
MIT Open Access Articles

Reactive planar nonprehensile manipulation
with hybrid model predictive control

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Hogan, Francois R and Rodriguez, Alberto. 2020. "Reactive planar nonprehensile
manipulation with hybrid model predictive control." International Journal of Robotics Research,
39 (7).

As Published: 10.1177/0278364920913938

Publisher: SAGE Publications

Persistent URL: https://hdl.handle.net/1721.1/141404

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/141404
http://creativecommons.org/licenses/by-nc-sa/4.0/

Reactive Planar Nonprehensile
Manipulation with Hybrid Model
Predictive Control

Journal Title
XX(X):1–17
c©The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: To Be Assigned
www.sagepub.com/

Francois R. Hogan and Alberto Rodriguez

Abstract
This paper presents an offline solution and online approximation to the hybrid control problem of planar nonprehensile
manipulation. Hybridness and underactuation are key characteristics of this task that complicate the design of feedback
controllers. We show that a model predictive control approach used in tandem with integer programming offers a
powerful solution to capture the dynamic constraints associated with the friction cone as well as the hybrid nature
of contact. We introduce the Model Predictive Controller with Learned Mode Scheduling (MPC-LMS), that leverages
integer programming and machine learning techniques to effectively deal with the combinatorial complexity associated
with determining sequence of contact modes. We validate the controller design through a numerical simulation study
and with experiments on a planar manipulation setup using an industrial ABB IRB 120 robotic arm. Results show that
the proposed algorithm achieves closed-loop tracking of a nominal trajectory by reasoning in real-time across multiple
contact modalities.

Keywords
Planar Manipulation, Hybrid Systems, Model Predictive Model

1 Introduction

Humans manipulate objects within their hands with
impressive agility and ease. While doing so, they also
make frequent mistakes from which they recover seamlessly,
effectively blurring the line between reactive control
and other error-correcting mechanisms. The mechanical
complexity of the human hand along with its array of sensors
undoubtedly play an important role. However, despite
recent advances in the design of complex robotic hands
and sensory equipment (tactile sensors, vision markers,
proximity sensors, etc.), autonomous robotic manipulation
remains far behind human manipulation capability.

We argue that this gap in performance can largely be
attributed to robots’ inability to use sensor information
for real-time control purposes. Whereas humans effectively
process and react to information from tactile and vision
sensing, robot manipulators are most often programmed in
an open-loop fashion, incapable of adapting or correcting
their motion. With the recent development of sensing
equipment, the question remains: how should robots use
sensed information?

In this paper, we address closed-loop control of a
nonprehensile manipulation task: planar pushing. Planar
pushing is a canonical manipulation skill that incorporates
many of the key control challenges typical of robotic
manipulation of which we highlight:

1. Hybridness. When the pusher interacts with the
object, different contact modalities can occur between
both entities (e.g. separation, sticking, sliding up, and
sliding down). Transitions between these modes result
in discontinuities in the dynamics, which complicate
controller design.

2. Underactuation. Contact interactions can only trans-
mit a limited set of forces. These constraints on the
control inputs lead to a dynamical system where rea-
soning about the instantaneous velocity/acceleration
of the pusher is not sufficient to produce an arbitrary
velocity/acceleration of the sliding object.

The goal of this paper is to develop a control framework
that can handle these constraints under the assumption of
full state feedback. Specifically, we propose a real-time
model predictive controller that reasons across a sequence
of contact modes.

The contributions of this paper are:

• An offline optimal control solution to the hybrid
control problem of multiple point planar manipulation
as a Mixed-Integer Program.

• An online approximation to the optimal solution based
on learning a map from object states to predicted future
mode transitions.

• A benchmark comparison of our controller against
other hybrid control approaches.

• An experimental demonstration of the controller on a
planar manipulation setup.

• An experimental analysis of the performance of the
online approximate solution to the hybrid control
problem as a function of the controller frequency, the

1Department of Mechanical Engineering — Massachusetts Institute of
Technology
<fhogan,albertor>@mit.edu

Corresponding author:
Francois R. Hogan, MIT 77 Massachussetts Avenue, Cambridge, MA,
02139, USA.

Prepared using sagej.cls [Version: 2017/06/09 v1.01]

2 Journal Title XX(X)

tracking velocity, the planning horizon, the error in
coefficient of friction, and the radius of curvature of
the track.

Figure 1. Planar manipulation setup. The goal is to control the motion
of the object on a flat surface using a velocity controller robotic pusher.
The pose of the object is tracked using a Vicon camera system.

Previous robotics research relevant to our work on
reactive planar manipulation falls into three broad categories:
planar pushing, contact-constrained motion planning, and
control. The mathematical development of algorithms that
can effectively handle the discontinuities associated with
frictional contact interactions is a thread common to these
areas. We now review some of the earlier work from these
fields.

