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Coupled electro-chemo-elasticity: application to modeling

the actuation response of ionic polymer-metal composites

Sooraj Narayan, Eric M. Stewart, and Lallit Anand∗

Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Abstract

We have formulated a large deformation thermodynamically-consistent electro-chemo-elasticity theory for
modeling the actuation response of ionic polymer-metal composites. Our theory accounts for the simultane-
ous evolution of the electric potential, the concentration of the mobile hydrated cations, and the deformation
of the host ionic polymer matrix. We have numerically implemented our theory in an implicit finite element
program. We use this simulation capability to first calibrate the material parameters in the theory for a
Nafion-based ionic polymer-metal composite, and then validate our theory by comparing predictions from
the theory against other experimental data available in the literature. We also demonstrate the utility of
our simulation capability by conducting full three-dimensional simulations of two soft-robotics applications
with some geometric complexity: (i) a biomimetic fin, and (ii) a micro-gripper.

Keywords: electro-chemo-elasticity; ionic polymer-metal composites; soft-robotics; finite-element simula-
tions.

1 Introduction

Synthetic polymers with ionic properties are called ionomers. A prominent example of an ionomeric polymer
is Nafion.1 It is made up of crosslinked polymer chains which have a backbone of a perfluorinated copolymer of
poly-tetrafluoroethylene, with regularly spaced long per-fluorovinyl ether pendant side chains that terminate
in negatively-charged ionic sulfonate groups (anions). Nafion membranes are permeable to water or other
polar solvents and contain mobile positively-charged ions (cations) that move within the perfluorinated
backbone. Ionic polymer-metal composites (IPMCs) consist of membranes of ionic polymers (≈ 200µm
thick), with noble metal electrodes (≈ 5 to 10µm thick) plated on both faces of the membrane. The matrix
of an IPMC is solvated with a suitable solvent, and neutralized with an amount of cations (e.g., Li+, Na+,
K+, or H+) which balance the charge of the anions that are covalently fixed to the polymer chains.

When a solvated IPMC membrane is stimulated with a suddenly applied small step potential (≈ 1 to 3 V),
both the anions and cations are subjected to an electric field. While the anions remain fixed to the polymer
chains, the mobile cations migrate toward the cathode, transporting with them some solvent molecules due
to hydration effects. The redistribution of hydrated cations causes a differential swelling of the membrane,
and the resulting gradient in the volumetric deformation across the thickness of the membrane causes the
IPMC to bend. A schematic of this actuation mechanism is shown in Fig. 1. Under an alternating potential,
a cantilevered strip of an IPMC performs bending oscillations at the frequency of the applied voltage, usually
no more than a few to a few tens of hertz. When an IPMC membrane is suddenly bent, a small voltage of

∗Corresponding author. Tel.: +1-617-253-1635; E-mail address: anand@mit.edu
1Nafion is a brand name of the Chemours company.
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the order of millivolts is produced across its faces. Hence, IPMCs can serve as soft actuators and sensors
(cf., e.g., Shahinpoor and Kim, 2001; Nemat-Nasser, 2008; Jo et al., 2013).2

Figure 1: Schematic of the actuation mechanism under a step voltage input of an IPMC membrane due to
the migration of hydrated cations.

The low actuation voltage and high compliance of IPMCs make them excellent candidates for use as
actuators in both wet and dry environments. They can serve as “artificial muscles” for use in a wide range
of soft-robotics and biomimetic applications (Minaian et al., 2021). The use of ionic polymers as actuators
was first proposed by Oguro et al. (1992). Subsequent efforts towards understanding the underlying physical
mechanisms of IPMCs were led by the experiments performed and models proposed by Shahinpoor and Kim
(Shahinpoor and Kim, 2001; Kim and Shahinpoor, 2003; Shahinpoor and Kim, 2004), and Nemat-Nasser
and co-workers (Nemat-Nasser and Li, 2000; Nemat-Nasser, 2002). For a more comprehensive discussion
of the early experimental and modeling literature on IPMCs, see the book chapters by Nemat-Nasser and
Thomas (2004) and Nemat-Nasser (2008), and the references cited therein.

While the underlying physical mechanism behind the actuation and sensing response of IPMCs is rea-
sonably well understood and agreed upon for some time, viz. migration of mobile hydrated cations under the
gradient of an electric potential, the continuum-mechanical modeling of the coupled chemo-electro-mechanical
response of IPMCs in a thermo-dynamically consistent fashion has been a more recent effort in the literature.
Examples are the papers by Nardinocchi and co-workers (cf., e.g., Nardinocchi et al., 2011; Galante et al.,
2013; Nardinocchi and Pezzulla, 2013; Nardinocchi et al., 2014) and Wallmersperger and co-workers (cf., e.g.,
Rossi and Wallmersperger, 2018; Rossi et al., 2018). Also see Cha and Porfiri (2014), Porfiri et al. (2017),
and Leronni and Bardella (2021). Some of these authors have numerically implemented their theories, and
have reported on simulations of the bending of cantilevered beams made from IPMCs. However, reports of
comparisons of the predictions of the theories against physical experiments are quite limited.

The purpose of this paper is to report on:

• Our formulation of a thermodynamically consistent large-deformation continuum mechanical theory
for coupled electro-chemo-mechanics.3

• The numerical implementation of this theory in a finite element program.

• Use of this simulation capability to first calibrate the material parameters in our theory, and subse-
quently to validate the theory by comparing the predictions of the theory against data from physical

2Nafion membranes are also widely employed in micro-batteries and proton-exchange-membrane fuel cells. In this paper we
concentrate on modeling their response in IPMCs as actuators.

3Our theory is similar to that in the work of Nardinocchi and co-workers (Nardinocchi et al., 2011; Galante et al., 2013),
but it differs in several details which are too many to enumerate here.
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experiments on Nafion-based IPMCs available in the literature.

• Demonstrate the utility of our numerical simulation capability by conducting simulations pertinent to
some soft-robotics applications.

In formulating our theory we have made the following major modeling assumptions:

• The polymer-solvent-ions mixture is treated as a single homogenized continuum body allowing for a
mass flux to be carried by the mobile hydrated cations.

• Since the neutral solvent (water) molecules diffuse slowly, we neglect the effects of solvent diffusion in
the membrane.4

• Further, since the motion of the cations occurs at time scales considerably longer than those associated
with wave propagation in solids, all inertial effects are neglected.

• Accordingly, only the electrostatic version of the Maxwell equations is employed.

The paper is organized as follows. We formulate our theory in Section 2. We have implemented the theory
as a user element subroutine (UEL) in the implicit finite element program Abaqus/Standard (Abaqus, 2017).
Using this numerical implementation in Section 3 we conduct numerical simulations to calibrate the material
parameters for a Nafion-based IPMC, and then we validate the theory by comparing the predictions of
the theory against data from other physical experiments available in the literature. To demonstrate the
robustness of our numerical simulation capability, in Section 4 we show full three-dimensional simulations
of two soft-robotics applications: (i) a biomimetic fin, and (ii) a micro-gripper. We close in Section 5 with
some final remarks.

2 Theory

2.1 Basic kinematics

Consider a macroscopically homogeneous body B with the region of space it occupies in a fixed reference
configuration, and denote by X an arbitrary material point of B.5 A motion of B is a smooth one-to-one
mapping x = χ(X, t) with deformation gradient and velocity given by

F = ∇χ, v = χ̇, L = grad v = ḞF−1. (2.1)

We write
J = det F > 0, (2.2)

so that F is invertible.
Throughout we denote by P an arbitrary part of the reference body B with nR the outward unit normal

on the boundary ∂P of P. Also, we denote by Pt = χ(P, t) the image of P in the deformed body Bt = χ(B, t),
with n the outward unit normal on the boundary ∂Pt of Pt.

4Nafion IPMCs with alkali metal cations invariably first bend towards the anode under a step voltage, and then relax back
towards the cathode while the applied voltage is being maintained. In this paper we do not attempt to model this complex
phenomena of “back-relaxation” which occurs at long time scales. We leave such a modeling effort to future work.

5Notation: We use standard notation of modern continuum mechanics (Gurtin et al., 2010). Specifically: ∇ and Div denote
the gradient and divergence with respect to the material point X in the reference configuration, and ∆ = Div∇ denotes the
referential Laplace operator; grad div, and div grad denote these operators with respect to the point x = χ(X, t) in the deformed
body; a superposed dot denotes the material time-derivative. Throughout, we write F−1 = (F)−1, F−> = (F)−>, etc. We
write trA, symA, skwA, A0, and sym0A respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric

parts of a tensor A. Also, the inner product of tensors A and B is denoted by A :B, and the magnitude of A by |A| =
√
A :A.

As a departure from the usual convention in modern continuum mechanics in which vectors are denoted by lower case bold face
letters a, b, etc., we denote the two important electrical vector fields using bold face sans-serif fonts as follows: we write e for
the electric field, and d for the electric displacement.
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2.2 Balance of forces and moments

Standard considerations of balance of forces and moments, when expressed referentially, give the following
results:

(a) There exists a stress tensor TR, called the Piola stress, such that the surface traction on an oriented
element of the surface ∂P of P, is given by the traction relation

tR(nR) = TRnR . (2.3)

(b) TR satisfies the macroscopic force balance

Div TR + bR = 0, (2.4)

where bR represents the conventional body force per unit volume of the reference body.6

(c) TR obeys the the symmetry condition,
TRF> = FT>R, (2.5)

which represents a balance of moments.

