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Abstract We show that for a generic conformal metric perturbation of a com-
pact hyperbolic 3-manifold ¥ with Betti number b1, the order of vanishing of
the Ruelle zeta function at zero equals 4 — by, while in the hyperbolic case
itis equal to 4 — 2b;. This is in contrast to the 2-dimensional case where the
order of vanishing is a topological invariant. The proof uses the microlocal
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approach to dynamical zeta functions, giving a geometric description of gen-
eralized Pollicott—Ruelle resonant differential forms at 0 in the hyperbolic case
and using first variation for the perturbation. To show that the first variation
is generically nonzero we introduce a new identity relating pushforwards of
products of resonant and coresonant 2-forms on the sphere bundle S with
harmonic 1-forms on X.

Let (X, g) be a compact connected oriented 3-dimensional Riemannian
manifold of negative sectional curvature. The Ruelle zeta function

) =[]0 =€), Imi>1 (1.1)
Y

is a converging product for Im X large enough and continues meromorphically
to A € C as proved by Giulietti-Liverani—Pollicott [34] and Dyatlov—Zworski
[20]. Here the product is taken over all primitive closed geodesics y on (X, g)
and T, is the length of y.

In this paper we study the order of vanishing of ¢r at A = 0, defined as
the unique integer my (0) such that "R (©) ¢p (1) is holomorphic and nonzero
at 0. Our main result is

Theorem 1 Let (X, gy) be a compact connected oriented hyperbolic 3-
manifold and b (X) be the first Betti number of X. Then:

1. For (2, gg) we have mgr(0) =4 — 2b1(2).
2. There exists an open and dense set O C C*°(X; R) suchthat foranyb € O,
there exists ¢ > 0 such that for any t € (—¢, €)\{0} and g, = e gy,

the manifold (¥, g;) has mr(0) =4 — b1(2).

Part 1 of Theorem 1 was proved by Fried [25, Theorem 3] using the Selberg
trace formula. The novelty is part 2, which says that for generic conformal
perturbations of the hyperbolic metric the order of vanishing of (r equals
4—b1(X). In particular, when b1 (X) > 0 (fulfilled in many cases, in particular
for mapping tori over pseudo-Anosov maps [24, Theorem 13.4]), mg(0) is
not topologically invariant. Theorem 1 is the first result on instability of the
order of vanishing of {r at O for Riemannian metrics. It is in contrast to the 2-
dimensional case, where Dyatlov—Zworski [21] showed that mg (0) = b1(X)—
2 for any compact connected oriented negatively curved surface (X, g), and
is complementary to a recent breakthrough on the (acyclic) Fried conjecture
by Dang—Guillarmou—Riviere—Shen [16], see §1.3 below.

A result similar to Theorem 1 holds for contact perturbations of S, see
Theorem 4 in §4.
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1.1 Outline of the proof

We now outline the proof of Theorem 1. We use the microlocal approach to
Pollicott—Ruelle resonances and dynamical zeta functions, which we review
here — see §2 for details and §1.3 for a historical overview. Let M = SX
be the sphere bundle of (X, g) and X € C®(M; T M) be the generator of
the geodesic flow. The geodesic flow is a contact flow, i.e. there exists a 1-
form o € C®(M; T*M) such that txya = 1, ixda = 0, and o A do A da
is a nonvanishing volume form. When g has negative curvature, the geodesic
flow is Anosov, i.e. the tangent spaces T, M decompose into a direct sum of the
flow, unstable, and stable subspaces. Denote by E¥, E; the dual unstable/stable
subbundles of the cotangent bundle 7* M, thatis, E;, E are the annihilators of
unstable/stable plus flow directions; these define closed conic subsets of 7% M.
Define the spaces of resonant k-forms at 0

Resy := {u € D'(M; Q") | ixu =0, Lxu =0, WEu) C EF}. (1.2)

Here QF is the (complexified) bundle of k-forms, Lx = dix + txd is the
Lie derivative with respect to X, and for any distribution u € D'(M; QF) we
denote by WF(u) C T*M\O the wavefront set of u, see for instance [38,
Chapter 8]. The wavefront set condition makes Res’(‘) into a finite dimensional
space, which is a consequence of the interpretation of Res’é as the eigenspace
at 0 of the operator Py o := —i Ly acting on certain anisotropic Sobolev spaces
tailored to the flow (see [29, Theorem 1.7] and [21, Lemma 2.2]). We similarly
define the spaces of generalized resonant k-forms at 0

Resg’ == {u € D'(M; Q%) | ixu =0, LSu =0, WEw) C E}},
k00 | k.0
Reso = U ResO .
>1

The semisimplicity condition for k-forms states that Res](;’Oo = Res’é, which
means that the operator Py o has no nontrivial Jordan blocks at 0. We also have
the dual spaces of generalized coresonant k-forms at 0, replacing E;; with E
in the wavefront set condition:

Resp’ i= {ux € D'(M; Q) | ixus =0, Lu, =0, WFu) C E¥).

Since E; N EY = {0}, wavefront set calculus makes it possible to define u A i,
as a distributional differential form as long as WF(u) C E}\, WF(u,) C E}.
The order of vanishing of the Ruelle zeta function at O can be expressed as
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the alternating sum of the dimensions of the spaces of generalized resonant
k-forms, see (2.59):

4
mg(0) = Y _(—1)* dim Resy™ .
k=0

Thus the problem reduces to understanding the spaces Res‘é’OO for k =
0,1, 2,3,4. The proof of Theorem 1 computes their dimensions, listed in
the table below, from which the formulas for mg (0) follow immediately. See
Theorem 2 in §3 for the hyperbolic case and Theorem 3 in §4, as well as §4.4,
for the case of generic perturbations.

Dimension of Hyperbolic Perturbation
Re58 = Resg’C>o 1 1

Res) = Resy ™ 261(%) b1 (D)

Res] bi(Z)+2 b1(Z) +2
Resg? = Resg™ 261(2) +2 b1(D) +2
Res = Resy ™ 261(3) b1 (D)

Resg = Resg’oo 1 1

Note that the semisimplicity condition holds for £k = 0, 1, 3, 4 in both the
hyperbolic case and for generic perturbations. However, semisimplicity fails
for k = 2 in the hyperbolic case (assuming b1 (%) > 0), and it is restored for
generic perturbations. Also, since bp(M) = b1(X) + 1 (see (2.28)), we may
interpret the dimension of Resg in the perturbed case as the ‘topological part’
coming from the bijection with the de Rham cohomology group H2(M; C)
and the extra invariant form do.

The cases k = 0, 4 of the above table are well-known: the semisimplicity
condition holds and Resg, Resg are spanned by 1, do A da, see Lemma 2.4.

One can also see that the map u +— da A u gives an isomorphism from Res(l)"lZ

to Resg’z. Thus it remains to understand the spaces Res](()’Oo for k = 1,2 and
this is where the situation gets more complicated.

The spaces Res](‘) N ker d of resonant states that are closed forms play a dis-
tinguished role in our argument. Similarly to [21] we introduce linear maps
from Res](‘) Nker d to the de Rham cohomology groups HX(M; C), see (2.61).
We show that the map 1 is an isomorphism, see Lemma 2.8. This gives the
dimension of the space of closed forms in Res(l): since by (M) = b1 (2),

dim(Res) Nkerd) = b1 ().
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In the hyperbolic case, the other b1 (2)-dimensional space of non-closed forms
in Res(l) is obtained by rotating the closed forms by /2 in the dual unstable
space, see §3.3. This rotation commutes with the geodesic flow because the
geodesic flow is conformal on the stable/unstable spaces, see (3.7). This addi-
tional symmetry, which is only present in the hyperbolic case, is related to
the presence of a closed 2-form ¢ € C*(M; Q%) which is invariant under
the geodesic flow and is not a multiple of do, see §3.2.3. The space Res(z) is
spanned by d«, v, and the differentials du where u are the non-closed forms
in Res(l), see §3.4. We also show in §3.4 that each du € d (Res(l)) lies in the
range of Ly, producing b1 (%) Jordan blocks for the operator P (.

In the case of the perturbation g, = ¢ 2"Pgy, we use first variation tech-
niques and make the following nondegeneracy assumption (see §4.4): for the
spaces Res(l), Res(l) .. and the contact form o defined using the hyperbolic met-
ric gg, and denoting by ny, : M = S¥ — X the projection map, we assume
that

(du, duy) — f (rxb)a A du A du,  defines a nondegenerate pairing
M

on d(Res)) x d(Res),). (1.3)

Under the assumption (1.3), we show that the non-closed 1-forms in Res(l) move
away once T becomes nonzero (i.e. they turn into generalized resonant states
for nonzero Pollicott—Ruelle resonances), see §4.1. Thus for 0 < |7| < ¢ all
the resonant 1-forms are closed and we getdim Res(l) = b1(X). Further analysis
shows that semisimplicity is restored for k = 2 and dim Res(z) =b1(X)+ 2.

It remains to show that the nondegeneracy assumption (1.3) holds for a
generic choice of the conformal factor b € C*°(Z; R). The difficulty here is
that b can only depend on the point in ¥ and not on elements of S¥ which
is where o A du A du, lives. We reduce (1.3) to the following statement
on nontriviality of pushforwards (see Proposition 4.10): for each real-valued
resonant 1-form for the hyperbolic metric u € Res(l) we have

du #0 = 75, (¢ Adu A T*(du)) #0. (1.4)

Here J : (x,v) = (x, —v) is the antipodal map on M = S¥ and 7y, is the
pushforward of differential k-forms on M to (k — 2)-forms on X obtained by
integrating along the fibers, see (2.19).

The statement (1.4) concerns resonant 1-forms for the hyperbolic metric g =
gH, which are relatively well-understood. However, it is complicated by the
fact that s, (@ Adu A J*(du)) is merely a distribution, so we cannot hope to
show it is nonzero by evaluating its value at some point. Instead we pair it with
functions in C°°(X) which have to be chosen carefully so that we can compute
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the pairing. More precisely, we prove the following identity (Theorem 5 in §5):
Q4F = —¢Aglo|2 where 7y (@ Adu A J*(du)) = Fdvolg. (1.5)

Here d voly is the volume formon (X, g), A, is the Laplace—Beltrami operator,
Q4 : D'(X) - C*(X) is a naturally defined smoothing operator, and

0 =7y, (doa Au) € CP(E; T*Y)

is proved to be a nonzero harmonic 1-formon (X, g). The identity (1.5) implies
the nontriviality statement (1.4): if F = O then |o |§ is constant, but hyperbolic
3-manifolds do not admit harmonic 1-forms of nonzero constant length as
shown in Appendix A. This finishes the proof of Theorem 1.

If one is interested instead in conformal perturbations of the contact form
o, then one needs to show that @ A du A du, is not identically 0 assuming that
u e Res(l), Uy € Res(l) . and du # 0, du, # 0. The latter follows from the full
support property for Pollicott—Ruelle resonant states proved by Weich [54].
See Theorem 4 in §4 for details.

We finally note that it would have been possible to introduce a flat unitary
twist in our discussion. Namely, we can consider a Hermitian vector bundle
over ¥ endowed with a unitary flat connection A. Resonant spaces can be
defined using the operator d4 and the holonomy of A provides a way to twist
the Ruelle zeta function as well, we refer to [12] for details. We do not pursue
this extension here in order to simplify the presentation.

1.2 A conjecture

Theorem 1 can be interpreted as follows: the hyperbolic metric has non-closed
resonant states due to the extra symmetries, and by destroying these symmetries
we make all resonant states closed. We thus make the following conjecture
about generic contact Anosov flows:

Conjecture 1 Let M be a compact 2n + 1 dimensional manifold and o a con-
tact 1-form on M such that the corresponding flow is Anosov with orientable
stable/unstable bundles. Define the spaces Resg, 0 <k <2n by (1.2) and
let y : Resg Nkerd — HX(M; C) be defined by (2.61). Then for a generic
choice of o we have:

(1) the semisimplicity condition holds in all degrees k =0, ..., 2n;
(2) d(Resg) =0forallk =0,...,2n;
(3) for k = 0,...,n the map my is onto, kermy = da A RCSS_Z, and

dim ker 7 = dim Resl(c)fz.
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Denoting by by (M) the k-th Betti number of M, we then have

/2]
dimResg = Y by2j(M), 0=k <n; dimResy'" = dim Res}
j=0
(1.6)

and the order of vanishing of the Ruelle zeta function at 0 is given by (see [20,
(2.5)])

2n n
mr(0) = Y (=D dimResf = Y (=D (n + 1 — be(M). (1.7)
k=0 k=0

The proof of part 2 of Theorem 1 (see Theorem 3 in §4, as well as §4.4)
shows that Conjecture 1 holds for n = 2 and geodesic flows of generic nearly
hyperbolic metrics (while the conjecture is stated for generic metrics that do
not have to be nearly hyperbolic). Moreover, [21] shows that Conjecture 1
holds for n = 1 and any contact Anosov flow.

Note that the conditions (1) and (2) of Conjecture 1 imply (3). Indeed, by
the work of Dang—Riviere [18, Theorem 2.1] the cohomology of the complex
(Res | d), with Res® > defined in (2.38) below with Ag := 0, is isomorphic
to the de Rham cohomology of M (with the isomorphism mapping each closed
form in Res® > to its cohomology class). By (2.43) and the semisimplicity
condition (1), we have Resk:® = Res](‘) Do A Res](‘)_l). By condition (2), we
have d(u + a A v) = da A v for all u € Resg, v € Res’é_l. If k < n,
then dan : Resg_1 — Res]é+1 is injective, so Res®® Nkerd = Res’é and
d(Resk—1:%) = da A Resg_z. This gives condition (3).

Note also that for n = 2 the set of contact forms satisfying Conjec-
ture 1 is open in C°°(M; T*M). Indeed, by the perturbation theory discussed
in §4.1, more specifically (4.18), if we take a sufficiently small perturbation

of a contact form satisfying Conjecture 1, then dim Res(l)’oo < b1 (M) and
o

dim Res(z)’ < br(M) + 1. By Lemma 2.8 we see that semisimplicity holds
fork =1andd (Res(])) = 0. Then Lemma 2.11 together with Lemma 2.4 give
all the conclusions of Conjecture 1. A similar argument might work in the case
of higher n. Thus the main task in proving the conjecture is to show that (1)
and (2) hold on a dense set of contact forms.

One can make a similar conjecture for geodesic flows of generic negatively
curved compact orientable n 4+ 1-dimensional Riemannian manifolds (X, g),
with M = SX. In particular, if n = 2m is even, then X is odd dimensional
and thus has Euler characteristic 0. By the Gysin exact sequence we have
br(M) = bp(X) for 0 < k < n and b,(M) = b,(X) + bo(X). Moreover, by
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Poincaré duality we have by (X) = by 41-x(X). Thus (1.7) becomes

mr(0) = bo(X) + Z(—l)k(2m + 1 =2k)bi(X2).
k=0

This is in contrast to the hyperbolic case, where by [25, Theorem 3]

mg(0) =Y " (=DF@m +2 = 20)bi ().
k=0

Note that we only expect Conjecture 1 to hold for generic flows/metrics rather
than, say, all non-hyperbolic metrics: for n = 2 the proof of Theorem 1 uses
first variation which by the Implicit Function Theorem suggests that there is
a ‘singular submanifold’ of metrics passing through the hyperbolic metric on
which Conjecture 1 fails.

1.3 Previous work

The treatment of Pollicott—Ruelle resonances of an Anosov flow as eigenval-
ues of the generator of the flow on anisotropic Banach and Hilbert spaces
has been developed by many authors, including Baladi [3], Baladi-Tsujii [9],
Blank—Keller—Liverani [5], Butterley—Liverani [6], Gou&zel-Liverani [33],
and Liverani [46,47] (some of the above papers considered the related setting
of Anosov maps). In this paper we use the microlocal approach to dynam-
ical resonances, introduced by Faure-Sjostrand [29] and developed further
by Dyatlov—Zworski [20]; see also Faure—Roy-Sjostrand [28], Dyatlov—
Guillarmou [15], as well as Dang—Riviere [17] and Meddane [48] for the
treatment of Morse—Smale and Axiom A flows.

The study of the relation of the vanishing order mg (0) to the topology of
the underlying manifold M has a long history, going back to the works of
Fried [25,26] for geodesic flows on hyperbolic manifolds. The paper [25] also
related the leading coefficient of {r at 0 to Reidemeister torsion, which is a
topological invariant of M. It considered the more general setting of a twisted
zeta function corresponding to a unitary representation. One advantage of such
twists is that one can choose the representation so that the twisted de Rham
complex is acyclic, i.e. has no cohomology, and then one expects ¢r to be
holomorphic and nonvanishing at 0.

In [27, p. 66] Fried conjectured a formula relating the Reidemeister torsion
with the value ¢r (0) for geodesic flows on all compact locally homogeneous
manifolds with acyclic representations. Fried’s conjecture was proved by Shen
[53] for compact locally symmetric reductive manifolds, following earlier
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contributions by Bismut [4] and Moscovici—Stanton [49]. The abovementioned
works [4,25,26,49,53] used representation theory and Selberg trace formulas,
which do not extend beyond the class of locally symmetric manifolds.

In recent years much progress has been made on understanding the relation
between the behavior of (g at 0, as well as the dimensions of Res](;’e, with
topological invariants for general (not locally symmetric) negatively curved
Riemannian manifolds and Anosov flows:

e Dyatlov—Zworski [21] computed mg (0) for any contact Anosov flow in
dimension 3 with orientable stable/unstable bundles, including geodesic
flows on compact oriented negatively curved surfaces;

e Dang—Riviere [18, Theorem 2.1] showed that the chain complex
(Res®®, d), where Resk*® = Resk*>(0) is defined in (2.39) below, is
homotopy equivalent to the usual de Rham complex and hence their coho-
mologies agree. One can see that Conjecture 1 is compatible with this
result, using (2.43) and the fact that (daA)F : Qg_k — Qg+k is a bundle
isomorphism for 0 < k < n;

e Hadfield [35] showed a result similar to [21] for geodesic flows on nega-
tively curved surfaces with boundary;

e Dang—Guillarmou—Riviere—Shen [16] computed dim Res/(;’Oo for hyper-
bolic 3-manifolds and proved Fried’s formula relating ¢g (0) to Reidemeis-
ter torsion for nearly hyperbolic 3-manifolds in the acyclic case; see also
Chaubet-Dang [11];

o Kiister—Weich [44] obtained several results on geodesic flows on compact
hyperbolic manifolds and their perturbations, in particular showing that
dim Resé = b1 (X) when dim X # 3;

e Ceki¢—Paternain [12] studied volume preserving Anosov flows in dimen-
sion 3, giving the first example of a situation where mg (0) jumps under
perturbations of the flow and thus is not topologically invariant;

e Borns-Weil-Shen [10] proved a result similar to [21] for nonorientable
stable/unstable bundles.

Our Theorem 1 gives a jump in mg (0) for geodesic flows on 3-manifolds and
indicates that the situation for the hyperbolic case is different from that in the
case of generic metrics. We stress that it is more difficult to obtain results for
generic metric perturbations (such as Theorem 1) than for generic perturbations
of contact forms (such as Theorem 4 in §4) due to the more restricted nature
of metric perturbations.

One of our main technical results (Theorem 5) bears (limited) similari-
ties to known pairing formulas for Patterson—Sullivan distributions such as
those established by Anantharaman—Zelditch [2], Hansen—Hilgert—Schroder
[37], Dyatlov—Faure—Guillarmou [14], and Guillarmou—Hilgert—Weich [32].
We briefly discuss this in the Remark after Theorem 5.
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1.4 Structure of the paper

e §2 discusses contact Anosov flows on 5-manifolds and sets up the scene for
the rest of the paper. In particular, it introduces Pollicott—Ruelle resonances,
(co-)resonant states, dynamical zeta functions, de Rham cohomology, and
geodesic flows. It also proves various general lemmas about the maps 7y
and semisimplicity.

e §3 gives a complete description of generalized resonant states at O for
hyperbolic 3-manifolds, proving part 1 of Theorem 1. The approach in this
section is geometric, as opposed to the algebraic route taken in [25] and
[16].

e §4 discusses contact perturbations of geodesic flows on hyperbolic 3-
manifolds. It proves Theorem 3 which is a general perturbation statement
using the nondegeneracy condition (1.3), as well as Theorem 4 on generic
contact perturbations. It also gives the proof of part 2 of Theorem 1, relying
on the key identity (1.5).

e §5 contains the proof of the identity (1.5) (stated in Theorem 5), using a
change of variables, a regularization procedure, and the results of §3.

e Finally, Appendix A gives a proof of the fact that hyperbolic 3-manifolds
have no nonzero harmonic 1-forms of constant length.

2 Contact 5-dimensional flows

In this section we study general contact Anosov flows on 5-dimensional mani-
folds. Some of the statements below apply to non-contact Anosov flows and to
other dimensions, however we use the setting of 5-dimensional contact flows
for uniformity of presentation.

2.1 Contact Anosov flows

Assume that M is a compact connected 5-dimensional C* manifold and « €
C®(M; T*M) is a contact 1-form on M, namely

dvoly :=a Ada ANda =0 everywhere.

