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Abstract—Given a desired object trajectory, how should a
robot make contact to achieve it? This paper proposes a global
optimization model for this problem with alternated-sticking
contact, referred to as Contact-Trajectory Optimization. We
achieve this by reasoning on simplified geometric environments
with a quasi-dynamic relaxation of the physics. These relaxations
are the result of approximating bilinear torque effects and
deprecating high-order forces and impacts. Moreover, we apply
convex approximations that retain the fundamental properties
of rigid multi-contact interaction. As result, we derive a mixed-
integer convex model that provides global optimality, infeasibility
detection and convergence guarantees. This approach does not
require seeding and accounts for the shapes of the object and
environment. We validate this approach with extensive simulated
and real-robot experiments, demonstrating its ability to quickly
and reliably optimize multi-contact manipulation behaviors.

I. INTRODUCTION

Since the early years of robotics, resolving contact inter-
action has hindered the deployment of robots for general
manipulation tasks. Contact has been, and still is, difficult to
observe, predict and control. The last decade has seen sig-
nificant advance in planning-through-contact tools for general
motion generation. Their wide-spread use in robotics, however,
has been limited by coarse approximations of the mechanics
of contact, or by numerical difficulties that arise from the
choice of problem formulation — e.g., hybrid dynamics, non-
unique solutions, non-convex constraints. These consequences
are difficult to avoid in a problem often specified as the
optimization of the interaction between a robot and an object,
both free variables, to achieve a loosely specified behavior.

In this work we focus on a different perspective: We assume
as input a desired trajectory of the object in its environ-
ment, and ask how, where, and when should the robot make
contact to achieve it. We refer to this problem as Contact-
Trajectory Optimization, in contrast to the more general
trajectory optimization problem, where the object trajectory is
also a free variable [30]. This sub-problem retains some of the
key challenging aspects of planning through contact, namely
hybridness and non-convexity. We will see, however, that this
provides multiple benefits. It leads to a better defined problem,
with more numerically stable solutions, and ultimately a global
model for planning-through-contact with certificates: global
optimality, global infeasibility and convergence.

In order to achieve this goal, we rely on a quasi-dynamic
approximation of the motion equations and polygonal (convex
or non-convex) descriptions of objects and environments.

0Q =—

Fig. 1: By reasoning about an approximate world, with quasi-
dynamics and polytopic shapes, we reliably optimize alternated-
sticking contact interactions to achieve complex manipulation tasks.
Our model receives an object motion and outputs a contact-trajectory
(positions and forces).

The term quasi-dynamics refers to an approximation of the
equations that describe the time-evolution of the system that
ignores high-order inertial terms, assumes uniform pressure
contact distributions, and exploits a mixed integer-convex
approximation of nonlinear relations. In contrast to previous
work that use exact contact-dynamics (Posa et al. [30]), we
provide a global model. In contrast to previous works that rely
on approximate contact-dynamics (Todorov [33], Toussaint
et al. [36]), we implement approximations that obey non-
penetration and contact complementarity, fundamental prop-
erties in manipulation. The key tools to achieve this come
from mixed-integer convex optimization, including piecewise
McCormick envelopes and disjunctive constraints. Hencer, in
this paper, we present two main contributions:

o Modeling of the contact-trajectory optimization problem
with quasi-dynamics and polytopic objects and environ-
ments as a mixed-integer convex optimization problem.
Our model retains global optimality, global infeasibility
and convergence.

« Validation of the model on multi-contact manipulation



behaviors on planar environments, sagittal and transver-
sal, both in simulation and on real robot environment.

Fig. [1] illustrates our vision for this model: by optimizing
contact-trajectories in simple environments we can generate
motion plans to complete tasks that involve complex contact
interactions. We show how our model optimizes contact-
trajectories for planar tasks consistently in less than 1 s.

