the traffic
intensity can help reduce its time complexity when the traffic is light.

8 Conclusion

In this paper, we present a new batch-scheduling algorithm for an input-queued
switch with uniform Bernoulli arrivals. The key requirement of such a policy is
to ensure full service at every time slot in Recursive Clearing shown in Figure
1; thus we need to wait for a sufficiently long period of time in the Idling
phase to help the number of packet arrivals concentrate around their means.
To help reduce the length of the Idling phase, this work successfully combines
two kinds of phases, Round-Robin phases {Ru, u ≥ 0} and Packet-Collecting
phases {Iu, u ≥ 1} where a phase Iu can be viewed as an Idling phase of Ru,
and concentration of the number of arrivals around their means in Iu and Ru

29            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

30 Wentao Weng, R. Srikant

and the regularity of service in Ru helps with full service in Iu+1. With a
more effective scheduling algorithm, our policy thus enjoys a better average
queue length O(n5/4(1 − ρ)−1 log f) than previous best known results in the
regime n3/4 ≤ (1− ρ)−1 < n7/4. In particular, when ρ = 1− 1/n, our result is
O(n2+1/4 log n), while previous result is O(n2+1/3 log n) [25].
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