As is standard, the stress measure
T = J−1TRF>, (2.6)

represents the symmetric Cauchy stress, in terms of which:

(a) The surface traction on an oriented element of the surface ∂Pt of Pt, is given by

t(n) = Tn. (2.7)

(b) And T satisfies the macroscopic force balance

divT + b = 0, (2.8)

where b represents the conventional body force per unit volume of the deformed body.

Remark. The Cauchy stress T is often referred to as the total stress in the electroelasticity literature.
However, we see no need to distinguish between a purely mechanical stress and an electrostatic, or Maxwell,
stress. Such a decomposition appears naturally when we consider specific thermodynamically-consistent
constitutive equations; cf. Section 2.12.

2.3 Balance of mass and charge of the migrating cations

2.3.1 Balance of mass

Let cR(X, t) [mol/m3] denote the total number of moles of mobile cations per unit volume of the reference
body. Changes in ion concentration cR in a part P of the reference body B are brought about by the migration
of the species across its boundary ∂P. The migration is characterized by a referential mass flux jR(X, t),
measured as the number of moles of the species per unit area per unit time, so that

−
∫
∂P

jR · nR daR

represents the number of moles of cations entering P across ∂P per unit time.

6We do not treat electrostatic forces as body forces.
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Thus the rate of change of the number of cations in P (assuming no internal sources) is given by

·∫
P

cR dvR = −
∫
∂P

jR · nR daR (2.9)

for every part P. Bringing the time derivative inside the integral, and using the divergence theorem in (2.9)
on the integral over ∂P, we find that ∫

P

(ċR + Div jR) dvR = 0; (2.10)

and since P is arbitrary, this leads to the following local balance law for referential cation concentration cR,

ċR = −Div jR . (2.11)

This balance may also be expressed as balance in deformed body as,

ċR = −J divj =⇒
·

(J c) = −J divj =⇒ ċ+ cdivv = −divj, (2.12)

where c = J−1cR is the spatial concentration and j = J−1FjR is the spatial flux of the cations.

2.3.2 Balance of charge

Initially, that is at time t = 0, the charge of the mobile univalent cations is

F c+R (X, 0)︸ ︷︷ ︸
≡cR(X,0)

, (2.13)

and that of the fixed univalent anions is
− F c−R (X, 0), (2.14)

measured in Coulombs per unit reference volume [C/m3], where F = 96, 485 C/mol is the Faraday constant.
Electroneutrality at time t = 0 requires that,

F c+R (X, 0)− F c−R (X, 0) = 0 , (2.15)

or
c+R (X, 0) = c−R (X, 0) ≡ cR0︸︷︷︸

fixed

. (2.16)

Then at time t > 0 the charge of the mobile cations is

F cR(X, t), (2.17)

and that of the fixed anions is
− F cR0. (2.18)

Thus the net charge per unit reference volume of the body at times t > 0 is

qR = F (cR − cR0). (2.19)

Let,

iR
def
= F jR (2.20)

denote the referential current density or flux of positive charge due to the cations. Then the balance law
(2.11) gives the following balance law for qR,

q̇R = −Div iR. (2.21)
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2.4 Basic equations of electrostatics

The referential electric field in B is denoted by eR(X, t). In a polarizable material there is a vector field in B
denoted by dR(X, t) called the electric displacement. In the theory formulated in this paper we only consider
the electrostatic (quasi-static) limit as far as the electrical variables are concerned, so that time t only plays
the role of a history parameter.

Under electrostatic conditions there are two governing Maxwell equations that must be satisfied. The
first of these is Faraday’s law, which in the electrostatic limit reads,

CurleR = 0. (2.22)

Satisfaction of (2.22) occurs automatically if we allow the electric field eR(X, t) to be represented as the
gradient of an electrostatic potential φ(X, t),7

eR(X, t)
def
= −∇φ(X, t). (2.23)

The negative sign in (2.23) follows the convention that the electric field points from a region of high potential
to low potential, whereas the vector ∇φ by definition points in the direction of increasing φ.

The second equation of electrostatics is given by Gauss’s law. Gauss’s law states that the divergence of
the electric displacement dR must be equal to the density of the net charge per unit volume qR,

DivdR = qR . (2.24)

Equations (2.22) and (2.24) constitute the governing equations for electrostatics in B. Using the conversion
relations e = F−>eR and d = J−1FdR, the spatial counterparts of (2.22) and (2.24) are

curle = 0, (2.25)

and
divd = q with q = F (c− c0) , (2.26)

where
c = J−1cR, c0 = J−1cR0 . (2.27)

are the concentration of the cations and anions per unit volume of the deformed body. Equations (2.25) and
(2.26) constitute the governing equations for electrostatics in the deformed body Bt.

2.5 Free-energy imbalance

Under isothermal conditions the two laws of thermodynamics reduce to the statement that the rate of increase
in free energy of any part P is less than or equal to the power expended on P. Precisely, letting ψR denote
the free energy per unit reference volume, this requirement takes the form of a free-energy imbalance

˙∫
P

ψR dvR ≤ W(P) + E(P) + T (P), (2.28)

where:

(i) The mechanical power W(P) exerted on P by the boundary tractions TRnR and body force bR over
the velocity χ̇ is given by,

W(P) =

∫
∂P

(TRnR) · χ̇ daR +

∫
P

bR · χ̇ dvR . (2.29)

7Recall that for any scalar field φ, Curl(∇φ) = 0.
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(ii) In electromagnetic field theory the electric power that is expended on P by charges external to P is
characterized by an electromagnetic energy flux E(P) which in the electrostatic limit is given by (cf.,
e.g., Kovetz, 2000, § 54),

E(P) = −
∫
∂P

φ ḋR · nR daR −
∫
∂P

φ iR · nR daR . (2.30)

Using eq. (2.20) for the net current, (2.30) may be expressed as

E(P) = −
∫
∂P

φ ḋR · nR daR −
∫
∂P

Fφ jR · nR daR. (2.31)

(iii) Finally to characterize the chemical energy carried into part P by cation transport we introduce

T (P) = −
∫
∂P

µ jR · nR daR, (2.32)

with µ the chemical potential of the diffusing species (cf., e.g., Gurtin et al., 2010, § 65).

Thus, using (2.29), (2.31), and (2.32), the free energy imbalance (2.28) becomes

˙∫
P

ψ dvR ≤
∫
∂P

(TRnR) · χ̇ daR +

∫
P

bR · χ̇ dvR −
∫
∂P

φ ḋR · nR daR −
∫
∂P

ωjR · nR daR , (2.33)

where we have introduced the notation
ω

def
= µ+ Fφ , (2.34)

for an electrochemical potential of the cations.
Using the divergence theorem on the terms involving the integral over ∂P, (2.23), and the species balance

(2.11) we obtain, ∫
∂P

(TRnR) · χ̇ daR =

∫
P

(DivTR) · χ̇ dv +

∫
P

TR : ḞdvR,

−
∫
∂P

(φ ḋR) · nR daR = −
∫
P

φ (Div ḋR)dvR −
∫
P

(∇φ) · ḋR dvR

= −
∫
P

φ (Div ḋR)dvR +

∫
P

eR · ḋR dvR ,

−
∫
∂P

ω jR · nR daR = −
[∫

P

ωDiv jR dvR +

∫
P

jR · ∇ω dvR

]
=

∫
P

(
ωċR − jR · ∇ω

)
dvR.



(2.35)

Substituting (2.35) in (2.33), and using (2.4), (2.34), and the rate form of (2.24) we obtain,∫
P

(
ψ̇R −TR : Ḟ− µċR − eR · ḋR + jR · ∇ω

)
dvR ≤ 0. (2.36)

Since (2.36) has to hold for all parts P, we obtain a local free-energy imbalance in the form,

ψ̇R −TR : Ḟ− µċR − eR · ḋR + jR · ∇ω ≤ 0. (2.37)

For later use we define the dissipation density D ≥ 0 per unit volume per unit time by

D = TR : Ḟ + µċR + eR · ḋR − jR · ∇ω − ψ̇R ≥ 0. (2.38)
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2.6 The decomposition F = FeFs

Next, to account for coupling between diffusion of the cations and mechanical swelling, we base our theory
on a multiplicative decomposition of the deformation gradient (Chester and Anand, 2010)

F = FeFs, (2.39)

where,

• Fs represents the local distortion of the material neighborhood of X due to the insertion/extraction of
migrating cations and the associated volume changes, and

• Fe represents the subsequent stretching and rotation of this coherent species-distorted material neigh-
borhood, and thereby represents a corresponding elastic mechanical distortion.