The remainder of this paper is organized as follows: Sec.
reviews concepts and literature relevant to this work. Sec.
provides an overview of the model, its assumptions and
properties. Sec. describes the proposed model in detail,
while Sec. [V|discusses its implementation as a Mixed-Integer
Convex Program. Sec. [VI] demonstrates the model with sim-
ulation and real experiments, and we conclude in Sec.
summarizing the contributions and limitations of the work.

II. BACKGROUND

In this section we review some of the previous research
most relevant to this work and introduce the concepts that we
reference through the paper.

A. Trajectory Optimization

Trajectory Optimization is a popular tool to generate robot
motions that need to respect some constraints [15, 20l 33].
The main benefit it provides comes from its versatility, as it
generalizes between systems and problems. A significant body
of work has been dedicated apply this tool to contact-rich
motion generation [28| 22, 23| |30} |34} 136} 137]. Since contact
is fundamentally discontinuous and dependent on geometry,
modelling it requires the introduction of non-smooth con-
straints or discrete decision variables to determine its schedule.
Hence, solution to this problem is subject to a dichotomy,
either rely on fast nonlinear optimization tools [23} [30} 341,
which rigorously model the problem at the cost of dependence
on initialization and lack of convergence guarantees, or pose
the problem as a large combinatorial optimization, which has
useful theoretical properties subject to an exponential growth
in complexity [28, |36} [37]].

Despite the aforementioned challenges, many have suc-
cessfully applied trajectory optimization through contact to
locomotion problems [6]. Manipulation, however, introduces
a higher dimension of complexity, as geometry and hybrid
dynamics play a larger role in the generation of object motions.

B. Quasi-Dynamic Models

The idea of applying approximate physics to solve contact-
rich planning problems has been pursued for many decades
[25], promising a trade-off between performance and fidelity.
On one extreme, some attempt to accurately model the dy-
namics of the entire system [30], while other completely
drop the non-smooth/nonlinear aspects of the model [35]]
for performance. In the middle, and most relevant to us,
some works approximate specific constraints of the problem
while retaining other relevant aspects of contact interaction
[27, 17, 36)]. In the case of [27], a quasi-dynamic relaxation
allows them to formulate the prehensile pushing problem with

gravity in terms of motion cones. On the other hand, [36]]
shows how a simplified model guided by geometry can be
used to generate long-horizon trajectories involving objects
and tools.

A relevant example is that of [37]], where the hybrid aspects
of the quadruped locomotion problem are accurately modeled,
while the nonlinear relations of angular dynamics are relaxed.
Our work borrows from this philosophy, where relaxations are
applied to some elements of the problem, such that we can still
capture the general behavior of the system and provide better
performance and theoretical guarantees.

C. Mixed-Integer Programming

A Mixed-Integer Convex Program (MIP) [L1] is an opti-
mization problem of the form: find x,z such that:

{ﬂ eEH, x e RImX) 7 ¢ {0, 1}‘““‘(2),

where H is a convex set of constraints, X is a vector continu-
ous variables and z a vector of binary variables. Mixed-Integer
Programs have many useful properties and applications.

In particular, will make use of two properties of these
models. First, if a convex cost function is provided, we can
always find its globally optimal solution or can prove that it
is infeasible. Second, binary variables can be used to encode
logical implications as linear constraints. A common technique
is the big-M formulation: for a binary variable y, we can
incorporate logical constraints of the formy =1 = Az < b,
as the inequality Az < b+ M(1 — y), where M is a
large positive number. Through this inequality if y = 1 then
Ax < b is enforced, if y = 0 then it is not (up to M).
Similar techniques include “convex-hull” and “perspective”
formulations, which are better numerically conditioned than
big-M formulation [24].

These properties come at the cost of exponential bounds
on computation time, which grow with the number of binary
variables. Through the paper, we will show how logical
implications can be used to assign contacts to a surface and
approximate non-convex constraints.

A significant body of research has applied Mixed-Integer
Programming for trajectory optimization and model-predictive
control [7, [16l 31} 32} [37].

