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Abstract: Geothermal exploration has traditionally relied on geological, geochemical, or geophysical
surveys for evidence of adequate enthalpy, fluids, and permeability in the subsurface prior to drilling.
The recent adoption of play fairway analysis (PFA), a method used in oil and gas exploration, has
progressed to include machine learning (ML) for predicting geothermal drill site favorability. This
study introduces a novel approach that extends ML PFA predictions with uncertainty characterization.
Four ML algorithms—logistic regression, a decision tree, a gradient-boosted forest, and a neural
network—are used to evaluate the subsurface enthalpy resource potential for conventional or EGS
prospecting. Normalized Shannon entropy is calculated to assess three spatially variable sources of
uncertainty in the analysis: model representation, model parameterization, and feature interpolation.
When applied to southwest New Mexico, this approach reveals consistent enthalpy trends embedded
in a high-dimensional feature set and detected by multiple algorithms. The uncertainty analysis
highlights spatial regions where ML models disagree, highly parameterized models are poorly
constrained, and predictions show sensitivity to errors in important features. Rapid insights from this
analysis enable exploration teams to optimize allocation decisions of limited financial and human
resources during the early stages of a geothermal exploration campaign.

Keywords: exploration; geothermal; play fairway analysis; uncertainty; machine learning

1. Introduction

The identification of geothermal sites has historically depended on field evidence of
hot fluids circulating at depth, including the presence of geysers, fumaroles, mud pots,
and diagnostic mineral deposits [1]. However, surface manifestations such as these are
absent for blind geothermal systems, which require more advanced methods for discovery.
With the support of the United States Department of Energy, researchers recently pivoted
to play fairway analysis (PFA) as a method adopted from the oil and gas industry for
regional exploration opportunity identification and risk assessments [2]. Conceptually,
PFA decomposes risk into the constituent elements of a successful play, e.g., reservoir,
source, seal, and trap geometry for hydrocarbons [3]. Maps are generated for each risk
element based on available data, including published research, field observations, and
modeling results. Taking the collective evidence as input, subject matter experts define a
chance of success for each element and then use statistical approaches to combine multiple
risk element maps into a single view of play favorability [4]. Geothermal PFA studies
typically divide the geothermal system into enthalpy (heat), permeability, and fluids risk
elements, which are then combined by weighted average based on data confidence or
expert opinion [5–7]. The resulting maps reveal geothermal fairways inclusive of both
surface-visible and blind geothermal systems.

Following the ongoing trend of digital transformation in the earth sciences [8], both
unsupervised and supervised machine learning techniques are now being incorporated into
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geothermal exploration workflows. Unsupervised methods learn directly from the structure
of geologic, geochemical, geophysical, and other relevant data sets. One such approach
applies dimensionality-reduction techniques such as principal component analysis or non-
negative matrix factorization to consolidate meaningful signals within the input data sets
(or “features”), producing a smaller number of derived features useful for identifying data
clusters [9–11]. However, the physical significance of these clusters is not unequivocally
clear. Alternatively, supervised algorithms require labeled example data for training before
providing predictive values. When applied to field data, advanced supervised methods
such as artificial neural networks (ANN) have shown promise in predicting geothermal
favorability [12]. Still, selecting which supervised algorithm to use for prediction either
relies on an a priori decision or competitive ranking of several algorithms by some metric
of predictive success [13,14]. This study considers how the combined insights from more
than one model can define both robust trends and areas of disagreement, thereby revealing
a relative measure of uncertainty in the prediction system.

Uncertainty derives from many sources in subsurface resource exploration, be it for
water, hydrocarbons, minerals, or enthalpy [15]. To build an integrated understanding of
the spatial variation in earth properties, data spanning multiple scales and sensitivities
must be combined, including detailed point samples, well log records, and coarser potential
field measurements [13]. The decisions made as these data are incorporated into models
become important sources of uncertainty that have downstream impacts on prospect
selection, appraisal, and development choices made by a firm. The following sections
introduce a novel methodology that extends the use of ML for PFA predictions to also
incorporate uncertainty estimation with normalized Shannon entropy as the uncertainty
metric. Specifically, this study characterizes three varieties of uncertainty: those associated
with the choice of machine learning model architecture; those in the learned parameters
within a single model; and those in the input feature data and their preparation. This
approach is applied to a region of New Mexico with known geothermal resource areas
(KGRAs) to illustrate how the methodology provides comprehensive predictions of resource
presence, unique insights on prediction confidence, and the opportunity for data-driven
early-stage resource allocations and decision making in geothermal projects.

2. Materials and Methods
2.1. Data Sources

This investigation brings together twenty-five (25) public sets of data, hereafter referred
to as “features,” that spatially cover a 37,600 square mile area of interest (AOI) in southwest
New Mexico (Figure 1). The original feature data format varied between pre-gridded
raster files, point sets with overlapping measurements, non-overlapping point sets, and
line data. Fourteen features were retrieved from the Geothermal Data Repository archival
submission for a PFA led by the Los Alamos National Lab [16,17]. Additional features
were collected from published works, open-access databases, or derived from the original
sources as secondary products. Table 1 lists the features by measurement, original format,
and the source reference where appropriate. One or more exploration risk elements are
associated with each feature based on their known sensitivities: fluids (F), heat (H), and/or
permeability (P). These assignments help illustrate the variety and breadth of features
included in the study, but they play no role in the ML PFA workflow to avoid introducing
cognitive bias on the final results.

The models developed here remain agnostic on the specific geothermal system that a
firm might intend on developing within the area being explored. In particular, we focus
solely on the enthalpy risk element, since it uniquely contributes to favorability across
hydrothermal, advanced closed loop (ACL), and enhanced geothermal systems (EGS). For
hydrothermal, separate modeling of subsurface permeability and fluids favorability could
follow the same methodology but would necessarily require different response variables
for the prediction.
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Figure 1. Map of the state of New Mexico, USA, produced using Google Earth Pro. The study AOI is
outlined in red. County and state boundaries are shown with yellow and white lines, respectively.
The bulls-eye marker notes the location of the single commercial geothermal power plant in the state
as of 2022.

Table 1. List of features considered in the ML analysis. Original data type and data source are noted.
Suggested risk element associations include fluids (F), enthalpy/heat (H), and structure/permeability
(P). Numbered features are treated as predictor variables, except D indicates the dependent or
response variable. See Appendix A for details on how each feature GIS layer was constructed
for modeling.

No. Name Type Risk Element Source

1 Air Temperature Raster H PRISM [18]
2 Precipitation Raster F PRISM [18]
3 Basement Depth Raster H OpenEI [17]
4 Boron Concentration Points F,H OpenEI [17]
5 Crustal Thickness Lines H Figure 4 in [19]
6 Drainage Density Lines F OpenEI [17]
7 Earthquake Density Points F,P NMBGMR,USGS [20–23]
8 Gamma Ray Dose Rate Raster H USGS [24]
9 Geodetic Strain Rate Raster P GSRM [25]
10 Gravity Anomaly Raster H,P UTEP,OpenEI [17,26]
11 Gravity Anomaly Gradient Raster P N/A (Calculated)
12 Heat Flow Points H Literature [27]
13 Lithium Concentration Points F,H OpenEI [17]
14 Magnetic Anomaly Raster H,P UTEP,OpenEI [17,26]
15 Magnetic Anomaly Gradient Raster P N/A (Calculated)
16 Quaternary Fault Density Lines P OpenEI [17]
17 Si Geothermometer Temp Points F,H OpenEI [17]
18 Spring Density Points F USGS [28]
19 State Map Fault Density Lines P OpenEI [17]
20 Surface Topography (DEM) Raster H,P USGS,OpenEI [17,29]
21 Topographic Gradient Raster P N/A (Calculated)
22 Dike Density Lines H,P USGS,OpenEI [17,30]
23 Vent Density Points F,H OpenEI [17]
24 Water-Table Depth Raster F OpenEI [17]
25 Water-Table Gradient Raster F,P OpenEI [17]
D Geothermal Gradient Points H SMU [31]
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Well data within the study area are available from the Southern Methodist University
(SMU) Heat Flow Database, which was accessed via the SMU node of the National Geother-
mal Data System [31]. Heat-flow values in the database derive from geothermal-gradient
and thermal-conductivity values published in journal articles, books, official reports, and
other sources [32]. Geothermal gradients are defined from direct downhole wireline read-
ings or approximated based on corrected bottom-hole temperatures [33]. By contrast,
thermal conductivity values rely on average regional stratigraphy, which introduces un-
certainty associated with underrepresented subsurface heterogeneity [14]. Rather than
incorporate thermal conductivity estimation as an additional source of uncertainty in this
study, the geothermal gradient was selected over heat flow as the response variable and
proxy for heat presence. The final collection of ground-truth geothermal gradient values
amount to 599 measurements focused primarily on the shallow subsurface since over 80%
of the wells do not exceed 500 m in depth (Figure A26).

