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ABSTRACT

In this thesis the problem of a "probabilistic traveling
repairman" in a network is discussed and studied empiri-
cally through the use of computer simulation techniques.
The probabilistic traveling repairman problem can be
described as a single server spatially distributed queuing
system in which classes of jobs arrive at the nodes of an
underlying network. The problem arises in the context of
computer networks, manufacturing and vehicle routing in a
dynamic environment.

This thesis proposes, examines and compares several poli-
cies for the problem. The major conclusion is that a near-
est neighbor strategy is superior to all other strategies
tested with respect to the minimization of the time spent
in the system of the average customer. It is conjectured
that this is indeed the optimal policy.
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1 Intreduction

The goal of this thesis is to increase the understanding of
a well known problem in'operations research: a "traveling
repairman problem" with stochastic service requirements and
demand incidences (arrivals). The traveling repairman prob-
lem addressed in this thesis is straight forward: in an
area customers demand on site service, i.e. IBM Mainframe
owners with hardware problems. Each customer experiences
problems with his equipment periodically, and requires the
repairman to visit and spend time servicing the computer.

The objective is to maximize the utility of each customer
by providing the best service possible. The quality of ser-
vice is, in part, determined by promptness and predictabil-
ity in service completion times. This thesis focuses on the
minimization of the time between the moment a problem is
reported by a customer arises and the time the service is
completed. This thesis concentrates on the case of repair
problems appearing by a probabilistic process. The repair-
man does not know where or when service requests will
arise. His knowledge is limited to an understanding of the
probabilities of a service call coming from a specific
location at a given time and taking a certain amount of
time to fix. Other well known problems include manufactur-
ing, communications in computer networks and vehicle rout-
ing in a dynamic environment.

Although description of the problem is easy, it is far
harder to describe it analytically. Unlike many single
server and multiple class customer queueing problems, this
traveling repairman problem cannot assume that service
times are independent. In other words, the decision to
serve a customer in location A will mean that the waiting



time for the next customer in location B will include the
travel time from A to B. This simple dependence is the
major analytical hurdle in understanding and optimizing the
problem. Despite this difficulty, the problem is common in
the delivery of business and government services. Any
increased knowledge of its parameters would be useful.

The description of the computer repairman is the most
obvious incidence of a probabilistic traveling repairman
problem (PTRP), but any case where the service time of one
customer is dependant on the ordering of previous services
will be analogous. One case that has been investigated is
the transmission of data in packets on a communications
network where each packet is accompanied by a request for a
channel. This request absorbs a small amount of the trans-
mitters time and consequently causes a delay to all other
packets as the transmitter is occupied. Moreover, while
waiting in line to sent each packet grows as more messages
of its type are received by the transmitter. In this case
the goal is to minimize the waiting time of each message by
optimizing the order in which packets are sent. The selec-
tion of an order to send packets could be predetermined
before the opening of the transmitter. Alternatively, the
order be could determined "on line": i.e. selecting the
packet to be sent by changing criteria such as always send-
ing the longest packet first. Unlike a predetermined order
a dynamic "on line" strategy requires the transmitter to
keep track of the size of individual packets. Numerous
static and dynamic routing strategies can be formulated.
Bertsekas and Gallager have studied this problem in depth
with a number of rigid strategies requiring the transmitter
to "serve" packet types in an exact order. This thesis



explicitly investigates these as well as other dynamic
strategies using a simulation package to test how each per-
forms.

Another example of a traveling repairman could a machine
tool maintenance engineer at a manufacturing site. The
engineer is required to adjust machine tools upon request
from their operators. Requests arrive randomly and can be
reasonably modeled by a Poisson process. Unlike breakdowns,
adjustment requests can pile up without putting the machine
tools being taken off the line. In other words each adjust-
ment request is nor affected by the previous state of
adjustment of the machine. In other words this scenario
assumes independence of service (adjustment) times. This
assumption is not necessary in much of the analysis, but
the simulation package used in this thesis assumes indepen-
dence. Although an interesting problem in itself, this the-
sis concentrates on a second type of service dependency:
the choice of which machine to adjust will effect how long
it takes to complete another machine by the amount of time
it takes to get from one to the other. If the engineer
choses to serve the machines in a line it will take less
time than if he choses to serve machines on the opposite
side of the plant alternately: thereby spending a good part
of his time crisscrossing the plant and not adjusting
machines. Despite the intuitive appeal of serving machines
so as to minimize traveling time, will it be an optimal
policy if some machines need to be adjusted more frequently
than other. In other words would not it be more efficient
to locate the engineer in the vicinity of the most trouble-
some machines and have him go to the machines that need
less frequent adjustment only when all the "bad" machines



are taken care of? This thesis studies both approaches and
tries to find which policy would be superior and under what
conditions.

In particular, this thesis attempts to analyze routing
strategies that use dynamic as oprposed to static decision
rules. In other words each step in the route is not deter-
mined a priori. Routing decisions are reevaluated after
each service completion. The repairman updates his
knowledge of the state of his customers at each step and
decides what his next move will be if any. Herein lies a
major difference between static and dynamic optimization
techniques. Static policies require a priori knowledge of
how long the server can expect to take to remedy the prob-
lem and how long it will take to travel from one location
to another. In other words the static policy can use
aggregate data about the network to formulate a policy
before beginning service. The latter also requires Kknowl-
edge of service and travel times, but this knowledge must
be constantly updated. A static policy in real life might
be a decision to take a particular route to a destination
according to before hand calculations of distances and
estimates of traffic loads. A dynamic policy would be a
constant series of re-assessments on which lane in a super
highway is quickest to travel on. In all more information
is necessary for dynamic decisions. In the job shop example
this dynamic information can include the number of jobs at
each site and the amount of time to complete each job in
turn. static information would include the average fre-
quency that a machine breaks down and the time it takes to
travel between each job. In other words, dynamic strategies
are harder to implement and control. Yet, of two dynamic



policies, it is not clear whether a more information inten-
sive policy will be superior. An "ignorant" policy might
perform just as well as one that uses all the best
information. In fact, this thesis finds that in the case of
a policy that has the server follow a set route, the abil-
ity to tell which jobs do not need service, so that the
server can take a short cut to a job that does need work,
does not increase efficiency significantly.

This thesis attempts tc increase the understanding of this
particular probabilistic traveling salesman problem primar-
ily through the use of simulation techniques. A simulation
program was written to "put into practice" different
dynamic strategies. The program creates a random customer
network and a timeline of incidences of repair requests at
each location. At this point a "repairman" is programmed to
serve the timeline of service requests using approximately
forty different strategies. The output of the program is
the mean waiting time and variance of all jobs over a large
time period. The objectives of the simulation are to:

+ determine when a particular strategy will
have the lowest average times in system, if at
all,

+ identify those parameters that determine the
optimality or stability of particular strate-
gies,

- test whether well known results for
independent service times hold\under PTRP,

- and find formulas that provide gocd empirical
estimates for waiting times under each strat-
egy.