III. APPROACH OVERVIEW

In this section we provide an overview of our model,
describe its properties and discuss its assumptions. Given the
trajectory of a polytopic object, this model will find a sequence
of contacts interactions that achieve this motion and minimize
a convex objective.

A. Inputs and Notation

Our model receives as inputs the trajectory of the object and
the geometry of the object and environment. We introduce the
following notation and variables:

1) Object: A polytopic rigid-body O with N, vertices and

Ny facets. Each facet Fy has N/ vertices, with nominal



Fig. 2: For a trajectory of 7' time-steps, our model solves for
the finger positions p (dots) and contact forces A (green), as well
as reaction forces with the environment A® (blue) represented by
separate surrogate variables.

positions v/, with a corresponding friction cone FC fs
represented with R, rays. In the 2D case we have N; =
N, and N = 2.

2) Trajectory: A set of object poses over T  discrete time-
steps. We describe each pose, at a time-step ¢, as q(t) €
C, where C is the configuration space of the object. In the
2D, C corresponds to the x,y, § coordinates of SFE(2).

3) Manipulator: A set of V. contacts points. We describe
the ¢y, contact-point, at time-step ¢, as p.(t) € W, where
W is the workspace. In the 2D case, the workspace
simply corresponds to each position (x,y) that can be
reached by the robot.

4) Environment: A polytopic environment with N, facets,
described as planes with friction cones FC.. Additionally,
the free-space between the object and environment is
segmented in N convex polytopic regions R, = {x €
W | Ax < b}

A diagram describing these elements, at a fixed time-step,

can be seen in Fig. 2}

B. Desired Properties

The proposed model describes the time-evolution of the
multi-contact system while maintaining the following desirable
properties:

1) Versatility the model must capture rigid-body (quasi)
dynamics and hybrid (sticking) contact interactions while
remaining agnostic to the task, object, and environment.

2) Global Optimality If there is a feasible set of contact
trajectories that achieve this motion, the model will al-
ways find it. Moreover, if there is a convex cost function,
the model can always be used to find the solution that
globally minimizes it.

3) Infeasibility Detection If the model is infeasible, then it
implies that the object motion cannot be achieved.

Throughout the upcoming sections we will discuss how the
constraints of the model preserve these properties.

C. Modeling Assumptions

In order to achieve the desired properties of the model, we

make the following assumptions:
1) Objects are rigid, with uniform contact surfaces (such that
line contacts can be approximated by contact with two

vertices), and approximated as combinations of “simple”
polytopes.

2) Object motions occur at low speeds, such that high order
intertial effects are negligible.

3) Robot fingers have small masses, such that there is no
impacts between the robot and the object.

4) Interactions between the object and robot are a sequence
of alternating sticking contacts, such that friction cones
can be approximated as R, rays.

The upcoming sections will describe how these modeling
decisions translate into a mixed-integer convex model.

IV. GLOBAL QUASI-DYNAMIC MODEL

In this section we present our global quasi-dynamic model.
Each subsection will describe a set of constraints, for which
we discuss their derivation and numerical implementation.

A. Force-Motion Equations

By solving the Lagrange equations for a an object, assumed
to be rigid, we obtain the standard force-motion equation that
describes the dynamics of the system:

M(q)d+ C(q,q)q =74(q) + H"(q)A,

where the given object configuration is denoted by q =

gt , where q; corresponds to the position of the object and
0

qp to its orientation, H (q) maps the effect of the contact forces

A= as body wrenches, 7, describes the gravitational

A
)\e
wrench, M (q) is a mass matrix, and C(q, q) maps velocities
q into Coriolis forces. When velocities are low and inertial

effects are small, the equation of motion reduces to:
M(q)d = 74(q) + H" (q)A.

From this form, we can decouple the equations of motion
into translational and rotational components:

1) Translational Motion: The top rows are directly New-
ton’s second law applied to the center of mass of the object:
mi(t) = mg + > Aclt) + > A5 (1) (CT1)

Where m is the object mass, A. is the force applied by
the ¢y, finger p., and A{, is the environmental force applied

over the ny;, vertex of object. Eq. (CTT) is a linear sum of
unknown terms, which is a convex constraint.

