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ABSTRACT

Optical approaches to machine learning rely heavily on programmable linear photonic circuits. Since the perfor-
mance and energy efficiency scale with size, a major challenge is overcoming scaling roadblocks to the photonic
technology. Recently, we proposed an optical neural network architecture based on coherent detection. This
architecture has several scaling advantages over competing approaches, including linear (rather than quadratic)
chip-area scaling and constant circuit depth. We review the fundamental and technological limits to the en-
ergy consumption in this architecture, which shed light on the quantum limits to analog computing, which are
distinct from the thermodynamic (e.g. Landauer) limits to digital computing. Lastly, we highlight a recent “dig-
ital” implementation of our architecture, which sheds light on the scaling challenges associated with controlling
aberrations in the free-space optical propagation.

Keywords: Optical neural network, photonic integrated circuit, machine learning, homodyne detection, cylin-
drical optics

1. INTRODUCTION

Driven by the recent success of deep learning, the growing computational demand of deep neural networks
has motivated development of special-purpose hardware accelerators.1,2 These accelerators have heretofore
been based on digital electronic architectures and are therefore limited by memory access and interconnect
energies;3 consequently, there has been a resurgence of interest in photonic approaches, where the mathematical
operations are mapped to the dynamics of optical propagation, i.e. programmable linear optics and nonlinearity.
To date, photonic approaches fall into two categories: Free-space systems4,5 (e.g. diffraction, Fourier optics)
boast large numbers of neurons, but suffer limited connectivity. At the other extreme, on-chip approaches based
on wavelength multiplexing6 or beamsplitter meshes7 can achieve programmable all-to-all coupling, but chip-area
constraints make scaling to large numbers of neurons very challenging.

Recently, we proposed a new scheme based on homodyne (coherent) detection.8 A deep neural network is
represented as a sequence of layers (Fig. 1(a)), where each layer is composed of a (linear) tensor product ~x→ A~x
and a (nonlinear) activation function xi → f(xi). Fig. 1(b) schematically illustrates the optically-accelerated
tensor core, which performs these operations. The input vector ~x(k) is encoded onto a pulse train, which is fanned
out to an array of homodyne detectors. Each detector (inset of Fig. 1(b)) computes the product between ~x(k)

and a row of A(k), both encoded on optical pulse trains, by homodyning and time integration. The accumulated
charge on the homodyne detector is given by:

Qi =
2ηe

~ω
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Figure 1. Optical neural network based on coherent detection. (a) A deep neural network is decomposed into a sequence
of layers, each consisting of a linear matrix-vector multiplication and a nonlinear activation function. (b) Matrix multi-
plication realized with time multiplexing and coherent detection. Activations, encoded as a pulse train, are broadcast to
an array of homodyne detectors that implement the matrix-vector product. Nonlinearity can be performed subsequently
in the electronic domain. Adapted from Ref.8

The accumulation requires N time steps, where the pulse rate is limited by the speed of the modulator (which
will lead to crosstalk if the rate is too fast9).

The detectors here function as quantum photoelectric multipliers, producing a photocurrent proportional to
the tensor product A~x. The output is sent through a nonlinearity, serialized, and converted to optical with a
modulator. Unlike previous approaches,6,7 here the weights are encoded optically, allowing the network to be
reprogrammed on the fly. Optical weight encoding, plus time multiplexing, significantly reduces the number of
photonic components, and therefore chip are, of in this scheme: only O(N) photonic components (modulators,
beamsplitters, detectors) are required, in contrast to weight-stationary1 approaches6,7 which typically require
O(N2) with an O(N) circuit depth. This greatly reduces the required chip area, a major constraint given the
moderate size of low-loss photonic components, and allows scaling to large systems with N,N ′ ≥ 1000.

2. DEEP LEARNING AT THE STANDARD QUANTUM LIMIT

A key figure of merit for neural-network accelerators is energy consumption, which limits performance on modern
processors due to overheating.3 Energy consumption can be measured as energy per multiply-and-accumulate
(MAC) Emac. For CPUs and GPUs, the figure is about 20 pJ/MAC,10 although application-specific integrated
circuits (ASICs) with reduced precision can push this number down to 1 pJ/MAC, which is considered state of
the art.1,2

The homodyne-based optical neural network has two limits to Emac: (1) a fundamental standard quantum
limit (SQL) set by quantum fluctuations, and (2) limits set by input / output energy consumption, which
will decrease as technology improves. The SQL is one of a number of noise-based limits to photonic device
performance. It has long been recognized that noise processes can limit the performance of optical logic gates11–13

and oscillators14,15 as well as all-optical photodetectors16 and temperature sensors.17 Here, noise arises because
the photoelectric effect is a stochastic process: quantum-limited detector shot noise will degrade performance
at the low-energy (few-photon) level. To study this effect, we perform simulations of the optical neural network
trained on the MNIST dataset (Fig. 2(a)) in the presence of shot noise. The input-output relation, including
shot noise, for a neural-network layer is given by:
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Figure 2. Limits to energy consumption of optical neural network. (a) Illustration of MNIST digit classification with a
two-layer perceptron. (b) Error rate due to quantum (shot) noise as a function of optical energy per MAC Emac. (c)
Quantum limit relative to other figures for energy consumption. Adapted from Ref.8

where f(·) is the activation function, N (N ′) are the number of input (output) neurons, w
(k)
i is a Gaussian

random variable with unit variance, and nmac is the number of photons per MAC (so the optical contribution
to Emac is (~ω)nmac). Under shot noise, SNR is proportional to the photon flux. There are two regions of
interest, sketched in Fig. 2(b): a noiseless regime Emac � ~ω and a random-guess regime Emac � ~ω. The SQL
is defined as the crossover point, where the error rate begins to increase significantly compared to its noiseless
value. The SQL depends on the neural network being studied. Fig. 2(c) plots the SQL calculated for a number
of neural networks trained on the MNIST dataset. For comparison, the Landauer limit18 for an irreversible
digital computer is Ngate× kBT log(2), where Ngate is the gate count for the fused multiply-add circuit (since all
gates are irreversible). This evaluates to 3 aJ for 32-bit arithmetic (N ≈ 1000), which is above the SQL for the
larger neural networks in Fig. 2(c). This suggests that it is theoretically possible for the optical neural network
to operate below the Landauer limit. Since the optical neural network relies on (reversible) optical interference
and is an analog system, it does not satisfy the assumptions of Landauer’s principle, so beating the Landauer
limit is not in contradiction with the laws of thermodynamics.