The thesis is organized in the following chapters:



+ Chapter Two: the probabilistic traveling
repairman problem is analyzed using applicable
results in queueing theory. A number of results
that motivate some of the policies tested are
discussed.

* Chapter Three: the simulation and the poli-
cies tested explained. Motivations for each
test are given based on the discussion in
Chapter Two.

* Chapter Four: the results of the simulation
are discussed and explanations are conjectured
for the results. The chapter ends with possible
areas of further research.

« Chapter Five: the major findings of the the-
sis are presented.

- Appendix A: the exact mechanics of each
strategy are explained. Instructions re give on
use of the simulation program by interested
users.

Appendix B: "C" language code is given to
enable the reader to adapt the simulation to
new strategies beyond the current forty-seven.
The code is written to give the user a wide
scope of experimentation with both strategies
and their controlling parameters.

The thesis concludes that the traveling salesman and near-
est neighbor policiss are best in almost every circumstance
in all but the limiting case where arc travel time fall to
zero. The analysis of M/G/1 queues in section one attempts
to provide the intuition behind this empirical result. The



thesis also shows that certain policies that attempt to
follow the analytical optimal results on "work conserving"
M/G/1 queues behave as expected but are no longer optimal.
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2 Analysis of the Probabilistic Traveling Repairman Problem
2.1 Terminology and Description of Problem

The traveling repairman problem can be broxen down into
various parts: the space the repairman travels on, the
process in which the timing of customers request is gen-
erated and the process through which the amount of ser-
Vice required i- ‘etermined. These three combined with
the routing straceqgy of the server will completely the
determine the behavior of the system.

The terminology for the map on which the server travels
is derived from network analysis. The travel space of the
server is termed the graph in this thesis. By graph it is
implied that customers reside at nodes of the graph, and
travel distances are represented by the arc lengths. The
key point in this analysis is that nodes are discrete,
non-random and immobile. This analysis is distinct from a
situation in which customers service requests emanate
from random locations in space: a situation that better
describes the job requests for on-site car repairs or
emergency medical housecalls.?- The terminology used
for jobs is taken from the analysis of queuing systems.

Jobs requested "arrive" at each node and wait to be serv-
iced. The jobs are referred to as arrivals, for instance
a request by customer one for service is termed as an
"arrival at node 1". The backlog of jobs at location i is
called the "queue at node i". The number of jobs backed
up is the queue length, while the amount of total service
time in a backlog is called the "time in queue." Service

1, See Bertsimas and van Ryzin in "a Stochastic and Dynamic
Vehicle Routing Problem in the Euclidean Plane" pages 3-4.

11



times (termed loosely service requirements) are defined
as the difference between the moment the repairman initi-
ates a job and the instant that he completes it. Arrival
epochs mean the moment a job request is initiated. Delay
for job i is defined as the difference between the time a
job i arrives at a node and the time it is finally serv-
iced plus its service time. Time in System is used inter-
changeably with delay. Completion of service is called a
departure from the queue and system. The determination of
service requirements and arrival times are termed the
service and arrival processes respectively.

Below are some common symbols used in the analysis in
Queues that are used throughout this thesis:

A "lambda". This term represents the arrival
rate of jobs at a node. It is measured in
arrivals per unit time. In the system under
consideration here (Poisson arrivals) A is the
expected arrival rate as well.

I(s) |"the expected service time or requirement".
This term is the mean amount of time it takes
per service. In this simulation it is defined
without reference to any particular probabil-
istic process. Nevertheless a normal distribu-
tion is used for purposes of the simulation.

12



"the variance of the service times". This term

is measures the variability in the time it
takes to serve a job. Along with expected
service times, this parameter determines the
behavior of the random variable generated for
each job’s

service requirement.

"rho". This term is defined as the product of
lambda and the expected service time. Intu-
itively it represents the proportion of time
the server is occupied.

M/G/

This is the abbreviation for a Exponential
(Poisson) arrival, General service, 1 server
queuing system. This system has a wide area of
application. It is especially suited to spa-
tially distributed queues studied in this the-
sis.

tJ

"distance", this term represents the distance

from node i to node j in the underlying net-
work. In most of the simulations this distance
is equal the distance between two points on a

plain.

13




I "velocity" or_speed. Throughout the thesis we
are concerned with the travel spent by a
server in traveling. Varying this quantity for
experimental purposes can be achieved by
changing it directly, by changing distances or
by changing speeds. This thesis changes speeds
in that it makes a mode intuitive control
variable in real world applications. Distances
are kept constant throughout each simulation

run.

Using these terms the object of this thesis is to analyze
the effect of different strategies for moving from one
node to another on the average delays of all jobs in the
system. The thesis also investigates the effect of dif-
ferent arrival and service processes, different graph
configurations and travel speeds under each strategy. A
strategy is defined as a collection of decision rules
that will completely determine the routing decision of a
server at any time. (This is not strictly accurate in the
context of the simulation. The decision rules used in
this thesis are all based on the instant of time that
service of the last job is completed. In other words, a
server is committed to the decision he makes after com-
pleting his last job: he cannot change his mind while
traveling or serving. This thesis does not investigate
preemptive queuing regimes.)

A number of assumptions need to be highlighted that
restrict the applicability of the this thesis conclusions
and findings:

14



* There is a single mobile server who travels
at constant speed. A multiple server system
might be more realistic.

* The costs of travel and service to the
Server are ignored, the objective function
consists only of the expected time of delay
for all jobs in the sysﬁem and/or its vari-
ance.

* Costs are linear in time and costs are
equal across all classes of arrivals (nodes).
*+ The network is fixed and connecteqd,
although it is not required to be planar nor
totally connected.

+ Arrival epochs and service requirements
(omitting the travel component) are indepen-
dent.

* Servers can pass through a node without
rendering service. Unless the strategy being
tested requires the server to serve a node,
there is no obligation to give service even
if a job’s and server’s location coincide. In
the planar the server can travel to his des-
tination the way the crow files.

2.2 Description of System as a Queuing Systen

The analysis of PTRP as a system of queues is natural.
Jobs arrive in the servers "area of responsibility" in a
probabilistic manner. It is therefore 1mp0551b1e for the
server to anticipate where he will be needed next. Since
it is probable that the repairman will either not be at a
site when a job arrives or will be occupied with a pre-
vious job, one would expect jobs to experience a delay as

15



the server travels to the job’s location and/or finishes
its current service activities. Unless jobs arise only
rarely one would expect that every once in a while jobs
will pile up at customers location before the server has
a chance to "get to them". Consequently, the PTRP has two
key elements of a queuing system: delays in initiating
service and pile-ups of jobs waiting in line to be

served.