2) Rotational Motion: The bottom rows, recasting the Ja-
cobian HT'(q) as a sum of cross-product operations, become:

Tég(t) =D (Pe(t)=ar(t)) X Ac(t)+)_ R (g0 (1)) Vi x X5, (1)
c n

where I is the object’s moment of inertia w.r.t its center

of mass, p. is the position of the ¢, finger, and R" is a

rotation matrix from O to gg. Unfortunately, the cross-product



Fig. 3: (left) Contact Assignment: the object is decomposed in Ny
facets and N, vertices, and contacts forces are constrained to lie
within the respective friction cone. (right) Friction cone approxima-
tion as Rq = 4 rays.

operation is a bilinear term, making each torque a non-convex
constraint. For now, we replace each cross-product with a
surrogate term and substitute the rotational dynamics with:

Tijg(t) = Zri(t) + D> R (qo(t)va x Ai(t)  (CT2)

where 7; ~ (p; — q:) X A; is mixed-integer convex
approximation, the method by which this approximation is
computed is described in detail in Sect. [[V-E] Note that,
fortunately, the terms corresponding to external forces are
linear constraints on the external force, since R"(qg(t)) is
known a priori.

Equations and are often referred to as the
“centroidal dynamics” of a system, ubiquitous in the legged
locomotion community, see [6} 29].

B. Contact Scheduling

In order to ensure consistency between equations (CTI)-
and the position of the fingers, forces A, must be
active only if p. is in contact with one of the facets of the
object. Moreover, this contact force must be constrained to lie
within its corresponding friction cone. This leads to a hybrid
condition, as the constrains change depending on the position
of the fingers and the shape of the object. To achieve this,
we leverage the object representation as a polytope with Ny
facets [Fy and the fingers described as points, as shown in Fig.
[ (left).

To include this constraint, at each time-step ¢, we introduce
a binary matrix as part of the decision variables T(t) €
{0, 1}V *Ne that maps the position of each contact ¢ to some
facet f of the object via the constraint:

Tyolt) =15 {pc(“ A

Ac(t) € FC(2)
This constraint enforces that forces are only active when the
fingers are in contacts with a facet. Since each facet [F; has
N vertices with position v/, we model the facet assignment
constraint as:

Pe(t) €Fs(t) & Pelt) = 3 ps (V] 3 ps(1) = 1,

(CT3)

which constrains the finger position to be a convex combi-
nation of the facet vertices, where p are assignment weights.

Then, we constrain the force to lie on its friction cone FCy,
described with Ry rays ¥y q,...,vy g,> With Rq = 2 for 2D
and Ry > 3 for 3D, depicted in Fig. E] (right), as:

Aclt) EFCs(t) & Ae(t) = > an(t)vs 4, ar(t) >0,
k

which constrains each contact force to be a conic combination
of the friction cone rays, where « are also assignment weights.
Finally, since forces cannot be active if the fingers are not in
a facet, we add the following constraint:

D> Tre(t) =0= Ae(t) =0 (CT4)
s

We transcribe all = operator using big-M formulation. The
constraints defined by Egs. and are equivalent
to a complementarity constraint over the contact force [30],
since the contact force will only be non-zero once the finger
touches the object.

1) Alternated-Sticking: For robustness of the optimized
trajectories, we further require that finger contacts are not
sliding between time-steps, as our model assumes that contact-
trajectories are a sequence of sticking contacts, we model this
constraint as:

Tre=1=p(t+1)=> pi(t)v], (CT5)
J

which enforces that if the finger is in contact at time ¢ then it
must remain sticking at time-step ¢ + 1 before switching to a
different contact location. If we were to allow sliding-contact,
we would need to represent the border of the friction cone
which is a non-convex constraint [[13]]. This is possible, but
would extend the size of the optimization problem.