We fix the orientation on M by requiring that d vol, be positively oriented.
Let X € C®°(M; T M) be the associated Reeb field, that is the unique vector
field satisfying

ixa =1, ixda =0. 2.1)
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Note that this immediately implies (where Ly denotes the Lie derivative)
Lxoa =dixa +1xda = 0.
We assume that the flow generated by X,
o =X M- M,

is an Anosov flow, namely there exists a continuous flow/unstable/stable
decomposition of the tangent spaces to M,

TyM = Eo(p) ® Eu(p) ® Es(p), p €M, Eo(p) :=RX(p) (2.2)

and there exist constants C,0 > 0 and a smooth norm | e | on the fibers of
TM such that forall p € M, & € T,M, and ¢t

—6lt] . t<0, €€ E,(p) or
ldei(p)§] < Ce &) if (>0, £eEp). (2.3)

The flow/unstable/stable decomposition gives rise to the dual decomposition
of the cotangent spaces to M,

TyM = E§(p) ® E;j(p) ® Ef (p), Ej:=(E.®Ey)", o
E}:=(Eo® E,)". E}:=(E)®E,)".
Since Lya = 0, we see from (2.3) that «|g, £, = 0 and thus
E; = Ra.

Since « is a contact form and da vanishes on £, x E,, and on E x E (as follows
from (2.3) and the fact that Lyda = 0), we have dim E,, = dim E; = 2.

2.1.1 Bundles of differential forms
We define the vector bundles over M
Q= AN(T*M), QF = {we Q" |ixw =0}~ ANE}®E). (2.5)

Note that smooth sections of QF are differential k-forms on M.
We use the de Rham cohomology groups

{u e C®M; Q5 | du =0}

keoag. —
B O = S o e eon @1y

(2.6)
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Unless otherwise stated, we will always take F to be complexified. We define
the Betti numbers

bi(M) := dim H*(M; C).
Since M is connected and by Poincaré duality we have
bo(M) =1, br(M) = bs_(M).
The bundles Q* and Q’(‘) are related as follows:
'~ ol
with the canonical isomorphism and its inverse given by
ur> (u—oANixu,txu), v,w)—v+aoAw. 2.7)
Denote by da A the map u — da Au and by daA? the map u — da Ada Au,
then we have linear isomorphisms (as both maps are injective and image and
domain have the same dimension)
dan: Q) — @3, dan?: Q) — Qf. (2.8)
We also have a nondegenerate bilinear pairing between sections of Q’(‘) and

Qg_k given by

ue COM; Qb), uy € COM; Q5 > (u,uy) = / oAU Uy
M
(2.9)

which in particular identifies the dual space to L*(M; 5215) with L2(M; Qg_k).
IfA:C®(M,; Q’é) — D'(M; Qg) is a continuous operator, where D’ denotes
the space of distributions, then its transpose operator is the unique operator

AT . c*wMm; Qg_k) — D'(M; Qg_k) satisfying

(Au, ) = (u, ATuy)) forall ue C®(M;Qb), u. e C(M; Q75).
(2.10)

2.2 Geodesic flows

A large class of examples of contact Anosov flows is given by geodesic flows
on negatively curved manifolds, which is the setting of the main results of this
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paper. More precisely, assume that (X, g) is a compact connected oriented
3-dimensional Riemannian manifold. Define M to be the sphere bundle of X
and let Ty, be the canonical projection:

M:=8SE={x,v)eTZ: |vlg=1}, g M —> Z.

Define the canonical, or tautological, 1-form « on M as follows: for all £ €
T(x,v) M »

(a(x,v),§) = (v, drs(x, v)§),. (2.11)
Then « is a contact form, the corresponding flow ¢ is the geodesic flow, and
d voly, is the standard Liouville volume form up to a constant, see for instance
[52, §1.3.3]. If the metric g has negative sectional curvature, then the flow ¢,

is Anosov, see for instance [42, Theorem 3.9.1].
We have the time reversal involution

J: M- M, Jx,v)=(x,—v) (2.12)

which is an orientation reversing diffeomorphism satisfying
Ja=—a, T'X=-X, go=To¢p_, (2.13)

and the differential of 7 maps Eyg, E,, E; into Ey, E;, E,,.

2.2.1 Horizontal and vertical spaces

Recall from (2.2) that an Anosov flow induces a splitting of the tangent bundle
T M into the flow, unstable, and stable subbundles. For geodesic flows there
is another splitting, into horizontal and vertical subbundles, which we briefly
review here. See [52, §1.3.1] for more details.

Let (x,v) € M = SX. The vertical space at (x, v) is the tangent space to
the fiber S, X:

V(x,v) :=kerdns(x,v) C T, M.

To define a complementary horizontal subspace of 7, )M, we use the metric.
The connection map of the metric is the unique bundle homomorphism I :
TM — T X covering the map my such that for any curve on M written as

p() = (x(®),v@), x@)eX, v()eSink
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we have
Kp@)pt) =Do(@) € Ty X, (2.14)

where D;v () denotes the Levi—Civita covariant derivative of the vector field

v(t) along the curve x () (see e.g. [ 13, Proposition 2.2] for a precise definition).

Note that since d;(v(t), v(t)), = 0, the range of K(x, v) is g-orthogonal to v.
We now define the horizontal space as

H(x,v) :=ker C(x,v) C Tx,nM.
We have the splitting
Tx,wM =H(x,v) ® V(x,v), dimH(x,v) =3, dimV(x,v)=2
and the isomorphisms (here {v}* is the g-orthogonal complement of v in 7, X))
drys(x,v) :H(x,v) > T2, K(x,v):V(x,v) —> {v}J‘
which together give the following isomorphism T, /WM — T, X @ {v}*:
§—> (Gn.8v), §m=dns(x,v)§, &y =K(x, v)é. (2.15)

We use the map (2.15) to identify 7, ,yM with T, X & (v}+.
Under the identification (2.15), the contact form « and its differential satisfy
(see [52, Proposition 1.24])

a(x,v)(§) = (En. v)g,

(2.16)
do(x,v)(&,n) = Ev.nu)g — EH.nv)g-

Using the splitting (2.15), we define the Sasaki metric (e, ®)s on M as follows:

&, ms:=En,nu)g + Ev.nv)e. (2.17)

We finally remark that the generator X of the geodesic flow has the following
form under the isomorphism (2.15):

X(x,v)y =v, X(x,v)y =0. (2.18)
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2.2.2 De Rham cohomology of the sphere bundle

We now describe the de Rham cohomology of M = S¥ in terms of the
cohomology of X. To relate the two, we use the pullback operators

g CO(E QN - C®M; @5, 0<k<3
and the pushforward operators defined by integrating along the fibers of SX
Ts, : C¥(M; Q5 — C®(z; @2), 2<k<5. (2.19)

Here the orientation on each fiber S, ¥ is induced by the orientation on X: if
v, V1, V2 is a positively oriented orthonormal basis of 7 2, then the vertical
vectors corresponding to vy, v2 form a positively oriented basis of 75, (S, X).
The pushforward operation | can be characterized as follows: if X1, ..., Xx_2
are vector fields on ¥ and X1, ..., Xy_o are vector fields on M projecting to
X1, ..., Xk—o under dmry, then for any w € C*(M, QY andx e

nz*a)(x)(Xl,...,ng):/ UKy - LK, @
s

Another characterization of my,, is that for any € C*(M; Q%) and any
compact k — 2 dimensional oriented submanifold with boundary ¥ C X, we

have
f w=/n2*a). (2.20)
g (V) Y

Here the orientation on 7y, ! (Y) is induced by the orientationon Y. If Y = X
is the entire base manifold, then the orientation on 7y, 1(E) = §¥ featured
in (2.20) is opposite to the usual orientation on M = S%, induced by d vol, =
o Ada A da. In fact, using (2.16) we can compute that

Ts4d voly = —8md volg, (2.21)

where d volg is the volume form on ¥ induced by g and the choice of
orientation, by applying d vol, to the vectors X = (v, 0), (v, 0), (v2,0),
(0, v1), (0, vp) written using the horizontal/vertical decomposition (2.15),
where v, vy, v2 is a positively oriented g-orthonormal basis on X.
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The pushforward map has the following properties (see for instance [8,
Propositions 6.14.1 and 6.15] for the related case of vector bundles):

Ty (01 A (TEw))) = (T5,01) A ). (2.23)

Note that the maps 7., 75 can also be defined on distributional forms. For
7y, this follows from the fact that pushforward is always well-defined on
distributions as long as the fibers are compact and for the pullback 75, this
follows from the fact that 7y, is a submersion [38, Theorem 6.1.2].

Since the map J defined in (2.12) is an orientation reversing diffeomor-
phism of the fibers of S, we also have

Ty (T w) = —n5, 0. (2.24)

Since pullbacks commute with the differential d, and by (2.22), the opera-
tions 5., ., induce maps on de Rham cohomology, which we denote by the
same letters:

nf HY(Z;C) - HY(M; C), ny, : HY(M;C) » H*2(3; ©).

From the Gysin exact sequence (see for instance [8, Proposition 14.33], where
the Euler class is zero since ¥ is three-dimensional; alternatively one can use
Kiinneth formulas and the fact that every compact orientable 3-manifold is
parallelizable) we have isomorphisms

ni:HY(Z;C) - H'(M;C), ny,: H*(M;C) - H*(Z;C) (2.25)
and the exact sequences
2 > 2 Ty 0
0—-> H(X;C) = H"M;C) — H'(X;C) — 0, (2.26)
3 > 3 Ty 1
00— H (Z;C)— H'M;C)— H (X;C) — 0. (2.27)
In particular, we get formulas for the Betti numbers of the sphere bundle M:

bo(M) = bs(M) =1, b1(M) = bs(M) = b1(%),
by(M) = b3(M) = bi(Z) + 1. (2.28)
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2.3 Pollicott—Ruelle resonances

We now review the theory of Pollicott—Ruelle resonances in the present setting.
Define the first order differential operators

Pr = —ily : C®(M; Q5 — C®M; QY),
Pio = —iLy : C®(M; Q) — C®(M; Q).
Note that Py o is the restriction of P to C*° (M, Q’(‘)) which is the space of all

u € C®(M; QF) which satisfy txu = 0.
For A € C with Im X large enough, the integral

OO . .
R (1) ::i/ eMeT P qr - L2(M; Q5 — L2(M; Q6 (2.29)
0

converges and defines a bounded operator on L_2 which is holomorphic in A.
Here the evolution group e~ is given by e~/ Py = @*,u. It is straightfor-
ward to check that Ry (}) is the L2-resolvent of Py:

Ri(W) = (P — )71 LA(M: Q5 — L2(M: Q5), Imar > 1, (2.30)

where we treat Py as an unbounded operator on L? with domain {u e
L*(M; Q%) | Pru € L*(M; QF)} and Pru is defined in the sense of distri-
butions.

2.3.1 Meromorphic continuation

Since ¢; is an Anosov flow, the resolvent Ry (A) admits a meromorphic con-
tinuation

Ri(A) : C®(M; QY - D'(M; @5, A eC,

see for instance [20, §3.2] and [29, Theorems 1.4, 1.5]. The proof of this con-
tinuation shows that Ry (1) acts on certain anisotropic Sobolev spaces adapted
to the stable/unstable decompositions, see e.g. [20, §3.1]; this makes it pos-
sible to compose the operator Ry (A) with itself. Instead of introducing these
spaces here, we use the spaces of distributions

(M Q5 = {u e D'(M; QF) | WF(u) C T}, (2.31)

where I' € T*M\O0 is a closed conic set and WF (1) denotes the wavefront set
of a distribution u. These spaces come with a natural sequential topology, see
[38, Definition 8.2.2].
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We have the wavefront set property of Ry () proved in [20, (3.7)]:
WF' (Rr(A) C # = A(T*M)U YL U(E} x EY), (2.32)

where A(T*M) C T*M x T*M is the diagonal and Y = {(¢; (x), dg; (x)~T
E,x,&) |t >0,&(X(x)) = 0}; for an operator B : C*°(M) — D'(M) with
Schwartz kernel Kz € D'(M x M), we denote WF'(B) = {(x,&,y, —n) |
(x,&,v,n) € WE(Kp)} € T*(M x M). The Schwartz kernel of R;(})
is meromorphic in A with values in D), where #' = {(x,&,y,—n) |
(x,&,y,n) € #}. By the wavefront set calculus [38, Theorem 8.2.13] and
since E; N EY = 0, Ri(A) defines a meromorphic family of continuous oper-
ators

Ry () : D (M; Q5 - D, (M Qr, (2.33)

where we view E)' C T*M as a closed conic subset and define D%* by (2.31).

Note that differential operators (in particular, d, tx, Lx) define continuous
maps on the regularity classes D’... We have

Re() (P — Mu = (P — R (G)u = u forallu € Dy, (M; Q).
(2.34)

ForIm A > 1 and u € C®(M; Q) this follows from (2.30); the general case
follows from here by analytic continuation and since C* is dense in D/.
We also have the commutation relations

dRr(Mu = Rkr1(Mdu, txRy(Mu = Rre—1(M)ixu forall u e D};;(M; Qk).
(2.35)

As with (2.34) it suffices to consider the case Im A > 1 and u € C®(M; ),
in which (2.35) follows from (2.29) and the fact that d and ty commute with
9L,

The poles of the family of operators Ry (A) are called Pollicott—Ruelle res-
onances on k-forms. At each pole 1o € C we have an expansion (see for
instance [20, (3.6)])

Jk (ho) i—1
(P — 20)’ ™ Tk (1o)
Re() = R (s ho) = ) e (2.36)
= (A — 20)/

where RH (A; Ao) : D’E* (M; Q5 - D, *(M Q) is a family of operators
holomorphlc ina nelghborhood of Ao, J (Ao) > 1 is an integer, and [T (Xg) :
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DY.(M; Qk — DY (M; Q¥) is a finite rank operator commuting with Py

and such that (Py — Ag)*?0TT; (Ag) = 0.
Taking the expansions of (2.35) at Ao we see that

dTli(Ao) = g1 (Mo)d, 1xTg(ho) = Tli—1(Ro)tx. (2.37)

2.3.2 Resonant states

The range of the operator I (Ag) is equal to the space of generalised resonant
states (see for instance [20, Proposition 3.3])

Res®(h) := U Res"“ (%), (2.38)
>1
where we define
Res"“(00) = {u € D (M; QF) | (P — 1o)'u = 0}. (2.39)

We define the algebraic multiplicity of Ao as a resonance on k-forms by
my(Ag) ;= rank [Ty (Lg) = dim Resk’oo(ko). (2.40)
The geometric multiplicity is the dimension of the space of resonant states
Res¥(1o) := Res® ' (Ag) = {u € D, (M Q5 | (P — Ao)u = 0.

We say aresonance Ag of Py is semisimple if the algebraic and geometric multi-

plicities coincide, that is Res®* (19) = Resk(1¢). This is equivalent to saying

that J; (Ag) = 1in (2.36). Another equivalent definition of semisimplicity is
u € Dipy(M; 5, (Ph—20)u=0 = (Pr—rou=0. (241)

We note that the operators I (1) are idempotent. In fact, applying the Laurent

expansion (2.36) at Ag to u € Resk’e(kl) and using the identity Ry(M)u =
— Zf.;})(k — A1) /N (P — A1) u we see that

I, (A ifA1 = A
(o) Ty (o) = | E(0) T4 = 2o, (2.42)
0 if A1 # Ag.
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2.3.3 Operators on the bundles Qg

The above constructions apply equally as well to the operators Pk ¢ (except
that the operator d does not preserve sections of X, so the first commutation
relation in (2.37) does not hold, and the second one is trivial); we denote the
resulting objects by

R 0(A), Ji,0(ro), R;fo()»;?»o), Ty 0(A0), RGSS’Z(KO), mp.0(Ao).

Under the isomorphism (2.7) the operator Py is conjugated to Py o @ Pr—_1.0.
Therefore (2.7) gives an isomorphism

Res"‘ (1) ~ Resy (o) ® Resy " (ho). (2.43)
Moreover, we get for all u € D/.. (M, Qk)
I (Lo)u = Tro(ho) (e —a Atxu) +a ATl—10(ko)txu. (2.44)
Since Lxda = 0, the operations (2.8) give rise to linear isomorphisms

dan : Res(l)’z()»o) — Resg’z(ko), dan® Resg’e(ko) — Resg’e()\o)

(2.45)
which in particular give the equalities
mi,0(ro) = m3,0(ro), mo,0(ro) = ma4,0(Ro). (2.46)
2.3.4 Transposes and coresonant states
Since Lxa = 0 and fM Lxw = 0 for any 5-form w, we have
(Peo)l = —Py_jo, k=0,1,2,3,4, (2.47)

where the transpose is defined using the pairing ((e, o)), see (2.10). Thus the
transpose of the resolvent (Rk,o()n))T is the meromorphic continuation of the
resolvent corresponding to the vector field — X ; the latter generates an Anosov
flow with the unstable and stable spaces switching roles compared to the ones
for X. Similarly to (2.33) we have

(R, 0O = D (M; 47F) — Dl (M; 2575, (2.48)

where D', is the space of distributional sections with wavefront set contained
s

in E. Same applies to the transposes of the operators ngo (X5 Ap) and ITx o (o)
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appearing in (2.36). The range of (l'[k,o()»o))T is the space of generalised

4—k,00
coresonant states Res, (Ao) where

k, k.l
Reso*oo(ko) = U Res, (10),
=1

Resgy (o) := (uy € Dppe (M: 20) | (Pro + 20) us = 0).
The space of coresonant states is defined as
Resg, (ho) := Resp, (h0) = {uts € Dipe (M3 2§) | (Peo + Ao)us = O},
Similarly to (2.45) we have the isomorphisms

dan : Res(l)f (Ag) — Resé;f3 (o), dan®: Resgf()\o) — Resgf()\o).
(2.49)

In the special case when ¢ is a geodesic flow with the time reversal map J
defined in (2.12), the pullback operator J* gives an isomorphism between
D%Zf (M, 916) and D%j (M, 8215). Moreover, J*Piro = —Pr,0J*. This gives
rise to isomorphisms between the spaces of generalised resonant and coreso-
nant states

J* i Resg  (0) — Resg.’ (o). (2.50)
2.3.5 Coresonant states and pairing

Since E;; and E7 intersect only at the zero section, we can define the product
uAnu, €D(M,; Qg) and thus the pairing ((u, u)) for any u € D) ;(M; QS),
Uy € D%f (M; Qg_k), see [38, Theorem 8.2.10]. Note that this pairing is
nondegenérate since both D', and D, contain C*°, and the transpose for-
mula (2.10) still holds since Clé’o is densse in D%; and in D%zﬁ. In particular, we
have a pairing

u € Resy ™ (ho), us € Resg, " (ko) > (u,us) € C.  (2.51)

This pairing is nondegenerate. Indeed, assume that u € Resg’oo(ko) and
(u,u) = 0 for all u, € Resg;k’oo(ko). Since Resg;k’oo(ko) is the range
of (Hk,o(Xo))T, we have

0= (u. (Mro(o)’ @) = (Mro(o)u. ¢)
(u, ) forall p € C®(M; 25,
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where the last equality follows from the fact that l'Ik,o(ko)2 = Ik 0(Xo) and u
is in the range of ITg o(Xo). It follows that u = 0. Similarly one can show that
if (u, uy) = 0 for some u, € Resg;k’oo(ko) and all u € Resg’oo(ko), then
Uy, = 0.

Consider the operators on finite dimensional spaces

Pro — 1o : Resg™(ho) — Resy ™ (%), (2.52)
— P40 — Ao : Resg. ™ (1) — Resg, “®(R0), (2.53)
which are transposes of each other with respect to the pairing (2.51). The

kernels of £-th powers of these operators are Res’é’e(ko) and Resg;k’e()no),
thus (using the isomorphisms (2.49))

dim Resé’g (Ap) = dim Resg;k’e (Ap) = dim Res](;f (o). (2.54)

We now give a solvability result for the operators Py ¢. It follows from the
Fredholm property of these operators on anisotropic Sobolev spaces but we
present instead a proof using the Laurent expansion (2.36).

Lemma 2.1 Assume that w € D%* (M, Qlé). Then the equation

(Po—rou=w, ueDp(M; Qb (2.55)
has a solution if and only if w satisfies the condition
(w,u) =0 forall u, € Resg,"*(ro). (2.56)

Proof First of all, if (2.55) has a solution u, then for each u, € Resg;k (Ag)
we have

(w, us) = ((Pr,o — 2o)u, us)) = —{u, (Pa—r,0 + Ao)us) = 0,

that is the condition (2.56) is satisfied.

Now, assume that w satisfies the condition (2.56); we show that (2.55) has
a solution. We start with the special case when w € Resé’oo(ko). We use the
pairing (2.51) to identify the dual space to Reslé’oo(ko) with Resg;k’oo(ko).
By (2.56), w is annihilated by the kernel of the operator (2.53). Therefore w is
in the range of the operator (2.52), thatis (2.55) has a solution u € Res](;’C>o (Xo).

We now consider the case of general w satisfying (2.56). Taking the constant
term in the Laurent expansion of the identity (2.34) at . = Ao, we obtain

(Peo — M) REy(hos A)w = w — TTx o (ho)w. (2.57)
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We have I o(Ap)w € Resl(;’OO (o) and it satisfies (2.56), thus (2.55) has a solu-
tion with this right-hand side. Writing w = TTx,0(Ao)w + (Id =TTz 0(o))w,
we may take as u the sum of this solution and R}ZO (Ao; Ap)w. |

Lemma 2.1 implies the following criterion for semisimplicity:

Lemma 2.2 The semisimplicity condition (2.41) holds for the operator Py g
if and only if the restriction of the pairing (2.51) to Resl(‘) (Ag) x Resg;k (Ao) is
nondegenerate.