2 Related Work

2.1 Planar Pushing
The mechanics of planar pushing manipulation tasks were
first developed by Mason (1986). Goyal et al. (1991)
introduced the concept of the limit surface, a useful
geometric representation that describes the contact wrench
that can be supported by contact interactions. Close to
our work is that of Zhou et al. (2017) that develops
a Linear Complementarity Formulation that describes the
planar motion of objects subject to robotic pushes.

Lynch and Mason (1996) and Zhou and Mason (2017)
introduce motion planning algorithms to find open-loop
robotic trajectories achieving a target object pose. Key to the
success of these executions are the assumptions that sticking
interactions are maintained for the entirety of the push and
that the object remains unperturbed during the execution.
Dogar and Srinivasa (2011), Dogar and Srinivasa (2012),
and Koval et al. (2016) present planning frameworks to
grasp objects in cluttered environment that leverage pushing
actions to address uncertainty in the pose of objects. Lynch
et al. (1992) implements a tactile-based feedback controller
for a point pusher-object system to maintain the heading
of an object. This PD based controller can stably control
the orientation of a pushed object but cannot control its
positioning.

2.2 Contact-Constrainted Motion Planning
There are ongoing efforts to develop motion planning
frameworks that can effectively handle the complexity
associated with frictional contact interactions. Over the past
decade, this topic has been a central area of focus of the
robotics locomotion and manipulation communities.

In particular, in the robotic locomotion community, a
common approach consists in formulating the search for
gaits as a nonlinear optimization program. Pardo et al.
(2017) determines the gait trajectories and impact times
under a prespecified contact sequence. Schultz and Mombaur
(2009) and Valenzuela (2016) autonomously compute the
gait contact sequences are using mixed-integer nonlinear
programming, where integer variables are used to encode the
contact modes active during the trajectory. Posa et al. (2014)
employs a Linear Complementarity Problem formulation to
encode the hyrid nature of contact interactions by including
contact forces as decision variables within the program. This
method has been shown to be effective for path planning
of high degree of freedom systems undergoing contact rich
interactions.

In the robotic manipulation community, Chavan-Dafle
et al. (2014) makes use of sampling-based algorithms to plan
robot motions for in-hand manipulation tasks that exploit
both sticking and sliding interactions with the environment.
This approach relies on open-loop stable executions and rely
on an accurate description of contact interactions. Woodruff
and Lynch (2017) and Hou et al. (2018) present a graph
search algorithm to plan through a sequence of manipulation
primitives describing different contact states to achieve a
manipulation task. More recently, Toussaint et al. (2018)
formulates a task and motion planning framework that can
handle complex interactions by formulating the search for
contact sequences as a nonlinear mixed-integer optimization
program.

Despite the variety of motion planning frameworks
available for multi-contact dynamic interactions, these
approaches have large computational requirements associ-
ated with solving nonlinear and non-convex optimization
programs that make them unsuitable for online replanning. A
key challenge that remains open in the community is to find
control strategies that can replan mode sequences at real-time
rates.

2.3 Control
A common strategy to deal with hybridness has been to
design feedback controllers that rely on a fixed mode
schedule set to follow a nominal plan computed offline.
Woodruff and Lynch (2017) and Kuindersma et al. (2016)
use a linear-quadratic-regulator (LQR) control architecture to
stabilize the nominal trajectory subject to a mode sequence
searched offline. Pardo et al. (2017) employs a feedback
linearization approach to track the planned trajectory. Both
of these approaches assume that the mode sequence remains
unchanged during the execution of the task. Posa et al.
(2016) formulates a constrained LQR approach as a convex
optimization program integrating control input constraints.
While this approach can handle minor variations in the
timing of impacts with the ground, it does not have the
ability to alter its planned mode sequences over a finite

Prepared using sagej.cls

3

Figure 2. Depiction of hybridness. Animation of a simple
manipulation task that exploits multiple contact modes. First, the
hand sticks to the book and drags it backwards exploiting
friction. Second, thumb and fingers slide to perform a regrasp
maneuver. Finally, the book is retrieved from the shelf using a
stable grasp.

horizon, for example to change its gait sequence or footstep
plan. It is important to note that while this philosophy
might be relatively sensible in locomotion (a gait precisely
defines a sequence of ordering of contacts) it is very limiting
in manipulation, where a significant part of the richness
from reactive behavior comes from quickly adapting to
unexpected contact events.