C. Ewvironment Contacts

Since we provide the object motion as an input and we
assume an uniform pressure distribution on the object facets,
the contact schedule between the object and the environment is
also known. Hence, the model only needs to constrain reaction
forces at each object vertex v,,, to lie within their respective
friction cone FCy, (¢), with R4 rays vy, 1 (t), ..., 75 g, (t). This
constraint is imposed, for the n;;, vertex at time-step ¢, as:

AS () € FCS (1) (CT6)
Ra
@) Rs
R1

T777777777777777T77T7T7777

Fig. 4: Non-Penetration Constraint: The free-space between the
object and the environment is decomposed in Nr convex regions
‘R, including the facets of the object.



As before, the friction cone constraint is included as A{, () =
DR s (O)E(t), af(t) > 0, where a© are assignment weights
for each ray. Since these vertex contacts can also slide, some
of the assignment weights must fixed to zero to have the force
in the border of the friction cone. This can be done when
setting-up the optimization problem, since the contact modes
between each vertex and the environment are known from the
given trajectory.

D. Non-Penetration

Naturally, fingers cannot penetrate the object nor the envi-
ronment. A strategy to enforce this is to segment the free-space
into Ny convex, possibly overlapping, regions R, that cover
the free space of the workspace [31} 21} 137], as shown in Fig.
[ Each finger is then constrained to lie within one of this
regions. This constraint is added through a binary decision
matrix R(t) € {0, 1}Va*Ne such that:

R, (t) =1=p.(t) € R (1) (CT7)

with >~ R, .(t) = 1, Vc. Here, region assignment is done as:
pe(t) € Rr(t) & Ar(t)pe(t) < br(t)

which are all linear constraints on the finger positions. Finding
these regions is a separate optimization problem, examples
include [8]].

E. Modeling Approximations via McCormick Envelopes

The constraints defined by Eq. [CT2]include a cross-product
operation, which is a non-convex function due to the presence
of bilinear equalities. For the purpose of this paper, we refer
to a bilinear equality constraint as a relation of the type:

w=u-v

where u, v and w are decision variables. Concretely, each
cross-product T adds 4|7| — 6 bilinear equalities to the model.
To illustrate their non-convexity, we plot the surface w = uv
in Fig. [5al While there are several methods to approximate or
relax non-convex constraints of this type, we are interested in

by M =1

)M =2

(d M=4

Fig. 5: (a) Bilinear equality curve for w = uv, (b)-(d) Piecewise
McCormick Envelopes with different levels of accuracy.

an approximation that 1) can be embedded in a global model
and 2) preserves the hybrid structure of contact. A technique
that achieves this purpose is that of Piecewise McCormick
Envelopes. Initially proposed by McCormick in [26], this
approximation covers the bilinear surface w = wv with M
convex envelopes, each being the convex-hull of the surface
between a segment on the uniform set —upz/2, ..., up 2 and
v > 0, v < 0. Examples of these envelopes are shown in
Fig. @ blue for v > 0 and red for v < 0. Then, each
approximation of w is constrained to lie within the envelopes
with a binary decision matrix W (t) € {0, 1}2*M as:

W > Up_1V

W > UV + U — Uk—1

W1k(t)=1=> W< Up—1V + U — Uk

s

(CT8)

ININ IV

w < URv
ug—1 < w < ug

v>0

U1V
UV — U — Uk —1

Up—10V — U — U

g & g8 &
IV IV IA A

Woi(t) =1=

)

; (CT9)
UV

Uk—1 = W 2> Ug
v<0

which constraint w to lie within one of the envelopes, depend-
ing on the sign of v. This approximation is not exact; however,
it provides several useful properties:

1) The segmentation provides upper and lower bound on the
quality of the approximation.

2) A larger M makes the approximation arbitrarily tight, at
the cost of a larger binary matrix.

3) The approximation preserves the hybrid and nonlinear
structure of the bilinear surface, as:

u-v>0 =w>0
u-v<0 =w>0
u-v=0 =w=0

4) If the relaxed envelope constraint is infeasible then the
original bilinear constraint is also infeasible, as the en-
velopes cover the original curve in their solution space.