Proof The condition (2.41) is equivalent to saying that the intersection of
Res’é(ko) with the range of the operator Py o — Ao D}s;; (M, Q’é) —
Dl (M Q](‘)) is trivial; that is, for each w € Res’é(ko)\{O} the equation (2.55)
has no solution. By Lemma 2.1, this is equivalent to saying that w does
not satisfy the condition (2.56), i.e. there exists v € Resg;k(ko) such that
{w, v)) # 0. This is equivalent to the nondegeneracy condition of the present
lemma. O

2.3.6 Zeta functions

We now discuss dynamical zeta functions. We assume that the unstable/stable
bundles E,, E; are orientable (the non-orientable case is covered by [10]); this
is true for the case of geodesic flows on orientable manifolds as follows from
the fact that the vertical bundle trivially intersects the weak unstable bundle
RX & E, (see [34, Lemma B.1]).

Wesay y : [0, T),] — M isaclosed trajectory of the flow ¢, of period T,, >
0if y(t) = ¢(y(0)) and y(T),) = y(0). We identify closed trajectories
obtained by shifting z. The primitive period of a closed trajectory, denoted
by Tﬁ, is the smallest positive ¢+ > 0 such that y(#) = y(0). We say y is a
primitive closed trajectory if T, = Tyjj .

Define the linearised Poincaré map P, := d(p_ry (v (0)| g, @E,- We have
det’ P, = 1 since the restriction of da A da to E, & Ej is a ¢,-invariant
nonvanishing 4-form. Since ¢, is an Anosov flow, the map I — P,, is invertible
(in fact P, has no eigenvalues on the unit circle).

For 0 < k < 4, define the zeta function

# k irT,
T, tr(A“P,))e 'y
A) = -y L 4 ImA > 1 2.58
Ck (L) eXP( T det( — Py) ) mai > 1, (2.58)

where the sum is over all the closed trajectories y. The series in (2.58) con-
verges for sufficiently large Im A, see e.g. [20, §2.2].

@ Springer



M. Cekié et al.

The zeta function ¢ continues holomorphically to A € C and for each
Ao € C, the multiplicity of A as a zero of ¢ is equal to my o(Ao), the alge-
braic multiplicity of Ao as a resonance of the operator Py ¢ defined similarly
to (2.40) — see [20, §4] for the proof.

By Ruelle’s identity (see e.g. [20, (2.5)]) the Ruelle zeta function defined
in (1.1) factorizes as follows:

So(AM)&2(A) g4 (X)

A) =
R = G0

Using (2.46) we see that the order of vanishing of the function ¢r at A is equal
to

4
mg (ko) = Y (=1 my 0000) = 2mo,0(ho) — 2m1,0(ho) + m2.0(0).

k=0
(2.59)

2.4 Resonance at 0

This paper focuses on the resonance at 0, which is why we henceforth put
Lo := 0 unless stated otherwise. For instance we write

R, == R, 0), T =M 0(0), Resy := Resg(0).

Our main goal is to study the order of vanishing of the Ruelle zeta function
at 0, which by (2.59) is equal to

mr(0) = 2m0 0(0) — 2m1 0(0) + m2.0(0), my 0(0) = dim Resgy™..

Since Lx = dux + txd, the space of resonant states at O for the operator P o
is

Resy = {u € Dipy (M; Q1) | txu =0, txdu =0}. (2.60)

In particular, the exterior derivative defines an operator d : Resg — Res’é“.

(Unfortunately this is no longer true for the spaces of generalised resonant
states Resg’z with £ > 2, since d does not necessarily map these to the kernel
of tx.)
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2.4.1 0-Forms and 4-forms

We first analyze the resonance at O for the operators Py ¢ and P4 ¢. The follow-
ing regularity result is a special case of [21, Lemma 2.3] (see also [28, Lemma
4] for a similar statement in the case of Anosov maps):

Lemma 2.3 Assume that
u e D/E;{“(M’ (C), Xu € COO(M, (C), Re(XM’M>L2(M;dV01a) SO

Thenu € C*°(M; C).

Using Lemma 2.3 we show the following statement similar to [21, Lemma 3.2]
(we note that it straightforwardly generalizes to other dimensions, which was
known already to [46, Corollary 2.11]):

Lemma 2.4 The semisimplicity condition (2.41) holds at Lo = O for the oper-
ators Py o, Ps,0 and

mo,0(0) = my4,0(0) = 1.

Moreover, Res8 = Resg . 1s spanned by the constant function 1 and Resg =
Resé . is spanned by the form da A da.

Proof We only give the proof for O-forms (i.e. functions); the case of 4-forms
follows from here using the isomorphisms (2.45), (2.49).

Assume that u € Resg. Then Xu = 0, so Lemma 2.3 implies that u €
C®(M: C). Thus the differential du € C®(M; Q') is invariant under the
flow ¢;; the stable/unstable decomposition (2.4) gives that du € Ejj at every
point. Together with the equation Xu = 0, this implies that du = 0 and thus
(since M is connected) u is constant. We have shown that Re58 is spanned
by the function 1; applying the above argument to —X we see that Resg . 18
spanned by 1 as well.

To show the semisimplicity condition (2.41), assume that u € D/ :(M ;O

satisfies X?u = 0. Then Xu € Resg, so Xu is constant. Together with the
identity | y (Xu) dvoly = 0 this gives Xu = 0 as needed. O
2.4.2 Closed forms

We now study resonant states which are closed, that is elements of the space

Resgﬂkerd ={ue D%:(M; Qk) | txu =0, du = 0}.
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We use a special case of [21, Lemma 2.1] which shows that de Rham cohomol-
ogy in the spaces D/ (M; QF) is the same as the usual de Rham cohomology
defined in (2.6):

Lemma 2.5 Assume that u € D)..(M; Q¥) and du € C*®(M; Q). Then
there exist v € C®(M; QX), w € Do (M; Q1) such that u = v + dw.

Similarly to [21, §3.3] we introduce the linear map

7 : Resg Nkerd — HY(M; ©), . (u) = [v]

2.61
where u =v+dw, veC®M:Q%, w € Dy.(M,; Qk_l).( )

Here v, w exist by Lemma 2.5. To show that the map m; is well-defined,
assume that u = v + dw = v/ + dw’ where v, v’ € C®°(M; Q) and w, w’ €
D). (M; Q1. Thend(w —w') = v/ —v € C®(M; @), thus by Lemma 2.5

we may write w — w’ = w; + dwy where w; € C®(M; Q-1 w, €
DYy.(M; QK=2). Then v/ — v = dw; where w is smooth, so [v] g« = [v'] .

Similar arguments apply to the spaces Reslé . Nkerd of closed coresonant
k-forms; we denote the corresponding maps by

ks Resl(‘)* Nkerd — HY(M; C).

From Lemma 2.4 we see that 7 is an isomorphism and hence by (2.45) that
w4 = 0.

We now establish several properties of the spaces Resg Nker d and the maps
7k; some of these are extensions of the results of [21, §3.3].

Lemma 2.6 The kernel of wy satisfies
d(Resg_l) C ker mp C d(Res¥~1%).

Proof The first containment is immediate. For the second one, assume that
u e Res’(‘) Nkerd and 75 (u) = 0. Then u = v + dw where v € C®°(M; QF)
satisfies [v]y« = 0 and w € D, (M; Qk=1). We have v = d¢ for some

¢ € C®(M; Q1) and by (2.37)
u=TIlu =T{d(C + w) = dIT;_1 (¢ + w).

Therefore u € d(Res<~1->). O

We note that the case & = 0 of the following lemma holds trivially.
Lemma 2.7 Assume that for some k all the coresonant states in Resg*_k are

exact forms. Then the map 1y, is onto.
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Proof Take arbitrary v € C®(M; QF) such that dv = 0. We will construct
ue Reslg Nker d such that mx (1) = [v] g« by putting

u:=v+dw forsome w € D%:(M; Qg_l).

Such u is automatically closed, so we only need to choose w so that txu = 0,
that is

txdw = Lxw = —ixv (2.62)

where the first equality is immediate because (xw = 0.
To solve (2.62), we use Lemma 2.1. It suffices to check that the condi-
tion (2.56) holds:

{(txv,us) =0 forall u, € Resy .

We compute

((va,u*))=/ (X/\(LXv)/\u*Z/ vAue =0.
M

M

Here in the second equality we used that txu, = 0 (thus tx of the 5-forms on
both sides are the same) and in the last equality we used that v is closed and,
by the assumption of the lemma, u, is exact. O

Lemma 2.8 The maps 1, 714 are isomorphisms, in particular
dim(Res) Nker d) = dim(Res), Nker d) = by (M).

Proof We only consider the case of 71, with 71, handled similarly. To show
that 7| is one-to-one, we use Lemma 2.6 and the fact that Res?® = Res8
consists of constant functions by Lemma 2.4. To show that m; is onto, it
suffices to use Lemma 2.7: by Lemma 2.4, the space Resg . 1s spanned by
doa ANdo =d(o Nda). O

Lemma 2.9 We have d(Res}) = d(Res},) = 0.

Proof We only consider the case of Resg, with Resg , handled similarly.
Assume that u € Resg. Then du € Resé, so by Lemma 2.4 we have
du = cda A do for some constant c¢. It remains to use that

cf dvola=faAdu=/daAu=0,
M M M

where in the second equality we integrated by parts and in the third equality
we used that ty (da A u) = 0, thus da A u = 0. |
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We also have the following nondegeneracy result for the pairing between closed
resonant and coresonant forms when k = 1:

Lemma 2.10 The pairing induced by {(e, o)) on (Res(l)ﬂkerd) X (da A
(Res(l) . Nkerd)) is nondegenerate.

Proof We show the following stronger statement: for each closed but not exact
veC®(M; Q)

Re (' ([v]y), da Ay, ([U]51)) < 0. (2.63)

Here we used that the map 71 is an isomorphism, as shown in Lemma 2.8. We
have

a7 (wlg) = v+df. R ([Tl = v+ dg.
where f € D, :(M; C), g €D, . (M; C) satisfy
Xf = Xg = —ixv. (2.64)
We compute
Re(my (1), do Ay, (01 m)

:Re/ aANdoaAN(v+df)yA (v+dg)

M

:Re/ andaN(df N\v+vAadg+df Adg)
M

=Re/ da ANda A (fv—gv—gdf)
M

= Re/ (fixv — gixv — (Xf)g)d voly
M
= —Re(Xf, f)r2m.dvoly)-

Here in the second line we used that Re(v A v) = 0. In the third line we
integrated by parts and used that dv = 0. In the fourth line we used that
txda = 0 (the 5-forms under the integral are equal as can be seen by taking
tx of both sides). In the last line we used the identity (2.64).

Thus, if (2.63) fails, we have Re(Xf, f)r2m:4v0,) < O which by
Lemma 2.3 implies that f € C®(M; C) and thus u := JTI_I([U]HI) lies
in Res(l) NC®(M; Q). Now the fact that u is invariant under the flow ¢; and
the stable/unstable decomposition (2.4) imply that u € Ej at each point, and
the fact that txu = O then gives u = 0. This shows that v is exact, giving a
contradiction. m|
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We finally give the following result in the case when all forms in Res(l) are
closed:

Lemma 2.11 Assume that Res(l) consists of closed forms, i.e. d (Res(l)) = 0.
Then:

1. The semisimplicity condition (2.41) holds at Ly = O for the operators P g
and P3 .

2.d (Res(z)) = 0, my is onto, and ker my is spanned by do.

3. my,0(0) =ms30(0) = b1 (M), dimResé =by(M) + 1, and w3 = 0.

Remark Lemma 2.11 does not provide full information on the resonance at 0
since it does not prove the semisimplicity condition for the operator P g,
and only assumes that resonant forms Res(l) are closed (in fact we will see
that d (Res(l)) # 0 and P, is not semisimple in the hyperbolic case when
bi(M) > 0, see § 3).

Proof 1. Since dim(Res(l) Nkerd) = dim(Res(l) . Nkerd) by Lemma 2.8, and
dim Res) = dim Res],, by (2.54), we have d(Res],) = 0. By (2.49) we have
Resg . = da A Res(l) .- Now Lemma 2.10 shows that ((e, e)) defines a non-
degenerate pairing on Res(l) X Resg .» Which by Lemma 2.2 shows that the
semisimplicity condition (2.41) holds at 1o = O for the operator Pj o. By (2.45)
semisimplicity holds for Pz o as well.

2. We first show that Res(z) consists of closed forms. Assume that ¢ € Res%,
then d¢ € Resg. By (2.45), d¢ = do A u for some u € Res(l). Take arbitrary
Uy € Res(l)*. Then

(u, da Auy)) = /

oz/\df/\u*zfda/\g“/\u*zo (2.65)
M M

Here in the second equality we integrate by parts and use that du, = 0; in the
last equality we use that (y applied to the 5-form under the integral is equal
to 0. Now by Lemma 2.10 we have u = 0, which means that d¢ = 0 as needed.

Next, by Lemma 2.6 we have ker m, C d(Res!™). By (2.43), Lemma 2.4,
and the fact that Res(l)’OO = Res(l) we have Res! ™ = Res(l) @Ca. Since
d(Res(l)) = 0 and du € ker p, we see that ker 77> is spanned by do.

Finally, to show that 7> is onto, it suffices to use Lemma 2.7: since all
elements of Res(l) ,. are closed, all elements of Resg , =da N Res(l) , are exact.
3. This follows immediately from the above statements and Lemma 2.8. To
show that 73 = 0 we note that Resg =da A Res(l) consists of exact forms. O

2.4.3 Summary

We now briefly summarize the contents of this section. Lemma 2.2 will often
be used to interpret the semisimplicity condition (2.41) via the more tractable
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nondegeneracy of the pairing (2.9). Next, Lemma 2.4 provides us with a defini-
tive understanding of Resg’oo and Resg’oo, which by the isomorphisms (2.49)
reduces the problem to studying Res(l)’OO and Resé’oo. As Theorem 1 shows,
this is a complicated question, but Lemma 2.8 says that Res(l) Nkerd is ‘stably
topological’, that is, it is always mapped isomorphically by 71 to H'(M).
Moreover, if one can show d (Resé) = 0, Lemma 2.11 shows that semisim-
plicity for 1-forms is valid, which will be used in the perturbed picture in § 4.
Under the same assumption, we also know that Resg is spanned by the ‘topo-
logical part’ 7, ! (H*(M)) and the form da. Thus, to compute (2.59) it suffices
to study conditions under which forms in Res(l) are closed, and semisimplic-
ity conditions for P; . This will be done in two steps: in § 3 we will first
develop a detailed understanding when ¢ is the geodesic flow of a hyperbolic
3-manifold, and later in § 4 we will study the perturbed picture.

3 Resonant states for hyperbolic 3-manifolds

In this section we study in detail the Pollicott—Ruelle resonant states at 0 for
geodesic flows on hyperbolic 3-manifolds. The theorem below summarizes
the main results. Here Res’é = Res](;’l are the spaces of resonant k-forms,
Resg’z are the spaces of generalized resonant k-forms (see §2.4), and my :
Res’é Nkerd — H*(M: C) are the maps defined in (2.61). The maps 7§, s,
are defined in §2.2.2.

Theorem 2 Let M = ST where X is a hyperbolic 3-manifold and ¢; be the
geodesic flow on . Then:

1. There exists a 2-form € C*(M; Q%) which is closed but not exact,
7y, (Y) = —4m, and  is invariant under ¢;.

2. Res) = C®Cy is 2b1(X)-dimensional where C := Res) Nkerd is b1 (X)-
dimensional and Cy, is another by (X)-dimensional space characterized by
the identity do A Cy, = ¥ AC.

3. The semisimplicity condition (2.41) holds at .y = O for the operators P g
and P3 .

4. Res(z) = Cda @ Cy ®dCy is b1 (X) +2-dimensional and consists of closed
forms. The map 1> has kernel Cda ® dCy, and range C[{r] .

5. Res(z)’oo = Res(Q)’2 is 2b1(X) + 2-dimensional. The range of the map Ly :
Resg’2 — Res? is equal to dCy.

6. Resg = da A Res(l) is 2b1(X)-dimensional and consists of closed forms.
The map 13 has kernel da N C and its range is a codimension 1 subspace
of H3(M; C) not containing [m5.d volg]ys.

7. The map m,, annihilates da A C and is an isomorphism from da A Cy
onto the space of harmonic 1-forms on X.
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Theorem 2 together with Lemma 2.4 and (2.59) give part 1 of Theorem 1:

Corollary 3.1 Theorem 2, the algebraic multiplicities of 0 as a resonance of
the operators Py ( are

mo,0(0) =my40(0) =1, my(0) =m3,0(0) =2b1(2),
m2,0(0) =2b1(X) + 2 3.1

and the order of vanishing of the Ruelle zeta function ¢r at 0 is equal to
mg(0) = 2mo,0(0) — 2my,0(0) + m2,0(0) =4 —2b1(%).

Previously (3.1) was proved in [16, Proposition 7.7] using different methods.
Here we give a more refined description: we construct the resonant forms, prove
pairing formulas, and study the existence of Jordan blocks. We emphasize that
these properties are of crucial importance for the perturbation arguments in
§ 4 and were not known prior to this work.

This section is structured as follows: in §3.1 we review the geometric fea-
tures of hyperbolic 3-manifolds used here. In §3.2 we construct the smooth
invariant 2-form ¢ and study its properties, proving part 1 of Theorem 2.
In §3.3 we study the resonant 1-forms and 3-forms, proving parts 2, 3, and 6
of Theorem 2. In §3.4 we study the resonant 2-forms, proving parts 4 and 5 of
Theorem 2. Finally, in §3.5 we show that the pushforward operator 7y, maps
elements of Resg to harmonic 1-forms on (X, g), proving part 7 of Theorem 2.

3.1 Hyperbolic 3-manifolds

We first review the geometry of hyperbolic 3-manifolds, following [14, §3]. We
define a hyperbolic 3-manifold to be a nonempty compact connected oriented
3-dimensional Riemannian manifold ¥ with constant sectional curvature —1.
Each such manifold can be written as a quotient

T =I\H,

where H? is the 3-dimensional hyperbolic space and I' C SO,.(1,3) is a
discrete torsion-free co-compact subgroup. We will use the hyperboloid model

H = {x e R"3 | (x,x)13 =1, xo > 0},

where R!> = R* is the Minkowski space, with points denoted by x =
(xg, x1, x2, x3) and the Lorentzian inner product

. 2 2 2 2
(x,x)13 :==x5 — X] — x5 — Xx3.
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The group SO (1, 3) is the group of linear transformations on R!-3 (that is, 4 x
4 real matrices) which preserve the inner product (e, e); 3, have determinant 1,
and preserve the sign of x( on elements of H>. The Riemannian metric on H?>
is the restriction of —(e, @)1 3; the group SO, (1, 3) acts on H? by isometries,
so the metric descends to the quotient ¥. Note that we may write H? ~
SO4(1,3)/SO(3) as a homogeneous space for the SO (1, 3)-action, since
SO(3) is the stabilizer of the point (1, 0, 0, 0) € HA.

3.1.1 Geodesic flow

We now study the geodesic flow on X, using the notation of §2.2. The sphere
bundle S is the quotient

ST = I'\SH?, (3.2)
where the sphere bundle SH? ¢ R!3 x R!3 has the form
SH? = {(x,v) e RM? xR | (x,x)13=1, (v,v)13=—1, (x,v)13=0}.

Note that we may write SH3 ~ SO4(1,3)/SO(2) as a homogeneous
space for the SO, (1, 3)-action, since SO(2) is the stabilizer of the point
(1,0,0,0,0,1,0,0) € SH?. The contact form «, defined in (2.11), and the
generator X of the geodesic flow are

a=—(v,dx)13, X=v-0x+x-0, 3.3)

where ‘> denotes the (positive definite) Euclidean inner product on R"3. The
geodesic flow is then given by

@i (x,v) = (x cosht + vsinh¢, x sinh ¢t 4+ v cosht).

As a corollary, the distance function on H? with respect to the hyperbolic
metric is given by

coshdya(x, y) = (x, y)13 forall x,ye H°. (3.4)

The tangent space 7, ) (SH?) consists of vectors (&c, &) € R3 @ R!D3 such
that

(X, 6013 =(v,86)1,3 = (x,&)1,3 +(v,6x)1,3=0.

The connection map (2.14) is given by
,C(xa U)(gx, SU) = SU - <X, gv)ljx = SU + (U, $x>1,3x-
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Here and throughout we note that the addition of points x and vectors &,
(or &) has to be understood in R"3. The horizontal and vertical spaces
H(x, v), V(x, v) C Ty (SH?) are then

H(x, v) = {(x, &) | (x, 8013 =0, & = —(v, &)13x},
Vx,v) ={0,8) | (x,§)13 = (v,§)1,3=0}

and the horizontal-vertical splitting map (2.15) takes for & = (&,&,) €
Ty (SH?) € RE3 @ RY3 the form

En =6, &y =§& + (v, §x>l,3x-

The Sasaki metric (2.17) is for &, n € T(x,v)(S]HP) given by

&, ms=—xn)1,3 — Ev, M)1.3 + (v, Ex)1.3(V, Nx) 1.3
The unstable/stable subspaces E,, Es from (2.2) on SH? are given by

E,(x,v) = {(w,w) |w e R, (w,x)15 = (w, )13 =0},

(3.5)
Es(x,v) = {(w, —w) | w e R, (w, x)13 = (w, v)13 =0}

In terms of the horizontal-vertical splitting (2.15) they can be characterized as
follows:

E,={8v =&n}, E;={fv = —&nu}. (3.6)

A distinguished feature of hyperbolic manifolds is that the restriction of the
differential of the geodesic flow to the unstable/stable spaces is conformal with
respect to the Sasaki metric:

et|$|Sa 'i: € Eu(xav);

|d(,0t(X, v)'§|5 = e—t|g|S’ g € E;(x,v).