For near-term devices, the electrical contribution to Emac will dominate. This figure is governed by the
readout energy of the detector electronics, the electronic nonlinearity, and the energy required to drive the
modulator. A simple approach with existing technology is to amplify and digitize the photocurrent, apply the
nonlinearity in digital logic, and convert to optical with a modulator. With existing components,19,20 this leads
to an energy per neuron at the picojoule scale, so Emac ∼ (1/N)pJ (solid green curve in Fig. 2(c)). This
number can be reduced with advances in modulator and detector technology: to realize on-chip interconnects,
femtojoule-scale detectors, tightly integrated to modulators and CMOS logic, are under active development.21,22

This would push the energy figure to Emac ∼ (1/N)fJ (dashed green curve), at which point the SQL becomes a
relevant bound to the neural network’s performance. Even with near-term energy figures, however, we see the
potential to reduce Emac by several orders of magnitude compared to state-of-the-art electronics.

3. GEMM AND CONVOLUTIONS

While the optical unit in Fig. 1(b) performs a matrix-vector product, in practice neural networks achieve high
performance with weight reuse (either natively in convolutional layers or through batching). Thus, a practical
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Figure 3. Matrix-matrix optical accelerator. (a) Free-space architecture showing fan-out of optical signals via cylindrical
lenses (not shown). (b) Schematic of the implementation of a 1D transmitter array. (c) Convolution recast as a matrix-
matrix multiplication via patching. (d) Shot-noise limit for ImageNet classification via AlexNet. Adapted from Ref.8

system must implement a general matrix-matrix product (GEMM). The coherent-detection architecture can be
parallelized to implement GEMM by routing the light out of plane (Fig. 3(a)). The inputs are two matrices
(M1)m×k and (M2)n×k, encoded into optical signals on the 1D red (blue) transmitter arrays (Fig. 3(b)), and
mapped with cylindrical lenses to rows (columns) of the 2D detector array. From the accumulated charge at
each pixel, one can extract the matrix elements of the product (M1M

T
2 )m×n. This performs O(mnk) MACs at

an energy cost that scales as O(mk) +O(mn) +O(nk); note also that the number of modulators still scales only
linearly with matrix dimension (a quadratic number of detectors are required, but detector arrays can pack at
high densities).

In addition to fully-connected layers, it is also possible to run convolutional layers on the optical GEMM unit
by employing a “patching” technique,23 where the image, divided into patches, is recast as a matrix X (which
contains redundant data when patches overlap). The kernel elements can also be rearranged as a matrix K,
and the convolution is equivalent to computing the matrix product Y = KX (Fig. 3(c)). Simulations based on
the optical architecture of Fig. 3(a) reveal that shot noise also places a limit on the performance of optically
accelerated convolutional neural networks. As a benchmark example, consider AlexNet,24 the first deep neural
network to perform competitively at the ImageNet Challenge,25 which consists of five convolutional layers and
three fully-connected layers. Fig. 3(d) plots the network accuracy as a function of Emac in the presence of shot
noise. Again, we see the emergence of a quantum limit to classification energy. The SQL obtained for AlexNet
(nmac & 20 or Emac & 3 aJ) is slightly larger than that from the MNIST networks in Fig. 2(c).

A key challenge in scaling this scheme will be correcting for optical aberrations that lead to inter-pixel
crosstalk. Zemax(R) simulations suggest that crosstalk can be kept to tolerable levels with relatively sim-
ple optical designs.8 Recently, we experimentally demonstrated am incoherent “digital” version of the optical
matrix-matrix scheme where data is encoded in bit streams and digital multiplication substitutes for coherent
detection.26,27 For array sizes N & 200, crosstalk was not found to degrade neural network accuracy. This
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suggests that the optical fan-out scheme in Fig. 3(a) is scalable to large arrays without signal degradation.

4. CONCLUSION

We have presented a new architecture for optically accelerated deep learning that is scalable to large problems
and can operate at high speeds with low energy consumption. Our approach takes advantage of the opto-
electronic nonlinearity in the photoelectric effect, via the relation I ∝ |E|2, to compute the desired matrix
products without need of an all-optical nonlinearity. Neural-network weights are encoded optically, allowing the
network to be rapidly reprogrammed, an important feature for training. Time-multiplexing of data and weights
leads to a considerable reduction of the hardware complexity, the number of photonic components scaling linearly
with problem size rather than quadratically as in competing nanophotonic schemes.6,7 This allows scaling to
larger problem sizes (N ≥ 1000) commonly used in neural network layers. Significant reductions in energy
consumption are possible compared to state-of-the-art digital electronics, and the quantum limit, set by shot
noise, is low enough to suggest that sub-Landauer performance is theoretically possible in such a device. In
addition to neural networks, such hardware may find application in combinatorial optimization problems such
as Ising and SAT, where optical approaches have proven competitive against both classical heuristics28 and
quantum annealing.29
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