We refer to Fs and Fe as the swelling and mechanical distortions, respectively. Hence we have

J = JeJs, and we assume that Je = det Fe > 0, and Js = det Fs > 0, (2.40)

so that Fe and Fs are invertible.
The total and elastic right Cauchy-Green deformation tensors are given by

C = F>F and Ce = Fe>Fe, (2.41)

respectively. Further, by the definition (2.1)3, we have

L = Le + FeLsFe−1, with Le = ḞeFe−1, and Ls = ḞsFs−1, (2.42)

where Ls represents a distortion rate due to insertion/extraction of the migrating cations.
Finally, we assume that the swelling distortion Fs is isotropic and given by,

Fs = λs1, λs = (Js)
1/3

> 0; (2.43)

we call λs the swell-stretch. Further, from the definition of Ls in (2.42), and the specific expression for Fs

in (2.43), we have,
Ls = (λ̇sλs−1)1; (2.44)

and since J̇s = JstrLs, we have

Ls =
1

3
(J̇sJs−1)1. (2.45)

2.7 Constitutive constraint between Js and cR

Now, (Js − 1) represents the change in volume per unit reference volume due to swelling caused by the
migrating cations. We assume that this change arises entirely due to the change in the concentration of the
hydrated cations, so that we have the important swelling constraint,

Js = 1 + Ω(cR − cR0), (2.46)

where

• Ω is the molar volume of the mobile hydrated cations,

and cR0 is the initial concentration of the cations which is equal to that of the fixed anions. Thus note that,

J̇s = ΩċR. (2.47)
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2.8 Free-energy imbalance revisted

Next, using (2.39), (2.42)2, and (2.6), we may write the stress power TR : Ḟ appearing in the free-energy
imbalance (2.37) as

TR : Ḟ = Js 1
2 (JeFe−1TFe−>) : Ċe + Js(JeFe>TFe−>) : Ls.

For convenience, we define two new stress measures

Te def
= JeFe−1TFe−> and Me def

= CeTe = JeFe>TFe−>, (2.48)

which we call the elastic second Piola stress and the Mandel stress, respectively. Then

TR : Ḟ = Js 1
2Te : Ċe + JsMe : Ls . (2.49)

Further, recalling (2.45) we may write (2.49) as

TR : Ḟ = Js 1
2Te : Ċe +

1

3
(tr Me)J̇s. (2.50)

Let

p
def
= −1

3
(tr Me) = Je

(
−1

3
tr T

)
, (2.51)

define a mean normal pressure. Then, using (2.51) and (2.47), the stress-power (2.50) may be written as

TR : Ḟ = 1
2 J

s Te : Ċe − pΩ ċR. (2.52)

Introducing a net chemical potential defined by

µnet

def
= µ− pΩ, (2.53)

we may rewrite the free-energy imbalance (2.37) under isothermal conditions as

ψ̇R − 1
2 J

s Te : Ċe − µnetċR − eR · ḋR + jR · ∇ω ≤ 0. (2.54)

Also the dissipation density (2.38) becomes

D = 1
2 J

s Te : Ċe + µnetċR + eR · ḋR − jR · ∇ω − ψ̇R ≥ 0. (2.55)

Remark. For brevity we have not discussed the transformation properties under a change in frame of the
various fields appearing in our theory. Here, we simply note that all quantities in the free energy imbalance
(2.54) are invariant under a change in frame (Gurtin et al., 2010).

2.9 Constitutive theory

Let Λ represent the list
Λ = {Ce, cR,dR} . (2.56)

Guided by the free energy imbalance (2.54), we begin by assuming constitutive equations for the free energy
ψR, the stress Te, the net chemical potential µnet, and the electric field eR of the form

ψR = ψ̂R(Λ), Te = T̂e(Λ), µnet = µ̂net(Λ), eR = êR(Λ). (2.57)

Then,

ψ̇R =
∂ψ̂R(Λ)

∂Ce
: Ċe +

∂ψ̂R(Λ)

∂cR
ċR +

∂ψ̂R(Λ)

∂dR

· ḋR . (2.58)
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Using (2.58) and substituting the constitutive equations (2.57) into the free-energy imbalance (2.54), we find
that it may be written as[

∂ψ̂R(Λ)

∂Ce
− 1

2J
s T̂e(Λ)

]
: Ċe +

[
∂ψ̂R(Λ)

∂cR
− µ̂net(Λ)

]
ċR +

[
∂ψ̂R(Λ)

∂dR

− êR(Λ)

]
· ḋR + jR · ∇ω ≤ 0. (2.59)

We assume constitutively that the free-energy delivers the stress Te, the net chemical potential µnet, and the
electric field eR through the state relations

Te = Js−1

(
2
∂ψ̂R(Λ)

∂Ce

)
, µnet =

∂ψ̂R(Λ)

∂cR
, eR =

∂ψ̂R(Λ)

∂dR

. (2.60)

Using (2.60) in (2.59) leads to the following dissipation inequality

D = −jR · ∇ω ≥ 0. (2.61)

2.10 Chemical potential and electrochemical potential

The thermodynamically-consistent constitutive equation (2.60)2, together with the definition (2.53) of µnet,
gives that the chemical potential for the cations,

µ =
∂ψ̂R(Λ)

∂cR
+ pΩ . (2.62)

and recalling (2.34) we have that the electrochemical potential ω is given by

ω =
∂ψ̂(Λ)

∂cR
+ pΩ + F φ . (2.63)

2.11 Dissipative constitutive equations

We assume that the flux jR depends linearly on the gradient ∇ω of electrochemical potential gradient, by a
Fick -type relation,

jR = −M(Λ)∇ω, (2.64)

with M the mobility tensor. A consequence of the species-transport inequality (2.61) is then that the
mobility tensor M is positive-semidefinite,

p ·M(Λ)p ≥ 0 for all p 6= 0. (2.65)

2.12 Specialization of the constitutive equations

The theory presented thus far is quite general. We now introduce special constitutive equations which should
be useful in applications. We limit our attention to materials which may be idealized to be isotropic.

2.12.1 Free energy

Henceforth we restrict our attention to materials for which the response function ψ̂(Λ) may be taken in the
separable form

ψ̂R(Ce, cR,dR) = ψ̂(mech)

R (Ce, cR) + ψ̂(es)

R (Ce, cR,dR) + ψ̂(mix)

R (Ce, cR). (2.66)

Here:

(i) ψ̂(mech)
R (Ce, cR) is a contribution to the change in the free energy due to the elastic deformation of the

host material, which is taken to be an isotropic function of Ce. An immediate consequence is that this
free energy function has the representation

ψ̂(mech)(Ce, cR) = ψ̃(mech)

R (ICe , cR), (2.67)
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with
ICe =

(
I1(Ce), I2(Ce), I3(Ce)

)
the list of principal invariants of Ce. Thus, from (2.60)1, it follows that the mechanical contribution
to the elastic second Piola stress Te is

Te(mech) = Js−1
(

2
∂ψ̃(mech)(ICe , cR)

∂Ce

)
, (2.68)

and that Te(mech) is an isotropic function of Ce. Then since the Mandel stress is defined by (2.48)2,
the mechanical contribution to the Mandel stress is

Me(mech) = CeTe(mech), (2.69)

we find that Te(mech) and Ce commute,

CeTe(mech) = Te(mech)Ce, (2.70)

and hence that the mechanical Mandel stress Me(mech) is symmetric. Next, the spectral representation
of Ce is

Ce =

3∑
i=1

λe 2
i rei ⊗ rei , (2.71)

where (re1, r
e
2, r

e
2) are the orthonormal eigenvectors of Ce and Ue, and (λe1, λ

e
2, λ

e
3) are the positive

eigenvalues of Ue. Instead of using the invariants ICe , this free energy may be alternatively expressed
in terms of the principal stretches and species concentration as

ψ̂(mech)

R (Ce, cR) = ψ̆(mech)

R (λe1, λ
e
2, λ

e
3, cR). (2.72)

Let

Ee def
= ln Ue =

3∑
i=1

Eei rei ⊗ rei , (2.73)

denote the logarithmic elastic strain with principal values

Eei
def
= lnλei , (2.74)

and consider an elastic free energy function of the form

ψ̆(mech)

R (λe1, λ
e
2, λ

e
3, cR) = ψ̌(mech)

R (Ee1 , E
e
2 , E

e
3 , cR). (2.75)

Then, straightforward calculations show that the Mandel stress is given by

Me(mech) = Js−1
3∑
i=1

∂ψ̌(Ee1 , E
e
2 , E

e
3 , cR)

∂Eei
rei ⊗ rei . (2.76)

With the logarithmic elastic strain defined by (2.73), and bearing in mind (2.75) and (2.76), for isotropic
elastic materials we henceforth consider a free energy of the form

ψ(mech)

R (Ce, cR) = ψ̄R(IEe , cR) (2.77)

with IEe a list of principal invariants of Ee, or equivalently a list of principal values of Ee. The Mandel
stress is then given by

Me(mech) = Js−1

(
∂ψ̄(mech)

R (IEe , cR)

∂Ee

)
, (2.78)

and the corresponding mechanical contribution to the Cauchy stress is

T(mech) = Je−1ReMe(mech)Re> = J−1Re

(
∂ψ̄(mech)

R (IEe , cR)

∂Ee

)
Re>, (2.79)
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and the Piola stress by

T(mech)

R

def
=
(
Re ∂ψ̄

(mech)
R (IEe , cR)

∂Ee
Re>

)
F−>. (2.80)

Next, as a simple specific form for ψ̄(mech)
R (IEe , cR) we take it to given by8

ψ̄(mech)

R (IEe , cR) = Js
[

1
2Ee :C[Ee]

]
, C def

= 2GI
sym +

(
K − 2

3G
)
1⊗ 1, (2.81)

where C is the elasticity tensor, with I
sym and 1 the symmetric fourth- and second-order identity

tensors, and the parameters
G > 0, K > 0, (2.82)

are shear modulus and bulk modulus, respectively.9 the concentration-independent shear modulus and
bulk modulus, respectively. The term

1
2Ee :C[Ee]

in (2.81) is a measure of the free energy per unit volume of the intermediate space defined by the
range of Fs(X), and multiplication of this term by Js gives us the free energy per unit volume of the
reference space.