An important drawback of the aforementioned approaches
is the controller’s inability to replan the mode sequences in
real-time. There have been recent efforts towards designing
hybrid feedback control architectures that can reason accross
system discontinuities (Buehler et al. 1994; Murphey and
Burdick 2004). Of particular interest to this research are
Bemporad and Morari (1999) and Lazar et al. (2006)
that formulate the hybrid MPC problem as a mixed-
integer program that integrates both continuous and discrete
variables. The controllers developed in these works establish
closed-loop stability by reasoning across multiple contact
modes, however struggle to achieve real-time rates even
for small dimensional systems as the scalability of the
approach is limited by the number of hybrid states and the
length of the control horizon. Another approach that shows
promise is explicit MPC, a multiparametric programming
techniques that computes the optimal control action offline
as an “explicit” function of the state and reference vectors,
so that on-line operations reduce to a function evaluation
(Bemporad et al. 2002; Alessio and Bemporad 2006;
Oberdieck and Pistikopoulos 2015). While these approaches
enable real-time control in theory, in practice they are
associated with large offline computational requirements that
scale poorly with the dimensionality of the system, the
number of hybrid modes and the length of control horizon.
These approaches require enumerating the complete set of
feasibility switching sequences offline through a backwards
reachability analysis.

3 CHALLENGES OF CONTROL THROUGH
CONTACT

This work aims to design a closed-loop controller
that can reason about the frictional contact interactions
arising between a robot’s end-effector and a manipulated
object. Systems undergoing frictional contact with their
environment present two key challenges for controller
design: hybridness and underactuation.

Figure 3. Depiction of underactuation. Where we interact with
an object through contact, we can only transfer a limited set of
forces. When pushing a coffee mug with a finger, the finger can
only push on the object and cannot pull. Underactuation
constrains the possible motions of the cup that can be
impressed by the finger.

3.1 Hybridness
When in contact, object and manipulator interact in different
contact modes. For example, during manipulation tasks,
the object can slip within the fingers of the gripper, the
gripper can throw the object in the air, or the gripper
can perform pick and place maneuvers. These manipulation
actions correspond to different contact interaction modes,
characterized by the sliding, sticking, or separation of the
individual contacts. The hybridness associated with the
transitions between modes can result in a non-smooth
dynamical system. This complicates the design of feedback
controllers since the vast majority of standard control
techniques rely on smoothness of the dynamical model.

In many applications involving hybrid dynamical systems,
this difficulty is overcome by setting a schedule of mode
transitions of the controller offline. This limitation prevents
the controller to fully exploit the dynamics of the system in
response to external perturbations. Furthermore, for robotic
manipulation tasks, the mode scheduling is often not known
a priori and can be challenging to predict. In such cases,
we must rely on the controller to decide, during execution,
what interaction mode is most beneficial to the task. Figure 2
illustrates the example of picking a book from a shelf.
The hand interacts with the book in a complex manner.
It is difficult to say when fingers and palm stick or slide,
but those transitions not only happen, but are necessary to
pick the book. Likely the hand initially sticks to the book
and drags it backwards exploiting friction. Then, the thumb
and fingers swiftly slide to regrasp the book. Finally, the
book is retrieved from the shelf using a stable grasp. For
such manipulation tasks where the motion is not periodic,
determining a fixed mode sequencing strategy is not obvious
and often impractical. Mistakes committed during execution
or encountered external perturbations will surely require that
the mode sequencing be altered.

3.2 Underactuation
Underactuation is due to the fact that contact interactions
can only transmit a limited set of forces and torques to
the object. As such, the controller must choose only among
the forces that can physically be realized. For example, the
normal forces commanded should be positive, as contact
interactions can only “push” and cannot “pull.” In order
to achieve this, it is required to explicitly impose the
physical constraints associated with contact interactions in
the controller design. The principles and conditions that
must be considered include Coulomb’s frictional law, the
non-penetrating condition, and the principal of maximum

Prepared using sagej.cls

4 Journal Title XX(X)

dissipation. These concepts are described in Stewart and
Trinkle (1996) and further detailed in Section 5.5. The
consequence of limited control authority is that the controller
must reason beyond instantaneous actuation by considering
the long term consequences of control actions.

4 NOMENCLATURE
We describe here the notation used in the paper:

• Fa: Inertial reference frame fixed to the ground.
• Fb: Body reference frame fixed to the object.
• C: Number of contact points (indexed by c).
• w = [fx fy τ]T: Applied wrench on the object

resolved in the body frame.
• t = [vx vy ω]T: Object twist resolved in the body

frame.
• Jc: Jacobian matrix associated with the contact point c

resolved in the body frame.
• N = [JT1 n1 . . . JTCnC]T: Matrix of object normal

vectors at contact points resolved in body frame.
• T = [JT1 t1 . . . JT

CtC]T: Matrix of object tangent
vectors at contact points resolved in body frame.
• fn = [fn,1 . . . fn,C]T: Vector of applied normal

force magnitudes at contact points resolved in body
frame.
• ft = [ft,1 . . . ft,C]T: Vector of applied tangential

force magnitudes at contact points resolved in body
frame.
• φ = [φ1 . . . φC]T: Vector of relative angles of

pusher relative to body frame.
• x = [x y θ φT]T: System state vector: position and

orientation of the object in Fa as well as the relative
angles of the contact points relative to Fb.
• uf = [fTn fTt]T: Vector of commanded contact forces.
• uφ = φ̇: Vector of commanded angular velocities

resolved in body frame.
• u = [uT

f uT
φ]T: Control input.