Analytically, the probabilistic traveling repairman prob-
lem can be understood as an extension of a single server
priority queuing system. Priority queues are systems that
allocate service to classes of customers by a priority
system: the jobs in the class with the highest priority
are served before those jobs in lower priorities. The
optimization of priority queues is based on either the
optimal allocation of jobs into different classes with
different priorities or, conversely, assigning priorities
to classes of jobs that already exist. The object of this
section is to draw an analogy between priority queues and
the PTRP and examine whether the known priority queue
results are applicable to the case at hand.

In the PTRP the job classes are straightforward: they are
the arrivals associated with each node. In that each node
has its own arrival and service processes, the associ-
ation of nodes to priorities is natural. Since the server
must decide travel to a unique node to serve a member of
each class, he must make explicit decisions on which
class to serve. By default the act of making a decision
to travel is the same as assigning each job to a class.
Therefore, the results for priority queues would seem to
apply readily to PTRP.

16



Yet, as will be discussed below, the separation of nodes
by a travel delay invalidates some of the key assumptions
used to derive the known optimal policies, thereby making
their application to our case questionable. Nevertheless,
it is essential to note that the probabilistic traveling
repairman problem in the limit does not violate these
assumptions. As traveling distances fall to zero or the
traveling speed goes to infinity, delays in switching
service from one queue to another fall to zero. Without
these delays the PTRP reduces to a single queue with mul-
tiple classes of customers. The known results apply to
this type of system. To understand PTRP it is essential
to understand how the assumptions are used in deriving
optimal policies in the zero distance case. In this man-
her we can gain an idea of how optimal policies for PTRP

can be found.
2.3 Priority Queues and the M/G/1 Queuing System

This section will begin with brief description of the
common results in queues with priorities. Key assumptions
that PTRP violates as a priority queue will be high-
lighted. The section will end with "loose" derivation of
the Pollaczek-Khintchine formula for average delay of a
job arriving in the graph at a random time. Though not
analytically correct, it gives some intuitive understand-
ing to two important service strategies studied in the
Section 3: a strategy based on the shortest circuit and
another based on the proximity of the nearest node.

An M/G/1 queue is defined as a system in which jobs
arrive according to a Poisson process, are served by a
general service process, and are served by a single
'server". The M/G/1 system is particularly well suited to

17



spatial queues. Spatial separation of jobs, makes the
identity of the last job served a determinant of the time
it takes to serve the current job. If the last job was
served in close proximity to the current node, the ser-
vice time of the next job will be reduced by the savings
in travel times. In fact, PTRP is an M/G/1 queue but with
dependant service times. The key result for M/G/1 queues
are the Pollaczec-Khintchine (P-K) formulas used to
determine average job delays. Ideally, this equation
could form a basis of an optimization scheme for PTRP.
Yet the derivation of these formulas assumes that the
choice of job to serve is independent of the service
requirements for the job. Unfortunately, most strategies
studied in this thesis have highly dependent service
times. This dependence is manifested in node travel times
between adjacent nodes or in policies that investigate
the service requirement at a node as a criterion for
serving that node or not.

2.3.1 Priority Results

In the following priority theorm there exists a key
assumption: work is conserved. This is the assumption
that is invalid for the probabilistic traveling repair-
man outside the zero travel time case. Wolff defines
work conservation as follows:

Call S the service requirement, o the amount of
service obtained so far and t the current time. If

18



the priority rule is work conserving then at any
time t the remaining service time is equal to s -

a.z-3-

The PTRP is not work-conserving in that the remaining
service time may fluctuate with the location of the
sServer. To see this imagine that the first job served
at a node is allocated the service time used in travel.
(This allocation is to ensure that travel times are
taken in consideration in calculating delays). If the
Server moves between several nodes (priorities) before
coming to a node of reference it is easy to see that
the first job in this final node may have a number of
potential remaining service times = S-a+d,,, or = § - g
+ d,., etc..

Nevertheless, it is possible that priority rules will
be valid if travel times are either negligible or con-
tribute only marginally to reducing average time in
system. This limit case of PTRP is a good point from
which to begin our analysis. The following subsections
describe rules that are applicable to minimizing system
times in M/G/1 queues with independent service require-
ments.

2, The definition in the text is paraphrased from the defi-
nition on page 437 of R. Wolff (1989) Stochastic Modeling
and the Theory of Queues, Prentice- Hall, page 437.

3, D. Heyman and M. Sobel in Stochastic Models in Opera-
tions Research (1981), page 418 ,provide the following def-
inition of work conservation: "A queue discipline is called
work-conserving if (a) no servers are free when a customer
is in queue and (b) the discipline does not effect the
amount of service time given to a Customer or the arrival
time of any customer."

19



2.3.2 The Shortest Remaining Processing Time Disci-
pline:

The SRPT Optimality theorem states that if preemption
does not change the time required by a job, then a
discipline that places into service the customer with
the smallest amount of remaining service will minimize
expected waiting time in the system. This result is
clearly not applicable to the PTRP system studied in
this thesis since there are no pre-emptions allowed.
Nevertheless, once a server is within a gueue the act
of staying put at the node may be an implicit SRPT
policy. Consider that the remaining service time of a
job at other nodes as their service requirement plus
the travel time that the server must undertake to get
there. If travel times are large enough then the proba-
bility that the remaining service time of a job in
another node is shorter than any of the remaining
service times at the current node will be negligible.
Therefore, by staying put until all the members of the
current node are served may be implicitly following
SRPT.( In other words: "exhaustive" policies may
exhibit SRPT behavior). Now consider the moment that
the server must depart the just emptied current node if
he does not want to remain idle. The remaining service
times of his next potential job will now include the
traveling time. So in our network a server following a
SRPT discipline would go to the node j that minimizes
sum of 1) the travel time to node j and 2) the shortest
remaining service times among jobs at node j. Again if
travel times are sufficiently large, the SRPT’s would
be determined primarily by the arc lengths. But choice

20



of which node to serve, now, will effect the remaining
service times in the future as the server is closer or
farther from the rest of the nodes. Therefore there is
no work conservation and the SRPT theorm is not appli-
cable to PTRP.

Now consider a case in which the arc lengths change
randomly after each service. In other words the travel
time between each node has a general distribution
defined over time. ( Imagine a caterer who only takes
drink orders at a wedding as the server, and the
cliques of relatives as the nodes that accumulate jobs
as drink orders. The cliques constantly wander around
the reception floors en masse.) In this case, the SRPT
regime would maintain independence of service times.
The sample path of the server would be unaffected by
the decision to serve the closest node: the next
closest node will be determined randomly by the relo-
cated nodes. Choosing a farther node now, believing
that she will be closer to other nodes in the future
and therefore have shorter remaining service times,
would be an even odds gamble. If the nodes are far
enough apart a policy of exhausting all the service
requirements at a particular node before going on to
the nearest neighbor would be essentially a SRPT disci-
pPline where work conservation would effectively hold.