(ii) ψ̂(es)
R (Ce, cR,dR) is an electrostatic or polarization energy. We consider a special form for this energy

(Suo, 2010),

ψ(es)

R = J

(
1

2ε
d · d

)
, (2.83)

which is isotropic in the deformed body, with ε > 0 a scalar constant representing the effective electrical
permittivity of the material, which in general could depend on the cation concentration, but we take
it to be a constant here. Since d = J−1FdR, we may express this free energy as

ψ(es)

R = J−1

(
1

2ε
dR ·CdR

)
. (2.84)

The effective electrical permittivity ε is often expressed as

ε = εr ε0 , (2.85)

where ε0 = 8.85× 10−12 F/m is a scalar representing the electrical permittivity of vacuum, and εr is a
relative electrical permittivity of the material.

(iii) ψ̂(mix)
R (Ce, cR ) is the change in free energy due to mixing of the migrating cations in the host material.

As a simple continuum approximation of this mixing energy we take it to be given by a concentrated
solution model of the form

ψ(mix)

R (cR) = µ0cR + (Rϑcmax
R ) [c̄ ln c̄+ (1− c̄) ln(1− c̄)] , (2.86)

where
c̄

def
=

cR
cmax
R

, 0 ≤ c̄ ≤ 1,

is a normalized species concentration, with cmax
R the concentration of the species in moles per unit

reference volume when all the accommodating sites in the host material are filled. Also R is the
universal gas constant, and ϑ is the absolute temperature, assumed to be constant in our isothermal
theory.

Thus, using (2.81), (2.84), and (2.86) in (2.66), a simple form of the free energy function which accounts for
the combined effects of finite elastic stretching, electrostatic interactions, mixing and swelling, is

ψR = Js
(

1
2Ee :C[Ee]

)
+ J−1

(
1

2ε
dR ·CdR

)
+ µ0cR + (Rϑcmax

R ) [c̄ ln c̄+ (1− c̄) ln(1− c̄)] . (2.87)

8This is a simple generalization of the classical strain energy function of infinitesimal isotropic elasticity to moderately large
stretches using the logarithmic elastic strain (Anand, 1979).

9In general, the elastic constants can depend on the cation concentration, but not much is known about this dependence, so
for simplicity we take it to be a constant.
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2.12.2 Electric field

From (2.60)3 and (2.87) the referential electric field is given by

eR =
1

ε
J−1CdR. (2.88)

Thus,
dR = ε JC−1eR. (2.89)

Further, using the conversion relations e = F−>eR and d = J−1FdR, we obtain that the spatial electric flux
density is given by

d = εe. (2.90)

2.12.3 Strain decomposition

From (2.39) and (2.43) we have that,
F = FeFs = λsFe, (2.91)

with the polar decompositions of F and Fe given by

F = RU and Fe = ReUe, (2.92)

where R and U are the orthogonal rotation and right stretch tensors respectively and Re and Ue are the
elastic rotation and right elastic stretch tensors. Thus,

RU = λsReUe. (2.93)

By the uniqueness of the polar decomposition we have,

R = Re and U = λsUe. (2.94)

Then, defining the total logarithmic strain measure as

E
def
= ln U, (2.95)

we obtain, using (2.43) and (2.46), that the total logarithmic strain may be decomposed as the sum of an
elastic strain and a chemical swelling strain,

E = Ee + lnλs1

= Ee︸︷︷︸
elastic strain

+
1

3
ln(1 + Ω(cR − cR0))1︸ ︷︷ ︸

chemical strain

. (2.96)

2.12.4 Stress

Mechanical contribution to the stress

From (2.78) and (2.87), the mechanical contribution to the Mandel stress is

Me(mech) = 2GEe + (K − (2/3)G)(tr Ee)1. (2.97)

Then, using (2.79) we find that the mechanical contribution to the Cauchy stress r is given by

T(mech) = Je−1
[
2GEe

H + (K − (2/3)G)(tr Ee
H)1
]
. (2.98)

Hence the mechanical contribution to the Piola stress, T(mech)
R = JT(mech)F−>, is given by

T(mech)

R = Js
[
2GEe

H + (K − (2/3)G)(tr Ee
H)1
]
F−>. (2.99)
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In (2.98) and (2.99) we have used the notation

Ee
H

def
= ln Ve (2.100)

for the logarithmic elastic strain in the deformed body. Recalling (2.96), we can similarly decompose the
spatial Hencky strain into elastic and chemical parts, viz.

EH = Ee
H +

1

3
ln [1 + Ω(cR − cR0)] 1 where EH = ln V,

and hence write (2.98) as,

T(mech) = Je−1
[
2GEH + (K − (2/3)G)(tr EH)1−K ln [1 + Ω(cR − cR0)] 1

]
. (2.101)

Electrostatic contribution to the stress

Since
J−1 = Je−1Js−1 = Je−1(λs)−3 and C = (λs)2Ce,

we may rewrite (2.84) as

ψ(es)

R =
(λs)−1

2ε
Je−1 (dR ·CedR) , (2.102)

From (2.60)1 and (2.102) the electrostatic contribution to the elastic second Piola stress is

Te(es) = Js−1

(
2

(λs)−1

2ε

[
∂Je−1

∂Ce
(dR ·CedR) + Je−1

∂

∂Ce
(dR ·CedR)

])
.

Using,
∂Je−1

∂Ce
= − 1

2J
e−1Ce−1. (2.103)

and
∂

∂Ce
(dR ·CedR) = dR ⊗ dR. (2.104)

we obtain

Te(es) = J−1(λs)−1

(
1

ε

[
dR ⊗ dR − 1

2Ce−1 (dR ·CedR)
])

. (2.105)

Hence the electrostatic contribution to the Cauchy stress, T(pol) = Je−1FeTe(pol)Fe>, after a bit of algebra
is,

T(es) = ε
[
e⊗ e− 1

2 (e · e)1
]
, (2.106)

which is the usual form of the Maxwell stress.

Total stress

Using (2.101) and (2.106), the total Cauchy stress is then given by,

T = Je−1
[
2GEH + (K − (2/3)G)(tr EH)1−K ln [1 + Ω(cR − cR0)] 1

]
︸ ︷︷ ︸

chemo-mechanical stress

+ ε
[
e⊗ e− 1

2 (e · e) 1
]︸ ︷︷ ︸

Maxwell stress

,

(2.107)
and since TR = JTF−>, the total Piola stress is

TR = Js
[
2GEH + (K − (2/3)G)(tr EH)1−K ln [1 + Ω(cR − cR0)] 1

]
F−>︸ ︷︷ ︸

chemo-mechanical stress

+ εJ
[
e⊗ e− 1

2 (e · e) 1
]
F−>︸ ︷︷ ︸

Maxwell stress

.

(2.108)
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2.12.5 Electrochemical potential

Aside: Recall,

ψR = Js
(

1
2Ee :C[Ee]

)
+ J−1

(
1

2ε
dR ·CdR

)
+ µ0cR + (Rϑcmax

R ) [c̄ ln c̄+ (1− c̄) ln(1− c̄)] . (2.109)

Then

∂ψR

∂cR
= Ω

[
1
2Ee :CEe

]
+

∂

∂cR

(
J−1

(
1

2ε
dR ·CdR

))
+ µ0 +Rϑ ln

(
c̄

1− c̄

)
.

Since,

∂

∂cR

(
J−1

(
1

2ε
dR ·CdR

))
=

∂

∂cR

(
Je−1Js−1λs2

(
1

2ε
dR ·CedR

))
=

∂

∂cR

(
Je−1Js−1/3

(
1

2ε
dR ·CedR

))
= − 1

6ε
Je−1Js−4/3Ω (dR ·CedR) ,

and since
dR = εJF−1e = εJeJsλs−1Fe−1e = εJeJs2/3Fe−1e ,

we have

∂

∂cR

(
J−1

(
1

2ε
dR ·CdR

))
= − 1

6ε
Je−1Js−4/3Ω

(
εJeJs2/3

)2

(Fe−1e ·CeFe−1e) ,

= −1

6
εJeΩ (e · e) ,

and hence,

∂ψR

∂cR
= µ0 +Rϑ ln

(
c̄

1− c̄

)
+ Ω

[
1
2Ee :CEe

]
− 1

6
εJeΩ (e · e) .