Examples of approximations of different sizes are shown in

Fig. a5d)
V. CONTACT-TRAJECTORY OPTIMIZATION

From the constraints presented above, we formulate a
Mixed-Integer Optimization problem. We summarize all the
decision variables required for our model in Table [l For
notation convenience we define three sets of decision variables:
contact-trajectories X = {p, A\, A\°, T}, assignment weights
Y = {p, a,a°}, and binary matrices 7 = {T, R, W}.



Name Description Size C/B
P Point Locations D X No xT C
A Contact Forces DX N.xT C
A€ External Forces DX N, xT C
T Torque Approximation (4]7| —6) X Ne X T C
p Facet weights Zf NI{ X Ne x T C
o Friction Cone Weights R4y X Ne x T C
af External Cone Weights Rg X Ny xT C
T Contact Assignment Ny X NexT B
R Non-Penetration Nrp X Ne xT B
W McCormick Envelope | 2M X (4|7] —6) x No x T B

TABLE I: Summary of Decision Variables (C: Continuous, B:
Binary).

A. Optimization problem

Adding the constraints and all the decision variables, we
transcribe the optimization problem into MIQP1:

X X
MIQP1 : minimize J = [X YV T]Q [¥Y| +4¢" |V
T T T

subject to:
1) For time-stept=1tot="1T:

a) Quasi-Dynamics (CT1)-(CT2).

b) For fingers c =1 to ¢ = N,
o Contact-Trajectory Assignment (CT3)-(CT5).
e Non-Penetration (CT7).

¢) Environmental Contact (CT6).
o Pre-fix weights a® when sliding.

d) For bilinear terms b =1 to b = N.(4D — 6):
o Piecewise McCormick Envelope (CT8)-(CT9).

Where @) is a positive-semi-definite (PSD) square matrix
and ¢ is a column vector of appropriate size, these matrices
can be chosen according to the problem.

B. Properties of the Model

The formulation of the problem can be categorized as
a Mixed-Integer Quadratic Program (MIQP); this type of
problem has several useful properties [11]. Mainly, if given
sufficient time (with worst-case exponential complexity), a
solver can always find the global solution to the optimization
problem. This also implies that it does not require any form
of initialization or warm-start. Finally, If MIQP1 results
infeasible we can guarantee that the original problem, with
exact bilinear equality constraints, is also infeasible [26].

The complexity of the program grows exponentially with
the number of binary variables in the model, defined by the
number of fingers, tightness of the McCormick envelopes,
shape of the object and environment.

VI. VALIDATION AND APPLICATIONS

To demonstrate some of the capabilities of our model,
we implement MIQP1 and asses its application for set of
traditional manipulation problems. First, we aim to validate the
model’s ability to optimize simple manipulation behaviors and
detect infeasible ones. We then show different applications of

our model for manipulation problems that involve interaction
with the robot and the environment. Finally, we execute a set
of open-loop experiments to illustrate how this model transfers
to a real-world set-up.

We generate all the trajectories in MATLAB R2019b,
running on an Intel Core 19 laptop with Mac OS X High
Sierra. We use Gurobi 8.1.0 [12], an off-the-shelf optimization
software, as our MIP solver. All of our tests are done in two-
dimensional set-ups, such that |7| = |p| = N/ = R; = 2.
We fix the accuracy of each piecewise McCormick envelops
to M = 4. We manually generate each object trajectory and
segment the free-space of each task into convex regions R. For
all problems, we add a quadratic cost-function that minimizes
the applied force and smooths the finger trajectories:

N.
T =D IR+ [[Be()]* = Be(t)
t=1 c=1

Second derivatives are computed within the model with
backwards-Euler scheme for simplicity and numerical stability.
The term 3 is a lower-bound convex-approximation of the
distance between each contact-force and the border of its
friction cone, computed as in [2, [17], this term has to be linear
in order for the cost-function to be convex.