2.2. Data Conditioning Workflow

Before the collected data sets could be analyzed using ML methods, they were con-
verted to complete GIS rasters as illustrated in Figures A1–A25. Figure 2 describes the
data-conditioning workflow required to further prepare the data for modeling. The rasters
were merged into a single matrix, where each column contains the set of values for a single
feature, and the 15,007 rows define a 0.025◦ × 0.025◦ spatial grid within the AOI polygon.

Figure 2. Workflow for data conditioning of the features in Table 1 prior to predictive modeling and
uncertainty analysis. See the study software for details on each step [34].

Given that the AOI spans over 97,000 km2, the sparse ≈ 600 observations in the SMU
well data set (WDS) could be problematic for a supervised ML approach. Data augmenta-
tion and imputation methods serve to increase the size and completeness of data sets using
simplifying assumptions, heuristics, or even complex modeling [35]. Here, we utilize the
heuristic at the heart of variography, which relies on the increase in auto-correlation as the
spatial distance decreases for geographic-related data sets [36]. Specifically, we created a
larger data set (WDS4) by placing an additional four points to the north, south, east, and
west of each WDS well location using 0.01◦ offsets to the well’s geographic coordinates
(Figure 3). Geothermal-gradient values were determined by applying kriging to WDS, and
feature values were extracted directly from the feature GIS layers at these “pseudowell”
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locations (Figure A27). Extending this method further, another augmented data set (WDS8)
placed additional pseudowells to the NE, SE, NW, and SW, resulting in eight pseudowells
for every original well in WDS (Figure 3). By keeping the pseudowell step-out distance
smaller than the 0.025◦ grid interval used throughout the study, the spatial correlation
length scale imposed by augmentation remains below the resolution of the prediction mod-
els and thus should not overly influence the results. This workflow resulted in an expansion
of the WDS data to 2995 and 5386 observations for WDS4 and WDS8, respectively. The ML
methods described in Section 2.3 were applied to all three data sets in order to observe how
the augmentation strategy impacted the results.

Figure 3. The data augmentation strategy creates neighboring well locations a short distance away
from each original well in the WDS (dark gray) and uses kriging to assign geothermal gradient values
to these “pseudowells.” For WDS4, pseudowells (purple) are placed to the N, S, E, and W. For WDS8,
pseudowells (blue) are placed at eight locations around the central well. Latitude and longitude
offsets are ±0.01◦ for pseudowell placement.

In the next series of conditioning workflow steps, feature data distributions were
updated before modeling. Large differences in the average value and range of each feature
can adversely impact some ML algorithms, so all features were standardized to zero mean
and unit variance. Additionally, the data were reshaped by the Yeo–Johnson method,
which uses a one-parameter family of transformations to replace distribution skewness
with more Gaussian-like symmetry as required by some statistical methods [37]. Figure 4
illustrates pairwise correlation calculations between each of the features listed in Table 1,
after rescaling and reshaping. Large correlation coefficients highlight relationships violating
the assumption of feature linear independence. Average air temperature stands out as
highly collinear with multiple variables: DEM (correlation −0.97), gravity anomaly (0.89),
and crustal thickness (−0.89). The correlation value between air temperature and DEM is
consistent with the fact that PRISM air temperatures are derived from a climatic regression
with DEM as an input [38]. Given the near-interchangeability in the value of information
both provide for prediction, we chose to remove average air temperature to simplify the
input data and ML models.

The response variable, geothermal gradient, can be treated as a continuous variable
and predicted directly using regression methods. Alternatively, binning geothermal gradi-
ent into discrete ranges changes the approach into a classification problem. Classification
maps have a direct corollary to the classic green–yellow–red categorical PFA favorability
maps, lithology-segmented geologic maps, and other displays of complex geospatial in-
formation. We also prefer the more conservative aspect of discrete class prediction. By
contrast, regression provides seemingly precise estimates that could be mistaken for certain
in a very under-constrained problem. Table 2 outlines the gradient ranges and associated
class labels adopted for this study.

Table 2. Geothermal gradient ranges and assigned class values using interval notation. Ranges are
left-inclusive and are adapted from the Herzog et al. classification [39].

Gradient Range (K/km) Class

[0, 30) 0
[30, 40) 1
[40, 60) 2
[60,+∞) 3
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Figure 4. Pearson correlation coefficients for each feature pair using the conditioned feature layers.

Additional preparation of data sets WDS, WDS4, and WDS8 included removing rec-
ords with undefined values or rare negative geothermal gradients, amounting to a 0.5%
reduction in data count. The remaining records were labeled using the classification scheme
in Table 2. Class value distributions for the well data sets are shown in Table 3. Note that
class imbalance exists in all three data sets; higher-grade (class 2 or 3) geothermal gradient
examples dominate, with many fewer non-thermal (class 0) examples. Managing class
imbalance is an area of active research, particularly for cases such as this where under-
representation of the minority class makes common rebalancing algorithms ineffective [40].
As additional techniques become recommended, managing class imbalance should become
a fundamental step in the conditioning workflow described in Figure 2.

Table 3. Distribution of geothermal gradient classes for each well data set.

WDS WDS4 WDS8

Class 0 20 101 184
Class 1 99 499 905
Class 2 232 1144 2029
Class 3 245 1229 2226

Total 596 2973 5344

Supervised ML methods learn from the data supplied during the training step of
model building. However, over-training can lead to high model variance, where the in-
sample predictive power observed with training data does not generalize to out-of-sample
data not yet seen by the model. One method of managing overfitting involves splitting
the input data into training and non-training subsets. An additional split of the latter into
validation and test subsets cleanly separates the tuning of model parameter choices from
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final model evaluation, both of which require non-training data to avoid data leakage [35].
For classification problems, using random selection when splitting the input data set into
three subsets would violate the balance between the class proportions of the original input
data. Instead, we applied a stratified sampling approach to partition WDS, WDS4, and
WDS8 into 70% training, 15% validation, and 15% test by randomly sampling from each
geothermal class subgroup individually. The resulting subsets show consistency in class
proportions across the different well data sets modeled by this study (Table 4).

Table 4. Raw observation counts for each geothermal gradient class across the different data sets
after splitting each into training, validation, and testing subsets.

WDS
Train

WDS
Validate

WDS
Test

WDS4
Train

WDS4
Validate

WDS4
Test

WDS8
Train

WDS8
Validate

WDS8
Test

Class 0 14 3 3 71 15 15 129 27 28
Class 1 69 15 15 349 75 75 633 136 136
Class 2 162 35 35 801 171 172 1420 305 304
Class 3 172 36 37 860 185 184 1558 334 334

Total 417 89 90 2081 446 446 3740 802 802

2.3. Machine-Learning Workflow

A central tenant to the workflow described here is the use of multiple ML models for
predicting the favorability of a geothermal risk element. Four common, well-documented
ML approaches of increasing model complexity were selected for the study (Figure 5).
Specifically, we applied logistic regression (LR), a decision tree (DT), a gradient-boosted
forest (XGBoost or XGB), and an ANN. Model hyperparameters, i.e., the parameters not
able to be learned from data, were rigorously tuned in order to optimize the models. All
models start with the same conditioned well data sets, although simplified feature subsets
were derived from feature elimination or importance analysis when possible. Additional
details are documented in Appendix B and in the accompanying open-source software
developed by the authors [34].

Figure 5. Workflow for applying a variety of ML methods for geothermal prediction both individually
and as an ensemble model prior to uncertainty analysis.

2.3.1. Logistic Regression

Logistic regression predicts one of two class labels based on the weighted linear sum
of the input features [41]:

g = θT
(

1
x

)
= θ0 + θ1x1 + θ2x2 + · · ·+ θnxn, (1)

where xi are the n feature observations, θi are n+ 1 coefficients or weights for those features,
and g is the log-odds. Logistic regression adjusts the problem such that predictions define
the probability of belonging to class 1. This is completed by using a non-linear logistic
response function:

P(y = 1) = hθ(x) =
1

1 + e−g . (2)
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This equation, also known as the sigmoid function, converts the weighted sum from
Equation (1) to values between 0 (g→ −∞) and 1 (g→ ∞) [41]. Solving for the weights (θi)
in this equation requires an iterative optimization procedure such as gradient descent. This
procedure minimizes an objective function (J(θ)) based on negative log likelihood [42]:

J(θ) = − 1
n

n

∑
i=1

Cost(hθ(xi), yi)

= − 1
n

n

∑
i=1

(yiloghθ(xi) + (1− yi)log(1− hθ(xi)))

(3)

The One-vs.-Rest (OVR) method was selected to extended LR to multi-class classifica-
tion. OVR combines class alternatives so the number of classifiers matches the number of
classes: (0 vs. (1, 2, or 3)), (1 vs. (0, 2, or 3)), (2 vs. (0, 1, or 3)), (3 vs. (0, 1, or 2)) [43]. The class
with the greatest score wins, where the score is akin to the probability of class membership.