Therefore, the electrochemical potential is given by

ω = µ0 +Rϑ ln

(
c̄

1− c̄

)
+ Ωp+ Fφ + Ω

[
1
2Ee :CEe

]
− 1

6
εJeΩ (e · e)

Next,

p = Je
(
−1

3
tr T

)
= −1

3
K (tr EH − ln Js) +

1

6
ε Je e · e

= −1

3
K (tr Ee

H) +
1

6
ε Je e · e

and hence

ω = µ0 +Rϑ ln

(
c̄

1− c̄

)
+ Ω

(
−1

3
K tr Ee

H

)
+ Fφ + Ω

[
1
2Ee :CEe

]
.

Further, using (2.60)2, (2.63), (2.87), the electrochemical potential ω is given by

ω = µ0 +Rϑ ln

(
c̄

1− c̄

)
+ Ω

(
−1

3
K tr Ee

H

)
+ Fφ + Ω

[
1
2Ee :CEe

]
. (2.110)
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Henceforth, we set the reference chemical potential µ0 to zero and we neglect the effects of the last term
in (2.110), which is of quadratic order in the elastic strain Ee and anticipated to be smaller in magnitude
than the other terms, in which case (2.110) reduces to

ω = Rϑ ln

(
c̄

1− c̄

)
+ Ω

(
−1

3
K tr Ee

H

)
+ F φ . (2.111)

2.12.6 Species flux

We assume that the spatial flux j of the hydrated cations depends only on the spatial gradient of its electro-
chemical potential and given by,

j = −Ms(c) gradω, (2.112)

with a spherical spatial mobility tensor
Ms(c) = m(c)1, (2.113)

where

m(c) =
Dc(1− c̄)

Rϑ
≥ 0 (2.114)

is a positive-valued scalar mobility at a given temperature ϑ, with D > 0 representing a cation diffusion
coefficient with units of [m2/s], and

c = J−1cR (2.115)

is the species concentration per unit volume of the deformed body.

2.12.7 Generalized Nernst-Planck equation

Next, from (2.111),

gradω =
Rϑ

c(1− c̄)
grad c+ Ωgrad p+ Fgradφ, (2.116)

and hence using (2.112), (2.114), and (2.116) the flux of the mobile species in the deformed body is given by

j = −D
[
grad c+

(
Fc(1− c̄)

Rϑ

)
gradφ+

(
Ωc(1− c̄)

Rϑ

)
grad p

]
. (2.117)

This equation has the same form as the Nernst-Planck equation commonly used to describe the migration
of a chemical species in a fluid under an electric field. It describes the flux of ions as the sum of the
diffusive component which is related to the gradient of the concentration, grad c, and a migrative component
associated with the gradient of the electric potential gradφ, and another migrative component associated
with the gradient of the mechanical pressure grad p.
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2.13 Governing partial differential equations expressed spatially

1. Equation of equilibrium:

The equation of equilibrium in the absence of body forces is,

divT = 0, (2.118)

where the Cauchy stress T is given by (2.107).

2. Gauss’s law:

This is given by
divd = q with q = F (c− c0), (2.119)

with d given by (2.90). Equation (2.119) for a homogeneous material may be written as

∆φ = −F
ε

(c− c0) , (2.120)

with the effective electrical permittivity ε given by

ε = εr ε0 , (2.121)

where εr is a relative electrical permittivity, and ε0 = 8.85× 10−12 F/m is the electrical permittivity of
vacuum.

3. Mass balance:

Mass balance for the migrating cationic species is given by

ċR = −Jdivj, (2.122)

with j given by (2.112), viz.

j = −
(
Dc(1− c̄)

Rϑ

)
gradω, (2.123)

with the electrochemical potential ω given by (2.111).

2.14 Boundary and initial conditions

Next, we consider the boundary conditions.

1. Boundary conditions for the partial differential equation (pde) governing the mechanical
displacement:

With the spatial description of displacement given by u(x, t) = x − χ−1(x, t), let Su and St be com-
plementary subsurfaces of the boundary ∂Bt of the body Bt. Then for a time interval t ∈ [0, T ] we
consider a pair of boundary conditions:

u = ŭ on Su × [0, T ],

Tn = t̆ on St × [0, T ].
(2.124)

In the boundary conditions above ŭ and t̆ are prescribed functions of x and t.

2. Boundary conditions for the pde governing the electric potential:

Let Sφ and S$ be complementary subsurfaces of the boundary ∂Bt of the body Bt. Then for a time
interval t ∈ [0, T ] we consider a pair of boundary conditions:

φ = φ̆ on Sφ × [0, T ],

−d · n = $̆ on S$ × [0, T ].
(2.125)

In the boundary conditions above φ̆ and $̆ are the prescribed electric potential and surface charge
density.
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3. Boundary conditions for the pde governing the mass balance:

With Sω and Sj complementary subsurfaces of the boundary ∂Bt of the body Bt we consider a pair of
boundary conditions:

ω = ω̆ on Sω × [0, T ],

−j · n = j̆ on Sj × [0, T ],
(2.126)

with ω̆ and j̆ prescribed electrochemical potential and cation flux.

The initial data is taken as

u(X, 0) = 0, and φ(X, 0) = φ0,

and we require that initially charge neutrality hold, so that

cR(X, 0) = cR0(X, 0) ≡ cR0︸︷︷︸
fixed

, (2.127)

which will impose appropriate initial conditions on the corresponding electrochemical potential,

ω(X, 0) = ω0(X).

2.15 Numerical implementation

We have numerically implemented our theory as a user-element (UEL) subroutine in the implicit finite
element program Abaqus/Standard (Abaqus, 2017) by following the implementation procedures detailed in
Chester et al. (2015). We have developed our UEL for four-noded axisymmetric and plane-strain quadrilateral
elements as well as eight-noded full 3-D hexahedral elements.

3 Application of the theory to Nafion-based IPMCs

In this section we apply our theory to model the response of Nafion-based IPMCs:

• We first calibrate the material parameters in the theory by using results from certain experiments using
step-voltage inputs reported by Nguyen et al. (2007).

• We then show the predictive capabilities of the calibrated model for a sinusoidal voltage inputs by
comparing the results from simulations against corresponding experiments also reported in Nguyen
et al. (2007) on the same IPMC.
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3.1 Material parameters

We have estimated the material parameters in our theory for a Nafion-based IPMC by attempting to simulate
the results from the following experiments using step-voltage inputs reported by Nguyen et al. (2007):

• Curling of a cantilevered beam (cf. Section 3.2), and

• Blocking force response of a constrained beam (cf. Section 3.3).

The calibrated list of material parameters is summarized in Table 1.10

Table 1: Material parameters for a Nafion-based IPMC at room temperature ϑ = 298K.

Material parameter Value Units

E 78 MPa

ν 0.3 -

Ω 1.04× 10−4 m3/mol

D 1.3× 10−11 m2/s

c0 1,500 mol/m3

cmax
R 10,000 mol/m3

εr 120 -

Remarks: Our rationales for this choice for the values of the material parameters is briefly discussed below.

• Values of the Young’s modulus E,11 the molar volume Ω, and the diffusivity D for the membrane are
all calibrated to fit the experiments described in Sections 3.2 and 3.3.

• The Young’s modulus for a hydrated Nafion membrane is reported in the literature (cf., e.g., Nemat-
Nasser, 2002; Kim and Shahinpoor, 2003; Satterfield and Benziger, 2009) to be in the range of 50-
200 MPa. Our calibrated value of 78 MPa lies well in this range. For the Poisson’s ratio, we have
chosen a standard value of 0.3.

Also, since there is not much information available regarding the mechanical properties of platinum-
infused electrode regions, for simplicity we take the stiffness of the electrodes to be identical to that
of the bulk electrolyte.12

• Our calibrated value of molar volume for the hydrated lithium ions in the Nafion membrane is Ω =
1.04 × 10−4 m3/mol. This value is higher in comparison to the molar volumes of lithium metal and
water which are 1.3× 10−5 and 1.8× 10−5 m3/mol, respectively.

• The calibrated value of the diffusivity parameter D is ∼ 10−11 m2/s, which is in the range of expected
values for room temperature diffusivities.

• The proton capacity of the synthesized Nafion membrane reported in Nguyen et al. (2007) is 0.95
mmol/g. Given the density of Nafion is about 1.58 g/cm3 (Zook and Leddy, 1996), the initial cation
concentration can be estimated as c0 ≈ 1, 500 m3/mol.

• We use cmax
R = 10, 000 mol/m3 for the saturation value of the concentration of cations. Similar con-

centration saturation values have been used in the literature for other Li+ systems (cf., e.g., Salvadori
et al., 2015).

10We have used these material parameters in all the simulations of Nafion-based IPMCs reported in this paper.
11E = 9KG/(3K +G), and ν = (3K − 2G)/2(3K +G).
12The micrographs reported by Nemat-Nasser (2002) show that the volume fraction of platinum particles in the infused

electrode regions is quite small. These sparsely distributed platinum particles are not expected to contribute to a large change
in the stiffness of the electrode regions relative to that of the bulk of the Nafion membranes.
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• The relative permittivity of Nafion was reported as εr ≈ 120 in Wallmersperger et al. (2008a) using
electrical measurements on a Nafion-dielectric based capacitor.

Dimensional analysis of the Poisson equation (2.120), viz.