(3.7)

The objects discussed above are invariant under the action of SO (1, 3) and
thus descend naturally to the quotients X, SX.

3.1.2 The frame bundle and canonical vector fields
A convenient tool for computations on M = SX is the frame bundle FX,
consisting of quadruples (x, vy, vz, v3) where x € ¥ and vy, v2,v3 € Ty X

form a positively oriented orthonormal basis. We have

F¥ =DN\FH}, FH~S0,(l,3),

@ Springer



M. Cekié et al.

where the frame bundle FH? is identified with the group SO,.(1, 3) by the
following map (where eg = (1,0, 0,0),e; = (0,1,0,0),...)

y € SOL(1,3) = (yep, ver, vez, ves). (3.8)

Under this identification, the action of SO4.(1, 3) on FH?3 corresponds to the
action of this group on itself by left multiplications. Therefore, SO (1, 3)-
invariant vector fields on FH? correspond to left-invariant vector fields on the
group SO, (1, 3), that is to elements of its Lie algebra so(1, 3). We define
the basis of left-invariant vector fields on SO4 (1, 3) corresponding to the
following matrices in so(1, 3):

0100 00 0 0 00-10
{1000 oo oo + [oo0o-10
*=loooo|" B=1oo0 0 1 Ur=1-1100

0000 0010 0000

0001 0 0 —10 0 00-1

000-1 _ oo 10 ~ o o001
+ _ — —

“"=loooo | YTloi-100 =10 000

110 0 0000 ~1-10 0

Under the identification (3.8), and considering FH? as a submanifold
of (R13)*, we can write using coordinates (x, vi, v2, V3) € (R'-3)*and writing
¢.” for the Euclidean inner product

X =v10x+x-0y, R=v2-0y; —v3- 0y,
U= vy -8y —x - 3y, £ (02 3y, — V1 - D),
Uf = —v3 -8y —x - dyy £ (V3 - 8y, — v1 - Dyy).-
Since the vector fields above are invariant under the action of SO4 (1, 3), they
descend to the frame bundle of the quotient, FX.
The commutation relations between these fields are (as can be seen by

computing the commutators of the corresponding matrices, or by using the
explicit formulas above)

[X, U] =+U*, [UT,U7]1=2X, [UF UF]=2R,
[X, Rl =[U, Uf1=0, [R,UF1=-UF, [R US]1=U;. (3.9

The map

Tr:(x,v], 1, 13) € FX — (x,v]) € S
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is a submersion, with one-dimensional fibers whose tangent spaces are spanned
by the field R. Thus, if a vector field on FX commutes with R then this
vector field descends to the sphere bundle SX. In particular, the vector field X
descends to the generator of the geodesic flow (which we also denote by X).

The vector fields Ul.ﬂE do not commute with R and thus do not descend to
S¥. However, the vector space span(U;", U2+ ) is R-invariant and descends to
the stable space E; on SX. Similarly, the space span(U,, U, ) descends to
E,. Because of this we think of U 1+ , U2+ as stable vector fields and U, U,
as unstable vector fields.

3.1.3 Canonical differential forms

We next introduce the frame of canonical differential 1-forms on FX
* £ +x
a, R, U™, U,

which is defined as a dual frame for the vector fields X, R, U f , U2jF , in the
sense compatible with the definition of the dual stable/unstable bundles (2.4),
as follows:

(@, X) = (R*, R) = (U=, UF) = (U, UF) = 1 (3.10)

and all the other pairings between the 1-forms and the vector fields in question
are equal to 0. In particular, (Uii*, Ul.i) =0.

Using the following identity valid for any 1-form g and any two vector fields
Y, Z

dp(Y,Z) =YB(Z) — ZBp(Y) — B(lY, Z]), (3.1

the commutation relations (3.9), and the duality relations (3.10), we compute
the differentials of the canonical forms:

do =2UM AU+ US* AU, dR* =2U; " AU + U AU,
dU = 2o AU — R* AUS™, dUF* = a AUF*+ R* AUF*.  (3.12)

It follows that

LxUF* =+U7", LrU™ =-Us", LrU;*=Uf". (3.13)
If w is a differential form on FX, then w descends to SX (i.e. it is a pullback
by £ of a form on SX) if and only if tgw = 0, Lrw = 0. In particular the
form @ on FX descends to the contact form on S, which we also denote

by «.
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3.1.4 Conformal infinity

Following [14, §3.4] we consider the maps
@y SH? — (0,00), By:SH’ — 2, (3.14)
where S? is the unit sphere in R3, defined by the identities
x+v=>or(x,v)(1, B(x,v)) forall (x,v) e SH. (3.15)

Note that B+ (x, v) is the limit as 1 — =00 of the projection to H> of the
geodesic ¢, (x, v) in the compactification of the Poincaré ball model of H>.
Let

(S x SH)_:={(v_,v3) € S x S | v_ # vi ).

In fact, the maps B yield the following diffeomorphism of SH? (see [14,
(3.24))):

2:SH? > (y,v) > (v_,v4,1t) € (S?xS?)_ xR

(<I>+<y, v)> (3.16)
®_(y,v)/

The geometric interpretation of E is as follows: vy are the limits on the con-
formal boundary S? of the geodesic ¢, (v, v) as s — =00 and ¢ is chosen
so that ¢_;(y, v) is the closest point to ep on that geodesic (as can be seen
from (5.30) below and noting that Xt = 1 by (3.22)).

We have the identity [14, (3.23)]

1
with vy = B1(y,v), t= 3 log

O (x, )P (x, V)| B_(x,v) — By(x,v)|* =4, (3.17)

where | o | denotes the Euclidean distance on R? > S2.
We also introduce the Poisson kernel

P(x,v)=({x,(1,n)13) " >0, xeH, veS cR. @3.18)
The following relations hold [14, (3.21)]:
Dy(x,v) = P(x, Bi(x,v)). (3.19)

If we fix x € H?, then the maps v — B (x, v) are diffeomorphisms from the
fiber S,H> onto S?. The inverse maps are given by v — v (x, v) where [14,
(3.20)]

v (x,v) = Fx £ P(x,v)(1,v) € S;H2,  Bi(x, va(x, v)) = v.(3.20)
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The diffeomorphisms v — B4 (x, v) are conformal with respect to the induced
metric on S, H?3 and the canonical metric | ® |s2: by [14, (3.22)]) we have

|8y B+ (x, v)1]g2 = s an n € Ty (S, H). (3.21)

@4 (x,v)
Next, we have by (3.3) and (3.5)

X0y =3Py, dO_|g, =dPi|g, =0. (3.22)

The maps B+ are submersions with connected fibers, the tangent spaces to
which are described in terms of the stable/unstable decomposition (2.2) as
follows: for each v € S?

T(By () = (Eo® Eq)l 1), T(BZ () = (Eo @ En)lp-1,).
(3.23)

This can be checked using (3.5), see [14, (3.25)]. The action of the differential
dBy on E,, and of d B_ on Ej§, can be described as follows: for any (x, v) €
SH? and w € R'3 such that (x,w)y13= (W, w)13=0,

2w’ — woBL(x,
dBs(x. v)(w, tw) = 2 W B V) e = (wo. W),
D1 (x,v)

(3.24)

We next briefly discuss the action of the group SO, (1, 3) on the conformal
infinity S?, referring to [14, §3.5] for details. For any y € SO,.(1, 3), define

N, :S? = (0, 00), L, :§? 5 §?
by the identity (where on the left is the linear action of y on (1, v) € R!3)
y - (1,v) = N, (v)(1, L, (v)) forall ve S~

The maps L, define an action of SO (1, 3) on S2. This action is transitive
and the stabilizer of e; € S? is the group of matrices A € SO, (1, 3) such
that A(1,1,0,0)7 = z(1,1,0,0)7 for some r > 0, which may be shown to
be isomorphic to the group of similarities of the plane Sim(2), giving S? ~
SO (1, 3)/Sim(2) the structure of a homogeneous space.

This action is by orientation preserving conformal transformations, more
precisely

¢ ]s2

ldL, (V)¢ = N ) forall (v,¢) e TS (3.25)
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Moreover, the maps B have the equivariance property
Bi(y - (x,v)) = L, (B+(x,v)) forall (x,v)e SH’.  (3.26)

We finally use the maps B to describe a special class of differential forms
on S defined as follows (c.f. [14,44]):

Definition 3.2 We call a k-form u € D'(SX; Q’(‘)) stable if it is a section of
/\"E;k C Qg where E; C T*(SX) is the annihilator of Eg @ E; (see (2.4)).
We call u unstable if it is a section of AKE » where E; is the annihilator of
Ey® E,.

We call a form u totally (un)stable if both u and du are (un)stable.

The lemma below (see also [44, §§2.3-2.4]) shows that totally (un)stable k-
forms on S, ¥ = F\H3, correspond to I'-invariant k-forms on S?. Denote
by it : SH?> — S¥ the covering map.

Lemma 3.3 Letu € D'(SX; QS) be totally stable. Then the lift wju has the
form

mru = Biw where w e D'(S%; @b, L;w =w forall y €T'(3.27)

Conversely, each form BYw, where w satisfies (3.27), is the lift of a totally
stable k-form on SX. A similar statement holds for totally unstable forms, with
B replaced by B_.

Proof We only consider the case of totally stable forms, with totally unstable
forms handled similarly. First of all, note that lifts of totally stable k-forms on
SY are exactly the I'-invariant totally stable k-forms on SH?. Next, by (3.23),
a k-form ¢ € D' (SH?; Qk) is totally stable if and only if ty{ = 0, Ly =0
for any vector field Y tangent to the fibers of the map B, which is equivalent
to saying that { = Bjw for some w € D’ (S%; @F). Finally, by (3.26), I'-
invariance of ¢ is equivalent to I"-invariance of w. O

Lemma 3.3 implies that

every totally stable u € D'(ST; Qf) lies in Dl (ST; QF),

(3.28)

every totally unstable u € D'(SX; Q5) lies in D%:(S % QF).
Indeed, assume that u is totally stable. Write w'u = B} w for some w €
D' (S?; ©@F), then we have WFE(nfu) = i WF(u) (as nrr is a local dif-
feomorphism). From the behavior of wavefront sets under pullbacks [38,
Theorem 8.2.4], we know that WF(rr{fu) is contained in the conormal bun-
dle of the fibers of the submersion B4. From (3.23) and (2.4) we then have
WF(u) C E}. A similar argument works for the totally unstable case.
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3.2 Additional invariant 2-form

The space of smooth flow invariant 2-forms on SX is known to be 2-
dimensional, see Lemma 3.7 below, [40, Claim 3.3] or [36], thus there exists
a smooth invariant 2-form which is not a multiple of d«. In this section we
introduce such a 2-form v and study its properties; these are crucial for the
study of Pollicott—Ruelle resonances at zero in §§3.3-3.4 below.

3.2.1 A rotationon E,, ® E;

Let x € X. For any two v, w € T,X, we may define their cross product
vxw € T, X, which is uniquely determined by the following properties: v X w
is g-orthogonal to v and w; the length of v x w is the area of the parallelogram
spanned by v, w in Ty X; and v, w, v X w is a positively oriented basis of T, X
whenever v x w # 0.

For future use we record here an identity true for any v, wy, wa, w3, wq €
T, X such that |[v|g = 1 and wy, w2, w3, wy are g-orthogonal to v:

(VX wy, wa)g(v X w3, wa)g = (W1, wW3)g (W2, Wa)g — (W2, W3)g (W1, W4)g.
(3.29)

Using the horizontal/vertical decomposition (2.15), we define the bundle
homomorphism

I:TSY - TSZ, Z(x,v)én,éyv) = (v xé&y,vxé&y). (3.30)

From (2.18) and (3.6) we see that Z preserves the flow/stable/unstable decom-

position (2.2). Moreover, it annihilates £yp = RX and it is a rotation by /2

on E, and on E; (with respect to the Sasaki metric), so in particular it satisfies

7?2 = —1Id on kera = E, & E,; however, the direction of the rotation is

opposite on E, and on E; if we identify them by (3.5).
The map 7 is invariant under the geodesic flow ¢; = ¢'¥:

LxT =0. (3.31)

This follows from the conformal property of the geodesic flow (3.7) and the
description of the action of Z on Eg, E,, E; in the previous paragraph.

For any point (x, v, v2, v3) in the frame bundle F3, we have (using the
horizontal/vertical decomposition)

Z(x,v1)(v2, £v2) = £(v3, £v3), Z(x,v1)(v3, £V3) = F(V2, TV2).
(3.32)
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It follows that (see §3.1.2 for the definition of the vector fields U l.i on FX)

Z(x, v)drrUiE(x, v1, v2, v3)) = FdrrUT (x, v1, v, v3),

L f (3.33)
I(x, v))(drrU; (x,v1, V2, v3)) = £drrU (x, v1, v2, V3).

3.2.2 Relation to conformal infinity
The homomorphism 7 lifts to 7 SH?. If By : SH® — S? are the maps defined

in (3.14) and ‘x’ denotes the cross product on R3, then for all (x, v) € SH?
and & € T(x,,j)S]H[3 we have

dBi(x,v)(Z(x,v)§) = Bo(x,v) X dB+(x, v)(&). (3.34)
To see this, we use (3.23), and the fact that 7 preserves the flow/stable/unstable
decomposition, to reduce to the case £ = (w, xw), where x, v, w is an
orthonormal set in R!-3. By the equivariance (3.26) of B+ under SO (1, 3), the
fact that the action L,, of any y € SO, (1, 3) on S? is by orientation preserving
conformal maps, and the equivariance of Z under SO, (1, 3) we can reduce to
the case x = ¢, v = e, w = ey, where ¢, e1, e3, e3 is the canonical basis of
R13. In the latter case (3.34) is verified directly using (3.24) and (3.32).

Let  be the Hodge star operator on 1-forms on the round sphere S2. It may
be expressed as follows: for any w € C*®(S?; Q') and (v, ¢) € TS? we have

(Gw)(v), &) = =(w(), v X ).

From (3.34) we get the following relation of Z to *: for any 1-form w on S?
we have

(Biw) oZ = —B} (xw), (3.35)
where for any 1-form S on SH? the 1-form 8 o Z on SH? is defined by
(BoI)(x,v),§) = (B(x,v), I(x, v)§). (3.36)

3.2.3 The new invariant 2-form

We next define the 2-form ¢ € C®(SX; Q?) as follows: for all (x, v) € ST
and&,n € T(X’U)SZ,

V(x,v)(€, n) =dax, v)(Z(x,v)§, n). (3.37)
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To see that ¢ is indeed an antisymmetric form, we may use (2.16) and (3.30)
to write it in terms of the horizontal/vertical decomposition of &, n:

W(.X, U)(g, 77) = ('U X SH? 77H>g - (U X gV’ 77V>g- (338)

Using (3.12), (3.33) we may also compute the lift of i/ to the frame bundle
F3, which we still denote by :

Y =20 AU+ U AUS™). (3.39)
We have
Lxlﬂ =0, ,Cxlﬁ =0. (3.40)

The first of these statements is checked directly using (2.18). The second
statement can be verified using (3.13) and (3.39), or using that Lx7 = 0 and
Lxydo = 0.

We now establish several properties of the form . We will use the following
corollaries of (2.16), (3.38):

daluxa =0, dalyxv =0, Y¥lgxv =0 (3.41)

where the horizontal/vertical spaces H, V are defined in §2.2.1.

Lemma 3.4 We have

dy =0, (3.42)
U AV =da Ada, (3.43)
dla Ay) =0, (3.44)

Proof By (3.40) we have txdyr = 0. Therefore, dy/ (x, v) (&1, &, &3) = O for
&1, &, & € T(x,1)S X such that one of these vectors lies in Eq. Next, Lxdy =
0, that is dy is invariant under the geodesic flow. Using this invariance for
time t+ — o0 together with (3.7) and the fact that 3 is an odd number, we
see that di/ (x, v) (&1, &, &3) = 0 also when each of the vectors &1, &, &3 lies
in either E, (x, v) or E;(x, v). It follows that (3.42) holds.

To check (3.43), we first note that ¢y of both sides is zero. Thus it suffices
to check that

Y AY(x,v)(E1,6,83,84) =da Ada(x,v)(&1,62,83,84)  (3.45)

for some choice of basis &1, &2, &3, &4 € T(x,»)SZ of the kernel of «. We take
&1 = (w1,0), &= (w20, &=(©0,ws3), & = (0, ws)
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under the horizontal/vertical decomposition (2.15), where each w; € T\ X is
orthogonal to v. By (2.16), (3.38)

U AY(x,v)(E1, 62,83, 84) = —2(v X wi, w2)g (v X w3, Wa)g,
da Ndo(x,v)(E1, &2, &3, §4) = 2({w2, w3) g (w1, w4)g
— (w1, w3)g (w2, wa)g)

and (3.45) follows from (3.29).
Finally, to show (3.44) it suffices to prove that da A ¥ = 0. To show this
we may argue similarly to the proof of (3.43) above, using (3.41).
Alternatively, (3.42)—(3.44) can be checked by lifting to the frame bundle
JFX and using (3.12) and (3.39). a

The next lemma studies the relation of i to the de Rham cohomology of
M = §%;inparticular, its first item and (3.40) give the first item of Theorem 2.
Recall the pullback and pushforward operators 5., 7y, defined in §2.2.2 and
denote by d volg the volume 3-form on ¥ induced by g and the choice of
orientation.

Lemma 3.5 We have:

s, (W) = —4m. In particular, [{] 2 # 0.
T, (aANY) =0.

Ty, (a ANda) = 0.

a Ada ANda =2y A ms(dvolg).

[a A Y]ys = 2[ms(d volg)] ys.

SR W~

Proof 1. Let (x,v) € SX and vy, v3 be a positively oriented g-orthonormal
basis of the tangent space to the fiber 7, (S, X). We consider v;, v3 as vertical
vectorsin Ty )SX, as well as vectors in Ty . The triple v, v2, v3 isapositively
oriented g-orthonormal basis of 7 X, so by (3.38)

V(x, v)(v2,v3) = —(V X V2, V3)g = — 1.

Thus the restriction of i to each fiber S, X is —1 times the standard volume
form on S, ¥ ~ S?, which implies that s, (¥) = —4m. It now follows from
(2.22) that [/ ]2 # 0.

2.Fixx € £,v; € T, X. Let v € S, X and v,, v3 be a positively oriented
g-orthonormal basis of the tangent space 7, (SxX) as in part 1 of this proof.
Let &) = (v1, 0) be the horizontal lift of v; to () (SX). By (2.16) and (3.38)
we compute

o N W(X, U)(sl, V2, U3) = —<U1, v>g<v X V2, v3>g = —<'U1, v)g-
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Since v > (v1, v), is an odd function on S, X, we have

(s (@A) (x)(vr) = / —(v1, v)g dvol(v) = 0.

Sy 2

3.1t &1, 62,83 € T 1) (SX) and &7, &3 are vertical, then by (2.16) we have

a ANda(x,v)(&1,52,8) =0

which implies that 75 (@ A da) = 0.

4. Let x € X and v, v2, v3 be a positively oriented g-orthonormal basis of
T X. Let§ = X(x,v), &, &3 be the horizontal lifts of v, vy, v3 to T(y ) SX;
we treat vy, v3 as vertical vectors in T(y ,)SX. Using (2.16) and (3.38), we
compute

anda Ada(x,v)E, &, E, v, 13)
= —2 - 2w A ﬂ;(d VOlg)(-x’ v)(gv 525 g’}v’ UZ’ U}).

5. Using the exact sequence (2.27) and the fact that 75, (@ A ¥) = 0, we
see that

@ A Y3 = clms(dvolg)]ys

for some constant c. To determine c, note that o A ¥ A Y has the same integral
over S¥ as ¢y A s (dvolg). Sincea Ay Ay = a Ada ANda = 29 A
w5 (d volg), we get ¢ = 2. O

We also have the following identity relating the operators daA and ¥ A on
1-forms in Q(I):

Lemma 3.6 For any I-form B on ST such that 1x B = 0, we have
daoAnB =Y A(Bol), (3.46)

where the 1-form B o T is defined by (3.36).

Proof 1t is easy to see that ty of both sides of (3.46) is equal to 0. It is thus
enough to check that

doa A B(x,v)(E1,62,8) =y A(Bol)(x,v)(51,62,83)  (3.47)

for any three vectors &1, &>, &3, each of which is either horizontal or vertical
under the decomposition (2.15). Moreover, we may assume that the horizontal
components of these vectors lie in the orthogonal complement {v}* to v in
T, X. It suffices to consider the following two cases:
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Case1: B(x,v)(§) = (§n, wa), for some wy € {v}+. By (3.30) and (3.41),
both sides of (3.47) are equal to O unless two of &1, &, &3 are horizontal and
one is vertical; we write

§1=(w1,0), &= (w20, & =(@0,w3),
where w; € {v}+. We compute using (2.16), (3.30), and (3.38)
do A B(x, v)(1, 62, 83) = (w1, w3)g(wa, wa)g — (w2, w3)g (Wi, Wa)eg,
Y A(BoD)(x,v)(&1,8,83) = (v X wi, w2)g(v X w3, wy)g

and (3.47) follows from (3.29).