Now take the case of the stationary nodes again. Again
assume inter-node distances make travel times exceed
any job’s service requirement, (making an exhaustive
policy SRPT by default). If a server is incapable of
predicting an optimal sequence of nodes to visit in
order to minimize remaining service times in the future
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as well as the present, he is in the same situation as
a server in a "chaotic" network. Thus, a policy of
exhausting the queue at the current node and then trav-
eling to the nearest neighbor may exhibit "quasi"-
independent service times and resemble an SRPT
discipline. In order for the server to be incapable of
selecting a dependant optimal path the following may
need to be true:

* The server is ignorant of all but the travel
distances and speeds between nodes and the
probability that a queue is empty at any given
moment is high. In this case, path selection
would be futile.

» The server has knowledge of queues at each
node but there is sufficient probability that
such nodes will become non-empty as to make
the selected optimal path invalid.

The following conjecture can be made. If an optimal
path is no better than a dynamic nearest neighbor path
(due to light traffic) and if nodes are sufficiently
Separated as to make the job with the SRPT always the
job at the nearest neighbor, then the nearest neighbor
policy may closely approximate a SRPT discipline and
therefore be optimal.

2.3.3 Other M/G/1 Disciplines

There exist strong M/G/1 optimality results beyond
SRPT, but they use different objective functions and
are less applicable to this thesis\simulation. Two
policies are of interest though: the FIFO regime and
its effect of minimizing the variance of times in sys-
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tem, and the "c-u" rule which minimizes the objective
function: Zﬁlc‘pg+2ﬁlclkj7;" A corollary to this last
policy states that minimization of average waiting
times can be achieved by assigning priorities according
to expected service times for each class of user.*-
Therefore, one would expect that as PTRP traveling
times approach 0 that a priority system favoring nodes
with the smallest expected service times would perform
the best. In particular, one would expect the policy to
work the best when the server is allowed to switch
nodes without emptying it first as long as the server
moves to serve a higher priority job immediately. An
interesting empirical question would be to find out at
what travel times do the "MinE(S)m policy and the SRPT
policy and the optimal policy on a non-zero distance,
(which I conjecture to be a Nearest Neighbor policy),
perform equally well.

2.3.4 Applicable Results Derived From M/G/1 Queues

A number of results that expand on the P-K formulas and
apply them to spatially dependant service times exist.
The key fact about each of these formulations is that
they are specific to certain strategies. The most nota-
ble result is presented by Bertsekas and Gallager for a
routing strategy on a network with uniform service and
arrival parameters across all nodes. The strategy man-
dates that each node be served in a fixed order. The
server is required to serve each node until it is empty
and is obligated to visit each node whether it is empty

4, See R. Larson and A. Odoni (1981), Urban Operation
Research, Prentice-Hall pages 237-239 for a discussion of
this "corollary."
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or not. The strategy "44" in the simulation uses these
rules exactly. The result bresented by Bertsekas and
Gallager resembles the form conjectured in the previous
section. It shows that a queuing strategy on a network
with non-zero travel times will have average system
times highly dependant on rho and the variance. The
travel time term interacts exclusiﬁely with rho. In a
test of the effects of expected service times, variance
of service time and travel times for other strategies
it was found that, as opposed to the strategy used by
Bertsekas and Gallager, a strong interaction exists
between the variance and speed in determining average
time in system. Below is the formula derived for
expected time in system when the server "exhausts" the
queue in his current node. The strategy is based on
the server following a fixed circuit around the nodes
Oon a continual basis.®‘ 4 is defined as the travel time
it takes the server to complete a circuit.

—_AEsY al1-(2))
2(l=-p) 2 (1-p)
where:

ﬁ7?Average time in systen,

m= the number of nodes in the network,

A= the time to travel around the specified cir-
cuit if the server were uninterrupted.

E(s?)= the second moment of the service time
distribution. It can be derived as 02+ (1 {(s))?

5, see D. Bertsekas and R. Gallager (1987), Data Networks,
Prentice Hall, page 157.
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The above formula suggests that different strategies
may have similar forms with a distinct coefficient for
A. Nevertheless, this policy is unique in that its
server route is independent of the arrival process’s
mean or variance. One would expect that a strategy that
allows even minimal server discretion based on the
state of the system would have a different functional
form with a coefficient on the firsts term also.

2.3.5 Conclusion

At this point we have two sets of results that apply to
the PTRP problem: the accepted priority theorems that
clearly apply to PTRP ( though under a restricted set
of strategies) at the limit, and the less than rigorous
indications of the previous section. Without a theory
to combine both conceptualizations we are left with a
number of interesting empirical questions:

+ at what point do travel times grow big
enough to make the priority rules invalid for
PTRP?

« do the priority optimization results apply
at high travel time scenarios, but are essen-
tially masked by the large distance saving
effects of routing optimization policies? In
other words, can priority rules improve the
performance of routing optimization policies?

In the chapter 4 section we discuss these issues. In
most cases the data confirm the intuition the models
discussed above provide.

25



3 Simulation: Description and Motivations of Strategy For-
mulations

3.1 Overview of Strategies

In this chapter, the thesis concentrates on formulating
potential strategies that will minimize the average sys-
tem times for all jobs in the system: A majority of poli-
cies draw directly from the discussion in che last
chapter. Some are tested on intuitive grounds with little
theory behind them. In brief, three broad classes of
strategies were formulated. First, strategies based on
pre-assigning priorities to each node were drawn up.
These are the least dynamic of all the strategies: they
essentially assign the priorities before initialization
and require the server to serve the highest priority node
that has a non-empty node at all times. The second set of
strategies use current statistics to base routing deci-
sions. The server, for instance, is required to serve the
node with the highest accumulated amount of service at
any one time. These strategies need the most information
to run and can be considered the most "dynamic". The last
set of policies to be studied are the "routing" disci-
plines. The server is required to serve either a preset
route or make all his decisions on routing criteria. For
instance the nearest neighbor policy requires the server
to proceed to the closest non-empty node after completing
service at the current queue. A combination of the last
two policies is also tested. These policies, (called "vi-
cinity" strategies), have the server use nearest neighbor
policies within a subset of the nodes in the network. The
subset of nodes, on the other hand, are chosen by the
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second set of criteria: either longest vicinity-wide
queue or largest vicinity-wide amount of accumulated ser-
vice.