∆φ = − F

εrε0
(c− c0) , (3.1)

leads us to certain conclusions. Normalising the potential φ by the “thermal volt” Rϑ/F and the
spatial concentration of cations c by the initial concentration c0,

φ∗
def
=

φ

(Rϑ/F )
, c∗

def
=

c

c0
, (3.2)

we may rewrite (3.1) as
2λ2

Debye∆φ
∗ + (c∗ − 1) = 0, (3.3)

where the length scale

λDebye

def
=

√
εrε0Rϑ

2F 2c0
(3.4)

is commonly called the Debye length. In numerical simulations we have to contend with trying to
resolve two boundary layers, one close to the top surface of the membrane and one near the bottom
surface, where the cation concentration is significantly different from the fixed anion concentration.
These regions over which deviation from electroneutrality occurs are of the order of a few Debye
lengths in thickness. Unfortunately these boundary layers are only ∼ 1.5 nm thick, and the resolution
of such thicknesses in a 300 micron thick membrane is computationally not tractable. To overcome this
numerical difficulty, in our simulations we have modified (2.120) by introducing a numerical permitivity
factor εnum,

∆φ = − F

εnumεrε0
(c− c0) , (3.5)

so that

λDebye,num
def
=

√
εnumεrε0Rϑ

2F 2c0
(3.6)

represents a numerically enhanced Debye length. We have used a value of εnum = 107 in our simulations,
and in this case the thickness of boundary layers is increased to ∼ 5µm which represents about ∼ 1.5%
of the total membrane thickness — and therefore resolvable with a computationally tractable number
of finite elements. An additional discussion of the use of the εnum factor is given in Appendix A.

We emphasize that:

– We have used the εnum factor only in the Poisson equation (3.5).

– We do not use this factor in equation (2.107) for the Cauchy stress, which would artificially
enhance the effects of the Maxwell stress.

20



3.2 Curling response of a cantilevered Nafion IPMC beam subjected to a step-
voltage

Nguyen et al. (2007) have reported on several experiments on Nafion-based IPMCs with mobile Li+ cations,
and platinum-infused electrodes. Fig. 2 shows a schematic of their cantilevered beam specimens subjected
to a “step” voltage input. The beams in their experiments had a total length of 20 mm, a width of 5 mm,
and a thickness of 300µm. The electrodes were reported to be 7-8 µm thick, so in our simulations we have
used an electrode thickness of 7.5µm. In our simulations we model the beam under plane-strain conditions,
and do not permit any flux of cations at the boundaries of the membrane. The lower electrode is grounded,
i.e. set to a reference voltage of 0 V. As shown in Fig. 2(b), a step voltage input of 3 V is applied on the
upper surface and held fixed for a time period of 20 s.13

Figure 2: Curling of a cantilevered beam: (a) schematic of the initial geometry; (b) voltage input.

The finite element mesh employed in our calculations is shown in Fig. 3. The mesh for the membrane
consists of 300 uniformly spaced elements across its length, and 120 elements across its thickness with a
biased spacing. The density of elements is higher towards the top and bottom surfaces of the membrane,
with successive element sizes of ratio 1.07. The higher mesh density at the two ends of the membrane is
used to resolve the large gradients in electrostatic potential and cation concentration at the boundaries, as
we discuss in the rest of this section. The meshes for the two electrodes each consist of 4 uniformly spaced
elements across their thickness, and 300 uniformly spaced elements along their length.

Figure 3: Scale drawing of the IPMC actuator under study with detailed view of the mesh.

13In our simulations we use a 1 ms “smooth step” amplitude profile to apply the step in electric potential. This amplitude
profile is a modified ramp function whose first and second time derivatives are zero at t = 0 and t = 1 ms.
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Figs. 4(a) and (b) respectively show the variation of the electrostatic potential φ and the normalized
cation concentration c̄ across the thickness of the membrane at time t = 1 ms when the voltage has just been
ramped up to 3 V. In these plots, the field of interest is plotted on the horizontal axis and the membrane
thickness is plotted on the vertical axis, such that the lower end of the plot at y = 0 represents the bottom
surface of the membrane while the upper end of the plot at y = 300µm represents the top surface of the
membrane. At this instant, Fig. 4(a) shows that the variation of φ is nearly linear and thus the electric field
is a constant pointing from the top surface to the bottom. Fig. 4(b) shows that normalized concentration
through the membrane thickness is still unchanged from its initial value of c̄ = 0.15.

Figure 4: Profiles of: (a) electrostatic potential φ, and (b) normalized concentration c̄ across the thickness
of the membrane at t = 1 ms when the voltage has just been ramped up to 3 V.

The gradient in the electric potential drives the migration of the cations from the top of the membrane to
the bottom of the membrane. The resulting concentration profile in the membrane evolves over time. The
variation in the normalized concentration c̄ across the thickness of the membrane is shown in Fig. 5(a)-(f)
at different instants of time. Fig. 5(a) shows that at 10 ms, there is a small increase in the concentration c̄
near the bottom, and a decrease near the top. As time evolves, larger deviations of c̄ from its initial value
of 0.15 can be observed as shown in Fig. 5(b) through (f). The value of c̄ cannot exceed a value of 1, nor
can it be lower than 0. When these limiting values are reached at the boundaries, further migration of ions
results in depleted regions at the top with c̄ = 0 — see Fig. 5(d)-(f), and saturated regions at the bottom
with c̄ = 1 — see Fig. 5(e)-(f). The large gradients in the concentration of cations exist over a few (three to
five) Debye lengths, . 5 µm, at all instants. Over the bulk of the electrolyte, the concentration of cations
remains close to the initial values, which is the same concentration as the fixed anions. The redistribution
of cations ceases after ∼ 12 s, and the membrane reaches a steady state shown in Fig. 5(f) at a time of 20 s.

The simultaneous evolution of the electrostatic potential φ in the membrane is shown in Fig. 6. Initially,
the electrostatic potential distribution is nearly linear, with a small non-linearity starting to appear at 750 ms
at the boundaries; cf. Fig 6(c). After 1.5 s, cf. Fig. 6(d), the non-linear variation in φ at the boundaries
becomes evident. There are larger gradients in the potential in the boundary regions than in the bulk,
especially at the upper boundary where a substantial depleted region has developed at this instant (see
Fig. 5(d)). With increasing time the electric potential gradient at the boundaries becomes increasingly
larger than the gradient in the bulk, and the width of this region also increases. At steady state, shown
in Fig. 6(f), the electric potential is nearly constant in the bulk of the membrane, while all the changes in
potential occur in the regions where the concentrations deviated from the initial value in Fig. 5(f).
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Figure 5: Variation of the normalized concentration c̄ through the thickness of the membrane at: (a) 10 ms,
(b) 400 ms, (c) 750 ms, (d) 1.5 s, (e) 7 s, (e) 20 s.

Figure 6: Electrostatic potential variation through the thickness of the beam at (a) 10 ms (b) 400 ms (c)
750 ms (d) 1.5 s (e) 7 s (e) 20 s.
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The grey-blue lines in Figs. 7(a) and (b), taken from Nguyen et al. (2007), show the experimentally
observed initial and curled shapes of a cantilevered Nafion IPMC membrane at times t = 0 s and t = 20 s.
The overlayed bright green lines in these figures show the corresponding results from our simulations. As
described earlier, the concentration of the hydrated cations in the membrane evolves with time in response to
the applied step voltage. As the concentration of the cations increases near the bottom of the membrane it
is accompanied by chemical expansion; cf. eq.(2.96). Similarly the upper part of the membrane experiences
compressive strains since the cation concentration in this region decreases as time increases. This differential
swelling leads to a bending deformation in the specimen towards the top electrode (the anode). The amount
of curling of the cantilevered beam at 20 s depends strongly on the value of the molar volume Ω of the
hydrated cations and also the stiffness of the membrane, with the former being the more dominant factor.
We calibrated the value of Ω in our theory to fit the experimentally observed deformed geometry shown in
Fig. 7(b). The excellent fit of the curled shape seen in Fig. 7 was obtained for a value of

Ω = 1.04× 10−4 m3/mol,

together with of course the values of the other material parameters listed in Table 1.

Figure 7: This figure, adapted from Nguyen et al. (2007) shows the experimentally observed shapes of a
cantilevered Nafion IPMC membrane at: (a) t = 0 s and (b) t = 20 s. The overlayed bright green lines are
the corresponding results from our simulations (color online).

• A movie of the time-dependent bending deformation of the beam from our simulations is shown in
Supplementary Video 1.

Remark. Before closing this section we note that the effect of the Maxwell stress on curling of an IPMC
beam is negligible in comparison to the effect of the chemo-mechanical stress. In order to verify this asser-
tion, we have repeated the simulation of the curling of a cantilevered beam by: (i) including the Maxwell
stress term, as discussed above, and by (ii) completely suppressing the Maxwell stress term by setting the
electrostatic stress in eq. (2.106) to zero, T(es) = 0. Fig. 8 shows the history of the x- and y-direction
displacements of the tip (the middle node of the free edge) of the beam from these two simulations.14 The
results from the two simulations are nearly identical, which demonstrates that the Maxwell stress with the
actual value of the permittivity ε = εrε0 does not have a significant influence on the response of the beam.