Case 2: B(x,v)(§) = (§v, wy)g for some wy € {v}. By (3.30) and (3.41),
both sides of (3.47) are equal to O unless two of &1, &>, &3 are vertical and one
is horizontal; we write

& =0,wy), & =0, w), &= (w30),
where w; € {v}+. We compute using (2.16), (3.30), and (3.38)
da A B(x, v) (&1, 2, &3) = (w2, w3)g (w1, wa)g — (Wi, w3)g (w2, Wa)g,
YA (BoI)(x,v)(&1,82,8) =—(vXwi, wr)g(v X w3, wa)g

and (3.47) again follows from (3.29).

Alternatively, we may lift both sides of (3.46) to the frame bundle FX: it
suffices to consider the cases when B is replaced by one of the forms Ul.i*,
in which case (3.46) is checked by a direct calculation using (3.12), (3.33),
and (3.39). O

3.2.4 Characterization of all smooth flow-invariant 2-forms

We finally give

Lemma 3.7 Assume that u € C®(SZ; Q?) satisfies Lxu = 0. Then u is a
linear combination of da and .

Proof Without loss of generality we assume that u is real valued. Since do A
Y =0and ¢y A Y = da A da by (3.43)-(3.44), we may subtract from u a
linear combination of da and i to make

/a/\dozAu:/a/\w/\uzo. (3.48)
M M
We will show that under the condition (3.48) we have u = 0.
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Since x Ada Au, o Ay Au, @ Au Au are smooth 5S-forms on SX invariant
under the geodesic flow, by Lemma 2.4 (we identify ©2° and Q7 via the volume
form d vol,) we have

andarANu=aAyAu=0, aAuAu=cdvol, (3.49)

for some constant ¢ € R.

Next, txu € C®(SZ; Q(l)) and Lxtxu = 0, so by (2.3) (similarly to the
last step of the proof of Lemma 2.10) we get (xu = 0. Also by (2.3) we
obtain u|g,xg, = 0 and u|g,xg, = 0. Therefore, it is enough to show that
ulg,xe, = 0.

Since du is nondegenerate on E x E,, (as follows for instance from (2.16)
and (3.6)), there exists unique smooth bundle homomorphism A : E; — E;
such that

ux,v),n) =da(Ax,v)g,n) forall (x,v)e SXE, & € Eyj(x,v),
neE,(x,v).

It remains to show that A = 0.

Take any (x,v) € SX%, assume that v, wy, wy is a positively oriented
orthonormal basis of 7, X, and define using the horizontal/vertical decom-
position and (3.6)

£ = (wj, —wj;) € Eg(x,v), nj=(Wwj,wj) € Ey(x,v), j=12.

Applying (3.49) to the vectors X (x, v), &1, &, n1, n2 and using (2.16), (3.32),
and (3.37), we get

trA(x,v) =0, A(x, v)T = A(x,v), detA(x,v)=c, (3.50)

where the transpose is with respect to the restriction of the Sasaki metric to
E;(x,v).

If ¢ = 0, then (3.50) implies that A = 0. Assume that ¢ # 0, then by (3.50)
we have ¢ < 0 and A has eigenvalues 4-/—c. The eigenspace of A(x, v) cor-
responding to the eigenvalue 1/—c is a one-dimensional subspace of Ej(x, v)
depending continuously on (x, v). This is impossible since by restricting to a
single fiber Sy ¥ C SX and projecting E; onto the vertical space V we would
obtain a continuous one-dimensional subbundle of the tangent space to the
2-sphere. O
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3.3 Resonant 1-forms and 3-forms

In this section we apply the properties of the 2-form 1 defined in (3.37)
to determine the precise structure of resonant 1-forms on M = SX. Let us
introduce some notation for (co-)resonant 1-forms (see (3.36) for the definition
of uol)

Cix) = Res(l)(*) Nkerd, Cyu):={uol|ucCCx},

where the subscript () means we either suppress the star or we include it,
respectively corresponding to resonances or co-resonances; we apply this con-
vention to other notions appearing in this section. We remark that the use of
subscript ¥ in Cy, is motivated by the property da ACy, = ¥ AC demonstrated
in (3.58) below; in fact we initially used this relation as the definition of Cy,,
before coming to the interpretation via the map Z.

Since 7 is invariant under the geodesic flow by (3.31) and annihilates X,
we have

Cy C Res(l)(*) .
By Lemma 2.8 and (2.28) we have
dim Cy) = dim Cy (5) = b1(X2). (3.51)
We next show that all resonant 1-forms lie in the direct sum C @ Cy,. This is

done in Lemma 3.9 below but first we need

Lemma 3.8 Assume that u € Res(l). Then u is totally unstable in the sense of
Definition 3.2. Similarly, if u € Res(l) o then u is totally stable.

Remark Lemma 3.8 was previously proved by Kiister—Weich [44, §2.6].

Proof We consider the case u € Res(l), with the case u € Res(l) , handled in the
same way.

We first show that u is unstable in the sense of Definition 3.2. For that
it is enough to prove that u(Y) = 0 for any ¥ € C*(M; Eo @ E,). Since
txu = 0, wemay assume that Y € C°°(M; E,). By the integral formula (2.29)
for the Pollicott—Ruelle resolvent Ry o(A), we have for ImA > 1 and any
weC®M; Q). peM

(Rio(ow, ¥)(p) = i fo & (wlg(0)). doi ()Y (p)) di.

Since Y is a section of the unstable bundle, by (3.7) we have |{(w(¢p—_;(p)),
do_;(p)Y(p))| < Ce™" for some constant C and all 7 > 0, p € M. Therefore,
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the integral above converges uniformly in p for ImA > —1, which implies
that L = (Rj 0(A)w, Y) is holomorphicin Im A > —1.If ITj ¢ is the projector
appearing in the Laurent expansion of R ¢(A) at A = 0, defined in (2.36), then
tyITq,0 = 0. Since Res(l) is contained in the range of Ij o, we get u(Y) = 0 as
needed.

We now analyze du. First of all, tydu = 0 since u € Resé. Next, we have
du|g,xE, = 0. This can be seen by following the argument above, or using
that u(Y) = 0 for any Y € C*(M; Eq @ E,), the identity (3.11), and the
fact that the class C*°(M; Ey ® E,,) is closed under Lie brackets (as follows
from (3.23)).

It remains to show that du|g,xg, = 0. Let ¢ be the restriction of du to
E, x Eg, considered as a section in D). (M; E} ® E}f). (Here E, E}; are dual
to E,, E; asin (2.4).) We endow E ®ME;‘ with the inner product which is the
tensor product of the dual Sasaski metrics on E and E;;. The operator

P:=—ily :C®(M; Ef ® E}) - C™(M; Ef ® E})

is formally self-adjoint as follows from (3.7), and P¢ = 0. Then by [21,
Lemma 2.3] the section ¢ is in C*.

Let us now consider ¢ = du|f, x g, as a smooth 2-formon M (i.e. tx¢ = 0,
¢lExE, = ClE;xE, = 0, and §|g, <, = dulg,xE,), then Lx¢ = 0 and by
Lemma 3.7 we see that { = ada + b for some constants a, b. We claim
that a = b = 0. This follows from (3.43)—(3.44) and the identities

/a/\doz/\{:/ aANda ANdu =0, (3.52)
M M
/a/\sz;=faAwAdu=0. (3.53)
M M

Here the first identity in each line follows from the fact that du|g, xg, =
¥ |e,xe, = 0 (which can be verified using (2.16), (3.6), and (3.37)). More
precisely, it suffices to observe that o Ada A (du —¢) and o Ady A (du —¢)
are pointwise zero, as du — ¢ is supported on E; x Eg by definition. The
second identity in each line follows by integration by parts and the fact that
daNda ANu=da AN Au =0 (as ty of both of these 5-forms is equal to 0).
Now, a = b = 0 implies that { = 0, thatis du|g,x g, = 0 as needed. O

We are now ready to prove

Lemma 3.9 We have C(*) N Cl/,(*) = {0} and RCS(I)(*) = C(*) D Cw(*).

Proof We consider the case of Res(l), with Res(l) . handled similarly. We need
to prove that each u € Res(l) can be expressed uniquely as a sum of elements
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in C and Cy,. By Lemma 3.8, u is totally unstable. By Lemma 3.3, the lift of u
to SH? has the form

mfu = B*w for some I-invariant w € D/(Sz; Ql),

where I' € SO, (1, 3) is the discrete subgroup such that & = I'"\H?. Take the
Hodge decomposition of w:

w = w; +*wy where wy, wy € D'(S* QY, dw; =dw, =0.
(3.54)

Since I" acts on S? by orientation preserving conformal transformations L,
(see (3.25)), its action commutes with the Hodge star . Since H 1(s?) = o,
the Hodge decomposition above is unique, which implies that wy, w, are I'-
invariant. Applying Lemma 3.3 again and using (3.28), we see that

B*w; =mfu; forsome uy,us € D%Z(M; Q(l)).

Since dw; = 0, we have du ; = 0, which together with the fact that i.xu; =0
shows thatu, up € C.Finally, by (3.35) and (3.54) we may express u uniquely
as

u:ul—uzoI, uleC, uzoIGCw,

finishing the proof. O

The next lemma establishes semisimplicity on resonant 1-forms:

Lemma 3.10 The semisimplicity condition (2.41) holds at .o = 0O for the
operators Py o and P3 .

Proof By (2.45) it suffices to establish semisimplicity for P; 9. By Lemma 2.2
it suffices to show that the pairing ((e, )) on Res(l) X Res(3) . 18 nondegenerate.
Recall from (2.49) that Resg . = da A Res(l) .- By Lemma 2.10 the pairing
(e, ®)) is nondegenerate on C x (da A Cy). Therefore, it suffices to show the
following diagonal structure of the pairing with respect to the decompositions
Resé(*) = C(+) @ Cy () established in Lemma 3.9:

(u,da Nuy) =0 forall ue€C, uy € Cyy (3.55)
(u,da Nuy) =0 forall ueCy, uy € Cy (3.56)
(u,da Auy) =— (uoZl,doa A(uyoZ)) forall ueC, u,€C,.

(3.57)
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We first show (3.55). By Lemma 2.5 and (2.25) we may write
u=mnyxw+df forsome we C>®(Z; QY, dw =0,
uroZ =nywy +df, forsome wy, € CP(X; Qb, dw, =0,
[ € D, ;(MQ O©).
We now compute

(u, da ANuy)) = (u, Y A (ux 0 1))

:/ G AP A (TEw +df) A (Thws + dfs)
M

:/ a/\lﬁ/\ng(u}/\w*):—/nz*(a/\l//)/\w/\w*
M b
= 0.

Here the first equality used Lemma 3.6. The third equality used integration by
parts and (3.44). The fourth equality used (2.20) and (2.23), with the negative
sign explained in the paragraph following (2.20). The fifth equality used part 2
of Lemma 3.5. A similar argument proves (3.56).

Finally, to show (3.57) we compute

(u,doa Nuy)) = (u, U A (usx o)) = (¥ Au,usoZ)
= —(da A (uoT),usol)

using Lemma 3.6 and the factthat u 0o Z o 7 = —u. O

We finally discuss the properties of the maps 73y : Resg( o~ H 3(M; C);
as explained at the top of § 3.3, recall that the subscript (*) denotes the cor-
responding resonance or co-resonance space, so we can include both in the
discussion. Recall that all forms in Resg( 4 are closed by Lemma 2.9 and

Resg( o = da N Res(l)( *) by (2.45), (2.49). Moreover, by Lemma 3.6 and the
definition of C./, (%)

da A Cv,(*) =y A C(*). (3.58)

We have m3(x)(doe A Cs)) = 0. Assume now thatu € Cy, thenu oZ € C, and
by Lemma 2.5 and (2.25) we may write

uoZ=mnsw+df forsome we C®(T; Y, dw=0,
feD%;(M; O).
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Wedging with ¥, taking m.,, and using (2.22)—~(2.23), part 1 of Lemma 3.5,
and Lemma 3.6 we get

s, 3da Au) =y, (Y ATTyw) = —4dnw,

which (together with a similar argument for coresonant states) immediately
shows that

M5 T3(x) : dat A Cyx) —> H'(Z; C) is an isomorphism. (3.59)
This implies that
ker T3 (%) = da A C(*) (3.60)

and so by (2.27) the range of 734 is a codimension 1 subspace of H 3(M; C)
which does not contain [75,d volg] 3.

Summarizing the contents of § 3.3, we note that the second item of The-
orem 2 follows from (3.58), Lemma 3.9, Lemma 2.8, and (2.28), the third
item by Lemma 3.10, and the sixth item by the discussion in the preceding
paragraph.

3.4 Resonant 2-forms

We next study resonant 2-forms. We start with

Lemma 3.11 We have d(Resj,)) = 0 and ker may = Cda @ dCy ) has
dimension b1 (X) + 1.

Proof We consider the case of resonant 2-forms, with the case of coresonant
2-forms handled similarly. We first show that d (Res(z)) = 0, arguing similarly
to the proof of Lemma 2.11. Take ¢ € Res%, then by the definition (2.61) of
73 we have d¢ € ker w3. Thus by (3.60), d¢ = da A u for some u € C. Take
arbitrary u, € C,, then precisely as in (2.65)

((u,doz/\u*))zf a/\df/\u*zf da N ANuy =0.
M M

Now Lemma 2.10 implies that # = 0 and thus d¢ = 0 as needed.
Next, if u € Cy, then using the same argument of integration by parts as
in (3.52) yields

/ aANda Ndu =0.
M
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Therefore, du cannot be a nonzero multiple of da, which means that Cda N
dCy = {0}. We have da € ker > and by Lemma 2.6 we have dCy, C ker m
as well.

It remains to show that ker mo C Cda ® dCy. By Lemma 2.6, ker 75 is
contained in d(Res!**). By (2.43) and Lemmas 2.4, 3.9, and 3.10, we have
Rest® =Ca @ C® Cy . Then d(Res"®) = Cda & dCy,, which finishes the
proof. O

We next establish the following auxiliary result:

Lemma 3.12 Assume that n € C®°(X; Q2), dn = 0, and w € Dy (M; )
satisfy

tx(sn +dw) = 0. (3.61)

Then n is exact.

Remark The proof of Lemma 3.12 uses the 2-form i which is only available
in the case of constant curvature. By contrast, Lemma 3.12 is false if Res(l) .
consists of closed forms and b1 (X) > 0; in fact the equation (3.61) then has a
solutionw € D%: (M; Q(l)) for any closed . Indeed, in this case (tx 5.7, da A

Uy)) = fM msn Ado Auy = 0 forany u, € Res(l)* by integration by parts,
and the existence of w now follows from Lemma 2.1.

Proof Put ¢ := mgn + dw, then 1x¢ = 0. Take arbitrary closed 7, €
C®(z; QY and put uy = 711;1([7'[;17*]111) € Cy. Then uy = m§n, + dwy
for some wy € Dg* (M; C). We compute

O:/ 1///\{/\u*=f U A TR A T304

M M

z—/(nz*w)nAn*ZM/nAn*-
) =

Here the first equality follows since the 5-form under the integral lies in the
kernel of tx. The second equality follows by integration by parts, using that
¥, n, ny are closed. The third equality follows from (2.20) and (2.23). The
fourth equality follows from part 1 of Lemma 3.5.

We see that n A7, integrates to 0 on X for any closed smooth 1-form 7,.. This
implies that 7 is exact; indeed, we can reduce to the case when 7 is harmonic
and take 7, to be the Hodge star of n (we note that this final argument is just
a form of Poincaré duality). O

We now describe the space of resonant 2-forms (recalling the convention (x)
at the top of § 3.3):
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Lemma 3.13 The range of m ) is equal to C[y] 2, and Resg(*) = Cda &
Cy @ dCy ). In particular, dim Resg(*) =b1 () +2.

Proof We consider the case of resonant 2-forms, with the case of coresonant
2-forms handled similarly. First of all, ¢ € Res(z), thus [{]y2 = m2(Y¥) is in
the range of 5. Next, by (2.26) and part 1 of Lemma 3.5 we have

H*(M; C) = 7 H*(Z; C) ® C[¥] 2.

To show that the range of 7, is equal to C[v]y2, it remains to prove that
the intersection of this range with 5 H 2(2; C) is trivial. Take u € Res(z) and
assume that m(u) = [m5n]y2 for some n € CP(X; Q?%), dn = 0. Then
u = mwyn + dw for some w € D}E*(M; QY. Since txu = 0, Lemma 3.12
implies that  is exact, that is mp («) = 0 as needed.

Finally, the statement that Res% = Cda ® Cyr @ dCy, follows from the first
statement of this lemma together with Lemma 3.11. O

The next lemma describes the space of generalized resonant states Res(z)’2
(see (2.39) and §2.3.3). It implies in particular that the operator P> (¢ does not
satisfy the semisimplicity condition (2.41), assuming that b1 (X) > 0:

Lemma 3.14 [. The pairing ((e, o)) on Res% X Res% . has the following form
in the decomposition of Lemma 3.13:

(da,da)) = (¥, ¥) = voloe(M) > 0, (da, ) = (¥, da)) =0,

(3.62)
(2,2) =0 forall ¢ edCy, Ly € Res},, (3.63)
(2, 2) =0 forall ¢ eRes, ¢ € dCyu. (3.64)

2. The range of the map
Lx :Resy;, — Resg,) (3.65)

is equal to dCy (x). We have dim Res(z)’(i) =2b1(2) + 2.

Proof 1. The identities (3.62) follow immediately from (3.43) and (3.44). We
next show (3.63), with (3.64) proved similarly. Let { = du where u € Cy. We
compute

<<;,;*>>=f do A gy =0,
M
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Here in the first equality we integrate by parts and use that d¢, = 0 by
Lemma 3.11. The second equality follows from the fact that iy (do AuAgy) =
0.

2. We consider generalized resonant states, with generalized coresonant states
handled similarly. First, assume that ¢ € Resg’z, then Lx¢ € Resg. Moreover,
since the transpose of Ly is equal to —Lx (see §2.3.4) we compute

(Lx¢.c) = —(¢. Lx&) =0 forall ¢, eRes,.  (3.66)

Using this for ¢, = da and ¢, = 1 together with (3.62)—(3.63), we see that
Lx¢ € dCy. That is, the range of the map (3.65) is contained in dCy,.

Now, take arbitrary n € dCy. By (3.63), we have ((n, ¢x)) = 0 for all
Cx € Res(z) .- Then by Lemma 2.1 there exists { € D’E; (M; Q%) such that

Lx¢ =n.Since n € Resg, we see that ¢ € Resg’z. This shows that the range
of the map (3.65) contains dCy, .

Finally, the equality dim Resg’2 = 2b1(X) + 2 follows from Lemma 3.13
and the fact that the kernel of the map (3.65) is given by Res%. O

We finally show that there are no higher degree Jordan blocks, completing the
analysis of the generalized resonant states of P g at O:

Lemma 3.15 We have Resg’(:;J = Resg’(i)-

Proof We consider the case of generalized resonant states, with generalized
coresonant states handled similarly. It suffices to prove that Res(z)’3 C Resg’z.

Take n € Resg’3 andput ¢ := Lxn € Res(z)’z. Exactly as in (3.66), the pairing
of ¢ with any element of Resg . 1s equal to 0. In particular

(¢, duy) =0 forall u, € Res),.

By part 2 of Lemma 3.14, we have Lx¢ = du for some u € Cy,. Put
w:=d( +anu)eD, (M Q).

Thentxw = txd¢ —du = 0. Since w is exact we have Ly = 0 and moreover

that w € ker 3 C Resg. By (3.60), we then have w € da A C.
We now compute

0= (¢, duy) = —/ a NdE Nuy = (u, da Auy)) — (0, uy)).
M

Here in the second equality we integrated by parts and used that the 5-form
do AL Auy liesin the kernel of t x and thus equals 0. Using the identities (3.55)—
(3.57) and Lemma 2.10, recalling that u € Cy, w € da A C, and using that
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uy can be chosen as an arbitrary element of C, or Cy ., we see that u = 0 and
o = 0. Just using that ¥ = 0 implies E%n = Lx¢ =0, thatisn € Res(z)’2 as
needed. O

3.5 Relation to harmonic forms

In this section we show that pushforwards of elements of Resg =daAN(CBCy)
to the base X are harmonic 1-forms. Recall that a 1-form # is called harmonic
ifdh = 0 and d x h = 0, where « is the Hodge star on (X, g). We will denote
the set of such forms by H!(X). We start with the following identity:

Lemma 3.16 Assume that u € D'y, (M; Q(l)) is unstable in the sense of Defi-
nition 3.2 and B € C®(X; Q). Then

VU AunTR(xf) = —a Ada Au ATy, (3.67)
da ANunms(xB)=a Ay AuATmyp. (3.68)

Proof We first show (3.67). Take arbitrary (x, v) € M = SX and assume that
v, Wi, wy is a positively oriented g-orthonormal basis of T X. It suffices to
prove that

(U Au A s (B))(x, v)(X, &1, 62, €3, 64)
= —(@a Ada Aunmgp)(x,v)(X, &1, 6,8,8)  (3.69)

where we write in terms of the horizontal/vertical decomposition (2.15)
X=0), §=w0), &=w0), &=(0,w), & =0 w).