3.2 Gating Strategies

In almost every category a number of gating schemes were
formulated. Gating involves setting a maximum or minimum
number of jobs the repairman can take on before being
required to serve another queue. Initially, the setting
of a maximum service number per queue was felt to be way
to prevent the server from serving new customers just
arriving in his present location at the expense of older
customers elsewhere. In other words, if the server did
not serve one population for the benefit of another, it
would appear the ignored groups time in system would push
up the whole populations mean. As it turns out, this
logic is misleading. If one considers that each individ-
ual in the system, by not being served, contributes the
same marginal amount to the mean time in system, it is
clear that a gating strategy that minimizes the number of
jobs in the system regardless of how long they have been
in the system will be superior. If one gating strategy
reduces the system queue by 4 recent arrivals and another
by 3 old arrivals, it is the former strategy that is
superior in keeping down average times in system. This is
a direct consequence of the linear time cost function. It
would not be true if longer times in system cost more
proportionally. An implication of this reasoning is that
any policy that minimizes the amount of time the server
is idle »r on the move will improve performance. In other
words, a policy such as exhaustive service at each node
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may be better than a policy that forces the server to
move earlier. A counter argument may be that by forcing
the server to move early he is being prevented from
ignoring a queue in which a large number of jobs could be
"knocked off™" quickly. Going back to the discussion of
SPRT in the last chapter, if inter-node travel times are
great encugh any gains from giving up the present node to
Serve a node where remaining processing times are shorter
would be lost in the move. An interesting point that is
not investigated in this thesis is at what travel times
do exhaustive policies begin dominate?

3.3 Priority Strategies

The minimization of times in system in M/G/1 queues with-
out service times dependency can achieved through the use
of the cp rule. The application of this rule is unclear in
PTRP since;n=;%; is now made up of travel time as well as
the job,s service requirement. Therefore, the expected
service times cannot be ordered as in the simple non-
spatial case. Nevertheless, since PTRP in the limit will
be optimized by the Cit rule, it is worth investigating
whether it is valid outside the domain of very small
travel times. A priority system was set up with the node
having the lowest E(s) being given the highest priority.
As in the non-spatial case this strategy was set up to
ensure that the server would take care of the highest
priority queue as soon as it became non~empty. Nonethe-
less, given the intuition behind exhaustive gating, this
policy was modified to ensure that the server exhaust or
partially exhaust the node he was in. The mixture of
these two concepts is grounded more in experimentation
than any formal reasoning. In order to ascertain whether
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this policy had any effect at high travel times, its
opposite priority scheme was also tested giving the low-
est priority te the minimum E(s). If these policies are
not significantly different at high travel times we can
say that it has no effect at all.

In order to bring a spatial element into the above prior-
ity scheme, a system with the highest priority being
given to the node with the lowest average travel time
Plus expected service time was tested. It was felt that
the cp would hold into higher travel time environments if
it reflected the effect of travel. The use of average
distance is crude, but it left in tact the benefit prior-
ity schemes have in being able to set up strategies
before initialization.

A number of other priority schemes were tested without
the analytical background of the previous priority
schemes. These were priorities by maximum and minimum A
and p. The maximum arrival policy may have some use at
high travel times in combination with an exhaustive node
management policy. If directing the server to a high
arrival node prevents him from moving ( since exhausting
the queue is difficult), then, by the SPRT analogy in the
previous chapter, this priority scheme might outperform
the others.

3.4 Routing Strategies

The routing strategies in terms of queuing theory have
little intuitive appeal. Each strategy is based on mini-
mizing the distance traveled by the server. No attention
is paid to service, arrival, queue length, or accumulated
service time statistics. Yet as discussed in Chapter One,
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the act of minimizing time spent traveling may be a de
facto Shortest Remaining Processing Time discipline if
travel times are large enough. Three policies that depend
on routing are tested: a Nearest Neighbor policy, a Trav-
eling Salesman strategy which allows shortcutting past
empty nodes and a Traveling Salesman policy without
shortcuts. Shortcuts with TSP are allowed to make it more
comparable with NN’s (Nearest Neighbor) "intelligence".
Nearest Neighbor can see if a neighboring node is empty
and will not chose to visit it. TSP had to be given the
same ability or else a comparison between the two would
be biased by the information asymmetries. Other routing
policies based on a combination of NN and TSP or based on
a type of node coverage were not tested but would be of
great interest. Finally, a policy of measuring closest by
travel time plus the average service time of a job at the
node was tested. It was felt that this could be an
improvement on NN, making it imitate SPRT more closely.

3.5 Strategies Based on Queue Statistics

A number of strategies were tested on the conjecture that
more current information will benefit any serving policy.
They are based on an idea that the server should go where
he is most needed: to the node with the longest dueue or
the node with the most service time added up. As men-
tioned in Section 3.2, the urge to serve the oldest in
the queue first does not make sense on the grounds of
minimizing average time in systen, unless time costs
increase at an increasing rate. (Though these policies
may be beneficial in reducing the variance of time in
system though). Yet, if these policies cause the server
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to stay at a node longer than he would have at an average
node, then their might be some advantages similar to
those derived by exhaustive regimes.

3.6 Vicinity Strategies: Combining the Best of Routing
and Current Informatiocn Strategies?

Vicinity strategies attempt to improve on the NN policy
with the information used in the previous section. These
policies do this by restricting the travel of the server
to a subset of the nodes in the network in which the arc
lengths are minimized. Within the subset the nodes are
selected by a nearest neighbor policy. Each subset (vi-
cinity) is selected by the longest sum of queues or the
most accumulated sum of service criterion. If the subset
of nodes is equal to all the nodes, these policies are
equivalent to the NN policy. If the subset is equal to
one these policies are equivalent to the ones in the last
section. A vicinity is defined as the set of beta nodes
surrounding each node with the minimum summed arc dis-
tances. ( Therefore, for each node there is a correspond-
ing vicinity). The object of a vicinity policy is to keep
the server from traveling between nodes as much as
possible by sending him to the nodes with the most ser-
vice needed while making sure that if he does travel he
goes the least distance possible. In light of the SPRT
intuition, another vicinity policy requiring the server
to move to the node subset with the least accumulated
service was also tested.

3.7 Conclusion

Cne policy tested that does not fit into the categories
above is a system-wide FIFO discipline. Theoretical

31



results tell us that under FIFO the variance in times in
system would be minimized. It would be interesting to see
if this will hold under significant travel time regimes.
Intuition would suggest that system-wide FIFO (SFIFO)
would behave poorly in holding down average times in sys-
tem. In effect SFIFO, would have the server stay at a
node only if it experienced two or more consecutive
arrivals, otherwise he would be required to travel to
each node in proportion to the prcbability that an
arrival occurs at that node. Though not the maximum
length path, this routing will have significantly more
travel times than NN or TSP, even when they are gated at
one service.