Regularization can be applied by penalizing the sum of the squared weights (L2-
regularization) to avoid overfitting. A constant (λ) determines the trade-off between the
magnitude of the weights and negative log likelihood in the minimization [44]:

regularized J(θ) = − 1
n

n

∑
i=1

Cost(hθ(xi), yi) +
λ

2m

m

∑
j=0

θ2
j , (4)

where m is the number of features. The scikit-learn LogisticRegression function used in this
study applies a hyperparameter C to the negative log-likelihood term, which acts such as
the inverse of λ [45]. Larger values of C result in less regularization [46]. See Table A1 for
the final tuned hyperparameter values used for each data set.

2.3.2. Decision Trees

A decision tree classifies observations using a cascading set of evaluations, each on an
individual feature from the training data set. DT models are uniquely suited to represent
non-linear behavior in a highly explainable way; once constructed, the tree describes a
flowchart-like map for each label assignment [41]. Only features found to be significant
during tree construction will appear in the tree, ordered from higher importance features
near the top to those of lower importance influencing splits near the bottom leaf nodes.

Trees are constructed by recursively performing binary splits on the training data set.
Each split defines two new nodes in the tree, which correspondingly partitions a group
within the training data into two subgroups. These subgroups represent new terminal
leaf nodes on the decision tree. The classification decision for each leaf will be the most
commonly occurring class among the training data observations assigned to that leaf [41].
Tree building takes place in two passes. In the forward pass, the tree iteratively grows
by selecting nodes in the tree, a predictor to split on, and a threshold value defining the
split. These choices are made to maximize the purity of the child nodes, typically using
measures such as Gini index or entropy. Gini index measures variance across all K classes.
Low values correspond with a strongly dominant class [47]:

Gm =
K

∑
k=1

p̂mk(1− p̂mk), (5)

where m is the subset of the training data associated with a tree node, k is a class among
K possible classes, and p̂mk is the fraction of all training observations in m that are of class
k. Entropy also shows low values when the proportion of one class dominates and is
discussed in Section 2.4 in the context of uncertainty analysis.

The tree will grow until a stopping condition is met, such as reaching a maximum
tree depth or minimum number of observations allowed per node. Then, tree clean-up or
“pruning” takes place in a backward pass. The following objective governs whether a tree
branch is kept or removed [47]:
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J(θ) = E + αT |T|, (6)

where |T| refers to the number of terminal nodes in the tree. The classification error rate (E),
or proportion of training samples that differ from the dominant class of a node, measures
quality. αT acts as a regularization parameter, balancing prediction accuracy with model
complexity; greater values of αT result in simpler trees.

A total of six hyperparameters were tuned in this study to balance the complexity
of the tree with out-of-sample predictive performance when building the final DT model.
Table A2 lists the hyperparameters and values determined for the different data sets.

2.3.3. Gradient-Boosted Forest

Tree-ensemble algorithms combine multiple DT models to form a more-performant
forest model. Variation among the trees comes from random factors influencing their
construction [47]. Gradient-boosted forests chain shallow trees in succession such that each
tree predicts based on the residuals of the preceding tree. The trees are weak learners that
individually underfit the data, yet when connected together, the final boosted model can
outperform conventional random forests. Gradient-boosted models take the form of [47]:

f̂ (x) = αs

B

∑
b=1

f̂b(x), (7)

where f̂ (x) is the boosted model, f̂b(x) are the individual trees in the chained ensemble
totaling B in number, and αs is the shrinkage parameter or learning rate.

Extreme gradient boosting (XGBoost) is a popular variant whose objective function,
governing model construction, balances two influences [48]:

J(θ) = L + Ω

=
n

∑
i=1

l(ŷi, yi) +
B

∑
b=1

ω( f̂b)

=
n

∑
i=1

l(ŷi, yi) +
B

∑
b=1

γ|T|b +
1
2

λ
|T|b
∑
t=1

θ2
b,t

,

(8)

where the first part (L ) expresses how poorly the model fits the data and the second term
(Ω) describes the complexity of the model. L is the sum of individual loss calculations
(l(ŷi, yi)) on the n predicted and observed response variable values. Tree-specific complexity
(ω( f̂b)) calculations balance the number of leaves in a tree (|T|b) with the L2 norm of leaf
weights (θb,j), which are are unique to XGBoost decision trees. Both γ and λ serve as
regularization factors.

XGBoost comes with many optimizations that make it extremely efficient, scalable, and
popular among machine-learning practitioners. However, XGB models must be carefully
tuned to mitigate the risk of overfitting. We focused on tuning nine hyperparameters and
simplifying our feature set through importance analysis when training the XGB classifier.
The specific hyperparameters and values used in modeling are listed in Table A3.

2.3.4. Neural Networks

ANNs are patterned after a simplified model of activity in the brain, where multiple
inputs feed into neuron-like nodes, which pass a signal to connected nodes when an input
threshold is reached [35]. The basic building blocks of ANNs act as logistic regression
operators; inputs are scaled by weights, and the linear sum passes through an activation
function to determine the binary output:

a = h(z) = h(ΘTx), (9)
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where h is the activation function that acts on each entry of z, and Θ is a matrix of weights.
z is analogous to g in (1).

The ANN cost function takes the form of a loss term and a complexity term [49]:

J(Θ) = − 1
n

n

∑
i=1

l(ŷi, yi) +
λ

2n

L−1

∑
ζ=1

sζ

∑
`=1

sζ+1

∑
j=1

(
Θ(ζ)

j`

)2
,

l(ŷi, yi) =
K

∑
k=1

(yi,k log h(zi)k + (1− yi,k) log(1− h(zi)k)),

(10)

Here, L is the number of layers in the network, sζ defines the number of nodes in
layer ζ, and the network prediction for the ith training observation, ŷi, consists of h(zi)k

for all the K nodes in the output layer. Θ(ζ)
j` represents the connection weight between

node ` in layer ζ and node j in layer ζ + 1. λ controls the balance between the loss and
complexity terms.

The training process updates network weights using gradients calculated from the
entire training data in each training round or “epoch” [35]. Successive epochs incrementally
adjust the ANN to match the training data in mini-batches, that is, small subsets of the
training set, rather than the whole set at once. This makes training results noisier but
speeds up learning while adding a regularization effect to changes in the weights [50].

We designed a fully connected ANN with the TensorFlow Python package [51], con-
sisting of an input layer, two hidden layers, and an output layer of four nodes representing
the four geothermal gradient classes being predicted (Figure A28). The hidden layers
use ReLU (rectified linear unit) activation functions, and the AdaM (adaptive moment)
optimization method was selected for the training process [52,53]. In addition to network
architecture choices, we tuned a total of five hyperparameters for the final classifier. The
list of hyperparameters and values selected for each well data set is provided in Table A4.

2.3.5. Feature Importances

Similar to the natural ranking observed in decision trees, feature importance algo-
rithms reveal ML model sensitivity to different feature inputs. The ShAP (Shapley additive
explanations) method predicts importances without assuming complete feature indepen-
dence [54]. In addition, average ShAP values capture global significance for general feature
importance, while individual values have local significance for single point predictions. The
sum of ShAP values equates to the deviation of the model prediction from the average value
(baseline), meaning ShAP values describe the individual feature contributions to a predic-
tion value [54]. In this study, we used ShAP analysis for feature simplification when tuning
the XGB model, but we also show how ShAP results can support resource-constrained
decisions for geothermal exploration activities.

2.4. Uncertainty Analysis Workflow

We evaluate the performance of each ML classifier using percent correctly classified
(accuracy), a confusion matrix of actual and predicted class labels, and evaluating the
trade-off in true-positive rate and false-positive rate as a function of decision threshold for
class assignments. The latter function defines the receiver operating characteristic (ROC)
curve, which is often summarized by its integral, the area under the curve (AUC) [55].
In addition to these, we use the concept of Shannon entropy as a proxy for classification
uncertainty [56]:

H(x) = − 1
log2 K

K

∑
i=1

p̂(y = ci|x) log2 p̂(y = ci|x), (11)

where x represents a single observation location and p̂ is the conditional probability as-
signed to class ci ∈ {c1, . . . , cK} by the classifier. Although this normalized entropy calcu-
lation does not account for the sequential relationships between the geothermal gradient
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classes, it exhibits good discrimination ability for model results that show different levels
of stand-out between the assigned (highest) class label score and the scores for alternative
class labels [57]. Therefore, an entropy map constructed for a single classification model
can illustrate the spatial variability in the relative prediction uncertainty for that model.

Our analysis builds on this concept to explore uncertainties from three different
sources in this study: algorithm selection (representation), model calibration during the
learning process (parameter), and input data variance and interpolation (feature), which
are presented as a workflow in Figure 6. In each case, the uncertainty is estimated from
an ensemble of model results. Both an aggregate model prediction and a set of class label
scores for each location in the study area are derived from this ensemble.