Using (3.38), (3.41), the fact that dnx(x, v)(§m, &v) = &g, the condition
txu = 0, and the identities

B)(x) (v, w1) = Bx)(w2), *B)(x) (v, w2) = —B(x)(w1)
we see that the left-hand side of (3.69) is equal to
—u(x, v)(EDBXx)(w1) — ulx, v)(§2)B(x)(w2).
Using (2.16), we next see that the right-hand side of (3.69) is equal to

u(x, v)(E3)B(x)(wy) + ulx, v)(E4) B(x)(w2).

It remains to note that by (3.6) the vectors & + &3 and & + &4 lie in E,, (x, v)
and thus u(x, v)(&1 4+ &) = u(x, v)(& + &4) = O since u is unstable.
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The identity (3.68) is verified by a similar calculation, or simply by apply-
ing (3.67) to u o Z and using Lemma 3.6 and the factthat u 0 Z o 7 = —u.
o

We can now prove item 7 of Theorem 2:

Lemma 3.17 The map my,, annihilates da N Cy) and it is an isomorphism
from do A Cy (5 onto the space HY (). In particular, by Lemma 3.9 we have
Ty, s da A Res(l)(*) — HY(D).

Proof We consider the case of resonant 3-forms, with coresonant 3-forms
handled similarly (using a version of Lemma 3.16 for stable 1-forms). We first
show that for any u € C, the push-forwards to ¥ of da A u and Y A u are
coclosed, that is

dwms,(doAu)=0, dxmg, (P Au)=0. (3.70)

To show the first equality in (3.70), it suffices to prove that
/ Ty (doa Au) Axdf =0 forall fe CP(E;C).
)
Using (2.20) and (2.23), we compute this integral as

—/ da/\uAnE(*df):—/ot/\lﬁ/\u/\d(ﬂéf)
M M
=/ﬂ;fdoz/\1p/\u=0
M

Here in the first equality we used (3.68), where u is unstable by Lemma 3.8. In
the second equality we integrated by parts and used that dy» = 0 and du = 0.
In the third equality we used that tx of the 5-form under the integral is equal
to 0. The second equality in (3.70) is proved similarly, using (3.67) instead
of (3.68).

Next, by (2.22), since all forms in da A C are exact, their pushforwards
to X are exact as well. Since these pushforwards are also coclosed, we get
7y (doa AC) = 0. Similarly, all forms in da ACy, = ¥ AC are closed, so their
pushforwards are closed as well; since these pushforwards are also coclosed,
we get 5 (da A Cy) C HI(D).

Finally, by (3.59) we see that 7y, is an isomorphism from do A Cy onto
HU(D). O

We finally remark that for any 1-form u € D'(M; Q') we have

w0 Au) = 0. (3.71)
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Indeed, by (2.16) we see that «, and thus o A u, vanish when restricted to
the tangent spaces of the fibers Sy X. From (3.71) and (2.22) we get for any
ueDM;Q

Ty, (da ANu) =ms, (o Adu). (3.72)

4 Contact perturbations of geodesic flows on hyperbolic 3-manifolds

Let M = SX where (X, g) is a hyperbolic 3-manifold and «( be the contact
form on M corresponding to the geodesic flow on X, see §§2.2,3.1. In this
section we study Pollicott—Ruelle resonances at A = 0 for perturbations of «.
Ultimately, we will study perturbations of the metric, but via perturbations of
the contact form. In particular, we give the proof of Theorem 1 in §4.4 below,
relying on Theorem 5 (in §5) and Proposition A.1 proved later.

Let

ar € C(M; T*M), v e(—¢c¢)

be a family of 1-forms depending smoothly on 7. We may shrink & > 0 so that
each «; is a contact form on M and the corresponding Reeb vector field

X € C®(M; TM)

is Anosov; the latter follows from stability of the Anosov condition under
perturbations (see for instance [23, Corollary 5.1.12] or [41, Corollary 6.4.7]
for the related case of Anosov diffeomorphisms).

We will use first variation methods, introducing the 1-form

B = d:ar]r=0 € C¥(M; QY.

We use the subscript or superscript (7) to refer to the objects corresponding

to the contact manifold (M, «;) and the flow <p,(r) := ¢'X7. For example, we

use the operators (see §2.3)
P =—iLx,, P, RTG), M7 =10,

the spaces of (generalized) resonant states at A = 0

4

k,
Resm,

k.t k k
Resizy:  Resiy.  Resgy,
and the algebraic multiplicities of O as a resonance of the operators Pk(f), Pk(ro)

m" (), m0).
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When we omit 7 this means that we are considering the unperturbed hyperbolic
case T = 0, that is

m =n, ...
4.1

o :=oay P:= Pk(o), Ry = RIEO), Reskt .= Res(o),

The first result of this section, proved in §4.1 below, is the following theorem.
(Here the maps JT ResO(r) Nkerd — H*(M; C) are defined in (2.61).)

Theorem 3 Let the assumptions above in this section hold. Assume moreover
the following nondegeneracy condition:

{(txB e, @) defines a nondegenerate pairing on d (Res(l)) x d (Resé*).
4.2)

Then there exists g > O such that for all T with 0 < |t| < g9 we have:

1. d(Res(l)(r)) = 0 and thus by Lemma 2.8 and (2.28) we have dim Res})m =
bi(%).

2. d(ReSO(T ) = 0, dim Reso( o = = b1(X) + 2, and the map JT( ) is onto and

has kernel Cdasy.
3. d(Resg(T)) = 0 and the map nét) is equal to 0.

4. The semisimplicity condition (2.41) holds at .o = O for the operators Pk(’ro)
forallk =0,1,2,3,4.

Theorem 3 together with Lemma 2.4 and (2.59) give the following
Corollary 4.1 Under the assumptions of Theorem 3 we have for 0 < |t| < &g
mop(0) = my3(0) = 1, mi"3(0) = m§3(0) = bi(X), m5y(0) = b1 () +2
and the order of vanishing of the Ruelle zeta function (R at 0 is
_ (r) (r) (r)
mg(0) = 2m; ((0) — 0(0) +m, 5(0) =4 — b1 (X).

Corollary 4.1 is in contrast with the hyperbolic case T = 0, where Corollary 3.1
gives the order of vanishing 4 — 2b(X).

To give an application of Theorem 3 which is simpler to prove than The-

orem 1, we show in §§4.2—4.3 below that the nondegeneracy condition (4.2)
holds for a large set of conformal perturbations of the contact form o: !

! By the Gray Stability Theorem (see [31, Theorem 2.2.2]), any perturbation of a contact form
is a conformal perturbation up to pullback by a diffeomorphism.
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Theorem 4 Let M = SX where (X, g) is a hyperbolic 3-manifold. Fix a
nonempty open set %/ C M, and denote by CX°(% ; R) the space of all smooth
real-valued functions on M with support inside % , with the topology inherited
from C*°(M; R).

Then there exists an open dense subset of CS°(% ; R) such that for any a
in this set, the 1-form B := a«a satisfies the condition (4.2). It follows that for
Tt # 0 small enough depending on a the contact flow on M corresponding
to the contact form a; = e« satisfies the conclusions of Theorem 3, in
particular the Ruelle zeta function has order of vanishing 4 — b1 (X) at 0.

4.1 Proof of Theorem 3

We first prove an identity relating the action of the vector field
Y :=0:X¢le=0 € C¥(M; TM) (4.3)
on resonant and coresonant 1-forms to the bilinear form featured in (4.2). It

reformulates the pairing (4.2) and will subsequently (see Lemma 4.4) be used
to show that the non-closed 1-forms may be perturbed away.

Lemma 4.2 Forall u € Res(l) and u,. € Res(l) o we have
(M LyMu, do Auy) = (Lyu, do Auy) = ((xB)du, duy)). (4.4)

Proof 1. To show the first equality in (4.4), we note that by the decomposi-
tion (2.44) and Lemma 2.4 we have for all w € D). (M; Q')

1
IMw =TI o(w— (txw)x) + W(/M txw d voly )Ol.

We now compute

/ aANda A(TT1 LyTTu) Auy = (I o(Lyu — xLyu)a), do A uy))
M
= (Lyu — xLyw)a, do A uy)

=/ aAnda ANLyu N uy.
M

Here in the firstequality we used thatu € Res(l) andthus [T{u = u.Inthe second
equality we used that do A uy € Res%}k and thus (Hl,o)T(doz Aly) =da Ay
(see §2.3.4). This proves the first equality in (4.4).
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2. We now show the second equality in (4.4). Differentiating the relations
tx,or = land tx da; =0 (see (2.1)) at T = 0, we get

tya = —txfB, tyda = —ixdp. 4.5)
Note also that
aNndaNdu=aANda ANdu, =0 (4.6)

as follows from Lemma 2.4 as the 5-forms above are in Resg d voly, respec-
tively Resg* d voly, and integrate to 0 on M using integration by parts (since
the 5-forms da A da A u, do A da A uy lie in the kernel of tx and thus are
equal to 0).

We have

faAdaAEyuAu*z anda Atydu A us
M

J,

+/ aANda Ndiyu A uy. 4.7)
M

We first compute

/a/\da/\tydu/\u*z—f a/\tydoz/\du/\u*—/(Lyu*)ot/\doz/\du
M M M
=/ a/\txdﬁ/\du/\u*zf dB Adu A uy (4.8)
M M

:/ ,BAduAdu*:/ (xB)a Adu A duy.
M M

Here in the first equality we used that the 5-form do A du A u, lies in the
kernel of tx and is thus equal to 0, implying ty(da A du A u,) = 0. In the
second equality we used the identities (4.5) and (4.6). In the third equality we
used that @ A txdB A du A u, = dB N du A uy as the difference of the two
forms belongs to ker tx, by txydu = 0 and txu, = 0. In the fourth equality we
integrated by parts, and in the fifth equality we used that tx of the integrated
5-forms are equal.

We next compute

/a/\d(x/\dLyu/\u*=/ tyu(da Nda ANuy, —a ANda Aduy) = 0.
M M
4.9)
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Here in the first equality we integrated by parts and in the second one we
used (4.6) and the fact that da A da A u,, = 0 (as tx of this 5-form is equal
to 0).

Plugging (4.8)—(4.9) into (4.7), we get the second equality in (4.4). m]

The pairing in (4.4) controls how the resonance at O for the operator Pl(’ro)
moves as we perturb T from 0, and the nondegeneracy condition (4.2) roughly
speaking means that the multiplicity of O as a resonance of P](f()) drops by
dimd (Res(')) = b1(X). This observation is made precise in Lemma 4.4 below,
but first we need to review perturbation theory of Pollicott—Ruelle resonances.
It will be more convenient for us to use the operators P( ) rather than Pk(ro)
since the latter act on the T-dependent space of k-forms anmhllated by tx, .In
the rest of this section we assume that &g > 0 is chosen small, with the precise
value varying from line to line.

We will use the perturbation theory developed in [7]. For an alternative
approach, see [16, §6]. Since we are interested in the resonance at 0, we may
restrict ourselves to the strip {ImA > —1}. Following the notation of [12,
§6.1], we consider the T-independent anisotropic Sobolev spaces

Hegs(M; Q5 = e 7OPOHS (M QY. r>0, seR.  (4.10)

Here Op is a quantization procedure on M, G(p, §) = m(p, &) log(1 + |&]) is
a logarithmically growing symbol on the cotangent bundle 7*M, |&| denotes
an appropriately chosen norm on the fibers of 7*M, and the function m(p, &),
homogeneous of order 0 in &, satisfies certain conditions [7, (4)] with respect
to the vector field X; for all T € (—e&g, &9). The space H* is the usual Sobolev

space of order s. Denote the domain of Pk(r) on H,g. s by

DY (M Q8 = (u € Hyg,s(M: 2 | PVu € Hyg,(M: 29)).

The following lemma summarizes the perturbation theory used here. For details
see for example [7, Theorem 1 and Corollary 2] or [12, Lemma 6.1 and §6.2].

Lemma 4.3 There exists a constant Co such that forr > Co + |s| and t €
(—e&o, €0), the operator

PV =Dy (M3 Q) > Hyg (M:QF), Imi>—1 (@11

is Fredholm and its inverse (assuming A is not a resonance) is given by R,ﬁr) (A).
Moreover, the set of pairs (t, A) such that ) is a resonance of Pk(f) is closed

and the resolvent R,ET)()\) : HrG.s = HrG.s is bounded locally uniformly in
T, A outside of this set.
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Since R,ET)()L) is the inverse of Pk(T) — )\ on anisotropic Sobolev spaces, we
have the resolvent identity for all 7, T’ € (—&g, £9)

REG) —RT M) = REP0PT = PIHYRT ), Tma > —1.
(4.12)

Here the right-hand side is well-defined since for » > Cp+|s|+ 1 the operator
R,ET/)()L) maps H,G.s to itself, Pk(r) and Pk(r/) map H,G,s to HyG s—1, and
R,ET)(A) maps H,¢.s—1 toitself. Using (4.12) we see that forr > Co + |s| + 1
the family R,ET)(A) : HrG.s = Hri.s—1 1s locally Lipschitz continuous in 7.
Next, recalling (4.3) and that Pk(r) = —iLx,, we have by (4.12)

39 R (W) |r=0 = i Rk(M) Ly R (3) (4.13)

as operators H,G.s = H,G.s—2 whenr > Cp + |s| 4 2.
Fix a contour y in the complex plane which encloses 0 but no other reso-
nances of the unperturbed operators P = Pk(o). For |T| < &g, no resonances

of Pk(f) lie on the contour y, so we may define the operators
1

£ )
" = —— ¢ R W dxr
k 2m‘?§y e @

Unlike the spectral projectors l'[,(:) corresponding to the resonance at 0, the
operators ﬁ,(:) depend continuously on 7, since R,ir)()») is continuous in .

Moreover, the rank of ﬁ,(f) is constantin T € (—e&o, &), see [12, Lemma 6.2].
By (2.36) we have
i1 = 1y := 1,0

so the rank of ﬁ,(:) can be computed using the algebraic multiplicities of 0 as
a resonance in the unperturbed case T = 0 (using (2.43)):

rank f1{7 = my (0) = mx 0(0) + mg_1,0(0). (4.14)
By (2.36), we also have
0o => o (4.15)
reYk
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where Tf is the set of resonances of the operator Pk(r) which are enclosed by
the contour . Note that by (4.15) and (2.42)

ao7n”o =n@) forall ek (4.16)

and the range of ﬁ,(:) is the direct sum of the ranges Res](c;(;o (A) of l'[,(f)()»)
over A € Tf. In particular, using (2.43) we get

rank fI{” = 37 (m{7 () +mZ, (). 4.17)
reYk

Together with (4.14) and induction on k this implies for |t| < &g

> mT ) = my0(0). (4.18)
reTk

We are now ready to show that under the condition (4.2) the space Res(l)(r)

of resonant 1-forms at O for the perturbed operator Pl(fo), T # 0, consists of
closed forms:

Lemma 4.4 Under the assumptions of Theorem 3, there exists ¢g > 0 such
that for 0 < |t| < &9 we have d(Res(l)(T)) =0.

Proof 1. Define the operator
Z(v) = PV,

Roughly speaking this operator contains information about the nonzero reso-

nances of Pl(t) enclosed by y; in particular, each of the corresponding spaces of
generalized resonant states is in the range of Z(t) as can be seen from (4.16).

In the hyperbolic case t = 0, the semisimplicity condition (2.41) holds
for the operator Py at A = 0, as follows from Lemmas 2.4 and 3.10 together

with (2.43). Therefore, the range of ﬁ(lo) = I1; is contained in Res', implying
that
Z(0) =0. (4.19)

By (4.14), the rank of ﬁgr) can be computed using the algebraic multiplicities
of 0 as a resonance in the hyperbolic case 7 = 0, which are known by (3.1):

rank [1\7 = 25, (%) + 1. (4.20)
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The intersection of the range of ﬁ(lr) with the kernel of Pl(f) is equal
to Resgr). By (2.43) and Lemma 2.4 we have Resgr) = Res(l)(r) @Ca;. Next,

by Lemma 2.8 and (2.28) we have dim Resé(r) = b1(¥) 4+ dim a’(Res(l)(r)).
Therefore

dimRes(, = b1 () + 1 + dim d(Res,,).
By the Rank-Nullity Theorem and (4.20) we then have

rank Z(t) = by () — dim d (Res( ;). (4.21)
2. Since (Pl(f) - )\,)R{T)()\,) is the identity operator, we have for all t
1
Z(t) = ___7§ AR (0) d.
27i J,

Using (4.13) we now compute the derivative

1

0:Z(0) = e % ART(AMLyRi(A)dAr = —ill1 Ly IT;.
g
Y

Here in the second equality we used the Laurent expansion (2.36) for R{(A)
at Ag = 0 (recalling that J;(0) = 1 by semisimplicity).
By Lemma 4.2, for any u € Res(l), Uy € Res(l) . We have

/ a Ada A (0: Z(O0)u) Ay = —i(((xB)du, dus)). (4.22)
M

By the nondegeneracy assumption (4.2) the bilinear form (4.22) is nondegen-
erate on u € Cy,, uy € Cyx. This implies that

rank 9; Z(0) > dimCy, = b1 (X). (4.23)
Together (4.19) and (4.23) show that for 0 < |7]| < &g
rank Z(1t) > b1(2).

Then by (4.21) we have dim d(Res(l)(r)) = 0 for 0 < |T]| < g9 which finishes
the proof. O

Remark Lemma 4.4 holds more generally whenever Pj o is semisimple. If for
all contact perturbations (o), we would have that (4.2) is trivial, this would
imply that du A du, = O forall u € Res(l) and u, € Res(l)*. When (%, g) is
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hyperbolic, we will show in § 4.2 that this is impossible, while for general
(X, g) proving such a statement seems out of reach for now.

Together with Lemma 2.4, Lemma 2.9, Lemma 2.11, and (2.28) Lemma 4.4
gives all the conclusions of Theorem 3 except semisimplicity on 2-forms. In
particular we have for 0 < |t| < &g (using (2.43))

dimRes,, = b1(Z) +2, (4.24)
d(Res(T) ) = Cda;. (4.25)

To finish the proof of Theorem 3 it remains to establish semisimplicity on
2-forms:

Lemma 4.5 Under the assumptions of Theorem 3, there exists e > 0 such
that for 0 < |t| < &g the semisimplicity condition (2.41) holds at Ao = O for
the operator PZ(,TO) .

Proof We first claim that for 0 < |t| < &g

rank (o A (FI57 = T§7)) > rank (@, A d([ = 11(7)) > by(D).
(4.26)

Indeed, by (2.37) and (4.15) we have d(T1” — ') = (AP — n{)a
which implies the first inequality in (4.26). Next, we have rank (¢ A d ﬁ§0)) =
b1(X) + 1 as the range of dﬁ(o) is equal to dRes! = Cda & dCy . Since

(T) depends continuously on 7, we see that rank (a; A d H(r)) > b (Z)+1
for all small enough 7. On the other hand, for T small but nonzero we have

rank d HET) = 1by (4.25). Together these imply the sNecond inequality in (4.26).

Now, by (4.15) and (2.43) the range of a; A (l'[ét) — Hg)) is contained
in the sum of the spaces a; A Res(z)’((f)) (A) over A € TTZ\{O}. Therefore (4.26)
implies that for 0 < |t] < &g

Y mE0) = bi(D). (4.27)
AeT2\{0}

From (4.18) and (3.1) we see that

> m§3) = mao(0) = 2b1(%) +2
reTY?2
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therefore by (4.27) we have m(zf())(O) < bi(¥) + 2. Since dim Resgm =
b1(X)+2by (4.24), we showed that the algebraic and geometric multiplicities

for 0 as a resonance of Pz(fo) coincide, finishing the proof. O

4.2 The full support property

In this section, we prove a full support statement which will be used in the
proof of Theorem 4. In fact, we recall that we need to prove the nondegeneracy
assumption (4.2), that is, that ((tx S e, e)) is nondegenerate on d Res(l) xd Res(l) "
and the support properties of elements of d Resé( » Will be useful. In §§4.2-4.4
we assume that M = S where (X, g) is a hyperbolic 3-manifold and the
contact form « and the spaces of (co-)resonant states at zero Res(l), Res(l)* are
defined using the geodesic flow on (X, g).

Proposition 4.6 For all u € Res), u, € Res}, with du # 0, du, # 0, the
distributional 5-form a A du A du fulfills supp(oe A du A duy) = M.

To show Proposition 4.6, we first study properties of the 2-forms du and du.,.
Define the smooth 2-forms

wr € C®°(M; Q)

by requiring that Eg @ E}, be in the kernel of w_, Eg @ Es be in the kernel of
w4, and, using the horizontal/vertical decomposition (2.15)

wt(x, v)((wi, £ wy), (wa, Twy))
= (X wi, wn)g forall wy,ws € {v}t C T, X(4.28)

where ‘x’ denotes the cross product on 7y X defined in §3.2.1. In terms of the
canonical 1-forms on the frame bundle X defined in §3.1.3 the lifts of w+
to FX are given by

wy = UF* A UF*, (4.29)

One can think of w4 as canonical volume forms on the stable/unstable spaces.
By (4.29) and (3.12) we compute

dwy = £20 A . (4.30)
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Lemma 4.7 Assume that u € Res(l), Uy € Res(l) . Then

du = f_o_, du,= froi; 4.31)
andunduy, =—%f frdvolg (4.32)

where the distributions f_ € Dy.(M; C), fi € Dy.(M; C) satisfy for any
vector fields U_ € C*°(M; E,), Uy € C*(M; E;) ‘

(X+£2)fe =0, Upfe=0. (4.33)

Proof We consider the case of du, with du, studied similarly. From Lemma 3.8
we know that u is a totally unstable 1-form, which implies that du is a section
of E A E. The latter is a one-dimensional vector bundle over M and w_ is a
nonvanishing smooth section of it, sodu = f_w_ for some f_ € D’E* (M; C).
Using (4.30) we compute ’

0=d(fw_)=(df- —2f-a)Aw_.