Finally, one policy of interest is not tested. This
strategy is a refinement of NN to imitate SPRT more
closely. In this strategy the choice to move to the next
node would be made after each service. The server would
compare the minimum remaining service time of the jobs in
the current node with the minimum of the sum of travel
times to other nodes and their minimum remaining service
times. Only if the latter is smaller or the current node
is exhausted would the server change nodes. In this modi-
fication, one would expect the NN policy to remain an
SPRT discipline even as travel times fall to zero.
Nonetheless, of the strategies suggested so far, this one
would be the most information intensive. In fact it is
the only policy suggested that would need to Xeep track
of individual service requirements.
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4 Results of Simulations
4.1 Overview of Results

In this chapter, the thesis concentrates on the empirical
results of the dynamic strategies tested in the simu-
lation package. The strategies were selected for three
primary purposes: one, to find which policies perform the
best, two, to investigate the potential of policies found
to be optimal in similar systems to PTRP and, finally, to
give an indication where theoretical work on finding an
optimal PTRP should go. Overall, it was found that short-
est circuit (TSP ) and nearest neighbor strategies had
the lowest mean time in system as well as lower than the
average variances among the group tested. Optimal M/G/1
priority disciplines such as Cu policies deteriorated in
performance as travel times in the network increased. Yet
those policies that performed well under high travel
times did not perform worse than average under the zero
travel time case where PTRP essentially becomes a prior-
ity queue. oOn a theoretical level tests performed showed
that the exhaustive policies were superior to policies
that gate service as travel times became significant.
This gives an indication that an analytical approach
based on SRPT may be fruitful. Finally, the simulation
showed that TSP based strategies would dominate NN as
travel times exceed the mean service requirement. This
result is not explained in this thesis and leaves a
interesting theoretical question open for research.

4.2 Description of Results

In the following sections simulation results are
described and explained. In order to understand the data
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some explanations of units of measurement are necessary.
In the first place, time and distance are presented in
generic units. A speed of 2000 can be translated as two
thousand distance units per time unit.

Throughout the results the networks are defined on a
Square plane with sides of 1000 distance units. Average
distance between nodes are theoretically one third the
lengths of the square in the x direction and in the Yy
direction. With 24 and 48 nodes in the square the actual
average should be fairly close. Service times and arrival
times are also measured in units of time per event. In
other words a E(s) of .347 means that it is expected to
take .347 time units to complete a job. Lambda "i" in the
tables is the average arrival rate at each node. Lambda
is the arrival rate for the system as a whole, (typically
lambda "i" times the number of nodes in the network.)

For presentation purposes each strategy discussed in the
last chapter is given an identification number from one
to forty seven. A list of policies are given in the fol-
lowing table. Notice that each category includes various
alternative "gating" disciplines, which usually includes
one exhaustive and three gated disciplines. The gating on
"until empty" means the server stays at a node until it
is completely empty. Likewise the gating on "until all
originals served" forces the server to move after the
jobs that were in queue when he began at the present node
are served. "Until at least beta served" means the server
must move after serving beta customers or until the queue
is empty; whichever comes first. Similarly, "until
beta*rho worth of service at most" is a gating that
forces the server to move if he has served for beta x rho
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worth of time at his current position. If the queue emp-
ties before this time has passed the server also moves
on.

Many of the forty-seven policies are included as control
studies. For instance, the priority policy that gives the
node with the minimum expected service time the highest
priority ( reflecting a ¢y result) is accompanied by an
opposite policy that gives the same node the lowest
priority.

Complete explanations of each policy are given in the
appendix.
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4.2.1 List of Strategies Tested

ID|Category-Type Special Features
System-wide First In First out
1 |Serve by System FIFO Move to next oldest
(SFIFO) arrival.
Information Based Strategies
2 Serve the longest queue |Until empty.
3 |Serve the longest queue [Until all originals
served.
h Route Based Strategies (NN and TSP)
4 |Serve the closest queue (Until empty.
(NN)
5 |Serve the closest queue |Until all originals
served.
6 |Serve the closest queue |Until at most Beta served.
7 |Serve the closest queue |Until Beta*Rho worth of
service at most.
42|Serve a vicinity of Until empty.
nodes with the lightest
work load
8 |[Serve TSP route (TSP) Serve at most one cus-
tomer.
9 |Serve TSP route Until empty.
10(Serve TSP route Until all originals
served.
11 (Serve TSP route Until at most Beta served.
12|Serve TSP route Until Beta*Rho worth of
service at most.
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43

44

45

46

47

Serve Route:
"shortcuts®

Serve Route:
"shortcuts"

Serve Route:
"shortcuts"

Serve Route:
"shortcuts"

Serve Route:
"shortcuts"

w/0

w/0

w/0

w/0

w/0o

Move to Preferred if non-
empty.

Until empty.

Until all originals
served.

Until at least Beta
served.

Until Beta*Rho worth of
service at most.

Mixture of Route and Information based strateqgies
= ¢ nlormation based strategies

13|Serve vicinity w/ Max. Until empty.
Service
14|Serve vicinity w/ Max. [Until all originals
Service served.
15|Serve vicinity w/ Max. |Until at most Beta served.
Queue Until Beta*Rho worth of
16|Serve vicinity w/ Max. service at most.
Queue
41|Serve the closest where |Until empty.

close= E(S)+Travel Time

Priority Queuing Systems

17 |Preferred: Min. E(ser- |Move to Preferred if non-
vice) empty.

18 |Preferred: Min. Until empty.
E(service)

19 Preferred: Min. E(ser- |Until all originals
vice) served.

20 |Preferred: Max. E(ser- |Move to Preferred if non-
vice) empty.

21 (Preferred: Max. Until empty.
E(service)

22|Preferred: Max. E(ser- |Until all Originals Served
vice)
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23 |Preferred: Min. Rho Move to Preferred if non-
empty.

24 |Preferred: Min. Rho Until empty.

25 |Preferred: Min. Rho Until all originals
served.

26 |Preferred: Max. Rho Move to Preferred if non-
enmpty.

27 |Preferred: Max. Rho Until empty.

28 |Preferred: Max. Rho Until all originals
served.

29 [Preferred: Min. Arrival |Move to Preferred if non-
empty.

30 |Preferred: Min. Arrival |Until empty.

31|Preferred: Min. Arrival {Until all originals
served.

32|Preferred: Max. Arrival |Move to Preferred if non-
empty.

33 |Preferred: Max. Arrival |Until empty.

34 |Preferred: Max. Arrival |Until all originals
served.

35|Prefer: Min.E(S)+Travel |Move to Preferred if non-
empty.

36 |Prefer: Min.E(S)+Travel |{Until empty.

37 |Prefer: Min.E(S)+Travel |Until all originals
served.

38 |Prefer: Max.E(S)+Travel [Move to Preferred if non-
empty.