14The peak in the y-displacement of the tip is due to the large curling of the IPMC — as the curled actuated shape evolves
beyond a semi-circle, the y-displacement changes direction even though the overall actuation has not changed direction.
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Figure 8: Displacement history of the tip (middle node of right edge) in both the x- and y-directions for
simulations with and without inclusion of the Maxwell stress.

3.3 Blocking force response of a constrained Nafion IPMC beam subjected to
a step-voltage

Nguyen et al. (2007), using a Nafion IPMC specimen similar to that discussed in the previous subsection,
also measured the blocking force generated by the beam under the same step-actuation voltage, but using a
constrained geometry shown schematically in Fig. 9(a). The right edge of the specimen is free to rotate and
also to translate in the horizontal direction, but it is constrained not to move in the vertical direction. We
have numerically simulated such an experiment. As in the previous simulation, the voltage is ramped up to a
value of 3 V over a period of 1 ms and held constant thereafter; cf. Fig. 2(b). The evolution of the profiles of
the cation concentration c̄ and electric potential φ are similar to those described in the previous subsection.
However, here, since the right end of the beam is constrained, the beam cannot undergo free bending as in
the previous case. The deformed geometry of the constrained beam specimen from our simulation at steady
state is shown in Fig. 9(b).

• A movie of the simultaneous evolution of the blocking force and the deformation of the specimen from
our simulations is shown in Supplementary Video 2.

Figure 9: (a) A schematic of the geometry and boundary conditions for the constrained beam for the
blocking force simulation. (b) Numerically predicted deformed shape of the IPMC beam at steady state.
The horizontal dashed line indicates the axis of the actuator in the undeformed configuration.
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The force exerted by the beam on the support maintaining the constraint in the vertical direction was
measured and reported in Nguyen et al. (2007); it is shown in Fig. 10 as the black circles. The solid line in this
figure is the corresponding result from our simulation. Starting from zero, the blocking force increases during
the time over which the cation redistribution occurs. In our simulations the blocking force increases and
then saturates at a constant value once steady state is reached. However in their experiments, Nguyen et al.
observed some relaxation which they attributed to loss of solvent molecules from the hydrated membrane
to the surrounding environment. In our model we have not accounted for this second-order loss of water
molecules to the surroundings, and hence we concentrate here only on the steady state response for our
material parameter calibration efforts.

Two important features of the blocking force evolution shown in Fig. 10 are: (i) the peak force, and
(ii) the amount of time taken to reach this value. Our simulations show that the value of the peak force
is strongly dependent on the value of the stiffness E of the membrane, as well as the molar volume Ω of
the hydrated cations. Since we have already calibrated a value for Ω in the previous subsection, we used
the magnitude of the peak force to calibrate the stiffness E of the membrane. Also, we used the time to
reach given peak force to calibrate a value of the diffusivity D of the the hydrated cations. As seen from the
comparison plot in Fig. 10, the calibrated values of

E = 78 MPa and D = 1.3× 10−11 m2/s,

fit the experimental response quite well.

Figure 10: Blocking force response from our simulations shown as the solid line and the experiments of
Nguyen et al. (2007) shown as black filled circles.

3.4 Predictive capability of the calibrated model

With the material parameters of the theory calibrated in the previous two sections, in this section we check
the predictive capability of the theory for modeling the response of a cantilever IPMC beam to a sinusoidal
voltage input. Specifically, we simulate the response of an unconstrained cantilevered beam — as in Fig. 4(a)
— in which we prescribe a 1 Hz sinusoidal actuation voltage of an amplitude of 3 V, and compare the predicted
response against the corresponding experimental response reported in Nguyen et al. (2007).

The numerically-predicted tip displacement is shown in Fig. 11 for the first 60 cycles. The displacement
in the positive and negative directions over the first few cycles is evidently not symmetric about the zero tip
displacement state. This is because the initial polarity of the applied voltage biases the deformation. With
an increasing number of cycles the asymmetry gradually decreases as the influence of the initial state decays
out. After about 50 cycles, the tip displacements have reached a steady-state response, which is shown in
Fig. 12. At steady state the displacements are sinusoidal with the same frequency as the input voltage.
Since there is a time delay associated with the migration of the cations following an applied voltage and the
subsequent bending deformation (which is a result of the cation redistribution), Fig. 12 shows that there is
a consistent phase lag between the output displacements and the input voltage.
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Figure 11: Tip displacement response over 60 cycles for a cantilevered beam subjected to a 0 to 3 V, 1 Hz
sinusoidal voltage input.

Figure 12: Tip displacement response from 50-60 cycles for a cantilevered beam subjected to a 0 to 3 V, 1 Hz
sinusoidal voltage input.

• Supplementary Video 3 shows the steady-state deformation of the cantilevered beam in response to
the sinusoidal voltage input from our simulations.

In Fig. 13 we show a comparison of our prediction of the steady-state tip displacement against the
corresponding experimental response reported in Nguyen et al. (2007). The agreement is excellent. The
satisfactory prediction of the response in this experiment serves as a (partial) validation of the predictive
capabilities of our theory and numerical simulation capability.
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Figure 13: Comparison of predicted tip displacement at steady state against the experimentally-measured
response (Nguyen et al., 2007).

4 Actuator Applications

To demonstrate the robustness of our numerical simulation capability, in this Section, using the eight-noded
hexahedral finite-element implementation of our theory, we carry out full 3D simulations of two soft-robotics
applications with some geometric complexity: (i) aquatic fins, and (ii) grippers.

4.1 Bio-inspired aquatic fin actuator

By embedding IPMC strip actuators into a soft “boot” material to create an active control surface —
called a “fin”, Palmre et al. (2013) have demonstrated the use of IPMCs in the design of bio-inspired fins.
Depending on the orientation and placement of the actuators in the “boot”, such fins can be used to realize
complex deformations. In a particular realization of their bio-mimetic fin, they measured a maximum tip
displacement of approximately 44 mm, and a twist angle which exceeded 10◦. Fig. 14(a) shows a photograph
of their experimental set-up of a fin, and Fig. 14(b) shows two views depicting twisting angle achieved in their
experiments. Also, see https://www.youtube.com/watch?v=qFV65SmFHLA for a video of their fin actuator.
Their results suggest that such active fin designs can be used for developing active propeller blades or control
surfaces on underwater vehicles.
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Figure 14: (a) Photograph of the experimental set-up of a fin made from a silicone boot with embedded
IPMC actuators, from Palmre et al. (2013). (b) Two views depicting the twisting angle achieved by Palmre
et al. in their experiments.

In this Section we report on our simulations of bending and twisting of a fin made from two Nafion IPMC
actuators embedded in a silicone-based elastomeric matrix — the “boot”.15 A schematic of our simulation
setup is shown in Fig. 15. The elastomeric boot has dimensions of 20 mm × 20 mm × 0.3 mm, and the two
embedded IPMC actuators are each of dimensions 15 mm× 3 mm× 0.3 mm with an in plane separation of 8
mm. The two IPMC actuators can be individually controlled such that:

• When voltage inputs of positive polarity are applied on both IPMCs, then it results in upward bending
of the fin.

• When voltage inputs of negative polarity are applied on both IPMCs, then it results in downward
bending of the fin.

• When a positive voltage input is applied on one IPMC and a negative voltage to the other, it results
in a twisting motion of the fin, since the individual IPMCs tend to move the fin in opposite directions.

Simulations of the deformed geometry of the fin under different applied positive and negative voltages of
magnitude 1 V on each of the two IPMCs is shown in Fig. 16.

• A video of the simulations of the response of the fin to these different input voltages is provided as the
file Supplementary Video 4.

15The silicone elastomer is modeled as an almost incompressible neo-Hookean material with a shear modulus of 1 MPa.
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Accurate control of the geometry of the fin through the application of suitable input voltages makes such a
system of use as a control surface for both underwater and aerial robotics applications.

Figure 15: Schematic of a fin showing two Nafion-based IPMC actuators embedded in a silicone boot.

Figure 16: Deformed configurations of the fin for different applied voltages on the two actuators: (a) both
input voltages positive; (b) negative voltage input on the left IPMC and positive input on the right IPMC;
(c) both input voltages negative; and (d) positive input voltage on the left IPMC and negative input on the
right IPMC.

4.2 A micro-gripper

In their classic 1998 review paper, Shahinpoor et al. (1998) showed an application of IPMCs which emulates
a gripper with “fingers”. Fig. 17(a) from their paper shows a gripper that uses IPMC fingers. The fingers
are shown as vertical gray plates and the electrical wiring, where the films are connected back-to-back, can
be seen in the middle portion of Fig. 17(a). This gripper was mounted on a 5 mm diameter graphite/epoxy
composite rod to emulate a light-weight robotic arm. Upon electrical activation the fingers of the gripper
can bend either inward or outward — similar to the operation of a hand — and thus close or open the
gripper fingers as desired. Their four-finger gripper shown in Fig. 17(a) was able to lift a mass of 10.3 g. The
demonstration of this gripper’s capability to lift a rock was intended to pave the way for a potential future
application of the gripper to planetary sample collection tasks — such as Mars exploration — where the low
mass and low power consumption of an IPMC-based gripper offers distinct performance advantages.
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Figure 17: (a) An IPMC-based gripper from Shahinpoor et al. (1998). (b) The geometry of a three-finger
IPMC-based gripper used in our simulation.