Figure 6. Workflow for analyzing uncertainties in ML model results for geothermal prediction.

Among the many options for combining multiple classifier outputs, we selected
distribution summation, whereby the arrays of conditional probabilities from each classifier
are summed, and the ensemble prediction is the label with the highest value in the total
array [58]:

class(x) = argmax
c∈{c1,...,cK}

M

∑
m=1

P̂m(y = c|x), (12)

where x represents the feature values for an observation, ci are the K possible class labels,
and P̂m are the conditional probabilities of all possible classes as predicted by model
m ∈ {1, 2, . . . , M}.

2.4.1. Representation Uncertainty

One consequence of representing complex systems such as geothermal resource pre-
diction by a single ML algorithm is the constraints it places on exploring the solution space
due to underlying model assumptions, the form of the model objective function, and the
optimization methodology employed. Rather than focus on a single “best” model, the four
classifiers presented in Section 2.3 were combined for an aggregate or ensemble prediction
using the distribution summation method (12). Then, representation uncertainty for the
model ensemble was calculated using entropy (11) at each map location in the study area.

2.4.2. Parameter Uncertainty

Fitting supervised ML models to training data typically requires iterative updates to
model parameters based on objective-function optimization. However, the final trained
models treat learned parameters as deterministic with no uncertainty. Probabilistic al-
gorithms such as Bayesian neural networks (BNN) replace single parameter values with
probability distributions [59]. A fully-trained BNN samples from these distributions for
just-in-time determination of node weight values as data are fed-forward to produce
a prediction.

In this study, we constructed a BNN by replacing the second hidden layer of the ANN
model in Section 2.3.4 with a probabilistic layer using the TensorFlow Probability Python
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package (Figure A29) [60]. We chose to replace just one layer of the ANN as a balance
between the limited size of the training data sets and the explosion in parameter count
each probabilistic layer brings to the BNN architecture. A suite of results was generated
via 1000 model predictions on the same input data. Then, we applied the distribution
summation method (12) to derive an array of class scores and calculated entropy values (11)
that characterize parameter uncertainty for the neural network model.

2.4.3. Feature Uncertainty

Only a fraction of the features obtained from public sources in this study were already
pre-conditioned and were complete raster files ready for modeling and analysis (Table 1).
Interpolation steps taken to convert a point set, polyline set, or incomplete grid into the
format required can propagate uncertainty into the prediction problem. Furthermore,
feature standard errors, generally overlooked by traditional ML methods, contribute to an
overall feature uncertainty estimate.

Using a single feature as a proof-of-concept, we estimated standard errors with empiri-
cal Bayes kriging (EBK), which is a probabilistic interpolation method that also accounts for
multiple measurements at one location [61]. Next, a derived data set was created by adding
random Gaussian noise to the feature GIS map based on the spatially variant feature stan-
dard errors. Repeating this process 100 times generated input data sets that are statistically
consistent with the original feature values. As with the other uncertainty estimates, the
ensemble of results from training and predicting on these data sets was combined using
distribution summation (12), and uncertainty was characterized by calculating entropy (11).
Although we applied this procedure to a single feature, it could easily be extended to
investigate how uncertainty related to multiple features can influence the uncertainty in
the final model results.

3. Results
3.1. Individual Models

The LR, DT, XGB, and ANN machine-learning models were each tuned and trained
on the three well data sets in succession. Table 5 lists the in-sample (training) and out-of-
sample (test) results using accuracy and AUC metrics for all models and data sets. The
more complex XGB and ANN models show fewer misclassifications across all geother-
mal-gradient classes than the simpler LR and DT models. There is a demonstrated uplift
in model performance between the original WDS data set and the augmented WDS4 and
WDS8 data sets for all models. However, we do not observe significant or consistent
improvement from using WDS8 over WDS4—the benefits of training on augmented data
are realized with the smaller WDS4 data set, and additional pseudowells do not noticeably
improve classifier performance metrics for WDS8. Therefore, WDS4 results are used as the
focus of the analysis for the remainder of this study.

Model results are further characterized by the confusion matrices in Figure 7. All
models produce several predictions off by a single sequential class assignment for the test
data, the most prevalent being between the medium-grade (class 2) and high-grade (class
3) geothermal gradient. The LR model is more prone to misclassifications of two or more
sequential classes, including some locations marked as high-grade that actually fall in the
non-geothermal (class 0) category. The ANN model performs best in that it misclassifies
by no more than a single sequential class. However, aside from three high-grade false
positives that should be low-grade, the XGB model also does very well.

Figure 8 illustrates the individual class, micro-average, and macro-average ROC curves
based on the predicted scores for each class label. Ideal models minimize the false-positive
rate while maximizing the true-positive rate for all classifier decision thresholds, meaning
they plot in the upper-left corner. These plots effectively demonstrate the predictive
strength of both the XGB and ANN models compared to the DT and LR models. The
classification performance for class 2 lags behind other individual classes. This suggests
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that the mid-grade geothermal gradient is more difficult to uniquely distinguish with the
feature data.

Table 5. Supervised machine-learning model statistical results for train (in-sample) and test (out-of-
sample) subsets of the WDS, WDS4, and WDS8 data sets.

Logistic Regression WDS WDS4 WDS8

Accuracytrain 0.722 0.692 0.703
Accuracytest 0.633 0.702 0.687

AUCtrain 0.893 0.875 0.882
AUCtest 0.793 0.890 0.878

Decision Tree WDS WDS4 WDS8

Accuracytrain 0.672 0.866 0.920
Accuracytest 0.589 0.814 0.904

AUCtrain 0.848 0.972 0.989
AUCtest 0.769 0.950 0.972

XGBoost WDS WDS4 WDS8

Accuracytrain 0.914 0.976 0.971
Accuracytest 0.733 0.924 0.930

AUCtrain 0.990 0.998 0.998
AUCtest 0.902 0.994 0.993

Neural Network WDS WDS4 WDS8

Accuracytrain 0.878 0.964 0.953
Accuracytest 0.826 0.952 0.947

AUCtrain 0.979 0.998 0.998
AUCtest 0.897 0.993 0.992

Figure 7. Confusion matrices showing classifier results after training on WDS4 for the (A) LR, (B) DT,
(C) XGB, and (D) ANN models.
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Figure 8. ROC curves after training on WDS4 for (A) LR, (B) DT, (C) XGB, and (D) ANN models.

Values from the input feature maps were extracted using a grid of points spaced
0.025◦ × 0.025◦ within the AOI; then, they were fed into each classifier to generate geother-
mal gradient maps for southwest New Mexico (Figure 9). The similarity of gross play
fairway trends across different machine-learning results is striking, as is the unique sig-
nature style of prediction that each algorithm produces. Individually, the maps offer
actionable guidance for an exploration team on potential prospect targets. However, collec-
tively, they also indicate the uncertainty in the geothermal gradient predictions both for the
broader trends and in local details.
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Figure 9. Geothermal gradient class prediction maps after training on WDS4 for the (A) LR, (B) DT,
(C) XGB, and (D) ANN models.

To examine this further, we created the ensemble prediction map in Figure 10A using
distribution summation (12) at each of the extraction-grid coordinate locations within the
AOI (x in the equation). The ensemble model demonstrates stronger predictive performance
than the individual models based on an out-of-sample AUC of 0.995, and it bests all but
the ANN model with an out-of-sample accuracy of 0.942. Figure 10B depicts predictions
when a weighted average scheme using test set accuracy is applied during distribution
summation. Although the differences between the two maps in Figure 10 are subtle, the
weighted model improves the results even further: WDS4 out-of-sample accuracy grows to
0.955 and AUC climbs to 0.997.
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Figure 10. Geothermal gradient class prediction maps using WDS4-trained models for the LR, DT,
XGB, and ANN models with (A) equal weighting or (B) weighting based on the test set accuracy.

Figure 11 shows the confusion matrices for both the unweighted and weighted average
four-model ensemble classifiers. Based on these observations, the best results come from
applying a weighting scheme on the distribution summation, allowing all models to
contribute to the ensemble but also taking into account the measurable performance
differences between the models.

Figure 11. Confusion matrices for the ensemble model after distribution summation with (A) equal
weighting and (B) using an accuracy-based weighted-average for the four input models.

3.2. Representation Uncertainty

Figure 12A depicts a map of relative uncertainty in the form of Shannon entropy (11)
calculated at each AOI grid location. Areas where normalized entropy reaches a value of
0.7 or greater are masked out (gray) in the ensemble prediction map (Figure 12B), and lower
levels of entropy imply less transparency of the four class colors to communicate both
uncertainty and classification results. This figure provides multiple levels of information to
an exploration team. The high temperature-gradient areas identify prospects for shallower
heat resources to target in an exploration program. Additionally, the masked regions
indicate where the models cannot differentiate between two or more class labels. Rather
than bias a team on the gradient potential of high-entropy regions with a highly uncertain
classification, we allow the mask to communicate that no judgment call should be made
without further study.
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Figure 12. (A) Representation uncertainty from the choice of models, measured using Shannon
entropy. Values are normalized to range from 0 for low entropy and uncertainty (blue) to 1 for high
entropy and uncertainty (red). (B) Combined-model prediction map with uncertainty. Normalized
entropy values > 0.7 are masked in gray and values ≤ 0.7 imply correspondingly less transparency
applied to the four class colors.