Taking ¢y and ¢yy_ of this identity and using that iyw_— = 1y_w_ =1y_a =0
(recalling the definitions of U™, U™ in (3.10) and below), we get (4.33).

Finally, (4.32) follows from (4.31) and the following identity which can be
verified using either (4.28) and (2.16) or (4.29) and (3.12):

a/\w_/\w+=—%dvolo,.

O

We can now finish the proof of Proposition 4.6. Given (4.32) it suffices to
prove that, assuming that f_ # 0 and f} # 0,

supp(f f+) = M. (4.34)

Let 7 : SH® — S¥ = M be the covering map corresponding to (3.2)
and @, By be defined in (3.14). Then by (3.22) and (4.33) we have for any
U_ € C®(SH?; E,), Uy € C®(SH; Ey)

X (@3 (fr 0 r) = U (PL(fr 0 7)) =0,
that is d>%r( f+omr) is totally stable and ®2 ( f_ o 7rr) is totally unstable in the
sense of Definition 3.2. Similarly to Lemma 3.3 we can then describe the lifts

of f1 to SH? in terms of some distributions g+ on the conformal infinity S?:

fronr = d>;2(gi o BL) forsome g € D'(S?; C). (4.35)
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Since fi are resonant states of X, a result of Weich [54, Theorem 1] shows
that supp f+ = supp f— = M, which from (4.35) and the facts that 1 > 0,
and that B are submersions which map SH?> onto S?, implies that

supp g+ = suppg_ = S°. (4.36)

We will now use the coordinates (v_, v, 1) € (S* x S?)_ x R on SH? intro-
duced in (3.16). Then by (4.35) and (3.17) we can write in these coordinates

(f-fr)omr = fglv- — vyl (v )gs(vy).

By (4.36), we see that the support of the tensor product g_ ® g4+ (v—,v4) =
g—(v_)g4(vy) is equal to the entire S* x S?, which implies that supp(f_ f4) o
nr = SH? and thus supp(f- f4+) = M. This shows (4.34) and finishes the
proof.

4.3 Proof of Theorem 4

We first remark that in the special case dim d(Res(l)) = b1 (X)) = 1,itis
straightforward to see that Proposition 4.6 implies the following simplified
version of Theorem 4: for each nonempty open set % C M there exists
a € C®(M;R) with suppa C % and such that 8 := a« satisfies (4.2).
Indeed, it suffices to fix any nonzero du € d (Res(l)), du, € d (Res(l) ), and
choose a such that |’ A Adu ANduy # 0. We note that there are examples of
hyperbolic 3-manifolds with b1 (X) = 1, see for instance [24, Theorem 13.4].

For the general case, we will use the following basic fact from linear algebra:

Lemma 4.8 Denote by @>C" the space of complex n x n matrices. Assume
that V. .C ®>C" is a subspace such that for each vy, vy € C"\{0} there exists
B € V such that (Bvy, v3) # 0. (Here (e, o) denotes the canonical bilinear
inner product on C".) Then the set of invertible matrices in V is dense.

Proof Let 0 be anonempty open subset of V. We need to show that & contains
an invertible matrix. Assume that there are no invertible matrices in &. Let A
be a matrix of maximal rank in &, then k := rank A < n since A cannot be
invertible. There exist bases ey, ..., e, and e], ..., e, of C" such that

1 ifj=10<k

Aej,e)) =
(Aej. er) 0 otherwise.

By the assumption of the lemma, there exists B € V suchthat (Bex+1, €, ) #
0. Consider the matrix A; = A + ¢t B which lies in & for sufficiently small ¢,
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and let b(r) be the determinant of the matrix ({(A;e;, 62‘>)'},*21:1- Then b(0) =0
and b'(0) = (Begy1, ez_H) # (. Therefore, for small enough ¢ # 0 we have
b(t) # 0, which means that rank A; > k + 1. This contradicts the fact that k
was the maximal rank of any matrix in 0. O

We are now ready to give the proof of Theorem 4. For a € C*°(M; R), define
the bilinear form

Sa : d(Res(l)) X d(Res(l)*) — C, S.(du,duy) = / aa Adu Aduy.
M

To prove Theorem 4, it then suffices to show that the set of a € C°(%; R)
such that S, is nondegenerate is open and dense. Since nondegeneracy is an
open condition, this set is automatically open. To show that it is dense, consider
the finite dimensional vector space

V:={SalaeCX%;R)}.

Choosing bases of the b1 (X)-dimensional spaces d (Res(l)) and d (Res(l) ©)» We
can identify V with a subspace of R2CH () Let du € d (Res(l)), du, €
d (Res(l) ,.) be nonzero, then by Proposition 4.6 we have supp(a Adu A duy) =
M, so there exists a € C°(%; R) such that S;(du, du,) # 0. Then by
Lemma 4.8 the set of nondegenerate bilinear forms in V is dense.

Let U be a nonempty open subset of CX°(%;R). Then {Sa, | a € U}
is a nonempty open subset of V. Thus there exists a € U such that S, is
nondegenerate, which finishes the proof.

4.4 Proof of Theorem 1

We now give the proof of part 2 of Theorem 1, relying on Theorem 5 (in §5)
and Proposition A.1 below, combined together in Corollary 5.1. (Part 1 of
Theorem 1 was proved in Corollary 3.1 above.)

We start by computing how a general metric perturbation affects the contact
form for the geodesic flow. Let (X, g) be any compact 3-dimensional Rieman-
nian manifold and the contact form « and the generator X of the geodesic flow
on SX be defined as in §2.2. Let

g‘L’5 T € (_8, 8)

be a family of Riemannian metrics on ¥ depending smoothly on 7, such that
go = g. The associated geodesic flows act on the 7-dependent sphere bundles

SO% = {(x,v) e TE: |v],, = 1}.
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To bring these geodesic flows to SX, we use the diffeomorphisms

®,: 5L - SUE, & (x,v) = (x’ | T )
8t

Denote by «; the contact form on S corresponding to g;. Then
oy = Play

is a contact 1-form on S and the corresponding contact flow is the geodesic

flow of (X, g;) pulled back by ..

Let nér) : SMY — ¥ be the projection map. Using (2.11) and the fact

that ng) o ®; is equal to ry = ng)), we compute for all (x,v) € SX and

é € T(x,v)(SE)
(v’dWZ(-x’ v)&)g'[

|v|gr

<&‘L’(xs U)v S) =

Recalling dry (x, v) X (x,v) = v (see (2.18)) and using go(v,v) = 1, it
follows that

- 1
Lx 070 |r=0(x, V) = 07 8¢ (V, V)|r=0 — EgO(U’ V) - 08¢ (v, V)|r=0

= 3lvlg, leo- 4.37)

In particular, if the metric g is given by a conformal perturbation g, = e~2™Pg,

where b € C*°(XZ; R), then
tx0;0¢|r=0(x,v) = —bomyx. (4.38)

We are now ready to prove Theorem 1. Assume that (X, g) is a hyperbolic
3-manifold as defined in §3.1 and put g, := e~>*Pg. By Theorem 3 applied to
the family of contact forms &, with 8 = 3,0 |;—¢ satisfying (4.38), it suffices
to show that for b in an open and dense subset of C°°(X; R) the bilinear form

(du,duy) — / (bomy)a Adu AN duy
M

is nondegenerate on d(Res(l)) x d (Res(l) -

The space Res(l) is preserved by complex conjugation as follows from its
definition (2.60); here we use that for any u we have WF(u) = {(p, —&) |
(p, &) € WF(u)}. Denote by Res(l)]R the space of real-valued 1-forms in Res(l)
andlet 7 (x, v) = (x, —v) be the map defined in (2.12). By (2.50), the pullback
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J* is an isomorphism from Res(l) onto Res(l) .- Thus it suffices to show that for
b in an open and dense subset of C°°(X; R) the real bilinear form

Sp(du, du') := / (boms)a Adu A T*(du)
M

is nondegenerate on d (Res(l)R) x d (Res(l)R).

Since b o 7y is J-invariant, J *« =—a, and J is an orientation reversing
diffeomorphism on M, we see that Sy is a symmetric bilinear form. Unlike
in the contact perturbation case in § 4.3, we will not be able to produce for
every pair (du, du’) € d(Res(l)R) X d(Res(l)R) an elementb € C*°(XZ; R) such
that gb (du, du’) # 0. Instead, we will only produce b such that §b (du,du) #
0. Hence, we will need the following variant of Lemma 4.8 for symmetric
matrices:

Lemma 4.9 Denote by ®§R” the space of real symmetric n X n matrices.
Assume that V C ®§R” is a subspace such that for each w € R"\{0} there
exists B € V such that (Bw, w) # 0. Then the set of invertible matrices in V
is dense.

Proof Similarly to the proof of Lemma 4.8, assume that &' is a nonempty open
subset of V which does not contain any invertible matrices and A is a matrix
in & of maximal rank k < n. Since A is symmetric, it can be diagonalized,

i.e. there exists an orthonormal basis e, ..., e, of R" such that Ae; = Aje;
where A ; are real and, since rank A = k, we may assume that A1, ..., Ax #0
and Ay =---= A, =0.

By the assumption of the lemma, there exists B < V such that
(Begy1, ex+1) # 0. Consider the matrix A; = A 4 ¢ B which lies in & for suf-
ficiently small 7, and let b(¢) be the determinant of the matrix ((A;e;, ¢ ))ﬁil .
Then h(0) = 0and b'(0) = A; - - - Ak (Begi1, exs1) # 0. Therefore, for small
enough ¢t # 0 we have b(t) # 0, which means that rank A; > k + 1. This

contradicts the fact that k£ was the maximal rank of any matrix in &. O

Now to show Theorem 1 it remains to follow the argument at the end of §4.3,
with Lemma 4.8 replaced by Lemma 4.9 and using the following

Proposition 4.10 Assume that u € Res(l)]R and du # 0. Then there exists
b € C®(X; R) such that Sy(du, du) # 0.

Proof Using the pushforward map 7y, defined in (2.19) we compute by (2.20)
and (2.23)

Sp(du., du) = —/ brs, (a Adu A T*(du)). (4.39)
z
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By Corollary 5.1 below we have 7y, (@ A du A J*(du)) # 0 which finishes
the proof. O

5 The pushforward identity
In this section we prove an identity, Theorem 5, used in Proposition 4.10 above
which is a key component in the proof of our main Theorem 1.

We assume throughout this section that (X, g) is a compact hyperbolic 3-

manifold as defined in §3.1 and write X = F\]HI3 where I' C SO, (1, 3). For
s > 2, define the operator

Qs 1 CO(I) — C¥(HY), O, f(x)
= /H? (coshdg(x,y)) ™" f(y)d volg(y). (5.1)

As shown in §5.1.2 below, the operator Qg can be extended to I'-invariant
distributions on H? and it is smoothing, so it descends to an operator

Qs :D(2;C) - C®(x;0). (5.2)
Let Ag be the (nonpositive) Laplace-Beltrami operator on (X, g). Recall

the pushforward map on forms ry,, defined in (2.19) and the spaces of (co-

)resonant k-forms Res’é, Res’6 ., on M = §% associated to the geodesic flow
on (X, g), see §§2.2-2.3.
The main result of this section is the following

Theorem S Assume that u € Res(l), Uy € Res(l) .- Define the pushforwards
o_=ny,(daNu), oy:=my,(doAuy), (5.3)
which are harmonic 1-forms on ¥ by Lemma 3.17. Define F € D'(Z; C) by
Ty (@ ANdu ANduy) = Fdvolg . (5.4)
Then we have
Q4F = —Ag(0- - 04), (5.5)
where the inner product o_ - o4 is the function on % defined by o_ - o4 (x) =

(- (x), 04.(1)) g
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Remark By (4.39) and since Qg4 is self-adjoint we can rewrite (5.5) as follows:
foreachb € D'(X),

1
—/ bAg(o-oy)dvoly = | (TEQsb)ar AduAdu,.  (5.6)
6Js ST

One can think of the right-hand side of (5.6) as the integral of 5. Q4b against
a Patterson—Sullivan distribution o A du N du, (note that this distribution is
invariant under the geodesic flow) and the left-hand side of (5.6) as a ropo-
logical quantity because it features harmonic 1-forms. Then (5.6) bears some
similarity to the result of Anantharaman—Zelditch [2, Theorem 1.1] for the
symbol a := m§b; the latter is in the setting when X is a surface and the
left-hand side there has a spectral interpretation because it features an eigen-
function of the Laplacian. However, the operator L, used in [2] is different in
nature from the operator Q4 featured in (5.6): for our application is crucial that
the right-hand side of (5.6) depends only on the pushforward of o A du A du,
to X and that does not seem to typically be the case for the right-hand side of
[2, Theorem 1.1]. See also the work of Hansen—Hilgert—Schroder [37] giving
an asymptotic statement for higher dimensional situations.

The formula (5.6) in the special case b = 1 (which is trivial in our situation
because both sides are equal to 0) also has some similarity to the pairing
formulas of Dyatlov—Faure—Guillarmou [14, Lemma 5.10] and Guillarmou—
Hilgert—Weich [32, Theorem 5]. In this vague analogy between Theorem 5
and the results of [2,14,32] our setting would correspond to an exceptional
value of the spectral parameter: comparing (5.32) with [2, (1.3)] gives the
value s = —2 (in the notation of [2]).

Together with Proposition A.1, Theorem 5 gives the following statement
which is used in the proof of Proposition 4.10. Recall the map J(x, v) =
(x, —v) defined in (2.12).

Corollary 5.1 Assume that u € Res(l) is real-valued and du # 0. Then
., (a Ndu AN T*(du)) # 0.

Proof Putu, = J*u € Res(l)*. By (2.13) and (2.24) we have o = o_ where
the 1-forms o4 are defined in (5.3). By Lemma 3.17, 0 = 04 = o_is a
real-valued harmonic 1-form on ¥, and du # 0 implies that o # 0.

Let F be defined in (5.4), then by Theorem 5 we have

Q4F = —{ Aglo 2. (5.7)

Now, by Proposition A.1 we see that |o |§ is not constant, that is Ag|o |§, # 0.
Therefore, Q4 F # 0 which implies that F # 0. |
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5.1 Preliminary steps

We first prove several preliminary statements. We will use the hyperboloid
model of §3.1.

5.1.1 Hyperbolic Laplacian

We first write the Laplacian A, of the hyperbolic metric on H3 using the
hyperboloid model. Consider the open cone

Cy = {(Fo, &) e R"3: %9 > |7/}
Each point X € C can be written in polar coordinates as
Xx=rx, r>0, x € H3.

Define the d’ Alembert operator on C; as [ = 92 — 32 — 32 — 2. In polar
. . . X0 X1 X2 X3
coordinates it can be written as

O=r"2((rd,)* +2rd, — Ay) (5.8)

where the hyperbolic Laplacian Ag acts in the x variable.
Using (5.8), we derive the following useful identity: for any ¢ €
C*((0, 00)) and y € H?

— Ag¥({x, 13) =¥ ({x,y)13) where ¥(p)
= (1= pHY"(p) — 3p¥/(p) (5.9)

and the operator A, acts in the x variable (note that J (p) is given by the radial
part of —A applied to ¥ (o) by (3.4)). Indeed, it suffices to apply (5.8) to the
function f(X) := ¥ ((X, y)1.3), X € C4+, and use that (J f () = ¥"((X, y)1.3).
Taking in particular ¥ (p) = p~* where s € C, we get

(—Ag —s(2—s))(x,y)1_’s3 =s(s + 1)(x,y)IS3_2. (5.10)
Similarly, if v_, v € S? C R3, then by applying (5.8) to the function

Fooo () = (%, (L, v)s (B, (Lups) ™', Fecy
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and using that LI f,,_ ,, =2(1 —v_ - v+)fv2_,v+, where we recall *-” denotes
the Euclidean inner product, we get

— Ag(P(x, v )P(x,vp)) = 2(1 —v_ - v)(P(x, v_) P(x, 1y))°
(5.11)

where the Poisson kernel P(x, v) is defined in (3.18) and the Laplacian A,
acts in the x variable.

5.1.2 Properties of the operators Qg

Let Q5 : C¥ (H3) — C°(H?) be the operator defined in (5.1). Using (3.4)
we can rewrite it as

st(X)=f (. )73 () d volg(y). (5.12)

H3

Note that the operator Qg is equivariant under the action of the group
SO, (1, 3):

Qs(y* f) =y™(Qsf) forall y e SO(L,3). (5.13)

For s > 2, the function y — (x, y)l_f,) lies in L' (H?; d volg) and its L' norm
is independent of x; indeed, using the SO, (1, 3)-invariance we may reduce
to the case x = (1, 0, 0, 0), which can be handled by an explicit computation.
Therefore, Q, : L®°(H?) — L®(H?).

The space L°°(X) is isomorphic to the space of I'-invariant functions
in L®°(H?). Using (5.13), we see that Q; descends to the quotient ¥ = F\H3
as an operator

Qs : L®(X) » LX), s>2. (5.14)

Next, using (5.10), we get the following identity relating the operators Qs with
the hyperbolic Laplacian A, on X:

(—Ag =52 —=5)0s = 0s(=Ag —5(2 —5)) =5(s + D Q2. (5.15)

Putting together (5.14) and (5.15) and using elliptic regularity, we see that for
any s > 2, Q; in fact extends to a smoothing operator D'(X) — C*®(X),
proving (5.2).

We now show that for f € D'(X) one can obtain Q; f as a limit of cutoff
integrals:
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Lemma 5.2 Fix a cutoff function x (p) € C°(R) such that x = 1 near 0. For
e > 0and s > 2, define the operator

Qs p.c : D(HP) — C®(H),

Oy f () = /H Xl 3 DS FO) ol

Note that Qg y ¢ satisfies the equivariance relation (5.13) and thus descends
to an operator D' (X) — C*°(X). Then we have for all f € D'(X)

Qs,x,é‘f — Qs f in C*®(2) as & — +0. (5.16)
Proof 1t suffices to show that for all n > 0,
[AG(Qs — Qs.x.0) AgllLoemy»Lo(x) = 0 as & — +0.

By (5.9) with ¢ (p) := p™°(1 — x(ep)) we have (with each instance of A, in
Aé” below acting in either x or y)

A2 (G, )75 = x(elx, 9)13) = (0 TS0 (e 3)13),

where, putting Ty := ,o“((l — ,02)85 —3pdp)p"%,

Y () =T (1 = x(c0))(p). (5.17)

Forany f € L®°(H?) we have (integrating by parts in y and using the fact that
Ay is formally self-adjoint)

AHQs — Qsy ) AL f(x) = fH TRV (6 3013 £ () d volg (7).

Estimating the L°L ; norm of the integral kernel of the latter operator we get
for any 6 € (0, s — 2) (we will use that § > 0 at the end of the proof) and for
some C 5 > 0 depending only on s, §

18505 = Q) Mgl @ 1v(@) < Coasup 1% (p)]. (5.18)
p=

For k € Ny and ¢ € C*°((0, 00)), define the seminorm

1¥lls.x == max sup|p~°(pd,)! ¥ (p)l.
0<j<k p>1
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We have | T5¢rlls.x < Cs.5.kl1¥|l5,k+2. Therefore

sup [0 %) ()] < Cosnlll = x(€p)lls.an = O(%),  (5.19)
p>

which finishes the proof. m|

5.1.3 Spherical convolution operators

Let « € C*([0, 4]). Define the smoothing operator

A D(SH) = C(S?), Acfv) = / k(v =V FO)dSO).
SZ
(5.20)

Here |v — v'| denotes the Euclidean distance between the points v, V' € S? ¢
R3.

In this section we prove an estimate on the norm of A, between Sobolev
spaces, Lemma 5.5, which is used in the regularization argument in §5.2.3
below. Before we state this estimate, we establish a few basic properties of
A

Lemma 5.3 We have
| Ax ||L2(SZ)—>L2(S2) =7 ||K||L1([o,4])-
Proof By Schur’s lemma we have
IAcl 22y 12(s2) < Sup / (v — V'[P dS).
v eS?

By SO(3)-invariance we see that the integral above is independent of v'.
Choose v/ = (0,0, —1) and use spherical coordinates v = (sin6 cos ¢,
sin @ sin ¢, cos f) to compute

b4 4
/ le(lv = v'[H)| dSv) =27'r/ k(24 2cos6)|sin6 do =7'[/ i (r)| dr
S? 0 0

which finishes the proof. O

Lemma 5.4 Denote by Ag the (nonpositive) Laplace—Beltrami operator on
S?. Then

AcAg = A Ay = Az, k(r) =@ —rir”’(r) + 4 = 2r)k’ (r).
(5.21)
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Proof It is enough to show that, with Ag acting in the v variable,
Ag (v = V') = & (v = V')

Similarly to the proof of Lemma 5.3, by SO(3)-invariance we may reduce
to the case v/ = (0,0, —1) and take spherical coordinates (6, ¢) for v, in
which the Laplace operator is Agx = (sin 0)~ 199 sin 6y + (sin 9)_285 and
lv —1|? = 2 + 2 cos 6. Then we compute

1
Ag2(k(Jv —V'|?)) = ——p sin B3pk (2 4 2 cos 0)
sin @
= 45in?0x” (2 + 2 cos ) — 4 cos Ok’ (2 + 2 cos6)
=K(2 4+ 2cosb),

which finishes the proof. O

We can now give

Lemma 5.5 Assume that s1,s» € R and so — s1 = 2L for some £ € Ny.
Then there exists a constant C depending only on sy, s> such that for all
K € C([0, 4])

2¢

1Al s g2y a2y < € D IF™ U008 ke () g0, (5:22)
j=0

Proof Define the differential operator arising from (5.21) (corresponding to
1 - Agz)

W= (r —4)rd> + Qr —4)9, + 1.