In this section we simulate the response a Nafion-based IPMC-based gripper similar to the one demon-
strated by Shahinpoor et al. (1998), but with three-arms as shown in Fig. 17(b). The three IPMC actuators
are each of dimensions 20 × 3 × 0.3 mm. We simulate a pick-and-place operation of a hexagonal object of
mass 0.05 g, from one platform to another. The hexagonal object is henceforth called the “specimen”. The
contact conditions between the IPMC fingers and the specimen are modeled as frictional contact with a
Coulomb friction coefficient of 0.3.

• A video of the simulation of the pick-and-place operation is shown in Supplementary Video 5.

Fig. 18 shows snapshots of the gripper and specimen at various stages of the simulation. The initial
position is shown in Fig. 18(a). As the gripper is moved toward the specimen, a positive voltage is applied
on the outer surfaces of the IPMCs while keeping the inner surfaces grounded, which results in an outward
curling of the individual IPMCs which opens the fingers of the gripper as it descends towards the specimen,
Fig. 18(b). After the gripper is positioned to grab the specimen, the polarity of the applied voltage is
reversed to close the fingers resulting in frictional contact with the specimen, as shown in Fig. 18(c). The
frictional forces overcome the weight of the specimen as it is lifted and then manually moved by translating
the gripper assembly towards the second platform, as shown in Fig. 18(d) and (e). Finally, the polarity of
applied gripping voltage is reversed again which results in a curling of the fingers in the opposite direction
so that the specimen is released, after which the gripper moves away, as shown in Fig. 18(f).
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Figure 18: Snapshots of the IPMC-based gripper at various stages of the pick-and-place simulation. For
ease of viewing of the contours of electric potential on the three IPMC “fingers”, the electrodes have been
excluded from these images.

5 Concluding remarks

We have formulated and numerically-implemented a coupled theory of electro-chemo-elasticity, and applied
it to model the actuation response of ionic polymer-metal composites (IPMCs). We have estimated the
material parameters appearing in our theory using experimental data for step-input voltages available in the
literature, and shown that the predictions from our calibrated theory are in good agreement with other data
obtained from experiments using sinusoidal voltage inputs. We have also demonstrated the utility of our
simulation capability by conducting full three-dimensional simulations of:

• A bio-inspired “fin” which should be useful as a control surface for both underwater and aerial robotics
applications.

• A gripper for use as an end-effector of a small low-mass robotic arm for pick-and-place operations.

While our study represents a reasonable advance in the modeling of IPMCs, it is far from complete.
Predicting the deformation response or sensing signal of an IPMC is a difficult task, and at present there
is no single all-encompassing predictive theory. In part this is due to the many possible different types of
IPMCs — based on different compositions of the backbone ionomer, the nature of the counterions, and
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the different solvents — and the variability in performance between samples of IPMC materials (cf., e.g.,
Nemat-Nasser, 2008; Jo et al., 2013; Minaian et al., 2021).

An important physical phenomenon that we have not considered in our work is the phenomenon of “back-
relaxation” (cf., e.g., Asaka et al., 1995; Nemat-Nasser, 2008). As we noted in the Introduction section of
this paper,16 Nafion-based IPMCs with alkali metal cations invariably first bend towards the anode under a
step voltage, and then relax back towards the cathode while the applied voltage is being maintained. In this
paper we restricted our attention to the small time-scale response of IPMCs, and did not attempt to model
this complex phenomenon of “back-relaxation” which occurs at long time scales. The generally accepted view
for the physical mechanisms responsible for back-relaxation focus on the slow water flow within the ionomer
(Shahinpoor and Kim, 2004). However, in our view, a clear explanation and a model for back-relaxation
effects — that is widely agreed upon — is not yet available. Some physical mechanisms that need to be
considered in modeling of back-relaxation and the long term response of IPMCs include:

• Diffusion of the solvent within the membrane, and across its boundaries because of dehydration effects.

• Viscoelasticity of the polymer membrane.

• Electro-chemical reactions at the interface of the membrane with the electrode.

We leave such a modeling effort to future work
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A The numerical permittivity factor εnum

In this Appendix we provide an additional discussion of the use of the numerical factor εnum introduced in
the Poisson equation (3.5). Specifically we study the effects of a variation in the value of εnum.

We first solved a purely electrochemical problem using the setup described in Section 3.2 for the response
of a cantilevered Nafion IPMC beam subjected to a step-voltage. That is, we suppressed the mechanics
coupling in our model by setting Ω = 0, while all other material parameters had the same values as that
listed in Table 1. For this case, with εnum = 107, Fig. 19 shows the variation of the normalized concentration
of the cations c̄ in the membrane at the instant when c̄ just reaches 0 or 1 at the boundaries of the membrane.
For this problem (with no mechanical coupling, Ω = 0) we were able to obtain a converged solution, and
resolve the boundary layers by using a highly refined mesh in the boundary regions; the data points at the
nodes in our mesh are marked with x-symbols in Fig. 19. As is clear from this figure there exist two boundary
layers — one close to the top surface of the membrane and one near the bottom surface. The thickness of
these boundary layers is in the ≈ 5µm range, which represents about ∼ 1.5% of the total membrane thickness
of 300µm.

16Cf. page 3.
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Figure 19: Variation of the normalized action concentration c̄ across thickness of Nafion membrane for
εnum = 107 and Ω = 0.

Next, we repeated the calculation but this time with εnum = 105. In this case, the variation in cation
concentration c̄ in the membrane is shown in Fig. 20. The widths of layers are now considerably smaller,
as compared to Fig. 19. The mesh for this simulation had to be refined so that the boundary layers was
resolvable. As expected the boundary layer widths with εnum = 105 are ≈ 0.5µm — about an order of
magnitude smaller than the widths when εnum = 107. This change is in agreement with the numerical Debye
length eq. (3.6).

Figure 20: Normalized concentration variation across thickness of Nafion membrane for εnum = 105. The
inset shows a closer view of the boundary layer that forms at the bottom of the membrane.
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Similarly, when the calculation is successively carried out with εnum = 103 and εnum = 10, the boundary
layers shrink even further in size. The variation in the cation concentration for the case of εnum = 103 and
10 are shown respectively in Fig. 21(a) and (b) respectively. The insets in the corresponding plots show the
size of the boundary layers.

Figure 21: Normalized concentration variation across thickness of Nafion membrane for (a) εnum = 103 and
(b) εnum = 101. The inset shows a closer view of the boundary layer that forms at the bottom of the
membrane.

To summarize, the boundary layer widths from these calculations are:

≈ 5 nm for εnum = 10, ≈ 50 nm for εnum = 103, ≈ 500 nm for εnum = 105, and ≈ 5µm for εnum = 107.

In fact, with εnum = 1 which corresponds to using the experimentally measured value of relative permittivity
εr = 120 of Nafion membranes in Gauss’s law (Wallmersperger et al., 2008a), the boundary layer widths
are only about 1.5 nm. Resolving boundary layers of widths 1.5 nm in a 300 micron thick membrane is
computationally not tractable. Specifically, when the fully-coupled problem is solved with Ω 6= 0, the small
aspect ratio of quadrilateral elements significantly affects the solution to the fully-coupled problem — and
it becomes computationally extremely expensive to resolve such thin boundary layers. Even a value of
εnum = 105 results in very sharp boundary layers ≈ 500 nm in thickness.

• It is for this reason that we have used a value of εnum = 107 in our simulations. In this case the
thickness of boundary layers is increased to the micron range, ≈ 5µm, which represents ∼ 1.5% of
the total membrane thickness — and therefore resolvable with a computationally tractable number of
finite elements.

Remarks:

1. Many researchers in their studies on Nafion-based IPMCs have used large numbers for the relative
permittivity. Wallmersperger et al. (2008b), Nardinocchi et al. (2011), Galante et al. (2013), and
Nardinocchi and Pezzulla (2013) have all used a value of εr = 2× 109, which is very different from the
experimentally measured value εr = 120 reported by Wallmersperger et al. (2008a). Presumably, large
values of εr have been used for aiding computational tractability, as discussed here. However, to the
best of our knowledge, a justification for the use of ramped-up values of εr has not been previously
given in the IPMC modeling literature.
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2. More importantly, artificially increasing the value of εr for not only the Poisson equation but also for
the Maxwell stress contribution to the Cauchy stress has an unintended consequence concerning the
importance of the role of Maxwell stresses in the theory — possibly leading to unphysical conclusions.
Indeed, Porfiri et al. (2017) in their study of back-relaxation in IPMCs used a large value of εr = 5×106

and concluded that,

“Maxwell stress could be the critical explaining variable for back relaxation.”

But because of the large value of εr that they used in assessing the role of the Maxwell stress in their
study, their conjecture is questionable.17

3. We reiterate that in our paper:

• We have used the εnum factor only in the Poisson equation (3.5).

• We do not use this factor in equation (2.107) for the Cauchy stress, which would artificially
enhance the effects of the Maxwell stress.

Using a physically meaningful value of the electrical permittivity for calculating the Maxwell stresses
is a key factor which enabled us to accurately model and predict the IPMC actuation experiments.
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