3.3. Parameterization Uncertainty

The Python TensorFlow implementation of the ANN model includes a total of 1300
trainable parameters that must be learned during model training. Summary statistics
(Table 5) suggest the ANN is a reliable classifier for the entire southwest New Mexico
study area. However, with so many parameters to learn and such limited training data to
learn from (Table 3), we chose to test this assumption using the BNN approach. Figure 13
illustrates the entropy map derived from 1000 predictions from the BNN tuned and trained
on WDS4, as well as a results ensemble map with uncertainty masking as described in
Section 3.2.

Figure 13. (A) Relative parameter uncertainty derived from distribution summation of 1000 runs
of the WDS4 BNN model. Uncertainty is measured by normalized Shannon entropy values as
in Figure 12. (B) Ensemble-averaged WDS4 BNN prediction map with uncertainty. Normalized
entropy values > 0.7 are masked in gray. Transparency is proportionate to normalized entropy for
values ≤ 0.7.

Uncertainty from the model parameterization is not spatially uniform; patches of high
entropy are concentrated to the southeast where the predicted geothermal gradient—and
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ground truth well measurements (Appendix A.26)—vary significantly over short lateral
distances. The high-grade geothermal-gradient region in the center of the AOI demonstrates
low entropy values, indicating that the trained neural network model has enough parameter
certainty to predict a positive heat resource classification in this area consistently.

3.4. Feature Uncertainty

Figure 14 illustrates feature importances for predictions of a geothermal gradient
derived from ShAP analysis. This analysis focuses on the XGB model due to its high
performance among the classifiers studied and the integration in Python toolkits for both
XGBoost prediction and Shapley value calculation [62,63]. The three features with the
greatest average ShAP magnitudes across all test data locations and gradient classes are
Si geothermometer temperature (SiGT), heat flow, and crustal thickness. By inference,
uncertainty in the values for these features should most strongly translate into uncertainty
in the final classification results. To investigate this further, we applied the EBK method
to derive standard error estimates for the globally most important feature, SiGT; then, we
applied the feature uncertainty approach to testing the sensitivity of prediction results
to this feature. Note that ShAP values for individual classes can vary from the global
assessment. For example, the most important feature for class 3 is volcanic dike density,
while heat flow is most important for class 2. Therefore, the uncertainty analysis can be
tailored depending on the specific class of greatest interest to a geothermal project team.

Figure 14. ShAP variable importance plot for the XGB classifier derived using the WDS4 test data
subset. Bar widths depict feature importances for specific geothermal-gradient classes (colors). The
sum of colored bar widths indicates overall feature importance for the model based on average ShAP
magnitude across all test data point locations.

The normalized entropy map in Figure 15 was created using XGB predictions for
100 variations of WDS4, each including SiGT perturbed by Gaussian noise calibrated to
SiGT standard errors. Large spatially contiguous patches of high entropy to the northeast,
southeast, and elsewhere highlight areas where variance in SiGT values results in significant
uncertainty for the ML models. Assuming this represents epistemic uncertainty, the entropy
map provides important guidance for a mitigation strategy; collecting additional data in
the masked regions could reduce SiGT feature uncertainty and thus increase confidence in
the classifier results due to the importance of this feature.
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Figure 15. (A) SiGT feature uncertainty from distribution summation of models trained on 100
noise-perturbed data sets. Uncertainty is measured by normalized Shannon entropy values as in
Figure 12. (B) XGB ensemble prediction map with SiGT uncertainty masking. Normalized entropy
values (>0.7) are grayed out, and values ≤ 0.7 correspondingly reduce the transparency of the four
class colors.

4. Discussion

Although similar in regional trends, each of the four supervised ML methods pre-
sented in Section 3.1 show differences in local predictions and overall performance as
geothermal gradient classifiers. The weighted-average ensemble model demonstrates bet-
ter performance than the individual models alone, supporting an argument for ensemble
approaches to the ML-enhanced PFA methodology. Figure 16 summarizes the comparison
between the ML models based on test set accuracy and AUC.

Figure 16. Accuracy and AUC statistics for each individual model and two ensemble models
described in Section 3. ENS and WENS are ensembles using unweighted and weighted distribution
summation, respectively. Dashed lines indicate accuracy levels for piecewise-linear (PL), nearest
neighbors (NN), and kriging (KR) interpolants constructed from the WDS training data.
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A vital additional comparison must address whether or not ML provides meaningful
uplift over conventional methods used in PFA workflows. For the southwest New Mexico
study area, the prior PFA predicted an integrated favorability assessment for hydrothermal
resources, not enthalpy alone [16]. Nevertheless, PFA data uploaded to the open-access
Geothermal Data Repository include an interpolated map of geothermal gradient based
on well data similar to those included in this study [17]. Using the PFA as a baseline, we
consider interpolation as the the primary alternative to predicting temperature gradient
with ML techniques. More precisely, a comparison can be made between the ML results and
those for interpolation functions constructed using the WDS training subset and evaluated
against the remaining WDS data points. This assessment was performed using three
algorithms: piecewise-linear interpolation and nearest-neighbor interpolation from the
scipy Python library [64], and ordinary kriging with a spherical variogram model available
in ArcGIS. These methods provide deterministic estimates of gradient for the combined
WDS validation and test subsets, which were then converted to the classification scheme in
Table 2 for comparison with the ML models. AUC cannot be calculated, but interpolant
accuracy scores fall short of those achieved by all but one individual ML model (Figure 16),
and they are well below the ensemble model accuracies.

It is important to note a fundamental difference between the two estimation method-
ologies: interpolation algorithms predict geothermal gradient from the spatial relationships
embedded in the training data, while the ML models learn from signals within the features
listed in Table 1, which notably do not include geospatial coordinates. Not only does the
ML workflow result in better predictions, those predictions are data-driven at each map
location rather than spatially derived. This narrow focus in detection may be particularly
advantageous for identifying blind geothermal systems whose presence and bounds can be
highly local in nature.

However, presenting the individual and ensemble results to explorationists interested
in prospect identification and maturation would invariably elicit two important questions:
(1) how much confidence should be assigned to the class labels agreed by only a plurality
of models, and (2) what would be the best next steps to take based on these models. At
the heart of the first question is the need to pair the use of ML methods with uncertainty
characterization, specifically uncertainty due to different model representations and where
those models fail to agree in classifications. Incorporating several high-performance models
into an ensemble estimate with an uncertainty metric such as entropy can give a geothermal
exploration team confidence in which areas should receive more attention and resources,
either in data purchases, new data acquisition campaigns, or hours of traditional play
fairway and prospect interpretation activities.

The workflow described in Figure 6 notes multiple sources of uncertainty, each with the
potential for providing meaningful information in translating predictions into exploration
decisions. To illustrate this point, we consider the scenario where the hypothetical prospect
outlines identify two areas of interest, Lightning Dock (LD) and Rincon (RC), for an EGS
installation within the southern half of the study area (Figure 17). The ensemble classifier
predicts high-grade enthalpy resources, approximated by geothermal gradient, within
either quadrangle (Figure 17A). Note that the primary risk element for EGS is enthalpy,
since permeability and fluids solutions could be engineered. White markers indicated
reference points as proposed drill locations, which are presumably influenced by additional
factors such as access to transmission lines, infrastructure, or permitting constraints. With
no additional information, LD and RD would rank equally high in prospect favorability.
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Figure 17. Detailed look at the southern region of the study area for (A) the weighted-average
ensemble classification, (B) representation uncertainty map, (C) parameterization uncertainty map,
and (D) SiGT feature uncertainty map. Lightning Dock (LD) and Rincon (RC) areas marked with red
quadrangles. White circle markers illustrate hypothetical drill locations.

Model representation uncertainty reveals a greater level of confidence in the gradient
prediction at LD compared to RC (Figure 17B). Masked values at the RC reference point
indicate high entropy, suggesting that the project team should explore options to obtain
more information and rerun the ML PFA workflow with any additional data. If no ad-
ditional information is available, the team could either adjust their risk tolerance on RC,
focus further subsurface characterization efforts on this region, or choose to abandon RC
as a prospect altogether, since the ML models cannot clearly differentiate among gradient
classes with the available feature data.

Shifting focus to the ANN classifier as one of the top-performing models, an analy-
sis of parameterization uncertainty shows low entropy across most of both the LD and
RC quadrangles (Figure 17C). However, the reference point for RC lies along a narrow
northwest–southeast trend of high entropy. The project team could choose to adjust this
proposed well location slightly east or west to avoid this trend while staying within a
Class 3-labeled region. Alternatively, an ML model with fewer trainable parameters may
be a more appropriate choice for RC predictions, in addition to traditional subsurface
interpretation and modeling efforts, to help mitigate the risk of this prospect.