Denote by C a constant depending only on s1, 52, whose precise value may
change from line to line. We have

1Al st @) 22y < CIA = Ag2)?2Ac(1 = M) ™2 22 122
= Cll(1 = Ag) Al 22y 12s2)
= C ”AW(K ||L2(Sz)~>L2(SZ)
< ClIW k| L1 o.4p-
Here in the second equality we used that A, commutes with Ag> by Lemma 5.4.

In the third inequality we used Lemma 5.4 again. In the last inequality we used
Lemma 5.3.
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By induction in £ we see that W¢ is a linear combination with constant

coefficients of the operators rk Brj where 0 < j < 2f¢ and k > max(j — ¢, 0).
Therefore, | Wx|| L1(j0.47) 1s bounded by the right-hand side of (5.22), which
finishes the proof. O

5.2 Proof of Theorem 5

Here we give the proof of Theorem 5, proceeding in several steps. In §5.2.1
we write both sides of (5.5) as integrals featuring some distributions g+ on
S%. In §5.2.2 we introduce a change of variables which shows that the two
integrals are formally equal. In §5.2.3 we prove that regularized versions of
the two integrals are equal and show convergence of the regularization to finish
the proof.

Denote by 71 the covering maps H? — ¥ and SH> — M = S¥ (which
one is meant will be clear from the context). Since we can choose the repre-
sentation of ¥ as the quotient I'\H? arbitrarily, for any given x € ¥ we may
arrange that 7 (eg) = x where

e :=(1,0,0,0) € H. (5.23)

Therefore, in order to prove Theorem 5 it suffices to consider the case x =
nr(ep), 1.e. to show that

7 Q4F (e0) = —§f Ag (0 - 04)(€o). (5.24)

5.2.1 Reduction to the conformal boundary
We first express both sides of (5.24) in terms of some distributions g4 on the

conformal boundary SZ.
Letu € Res(l), Uy € Res(l)*. By Lemma 4.7 we have

du=f_o_, du,= fro;, aANduAndu,= —%f_ﬁrd voly,
where by (4.35), the lifts of f- € Dp.(M;C), fi € Dp.(M;C) to the
covering space SH3 have the form (recalling the definitions (3.14) of &g,
By)

mh fy = ®1%(g+ o By) forsome gi € D'(S?%; C). (5.25)
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Arguing similarly to (2.21), we see that the distribution F € D'(Z; C) defined
in (5.4) can be written as the pushforward

Fx) = %/S . f-(x,v) f+(x,v)dS(w), xeX

where d S is the canonical volume form on the spherical fiber Sy 2. Therefore,
the lift of F to H? has the form

1 _
nEF(x) = Z/smp (D (x, )P (x, 1) g (B_(x, 0)g+ (Bs (x, 1)) dS(v).
' (5.26)

We next express the harmonic 1-forms o defined in (5.3) in terms of the
distributions g :

Lemma 5.6 Using the hyperbolic metric, identify the pullbacks mj o+ with
vector fields on H3. Then for any x € H?

1
mpot+(x) = 7 /Sz g+(Wv+(x, v)dS(v),

where v+ (x,v) € S;H3 c T, H3 is defined in (3.20).
Proof By (3.72) and since du = f_w_, du, = fywy we have
o+ =y, (fro A wt).
Recall the horizontal/vertical decomposition (2.15). For any (x,v) € M =

S§¥, 6 = (én,8v) € Tx,»yM, and a positively oriented g-orthonormal basis
v, v1, v2 € T, X we compute by (2.16) and (4.28)

(@ A wp)(x, v)(E, (0,v1), (0,v2) = ${En. V),
Using the metric g, we identify o1 with a vector field on X. Then
1
or(x) = —/ fr(x,v)vdS(w), x € X.
4 Js,»
It follows that for each x € H?

1
npoL(x) = Z/SHS 4 (x, v) 2gx(BL(x, v))vdS(v)

1
= 4_1/ g+(W)ve(x,v)dS(©).
S2

@ Springer



M. Cekié et al.

Here in the first equality we used (5.25). In the second equality we made the
change of variables v = B1(x, v) and used (3.21). O

We note that by the preceding lemma v4 (x, v) define vector-valued Poisson
kernels in the sense of [43,51]. From Lemma 5.6 we get the following formula
for the right-hand side of (5.24) in terms of the distributions g :

Lemma 5.7 We have (here e is defined in (5.23))

1
— A (0 - o) (e0) = /S (= v g (g (04 AS S (),
(5.27)

Proof By (3.20) we have for each v_, v, € S? and x € H?

(U_()C, U—)’ v+(x, 1)-l-)>g = —<U_(X, l)_), U+(X, v+)>1,3
=Px,v_)P(x,v:)(1 —v_-vy) — 1.

With the hyperbolic Laplacian A, acting in the x variable, we then compute
by (5.11)

—Ag (v (xr, 1), vy (xr, 1)) = 2(1 — v - v )2 (P(x, vo) P(x, vp) .

Now (5.27) follows from Lemma 5.6 by integration and using that P (eg, v+) =
1 by (3.18). O

5.2.2 Change of variables

By (5.26) and (5.12) we can formally write the left-hand side of (5.24) as
follows:

1 _
nfEQaF (ep) = 1 / Yo (@ (y, )y (y, v)
STH3
X g_(B_(y,v))g+(B4+(y, v))dS(v)d volg(y), (5.28)

where werecall y = (o, 1, ¥2, y3) € H>. Note that one has to take care when
defining the integral above, as g are distributions and SH? is noncompact,
see §5.2.3 below.

On the other hand, the right-hand side of (5.24) can be expressed using (5.27)
as an integral over (v_,v;) € S? x S2. To prove (5.24) and relate the two
integrals we will use the change of variables & : (y, v) — (v_, vy, t), where
t € R, introduced in (3.16). The basic properties of E are collected below in
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Lemma 5.8 1. Let (v—, vy, t) = B(y, v). Then

2
C_(y, )P4 (y,v) = 7 = ; (5.29)
[v— — v4| 1 —v_ vy
2cosht
o= —"—". (5.30)
v — vy

(As before, we write elements of H> as y = (yo, y1, y2, y3) € Rb3.)
2. The Jacobian of E at (y, v) with respect to the densities d volg(y)dS(v)

and dS(v_)dS(vy)dt is equal to 4(P_(y, V)P4 (y, v))’z.

Remark The identity in part 2 of the above is well-known, see [50, Theo-
rem 8.1.1 on p. 131].

Proof 1. The identity (5.29) follows immediately from (3.17), noting that
[v_ — v+|2 =21 —v_-vy). To see (5.30), we compute by (5.29) and (3.16)

2e:|:t

Ci(y,v) = ——,
v — vyl
which by (3.15) gives

D_(y,v)+ Dy (y,v) 2 cosht
Yo = = .
2 [v— — vy

2. Take (y, v) € SH>. Let w € T,H? satisfy (v, w); 3 = 0. Then

2
|dB+(y, v)(w, Tw)|s2 = 2|dB+(y, v)(0, w)|s2 = %}ng). (5.31)

Here in the first equality we write (w, +w) = (w, Fw) % 2(0, w) and use
that by (3.23), d B+ (y, v)(w, Fw) = 0. In the second equality we use (3.21).
Denoting by X the generator of the geodesic flow and defining ¢ by (3.16), we
also have by (3.22) and (3.23)

dBy(y,v)(X(y,v)) =0, di(X(y,v))=1.

Fix a g-orthonormal basis v, vy, vy of Ty]HI3 and consider the following basis
of T(y,v) SH?:

fo=X(,v), & =@,%v), & =@, +wn).
Since 5; /\’;‘j+ = 2(v;, 0) A (0, v;), the value of the density d vol, (y)d S(v) on
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§0.6, .8, ,Ef’ ,§2+ is equal to 4. On the other hand, writing
(n—-(), n+(8), t(§)) = dE(y, v)(§), we have

nt(E5) =nxo) =0, t(6) =1

and the vectors ni(éli), ni(ézi) are orthogonal to each other and have

length 2d 4 (y, v)~! each by (5.31). It follows that the value of the den-

sity dS(v_)dS(v1)dt on the images of &, &, , &, , &, & under dE(y, v)

is equal to 16(d>_(y, V)P4 (y, v))_z. Thus the Jacobian of E at (y, v) is equal
-2

0 4(P_(y, )P+ (y,v)) . O

Using Lemma 5.8 and (5.28), we can formally write the left-hand side of (5.24)
as

1 (1 —v_-vy)?
7 QuF(eo) = 7cosh4t+
($2xS?)_ xR

g-(v2)g+ (v4) dS(_)dS(vy)dt.

(5.32)

Using the change of variables s = tanh ¢, we compute

dt ! 4
/ - =/ (1 —s*ds = —. (5.33)
R cosh™ ¢ 1 3

Comparing (5.32) with (5.27), we formally obtain the identity (5.24). However,
our argument is incomplete since the integrals in (5.28) and (5.32) are over the
noncompact manifolds SH3, (S? x S?)_ x R and g4+ are distributions. Thus
one cannot immediately apply the change of variables formula to get (5.32)
from (5.28), or Fubini’s Theorem to get (5.24) from (5.32). To deal with these
issues, we will employ a regularization procedure.

5.2.3 Regularization and end of the proof
Fix a cutoff function
x € CER;[0,1]), suppx C [-2,2], xlj-1.11=1.

For ¢ > 0, define the integral
i= [ x g aE ) dvoly)
H

(As before, we embed H?3 into R!3 and we have Yo = (eo, ¥)1,3 whereep =
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(1,0,0,0).) By Lemma 5.2 with x = eq, I, converges to the left-hand side
of (5.24):

I, — 1 Q4F (eg) as & — 0. (5.34)

By (5.34) and (5.27), the proof of (5.24) (and thus of Theorem 5) is finished
once we show that

I, — % / 1—-v_- v+)2g_(v_)g+(v+) dS(v-)dS(vy) as & — +0.
S?x$§?
(5.35)

By (5.26) we have the following regularized version of (5.28):

1 _
=3 / X (€90)y5 4 (®— (v, )4 (7, )
SH3

X g—(B_(y,v)g+(B+(y,v))dS(v)d volg(y).

Making the change of variables (v_, vy, ¢) = E(y, v) and using Lemma 5.8,
we then get the following regularized version of (5.32) (we keep in mind that
g+ are merely distributions so that all of the integrals around these lines are
understood in the distributional sense):

1 2ecoshry\ (1 —v_-vy)?
Iy = — / X( ) :

64 [v_ — vy cosh* ¢
SZxSZxR

X g-(v-)g+(vy)dS(v_)dS(vy)dt.

For r > 0, define the function

3 2e cosht 4
Ve (r) '_4/1@)((—\/7 >cosh tdr. (5.36)

Note that ¥, € C°°([0, 00)) and V. (r) = 0 for r K £2. We now have

1
= / V(e — va PY1 = v_ - 128 (v_) g4 () dS(_)dS (v,
S?xS?
(5.37)
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Recalling that [v_ — v |? = 2(1 — v_ - v), we see from (5.37) that it suffices
to prove the following version of (5.35):

f (1 = Yellv- = v ) - = vif*g—(v)
S?xS?
X g+(wp)dS(w_)dS(vy) - 0 as & — 0. (5.38)

If g+ were smooth functions on S2, then (5.38) would follow from the Domi-
nated Convergence Theorem since by (5.33) we have ¥.(r) - 1 ase — 40
for all r > 0. However, g+ are merely distributions, so one has to be more
careful. We start by establishing the Sobolev regularity of g+ by following
the standard proof of the Fredholm property in anisotropic Sobolev spaces.
(We use the proof in [20]; one could alternatively carefully examine the proof
in [29].) See the papers of Adam—Baladi [1, §3.3], Guillarmou—Poyferré—
Bonthonneau [30, Appendix A], and Dyatlov [19] for a general discussion of
Sobolev regularity thresholds for the Pollicott—Ruelle resolvent.

Lemma 5.9 We have g+ € H>"%(S?) for all § > 0.

Proof We show the regularity of g_, with g handled similarly. Recall that g_
is related to the distribution f_ € D}s* (M; C) by (5.25). Since ®_ is smooth

and B_ is a submersion, it suffices to show that f_ € H —2-5(M).

By Lemma 4.7, we have (X — 2)f_ = 0, that is f_ is a Pollicott—
Ruelle resonant state for the operator P = —iX corresponding to the
resonance Ao = —2i, see §2.3.2. Given that Pollicott—Ruelle resonant states
are eigenfunctions of P on anisotropic Sobolev spaces (see (4.10)), it suf-
fices to show that one can choose the order function m in the definition of
the weight G(p, &) = m(p, &) log(l + |£]) such that the Fredholm prop-
erty (4.11) holds on the anisotropic Sobolev space Hg ¢ for ImA > —2 and
He.o C H~>79; the latter is equivalent to requiring that m > —2 — § every-
where.

In [20, §§3.3-3.4] the Fredholm property (4.11) is shown using propagation
of singularities and microlocal radial estimates. Following the proof of [20,
Proposition 3.4], we see that one only needs to check that the low regularity
radial estimate [20, Proposition 2.7] applies to the operator P — A (where
ImA > —2) at the radial sink E* (see (2.4)) in the space H~>~°. (The high
regularity radial estimate [20, Proposition 2.6] would apply once m is suffi-
ciently large on E7, which can be arranged.) The threshold regularity for this
estimate is computed in [22, Theorem E.54]. In our setting, since the operator
P is symmetric on L?(M; d vol,) and it has order k = 1, it is enough that

H
|I;||S| <0 on E;

24 (=2-9)
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where p(p, &) = (X (p), &) is the principal symbol of P and its Hamiltonian
flow is given by et (p, &) = (¢ (p), d(p,_T(,o)é), see [20, §3.1]. Choosing
the norm |&| induced by the Sasaki metric and using (3.7), we see that

H
P_l‘é’:|:1 on E;,
€]

which means that the threshold regularity condition for the radial estimate is
satisfied and the proof is finished. O

Coming back to the proof of (5.38), we rewrite it as
(Ak.8—, 8+) 122y > 0 as e —> 40, (5.39)

where the operator A, is given by (5.20):

Ao fvy) = /S el — v P f0) dS ()

and the function «; € C([0, 4]) is given by (using (5.33) and (5.36) in the
second equality below)

() = gr%l () = 1 /R (1 _ x(%)) cosh—1d1.

Using Lemma 5.9, we have in particular go € H~>/%(S?). Thus to finish the
proof of (5.39), and thus of Theorem 5, it remains to prove the norm bound

||AK5||H—5/2(S2)—>H5/2(SZ) — 0 as ¢ — +0. (5.40)

To show (5.40), we will bound the norms of A,, between Sobolev spaces using
Lemma 5.5. To do this we estimate the derivatives of «,:

Lemma 5.10 Let j, k € Ng. Then there exists C depending only on j, k such
that for all ¢ € (0, 1]

Ce4, k> j;
1P*0 ke (Ml 1 (0,47 < | Ce*log(1/e), k= j— I; (5.41)
Ce?CHh=D k< j—2.

Proof Throughout the proof we denote by C a constant depending only on
Jj» k whose precise value might change from line to line.
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1. For any G(s) € C*°([0, 00)) which is constant near s = oo define

@ (1) /G(zCOSht> htdi 0
G\T) = COS y T > U.
R vt

We have the identity
19, 06 = —1Pys,6- (5.42)

Moreover, we have the estimate

ClIGllL=

Gli-,1=0 = [P6(0)]| = Tro

(5.43)

which can be proved by bounding |®g(7)| by |G|z~ times the integral
of cosh™1dr over the set of ¢ such that cosht > .//2 and using that
[cosh™tdt = tanht— tanh? 1+ Cand VT —2—1(1-0)32 = 3+ 00

as)»:%—>0.

2. We have
ke(r) = r2<I>1_X (8_2r).
By (5.42) foreach j > 0

() ke (r) = r2(ry +2)7 (@1 (72r)) = r’ g, (e7%r),
where G (s) 1= (2 — 359,)7 (1 — x)(s).

Since X|[,1,1] =1, we have Gj|[,1,1] = 0. Thus by (5.43)

; Cr?
|(r9:) ke (r)] < Tre42

Writing ri a,f as a linear combination of (rd,)? with 0 < g < j, we get

. Ccr=J .
|07 ke ()] < ﬁ < Ce*r .
e4r

Since supp x C [—2, 2], we have by (5.33)
Ke(r) = %rz for 0<r< g2
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Therefore

2

. & . 4 .
1758 ke (Ml L1 0,47 < C/ ¥l ) dr + Cs4/ kI dr
' 0 &2

which gives (5.41). O

Combining Lemma 5.5 and Lemma 5.10, we get
1A =52 g3z < €%, NAe, =52 g2 < C.

By interpolation in Sobolev spaces (taking f € H/>(S?) and using that
||v||§{1(82) is bounded by ((I — Ag2)v, v) 252y < Cllvll 22 vl g2(s2y for
vi=(1-— ASz)3/4AK8f) we then have

Akl g-s/2_ g5z < Ce.

This gives (5.40) and finishes the proof of Theorem 5.
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Appendix A. Harmonic 1-forms of constant length

The purpose of this appendix is to give an elementary proof of the fact that
there are no harmonic 1-forms of constant nonzero length on closed hyperbolic
3-manifolds:

Proposition A.1 Let (X, g) be a compact hyperbolic 3-manifold (see §3.1).
Assume that € C*°(X; T*X) is a harmonic I-form such that its length |w|g
is constant. Then w = 0.

Remark Proposition A.1 follows directly from the more general work of [55].
The presentation in the appendix borrows from ideas in [39].

To prove Proposition A.1 we argue by contradiction. Assume that w # 0;
dividing w by its length we arrange that, where § = — »d« is the formal adjoint
of d (here x is the Hodge star)

do =0, dw=0, |wl=1.
Using the metric g, define the dual vector field to w,
WeC®E;TE), |[Wi=oW)=1.

Lemma A.2 There exist one-dimensional smooth subbundles E+ C T X such
that T =RW @ EL @ E_.

Proof 1. The Levi-Civita covariant derivative VW is an endomorphism on the
fibers of T X. This endomorphism is symmetric with respect to the metric g;
indeed we compute for any two vector fields Y, Z € C*°(X; TX)

O=doY,Z)=YgW,Z)—Zg(W,Y)—g(W,[Y, Z])

(A.1)

Taking Z := W and using that g(Vy W, W) = %Yg(W, W) = 0 we see that
the vector field W is geodesible, that is

VwW = 0. (A.2)
Since §w = 0, the vector field W is also divergence free; that is,

tr(VW) = 0. (A.3)
2. We next claim that

tr(VW)?) = 2. (A.4)
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To see this, take locally defined vector fields Yy, ¥> such that W, Yy, Y> is a
g-orthonormal frame and Vi Y; = 0. These can be obtained using parallel
transport along the flow lines of W (which are geodesics since ViyW = 0).
We compute

L= g(VwVy,W = Vy, VW + Vo, wW — Vy, v, W, Y)
= Wg(Vy,W,Y;) — g(Vy,W, VyY))
+8(Voy, wW, Yj) —g(Vuyy, W, Y))
= Wg(Vy,W.Y)) + g(VW)?Y}, Y)).

Here in the first line we used that X has sectional curvature —1, in the second
line we used (A.2), and in the last line we used that Vi Y; = 0. Summing over
Jj = 1,2 and using again (A.2) we get

2=Wt(VW) + tr((VW)?)

and (A.4) now follows from (A.3).
3. From (A.2), (A.3), and (A.4) we see that VW has eigenvalues 0, 1, —1.
It remains to let £ be the eigenspaces of VW with eigenvalues +1. O

We are now ready to finish the proof of Proposition A.1. We can approxi-
mate the 1-form w by a closed 1-form with rational periods (integrals over
closed curves on X); indeed, for an appropriate choice of linear isomorphism
H'(Z; C) ~ CP'™®) the forms with rational periods correspond to points in
Qb1 In particular, we can find a number ¢ € N and a closed 1-form @ with
integer periods such that

(A.5)

N[ —

sup |w — q_lc~o|g <
b

Since w has integer periods, we can write @ = df for some smooth map
f from X to the circle S! = R/Z. Since (W) = 1, (A.5) implies that
Wf = o(W) > 0 which in turn gives df # 0 everywhere, that is f is a
fibration. Next, for each x € X define the one-dimensional spaces

E+(x) = RW(x) ® E+(x)) Nkerdf(x),

then the tangent bundle of each fiber f ~1(¢) decomposes into a direct sum
E. @ E_. Since ¥ is orientable, so is f~!(c), which implies that f~!(c) is
topologically a torus. Then X is a torus bundle over a circle, which gives a
contradiction because such bundles do not admit hyperbolic metrics: by the
homotopy long exact sequence of a fibration the fundamental group of X
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contains a subgroup isomorphic to Z @ 7Z, which is impossible for compact
negatively curved manifolds by Preissman’s Theorem [45, Theorem 12.19].
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