39 |Prefer: Max.E(S)+Travel |Until empty.

40|Prefer: Max.E(S)+Travel |Until all originals

served.
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4.3 Important Simulation Details

A number of special features of the simulation need to be
emphasized. First, the server treats each node queue with
a FIFO discipline. Though the SRPT would perform better,
it is felt that replacing FIFO with shortest remaining
processing time rule would not change the relative rank-
ing of the inter-node routing strategies. Nonetheless, in
the case of closely ranked NN (nearest neighbor) and TSp
policies a change in the internal node discipline from
FIFO may cause a reversal in their rankings. The simu-
lation is also limited in the manner routing decisions
are made. The server can only decide his next move the
instant a service is completed. In other words, the
server is committed to his decision, and once a service
is started it cannot be preempted. The wide range of top-
ics covered under preemptive queues are therefore not
covered.

4.4 Comparison of Average Times in System of Strategies
Tested

The following tables summarize the results of simulations
run on each strategy. Each strategy is tested at five
different speeds that proxy five different travel time.
The speed "2E+07" is 20,000,000 distance units per time
unit. The travel time of two nodes on opposite sides of
the square 1000 by 1000 area would be 1000/20,000,000 =
.00005, Similarly the speeds 40000, 20000, 10000 and 5000
would mean travel times of the order .025, .050, .100

and .500 time units respectively. The average service
times are given by E(s) and average inter-arrival times
can be found as the inverse of Lambda. Finally, the pol-
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icy "45x" (not listed in the table) represents the no
shortcut TSP policy where the circuit selected is
non-optimal.®- The second column of the table is identi-
cal to the first except the level of expected service
time, variance of service times and arrival rates have
been changed. Each strategy and speed combination was run
on the same underlying network, arrival and service
rates. In this case, each node had different service and
inter-arrival means. This was done so that the priority
disciplines could be tested. The nodes on the underlying
network were placed randomly on a 1000 by 1000 plane.
Distances were calculated assuming all nodes were
directly connected.

6, This can be achieved by a user of the simulation by run-
ning TIMM.C with any of the TSP strategies and leaving out
the route file (argument 3) of DIMTSP.C. The program
finding the route file missing will supply an arbitrary
route determined by the nodes’ indices. See Appendix A.
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4.4.1 Table: Comparison of Policies by Average Time in

Syster

AVERAGE TIME IN SYSTEM

ORDER FROM BEST TO WORST OF 47 STRATEGIES UNDER VARIOUS

TRAVEL TIMES E(s) , Var(s)
Nodes 24 Dist. 1000
Speeds: 2E+07 2E+07 40000 20000 10000 5000
Imbda 1 0.096 0.098 0.096 0.096 0.096 0.096
E(S) 0.387 0.365 0.387 0.387 0.387 0.387
Var(s) 0.020 0.039 0.020 0.020 0.020 c.020
Lambda 2.304 2.352 2.304 2.304 2.304 2.304
Rho 0.892 0.859 0.892 0.892 0.892 0.892
17 1.683 35 1.352 36 2.229 a4 2.604 4 3.257 4 4.730
35 1.683 17 1.352 18 2.231 ¢ 2.604 6 3.257 6 4.731
23 1.722 19 1.373 17 2.248 5 2.629 9 3.322 11 4.887
19 1.723 37 1.373 37 2.248 9 2.647 11 3.322 9 4.887
37 1.723 18 1.376 19 2.249 11 2.647 5 3.324 5 4.960
25 1.761 36 1.376 35 2.250 10 2.678 106 3.405 10 5.079
18 1.763 23 1.376 4 2.277 2 2.706 2 3.554 44 5.945
36 1.763 25 1.401 6 2.277 3 2,737 3 3.606 46 5.945
24 1.767 24 1.405 25 2.294 7 2.874 7 3.932 2 6.009
16 1.964 29 1.432 5 2.299 138 2.883 44 4.100 45 6.233
42 1.964 31 1.458 23 2.301 36 2.883 46 4.100 3 6.375
29 1.969 30 1.465 9 2.310 24 2.945 45 4.220 45x% 9.999
31 1.972 32 1.478 11 2.310 37 2.956 15 4.272 15 10.264
30 1.977 34 1.482 10 2.319 19 2.960 13 4.279 13 10.316
32 1.977 33 1.486 2 2.332 15 2.962 12 4.423 7 10.792
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10
45
13

15

11
46
44
34

33
45%
12

43

26
27
28
39
21
40
38
20

1.987
1.988
1.989
1.990
1.990
1.991
1.992
1.992
1.993
1.993
1.994
1.994
1.994
1.996
1.996
1.997
1.997
1.998
2.001
2.0G63
2.004
2.224
2.305
2.307
2.394
2.394
2.397
2.446
2.446

16
42

12
43

10

15

11
44
46

13

45
27
28
26
21
39
40
38
20

1.501
1.501
1.502
1.505
1.505
1.506
1.509
1.509
i1.511
1.511
1.511
1.513
1.514
1.514
1.515
1.515
1.519
1.519
1.520
1.569
1.591
1.593
1.599
1.680
1.680
1.684
1.698
1.698

15
13

12
42
16
45x
46
44
30
45
33
34
31
32
29
24

43
27
28
26
21
39
40
20
38

2.342
2.415
2.439
2.455
2.476
2.476
2.501
2.502
2.536
2.559
2.559
2.601
2.603
2.606
2.620
2.643
2.675
2.701
2.787
2.826
2.879
3.057
3.072
3.188
3.199
3.206
3.236
3.402
3.408

42

13
25
17
35

12
23
44
46
16
42
45x%
45
33
30
34
31
32
29
43
27

28
21
39
40
26
20
38

2.987
3.007
3.034
3.035
3.044
3.045
3.078
3.114
3.114
3.138
3.138
3.155
3.182
3.397
3.411
3.433
3.500
3.624
3.713
3.800
3.982
4.031
4.035
4.191
4.204
4.264
4.321
4.691
4.718

45x%
16
42
24
18
36
25
37
19
43
33
34
30
27
31
28
21
39
40
23
17
35
32
26
29
20
38

4.423
4.702
4.968
4.968
5.437
5.562
5.593
6.092
6.103
6.180
6.402
6.518
6.919
6.926
7.385
7.489
7.837
8.120
8.238
8.843
11.236
11.500
11.536
12.344
13.088
14.939
15.923
16.368
22.805

42 14.237
16 14.237
8 14.895
12 14.895
34 29.724
43 33.918
28 39.200
35 39.274
32 39.816
17 40.074
39 43.789
29 45.782
23 51.707
20 51.814
40 55.407
38 55.909
18 56.117
26 58.396
37 59.192
19 60.588
25 67.272
36 72.175
24 79.917
30 80.474
33 84.159
31 96.112
21 97.079
27 122.407
1 401.499



The first column is PTRP reduced to a simple non-
spatial M/G/1 system. As predicted by the cj results,
the optimal policy selects the job to serve next by the
class with the minimum expected service time. Adding in
the travel times in calculating p for the cp rule
improved the result in the second column as service
time variance increased, but it is unclear whether this
is significant. As predicted by theory, the optimal cp
policy is not exhaustive. The server is obligated to
move on when a higher priority arrival enters the sys-
tem. It is interesting to note that the policies that
minimize E(s) times the arrival (rho ) rate also
perform well. The "control" priority strategies select-
ing priorities by the maximum expected service time
performed badly as theory would expect: falling at the
bottom of the list. In fact, the routing policies,
though showing high average system times, were signifi-
cantly better than these control strategies.