Uncertainties tied to the feature of highest importance, SiGT, also offer useful insights
into this hypothetical prospect evaluation. Entropy levels appear quite low at LD and
marginally high at the RC reference point (Figure 17D). High entropy throughout the north-
ern section of the RC quadrangle could be mitigated with additional silica concentration
sampling in the field. A closer review of SiGT data in the RC area might prove beneficial as
well. Anomalous values in the original data, if they are erroneous, will increase standard
errors, impacting both the EBK interpolation routine and overall predictive value of the
feature. On the other hand, anomalous values that are trustworthy must be accepted as
indicators of strong lateral heterogeneity. Thus, uncertainties here can contribute to an
important feedback loop for appropriate data conditioning, which is the key first step in
the ML-enhanced PFA workflow.

The optimal allocation strategy for geothermal-project resources should also take
the full feature importance analysis results into account. Average ShAP magnitudes for
water table depth, average precipitation, and magnetic anomalies rank lowest among the
features in this study (Figure 14). The poor predictive value of these data sets would
not justify additional project time or budget appropriations targeting their collection or
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analysis. Similarly, water-table gradient, topographic gradient, gravity-anomaly gradient,
and magnetic-anomaly gradient do not even appear in the ShAP value sensitivity report
and could reasonably be set aside as low priority data sets. Instead, spending should
focus on high-value data, including fault and drainage maps; the earthquake catalog and
heat-flow estimates; mapped vents, springs, and volcanic dikes; crustal thickness estimates;
and boron and silica concentrations. Note that feature importance rankings will likely
vary from locality to locality if the local geophysical configurations are just sufficiently
different, or even in the same project area if features are replaced with newly acquired or
reprocessed data. Insights from ShAP analysis apply to models trained on a particular
feature set and would necessarily require a refresh should that feature set or the geophysical
configuration change.

5. Conclusions

The objective of this paper was to revisit the play fairway analysis (PFA) methodology
and apply machine learning (ML) models for risk element prediction, uncertainty esti-
mation, and decision guidance for a geothermal project team in the exploration phase of
field development. Fundamentally, this process successfully resulted in classification maps
of geothermal gradient, a proxy for subsurface enthalpy resource presence, covering the
study area in southwest New Mexico. Maps were generated from four separate machine
learning methods and from a weighted ensemble model that demonstrated better overall
predictive performance. The ensemble also outperformed common interpolation routines
that only rely on spatial patterns for prediction. Variance in the individual ML classifier
results within the ensemble is rooted in different underlying distributions of the class prob-
abilities based on the chosen model representations. We applied distribution summation
on the class probabilities and calculated entropy to quantitatively measure spatial locations
where ensemble predictions had high confidence or where ensemble results could not be
trusted due to this representation uncertainty. Incorporating probabilistic components
into ML models allows parameterization uncertainty to be measured in a similar way.
This measure helped us identify areas in the case study where the neural network may be
under-constrained due to lack of sufficient training data or iterations. Standard errors in
the input features define a third source of uncertainty that is easily measurable using a
solution ensemble and entropy approach. When applied to features that rank highly in an
importance analysis, such as silica geothermometer temperature in southwest New Mexico,
feature uncertainty can provide clear guidance on locations where information gain from
data-gathering activities would be of the highest value.

We believe applying these steps in a comprehensive ML-enhanced PFA strategy
for mapping enthalpy favorability can influence conventional hydrothermal, enhanced
geothermal systems, and even advanced closed loop geothermal exploration projects.
Further enthalpy resource characterization would also need to take other parameters,
such as thermal conductivity, into account. Furthermore, practitioners should extend
the workflow for pre-screening other risk elements such as permeability and fluids for a
complete PFA depending on the targeted type of geothermal system. One further caveat
must also be addressed: ML-enhanced PFA methods cannot replace subject matter experts
in geothermal exploration. Rather, the methods proposed here give practitioners valuable
decision support for more efficient project execution. The associated data-driven insights
enable highly targeted technical efforts and rapid identification of prospects, both of which
are requirements to support future growth of the geothermal industry.
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Appendix A. Feature Data Layers

All features used as predictor and response variables for the ML workflow required
some preparation prior to modeling. For each feature below, we describe the source of the
data, outline the conditioning steps applied to the data, and provide an image of the final
GIS map.

Appendix A.1. Average Air Temperature

The University of Oregon PRISM Climate Group maintains regularly updated spa-
tial data sets of climate-related observations, including 30-year average annual condi-
tions [18,38]. We downloaded the 800 m resolution average air-temperature grid and
cropped to the study area (Figure A1). This layer required no further processing.
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Figure A1. Average air temperature data layer map, produced using ArcGIS Pro. Units are ◦C. Data
were retrieved from the PRISM website [18].

Appendix A.2. Average Precipitation

We also downloaded the 800 m resolution 30-year average-precipitation grid from the
PRISM Climate Group [18,38]. This layer required no additional processing after cropping
it to the study area (Figure A2).
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Figure A2. Average-precipitation data layer map, produced using ArcGIS Pro. Units are millimeters.
Data were retrieved from the PRISM website [18].

Appendix A.3. Basement Depth

Following the procedure outlined by Pepin [9], we used the basement-elevation raster
created by Bielicki et al. [16] to calculate depth to basement. First, we extracted values
using a 0.025◦ × 0.025◦ grid, which revealed patches of missing data. These values were
replaced using ordinary kriging with a spherical semivariogram model, lag size of 0.097◦,
and a variable search radius requiring four neighboring points. We filtered the Surface
Topography (DEM) layer by averaging across a 3× 3 neighborhood to suppress detailed
surface morphologies. To make the final basement elevation layer, we subtracted the
interpolated basement elevation layer from the filtered DEM (Figure A3).



Energies 2022, 15, 1929 26 of 56

Figure A3. Basement-depth data layer map, produced using ArcGIS Pro. Units are meters. Layer is
derived using the basement-elevation raster from Bielicki et al. [16,17].

Appendix A.4. Boron Concentration

Measurements of boron concentration were collected by Bielicki et al. [16] from USGS
records, student dissertations, and other sources. After obtaining these point data, we
merged them into a single collection of 5686 measurements constrained to the southwestern
New Mexico region. Interpolation of the data was performed using empirical Bayes
kriging (EBK), which manages both non-uniform spatial distributions and multiple values
from locations where repeated samples were taken [61]. We used EBK with K-Bessel
semivariograms and a maximum of 100 points in 100 simulations to generate the final
data layer (Figure A4). Note that unlike some interpolants, kriging produces piecewise
continuous surfaces with zero-order continuity at patch borders [65]. There is no constraint
to enforce globally smooth surface solutions, which explains sharp lateral gradients in
kriging maps such as this one.
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Figure A4. Boron-concentration data layer map, produced using ArcGIS Pro. Units are g/m3. Black
dots indicate sample locations in the complete data set compiled by Bielicki et al. [16,17].

Appendix A.5. Crustal Thickness

In the absence of a more recent seismic study constraining variations in crustal thick-
ness across the study area, we used the regional map published by Keller et al. [19]
to construct the crustal-thickness feature layer. Following the procedure described by
Pepin [9], we digitized the thickness contours from the Keller map, then interpolated
between them using the ArcGIS Topo to Raster function, which uses an iterative finite
difference method and removes local minima not supported by the input data [66]. The
resulting map in Figure A5 shows an appropriately long-wavelength approximation for
regional crustal-thickness variations given the original sparse constraints from 2D seismic
lines shot in the 1960s–1980s [19].
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Figure A5. Crustal-thickness data layer map, produced using ArcGIS Pro. Units are kilometers. Black
lines trace contours digitized from Figure 4 in [19], extrapolated outside the AOI to the west for
gridding purposes.

Appendix A.6. Drainage Density

We obtained drainage polyline data from the original PFA submission to the OpenEI
repository [17]. In converting line data to into a feature map, we elected to use a kernel
density estimation technique that fits smooth surfaces over each line, maintaining a maxi-
mum value along the line length and a radius-controlled decay to either side [67]. The final
drainage density layer (Figure A6) used a radius of 0.272◦.
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Figure A6. Drainage-density data layer map, produced using ArcGIS Pro. Units are degree/degree2

(average channel arc per catchment solid-angle). Blue lines show the drainage polyline data set from
Bielicki et al. [16,17].

Appendix A.7. Earthquake Density

Following the procedure outlined by Pepin [9], we created a southwest New Mexico
earthquake catalog by combining historical earthquake records for the years 1869–1998 [20],
1999–2004 [21], and 2005–2009 [22] with data pulled from the USGS earthquake catalog [23].
The final study area collection comprised 2539 unique events spanning 1962–2020. We used
a grid search routine with 10-fold cross-validation to determine the best search radius of
11,600 m for an earthquake kernel-density estimate (KDE). The final data layer is shown in
Figure A7.
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Figure A7. Natural logarithm of earthquake density in number per km2. Map produced using ArcGIS
Pro. Black dots indicate earthquake event point locations.