A. Model Validation

We start by validating the functionality of the model in
several simple manipulation problems. In particular, we show
its ability to optimize contact-trajectories for “primitive” object
motions and to detect when an object motion is infeasible.
We generate a set of object trajectories in the sagittal —X Z—
plane for which the optimal solution can be intuitively found.
For this, we use three objects: 1) a block, 2) a triangle, a 3)
a non-convex object. Unless otherwise specified, all surfaces
have a friction coefficient of = 0.1. Then, we generate the
following trajectories of 7' = 5 time-steps:

Block 1-finger sliding (Fig. [6a), 2-finger pivoting (Fig. [6b),
2-finger grasping (Fig. [6c). We observe that one finger is
sufficient to slide the object by pushing it.Grasping directly
from the ground requires two or more contacts in order to lift
the object. In the case of pivoting, a surface with y = 0.1 is
not sufficient for 1-finger pivoting and the solver only finds a
solution when N, > 2, which allows to create internal force
to increase friction.

Triangle 2-finger pivoting (Fig. [6f). Consistent with phys-
ical intuition, = 0.1 does not provide enough friction for
the object to pivot without sliding; hence, the model chooses
to place a second finger to push on the ground a generate
additional reaction force, providing enough torque. Similar
to the block case, fixing N, = 1 leads the solver to report
infeasibility.

Non-Convex Object 1-finger sliding (Fig. [6d) and 1-finger
pivoting (Fig. [6€). For both tasks, one finger is sufficient. In
contrast to the other objects, the non-convex “end” of the tool
can be used to generate sufficient torque and pivot with only
one finger.



(a) Pushing a block (b) Pivoting a block

“a—4
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(e) Pivoting a non-convex “tool” (f) Pivoting a triangle
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(c) Grasping a block

(h) Rotating 90° in place

(g) Sliding with curvature

Fig. 6: Primitive behaviors optimized with our model, without any initialization or seeding. Red points are the finger locations,
green arrows the applied forces, and blue arrows represent the environmental contacts.

Transverse manipulation 1-finger curved-pushing (Fig.
and 2-finger in-place rotation (Fig. [6h). For straight line push-
ing or pushing with small curvature, one finger is sufficient,
as it can generate enough torque to slide and rotate. However,
two fingers are required rotate the block around its geometric
center.

As a reference, all trajectories are optimized in the range
of 0.04s to 0.44s of computation. We stress the benefits of
global optimality in this problem, since small changes in the
friction coefficient or geometry of the object lead to different
solutions. Furthermore, the ability to report when a task is
infeasible, either because it requires more than one finger or
because it is physically impossible, also provides useful insight
on the primitive itself.

B. Applications

Once we have proven that our framework can effectively
generate simple behaviors, we aim to show how it can also
reason about longer horizon tasks that involve complex contact
interactions. For this, we show two examples of “extrinsic”
dexterity [5], where contacts with the environment are essential
part of the manipulation problem, on two different set-ups
with T' = 10 time-steps. In both cases, the object trajectories
were specified manually on a set-up with a block and a wall.
We optimize these “exrinsic” re-orienting strategies in two
separate planes:

Sagittal Accounting for the effect of gravity, the object is
pushed to a wall, pivoted w.r.t. it, and lifted vertically. The
execution of this motion is shown in Fig. [8al The optimal
solution is computed in under 10 sec.

Transverse In this case, the object slides against a wall and
is then pivoted with respect to it. This trajectory is shown in
Fig. [8b] The optimal solution finds a sticking contact location
for each finger. The problem is solved in 2 sec.

C. Experimental Validation

In order to demonstrate that the contact-trajectories gener-
ated by this model translate to the real world, we conduct

experiments on a two-arm robot manipulating and a cubic
object on a table.

Our robotic platform is an ABB YuMi® (IRB-14000) robot,
which has two 7 DOF arms with a custom point-finger attached
to each end-effector. We work with a Robot Operating System
(ROS) setup, interfaced with MATLAB R2019, and run all
the demonstrations in an open-loop fashion, guided through
position commands.