As travel times increase, (with speed equal to 40,000
distance units per time unit), the cpt policies continue
to outperform all other policies, but by a smaller mar-
gin. Between 40,000 and 20,000 ( maximum travel times
-025 and .050), the routing policies and the CcuH
disciplines switch place but remain within the same
magnitude of each other. Notice that at speed 20,000
the information based strategies (2,3) perform as well
as the routing strategies. In fact these policies
remain strong even as speeds decrease further. It is
noteworthy that the vicinity policies, with the subsets
set at 12 ( one half the number of total nodes), per-
formed worse at all speeds than both nearest neighbor
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and the longest queue strategies. Apparently, with so
little differentiation between subsets, the policy
offers no savings in travel time to the server.

As speeds decrease to 10,000 and 5,000 the original c

regimes lose all efficacy. The strategies and the orig-
inal strategies perform equally as poorly. The "wrong"
policies outperform the "right" policies in a number of
cases.

The superior policy at travel times of .1 and .5
(speeds 10,000 and 5,000) were the nearest neighbor
followed by the TSP strategies. Of these strategies the
exhaustive versions or the versions with high beta (the
maximum number of jobs the server can take on at one
node without moving on) had the lowest mean system
times.”- This result confirms the analysis in the pre-
vious chapters. Notice that the non-optimal TSP route
strategy that uses an arbitrary circuit (policy 45x )
still does much better than the TSP policies that use
"one job gating" (8 and 43).

An inspection of gated and exhaustive policies (2,3),
(9,10), (4,5),(18,19),(30,31) and (44,45) will show
that as travel times become significant, the latter
consistently have lower average times in system than
the former. As discussed in relation to a SRPT disci-

7, The exhaustive and the beta gate policies with beta = 12
probably have close to identical paths. This is easy to see
if one realizes that it is unlikely that an individual
queue will remain a queue of size 12 but rarely. Therefore
the server in the majority of cases is being sent on
because the queue is exhausted not because the maximum num-
ber of jobs has been served.
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plines, this result is natural. If travel times domi-
nate individual job service requirements, a policy that
disfavors travel would reduce delays. An exhaustive
policy does just that. If this is indeed the reason
behind the superiority of exhaustive regimes, it seems
obvious that a policy that idles the server at a node
after exhausting its jobs may be better yet. Could
there exist an "idling" function that permits the
server to stay at an empty node if he expects that an
arrival is forthcoming nearby?

The most significant results of this comparison are:

» the simulation performs as predicted by
theory at low travel times:;

» the optimal priority discipline (using the
cjt rule) 1loses all application at significant
travel times. The use of this rule will lead
to delays ten times greater than the NN policy
at travel times roughly equivalent to the mean
service time;

+ the NN and Tsp strategies manage to keep the
increase in delays to a factor of two as
travel times go from .025 to .5 for the maxi-
mum distance possibie on the network. If one
had to chose a dynamic strategy in a network
with wvariable travel times, NN, TSP as well as
the longest queue policies would provide the
best performance. The cu disciplines deterio-
rate too rapidly both absolutély and rela-
tively.
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4.5 More Evidence that Complete Exhaustive Policies are
Superior

The following table shows a test of the NN policy as the
maximum number of jobs the server can do at any one stay
at a node is increased. It shows the best policy is to
obligate the server to serve as many jobs as possible at
a node without being idle. Notice that at a certain
point, average times in system bottom out. This level is
equivalent to the delay an exhaustive policy would give.
The beta policy mandates that the server move on either
when the queue is empty or when beta jobs have been
served. As beta increases the queue must get longer for
the latter clause to apply. At some point the probability
the queue gets long enough becomes negligible so that the
server will always exhaust the queue before serving beta
jobs.
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4.5.1 Effect of Beta on Times in System

Nodes 24
Strategy 6
lambda i 0.0960
E(s) 0.3872
Var(s) 0.0004
lambda 2.3037
rho 0.8919
Speed Beta [Times in
System
10000 113.9318
16000 2|3.3967
10000 313.3091
10000 413.2451
10000 513.2657
10000 6/3.2670
10000 713.2662
10000 8/3.2634
10000 913.2598
10000 10|3.2591
10000 12]|3.2572
10000 14)13.2572
10000 16|3.2572
10000 18(3.2572
10000 2013.2572
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4.6 Comparison of Policies by Variance of Time in Systen

As predicted by theory system-wide FIFO (SFIFO) has the
lowest variance when PTRP has effectively zero travel
time. Yet as travel times increase, its variance
increases to the highest on the list. This is intuitive
when one realizes that at low travel speeds SFIFO essen-
tially routes the server to a random node after each ser-
vice. The variance of TSP is best or second best in alil
the speeds tested. In fact the exhaustive TSP policy
creates the least variance except when SFIFO is appli-
cable. Even in this case, the.difference between SFIFO
and exhaustive TSP are not large. The NN and the
information based policies also outperform most of the
priority disciplines across all travel times. This empir-
ical result ( if it holds under different E(s) and Var(s)
makes the routing policies a good choice on networks with
uncertain travel times. An interesting project would be
to analyze these policies on a dynamic probabilistic net-
work.
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4.6.1 Table: Comparison of Strategies by Variance of

Time in System

VARIANCE( TIME IN SYSTEM )

ORDER FROM BEST TO WORST OF 47 STRATEGIES UNDER VARIOUS

TRAVEL TIMES E(s) Var(s)

Nodes 24 Dist 1000
Speeds: 2E+07 2E+07 40000 20000 10000 5000
lambd i 0.096 0.098 0.096 0.096 0.096 0.096
E(S) 0.387 0.365 0.387 0.387 0.387 0.387
var(S) 0.020 0.039 0.020 0.020 0.020 0.020
Lambda 2.304 2.352 2.304 2.304 2.304 2.304
Rho 0.892 0.859 0.892 0.892 0.892 0.892
1 2.538 1 1.518 10 5.298 10 6.707 10 10.229 10 17.989
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