Appendix A.8. Gamma-Ray Absorbed Dose Rate

Aerial gamma-ray surveys conducted across the United States in the late 1970–1980s
are the basis for Potassium (K) concentration (in percent K), equivalent Uranium (eU)
concentration (in ppm), and equivalent Thorium (eTh) concentration (in ppm) maps. These
measures collectively define the absorbed dose rate, which can be calculated from the
following equation: D = 13.2K + 5.48eU + 2.72eTh [24].

We obtained the absorbed dose rate for West Central USA from the USGS Open-File
Report 2005-1413 website [24] and cropped it to the southwest New Mexico area. Then,
we filled a data gap near the White Sands Missile Range by using ordinary kriging with a
spherical semivariogram model, lag size of 0.097◦, and a variable search radius requiring
four neighboring points. Figure A8 illustrates the final map.
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Figure A8. Absorbed dose-rate data layer map, produced using ArcGIS Pro. Units are
nanograys/hour. Original data from USGS Open-File Report 2005-1413 [24].

Appendix A.9. Geodetic Strain Rate

We downloaded the global strain rate model (GSRM) v.2.1 [25] directly from the
University of Nevada Reno Geodetic Laboratory website [68]. GSRM describes elements
of the full strain tensor at a 0.1◦ resolution. We cropped the model to the study area and
calculated the second invariant of the strain tensor for each point [25]:

‖ε̇‖ =
√

tr(ε̇ • ε̇) =
√

∑
i,j

ε̇ij ε̇ij. (A1)

These data were gridded to a higher resolution using the ArcGIS regularized spline
method with the regularization weight set to 0.1 [69]. Figure A9 illustrates the final map.
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Figure A9. Geodetic strain-rate data layer map, produced using ArcGIS Pro. Units are 10−9 yr−1.
Layer is based on data from Kreemer et al. [25].

Appendix A.10. Gravity Anomaly

We obtained terrain-corrected gravity-anomaly data available from the University of
Texas El Paso [26] directly from the original southwest New Mexico PFA submission to the
OpenEI repository [17]. This layer required no further processing (Figure A10).
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Figure A10. Gravity-anomaly data layer map, produced using ArcGIS Pro. Units are milligals (mGal).
Raster obtained from OpenEI archive [17].

Appendix A.11. Gravity-Anomaly Gradient

Gravity-anomaly gradient values were calculated by taking the slope of the gravity-
anomaly layer. Figure A11 shows the final data layer, calculated as slope degrees or

arctan

(√(
∂ψ
∂x

)2
+
(

∂ψ
∂y

)2
/

gψ

)
, where gψ = 1 mGal/m is a reference gradient of the

gravity anomaly ψ.
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Figure A11. Gravity-anomaly gradient data layer map, produced using ArcGIS Pro. Units are
degrees.

Appendix A.12. Heat Flow

The 0.5◦ × 0.5◦-resolution heat-flow model from Lucazeau [27] offers coarse coverage
across the southwest NM study area. We obtained the data from the supporting information
section of the publication web-page [27]. Then, we interpolated with the ArcGIS Topo to
Raster function, which uses an iterative finite difference method and removes local minima
not supported by the input data [66] to generate the final data layer (Figure A12).
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Figure A12. Heat-flow data layer map, produced using ArcGIS Pro. Units are mW m−2. Black dots
mark the original source data points from Lucazeau [27].

Appendix A.13. Lithium Concentration

Measurements of lithium concentration were collected by Bielicki et al. [16] from USGS
records, student dissertations, and other sources. After retrieving these point data from
the OpenEI archive [17], we interpolated 3595 measurements in the study region using
EBK as described for the boron layer. Figure A13 shows the final results. Note that kriging
solutions such as this may show ridge-like edges and boundaries between patches of the
interpolated surface by nature of the kriging algorithm [65].
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Figure A13. Lithium concentration data layer map, produced using ArcGIS Pro. Units are mg/L.
Black dots mark sample locations in the complete data set from Bielicki et al. [16,17].

Appendix A.14. Magnetic Anomaly

We obtained USGS magnetic-anomaly based on aerial surveys [70] directly from the
original southwest New Mexico PFA submission to the OpenEI repository [17]. This layer
required no further processing (Figure A14).
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Figure A14. Magnetic-anomaly data layer map, produced using ArcGIS Pro. Units are nanoteslas.
Raster obtained from OpenEI archive [17].

Appendix A.15. Magnetic-Anomaly Gradient

Magnetic-anomaly gradient values were calculated by taking the slope of the magnetic-
anomaly layer. Figure A15 shows the final data layer, which is calculated as slope degrees

or arctan

(√(
∂φ
∂x

)2
+
(

∂φ
∂y

)2
/

gφ

)
, where gφ = 1 nT/m is the reference gradient of the

magnetic anomaly φ.
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Figure A15. Magnetic-anomaly gradient data layer map, produced using ArcGIS Pro. Units are
degrees.

Appendix A.16. Quaternary Fault Density

Faults showing Quaternary displacement were originally digitized at the 1:24,000
scale by the New Mexico Bureau of Geology and Mineral Resources and provided to
Bielicki et al. [16]. We obtained the associated polylines from the OpenEI PFA submis-
sion [17] and then applied the same line-based kernel density estimate used for the drainage
density layer, with a decay radius of 0.367◦. Figure A16 shows the final data layer.
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Figure A16. Quaternary fault-density data layer map, produced using ArcGIS Pro. Units are
degree/degree2. Black lines show the fault polyline data set archived by Bielicki et al. [16,17].

Appendix A.17. Silica Geothermometer Temperature

Silica-concentration data were compiled by Bielicki et al. [16] and converted to reser-
voir temperatures using the Fournier chalcedony geothermometer relationship [71]. After
retrieving the point data from OpenEI [17], we interpolated the 7259 measurements using
EBK as described for the boron layer. Figure A17 shows the final results.
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Figure A17. Chalcedony geothermometer data layer map, produced using ArcGIS Pro. Units
are ◦C. Black dots indicate locations where silica concentration was sampled, as collected by
Bielicki et al. [16,17].

Note that low groundwater silica concentrations can lead to physically unrealistic
negative temperatures with the Fournier relationship. These values are preserved to capture
relative variation in silica concentrations. The ML methods only focus on relative variations
the scaled and transformed data, not absolute magnitudes, so negative Si geothermometer
temperatures can be tolerated.

Appendix A.18. Spring Density

We obtained 2565 locations of springs within the study region from the USGS National
Water Information System [28]. As with the earthquake density layer, we used a grid search
routine with 10-fold cross-validation to determine the best search radius of 31,400 m for a
spring KDE. The resulting data layer is shown in Figure A18.



Energies 2022, 15, 1929 41 of 56

Figure A18. Natural logarithm of spring density in number per km2. Map produced using ArcGIS
Pro. Black dots indicate spring locations from the USGS [28].

Appendix A.19. State Map Fault Density

We retrieved New Mexico state fault outlines from the USGS Energy and Environment
in the Rocky Mountain Area data portal [30,72]. As with the Quaternary fault layer, we
converted the polylines to fault density using line-based KDE with a radius of 0.25◦.
Figure A19 shows the final data layer.



Energies 2022, 15, 1929 42 of 56

Figure A19. State fault-density data layer map, produced using ArcGIS Pro. Units are degree/degree2.
Dark gray lines trace the fault polyline data set obtained from USGS Open-File Report 2005-1351 [72].

Appendix A.20. Surface Topography (DEM)

We obtained a Digital Elevation Model (DEM) raster with surface topography at one
arc-sec resolution from the southwest New Mexico PFA OpenEI archive [17]. To address
a data gap to the east, we merged in two 1◦ × 1◦ DEM tiles at the same resolution from
the USGS National Map website [29]. The final data layer required no further processing
(Figure A20).
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Figure A20. Surface-topography (DEM) data layer map, produced using ArcGIS Pro. Units are
meters. Layer combines the DEM raster from Bielicki et al. [16,17] with data from The National Map
online [29].

Appendix A.21. Topographic Gradient

We calculated topographic-gradient magnitude by taking the slope of the DEM raster
as was performed for both gravity-anomaly and magnetic-anomaly gradient. Figure A21
shows the final data layer in slope degrees.
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Figure A21. Topographic gradient data layer map, produced using ArcGIS Pro. Units are degrees.