Transverse Manipulation Our first demonstration focuses
on planar sliding on an uniform surface, replicating the be-
haviors in Figs. [6h] and Snapshots of the execution
of each task are shown in Fig. [/| (top to middle). Despite
the open-loop fashion of these demonstrations, we achieve
a reliable execution of the optimized contact-trajectory, as
long the trajectory is executed slow enough, otherwise impacts
occur and inertial effects are noticeable.

Sagittal Manipulation Our second demonstration shows
how our model can accurately generate motions that interact
with gravity. For this, we replicate the pivoting and grasping
behaviors, depicted in Figs. [6b] and [6c] Executions are shown
in Fig. [7] (bottom two). In this example, however, trajectories
are brittle and highly-dependent on the initial pose of the
object and the robot contacts. This points at the importance of
tracking position along with forces, as contacts must remain
sticking in order to execute these tasks correctly.

In both cases, accuracy is achieved by placing the object
in the precise initial condition. The general scenario, with
uncertainty, requires a controller and perception to execute
each motion.

VII. DISCUSSION

In this paper we have presented a global model for the
Contact-Trajectory Optimization problem on polytopic ob-
jects. By applying quasi-dynamic approximations, relaxing
high-order coriolis effects and applyng McCormick envelopes
on the non-convex relations, we obtain a set of constraints that
provide optimality, infeasibility, and convergence guarantees.



Fig. 7: Experimental validation of our model Our optimized behaviors can be applied for real world execution, snapshots of each open-
loop experiment are shown (each blue box corresponds approximately to the goal pose of the object). Top to bottom: 1) transversal pushing
with a desired angle. 2) Rotating 45° in-place. 3) Transversal pivoting against a wall. 4) Grasping vertically. 5) Sagittal pivoting.

(b) Planar sliding with two fin-
gers and a wall

(a) Pivoting against a wall with
gravity

Fig. 8: Two applications of our model for extrinsic dexterity in the
sagittal and transverse planes.

Our model accounts for the environment and object shape,
thus being applicable to multiple manipulation problems.

We implement our model as Mixed-Integer optimization
program and demonstrate its ability to optimize simple ma-
nipulation primitives and contact interactions between the
object, robot and environment. Trajectories are found between
0.04s to 0.44 s, using off-the-shelf optimization software. Our
long term vision is that the execution of these plans will be
supported by a low level controller that uses tactile-feedback
to enforce contact conditions, as initially explored in [17].

Model Limitations Perhaps the main limitation of this
approach comes from needing to specify as input the object
motion. While in many cases object trajectories are intuitive
to specify, many simple motions lead to infeasible contact-
trajectories, such a lifting a steep triangle.

The second main limitation is the restriction to alternating
sticking-contacts. This is not necessarily a limitation in the
2D case since the sliding condition can be included through a
binary decision matrix that encodes the contact mode of each
finger at every time-step [16]. The 3D case is more troubling,
since the friction cone border constraints are non-convex and
these would have to be approximated in some way [13].

Future Work The first set of extensions to this work
arise from its main limitations: incorporating sliding contact,
as described above, and mitigating the dependence on an
provided trajectory. A potential way to achieve the later would
be to plan for the motion in a sampling-based fashion, applying
this model in an inverse-dynamics fashion similar to [4]].
Further validation in more complex 3D tasks is also
important.

Since our model outputs trajectories with position and force,
a natural extension would be to combine this model with a
state-of-the-art feedback controller [J3, [32]]. This is
particularly relevant under recent advances on localized tactile
sensing [, which could allow us to generate more
dynamic motions under uncertainty.

Finally, we are interested in studying potential applications
of this model in the context of learning manipulation, either in
the contexts of imitation learning or affordances for contact-
rich manipulation [38]], and optimizing robust manipulation
primitives, which can naturally funnel uncertainty [} [T9].
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