Appendix A.22. Volcanic-Dike Density

We retrieved digitized volcanic-dike outlines from the USGS Energy and Environment
in the Rocky Mountain Area data portal [30,72]. As with the Quaternary fault layer,
we converted the polylines to dike density using line-based KDE with a radius of 0.25◦.
Figure A22 shows the final data layer.
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Figure A22. Volcanic dike-density data layer map, produced using ArcGIS Pro. Units are in
degree/degree2. Black lines trace the dike polyline data set obtained from USGS Open-File Re-
port 2005-1351 [72].

Appendix A.23. Volcanic-Vent Density

We obtained 811 volcanic vent locations within the study area from the New Mexico
Bureau of Geology and Mineral Resources using the NMBGMR Interactive Map [73].
As with the earthquake density layer, we used a grid search routine with 10-fold cross-
validation to determine the best search radius of 28,300 m for a volcanic vent KDE. The
final data layer is shown in Figure A23.
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Figure A23. Natural logarithm of vent density in number per km2. Map produced using ArcGIS Pro.
Black dots indicate vent locations from the NMBGMR [73].

Appendix A.24. Water-Table Depth

We obtained a depth to water table raster constructed by Bielicki et al. [16] from the
southwest New Mexico PFA archive [17]. Data gaps to the south and east of the study
area were filled using empirical Bayes kriging [61] with exponential semivariograms and a
maximum of 100 points in 100 simulations. Figure A24 illustrates the final result.
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Figure A24. Water-table depth data layer map, produced using ArcGIS Pro. Units are in feet. Adapted
from raster created by Bielicki et al. [16,17].

Appendix A.25. Water-Table Gradient

We retrieved a raster of the water-table gradient from the southwest New Mexico PFA
archive [17]. As with the water-table depth data layer, gaps to the south and east of the
study area were filled using EBK [61] with exponential semivariograms and a maximum of
100 points in 100 simulations. Figure A25 illustrates the final result.
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Figure A25. Water-table gradient data layer map, produced using ArcGIS Pro. Units are in
feet/degree. Based on the raster from Bielicki et al. [16,17].

Appendix A.26. Geothermal Gradient

The SMU Heat Flow Database from BHT Data catalog contains geothermal gradi-
ent values in two forms: reported gradient and corrected gradient [31]. We selected the
corrected geothermal gradient when available, and we used the uncorrected value oth-
erwise. For the 20% of well locations with multiple geothermal gradient measurements,
often recorded for different intervals within a well, we chose the highest value assuming
that interval would be the target for any enthalpy capture. Three negative geothermal
gradient records were discarded due to lack of information to verify the anomalous val-
ues. Figure A26 depicts the final set of 596 values in the study area after binning into the
geothermal-gradient classes described in Table 2. Figure A27 shows the results of kriging
the well data in Figure A26 for assigning geothermal-gradient values during the data-
augmentation step. Additionally shown are the wells and pseudowells of the WDS8 data
set. Keeping the step-out distance short (0.01◦) reduces the imprint of the kriging result
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on the augmented data sets, and kriging adds consistency to overlapping pseudowells in
areas where well density is high.

Figure A26. Geothermal-gradient observations from well data. Markers are colored by geothermal-
gradient class. Data were retrieved from the SMU NGDS portal [31].
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Figure A27. Geothermal gradient based on kriging of WDS data set used for data augmentation.
Map produced using ArcGIS Pro. The layer consists of continuous values in K/km interpolated for
the geothermal gradient, visualized using color binning to simulate classification label assignments.
White markers depict the WDS8 wells and pseudowells. Inset map shows zoomed-in view to illustrate
the short step-out of the pseudowells from the original WDS well locations.

Appendix B. Methods Supplementary Information

Appendix B.1. Data Scaling and Transformation

We applied the Z-score formulation for standardizing feature data prior to modeling.
This method resets the statistical moments of a feature to zero mean and unit variance:

Z =
x− µ

σ
, (A2)

where µ and σ2 are the sample mean and variance of x.



Energies 2022, 15, 1929 51 of 56

We paired data scaling with non-linear data transformations to replace feature dis-
tribution skewness with more Gaussian-like symmetry. Specifically, the data underwent
a Yeo–Johnson power transformation, which uses a parameter, λ, to select from among a
family of transformations [37]:

x(λ)i =


[(xi + 1)λ − 1]/λ if λ 6= 0, xi ≥ 0,
ln (xi + 1) if λ = 0, xi ≥ 0,
−[(−xi + 1)2−λ − 1]/(2− λ) if λ 6= 2, xi < 0,
− ln (−xi + 1) if λ = 2, xi < 0.

(A3)

The scikit-learn implementation automatically estimates λ by maximizing the likeli-
hood as a function of λ [37,74]. The Python code used to apply these scaling and transfor-
mation steps is available in our public repository for this study [34].

Appendix B.2. Hyperparameter Tuning

We pursued a k-Fold cross-validation (CV) approach to hyperparameter tuning given
the small size of our data sets. Training data were split into k (typically 5 or 10) folds,
and the model was repeatedly trained on the aggregate of all but one fold; then, it was
scored using the predictions on the remaining fold [47]. This strategy cycled through all
k permutations of splitting the data, and the scores were averaged to create a summary
statistic (AUC). We used a stratified-sampled strategy to define the folds such that class
proportions of the unpartitioned data are preserved within each fold.

During tuning, the k-fold CV process defined average scores for all hyperparameter
values under consideration. In some cases, a clear maximum in the results indicated the
best value to use. In others, the scores level off to form a corner or “elbow” in a parameter
value AUC plot. Choosing a hyperparameter value near this corner position balances the
trade-off between overfitting and underfitting the training data. We include all tuning steps
and hyperparameter plots in the code repository for this study [34].

Appendix B.3. Model Hyperparameters

The following tables describe the final hyperparameter choices determined from the
tuning process for all three data sets in the study.

Appendix B.3.1. Logistic Regression

The scikit-learn logistic regression classifier used in this analysis includes a single
tunable hyperparameter, C, that acts as a regularization term [45]. The chosen C values are
listed in Table A1.

Table A1. Logistic regression hyperparameter tuning results for each data set.

WDS WDS4 WDS8

C 0.110 0.085 0.050

Appendix B.3.2. Decision Tree Classifier

We tuned six hyperparameters for the scikit-learn decision tree classifier: criterion and
max_depth together, followed by min_samples_leaf, min_samples_split, max_features,
and ccp_alpha. The chosen hyperparameter values are listed in Table A2.



Energies 2022, 15, 1929 52 of 56

Table A2. Decision tree hyperparameter tuning results for each data set.

WDS WDS4 WDS8

criterion Gini Entropy Entropy
max_depth 5 9 10

min_samples_leaf 7 7 8
min_samples_split 21 18 23

max_features 17 20 17
ccp_alpha 0.02 0.01 0.005

Appendix B.3.3. XGBoost Classifier

When tuning the XGBoost classifier, we considered nine hyperparameters in succes-
sion: max_depth, min_samples_leaf, gamma, subsample,colsample_bytree, reg_lambda,
scale_pos_weight, learning_rate, and n_estimators. We adjusted the last two together to
balance quality of fit with risk of overfitting. Final hyperparameter choices are provided in
Table A3.

Table A3. XGBoost hyperparameter tuning results for each data set.

WDS WDS4 WDS8

max_depth 5 5 4
min_child_weight 7 3 3

gamma 0.1 0.1 0.2
subsample 0.5 0.6 0.5

colsample_bytree 0.6 0.5 0.5
reg_lambda 1.27 1.27 1.27

scale_pos_weight 0.0 0.0 0.0
learning_rate 0.005 0.005 0.005
n_estimators 1000 1000 1750

Appendix B.3.4. Artificial Neural Network Classifier

In addition to defining the architecture for the TensorFlow ANN shown in Figure A28,
we tuned five hyperparameters: learning_rate, lambda, batch_size, dropout_rate, and
n_epochs. The final selected hyperparameter values are provided in Table A4.

Table A4. Artificial neural network hyperparameter tuning results for each data set.

WDS WDS4 WDS8

learning rate 0.001 0.010 0.010
lambda 4× 10−4 2× 10−4 2× 10−4

batch size 20 45 100
dropout rate 0.1 0.1 0.1

epochs 75 200 300

The BNN constructed for Section 2.4.2 follows the same architectural pattern as the
ANN, but it replaces one Tensorflow Dense layer with a Tensorflow Probability DenseVaria-
tional layer [51,60]. Figure A29 shows a simplified diagram illustrating where deterministic
weights are replaced by distribution functions in the second hidden layer. The ANN hy-
perparameters listed in Table A4 were similarly applied to the BNN to support a direct
analogy between the two in the analysis.
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Figure A28. Tensorflow output and diagrammatic depictions of the ANN fully-connected four-layer
architecture [51]. The input layer takes values from the 24 features as inputs, which feed forward
through two hidden layers to the output layer for a four-class classification.

Figure A29. Tensorflow output and diagrammatic depictions of the BNN fully-connected four-
layer architecture. The difference between this and the ANN in Figure A28 is the replacement of
HiddenLayer2 with a probabilistic layer.
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