Note that we choose to parameterize the location of the
pusher on the surface of the object by the angle φ. This
assumes a bijective mapping between the angle φ and the
surface of the object, which is not always true. Whereas
an arc-length parametrization would be more general, the
parametrization with the angle φ works for all “start-shaped”
objects and simplifies the description of the kinematics of
pushing.

5 PLANAR MANIPULATION
This paper studies planar manipulation, a nonprehensile task
where the goal is to control the motion of a sliding object
through frictional contact interactions. Planar manipulation
is an interesting dynamical system to study controller design
since the source of actuation arises purely from friction.
Moreover, this system highlights the importance of reasoning
in real-time across contact modes. By perturbing the system
and altering the contact state, the success of the task depends
on the ability of the controller to modify its originally
planned contact state in an online fashion.

This section describes the mechanics of planar manipu-
lation and derives the motion equations used in Section 6

fn,1

ft,1

fn,2

ft,2

φ1

φ2

Fb

Fa

rdm
dm

Figure 4. Free body diagram of a sliding object with C = 2
contact points.

for controller design. This model generalizes to an arbitrary
number of contact points and arbitrary object shapes.

5.1 Kinematics
Consider the pusher-object system in Fig. 4. The pose of the
object is given by

p =
[
x y θ

]T
,

where x and y denote the cartesian coordinates of the
center of mass of the object and θ its orientation relative
to the inertial reference frame Fa. Assuming the point c ∈
{1, . . . , n} associated with the pusher remains in contact
with the object at all time, the position of the contact point c
relative to the object resolved in the body frame Fb is

rc =
[
xc yc

]T
.

For shapes that can be parametrized radially, the position
of the contact point can be described in terms of the radial
distance r = f(ξ)

rc =
[
−f(ξ) cosφc f(ξ) sinφc

]T
,

where the angle φc describes the location of the contact point
along the perimeter and ξ is used to parametrize the shape of
the object radially.

5.2 Quasi-Static Approximation
Applying Newton’s second law in the x− y plane of Fa
yields the motion equations

Hp̈ = fG + w, (1)

where H is the inertia matrix of the system, w is the
generalized frictional force applied by all pushers on the
object, and fG is the generalized frictional force applied
by the ground on the object. The quasi-static assumption
observes that at low velocities, frictional contact forces
dominate and inertial forces do not have a decisive role
in determining the motion of the object Mason (2001).
Under this assumption, kinematic and frictional forces are
in equilibrium with the applied frictional wrench by the
pusher is of equal magnitude and opposite direction to the
ground planar frictional force (i.e., w = −fG). The quasi-
static assumption leads to a simplified analysis of the motion

Prepared using sagej.cls

5

Figure 5. Depiction of the limit surface. The limit surface
(ellipsoid in the figure) describes the set of forces and moments
that can be transmitted by a patch contact. By the principle of
maximal dissipation, the object twist is perpendicular to the limit
surface of the applied frictional wrench w.

of the pushed object by using a force balance between the
applied forces on the object and the frictional forces between
the object and the ground.

Note that the term Hp̈ could easily be integrated into
the control formulation presented in Section 6. The quasi-
static assumption however presents advantages as it leads
to a direct mapping between the motion of the object and
the motion of the pusher and has useful properties, such
as invariance of the motion equations to the magnitude of
the planar coefficient of friction. This also proved desirable
from an experimental implementation standpoint when using
a position controlled robotic manipulator.

5.3 Limit Surface
The limit surface is a geometric representation that bounds
the set of all possible frictional forces and moments that
can be sustained by a frictional interface. First introduced
in Goyal et al. (1991), under the quasi-static assumption,
the limit surface maps the applied frictional force on an
object to its resulting velocity. We use a convex quadratic
approximation to the limit surface as described in Zhou et al.
(2016), where the limit surface can be expressed as the sub-
level set

H(w) =
1

2
wTLw,

where L is positive definite and the applied pusher wrench
is denoted by w. In this paper, we use an ellipsoidal
approximation to the limit surface by Lee and Cutkosky
(1991), where the semi-principal axes are given by fmax,
fmax, and mmax defined by

fmax = µgmg

and
mmax =

µgmg

A

∫
A

∥∥rdm
∥∥ dA.

The term µg describes the coefficient of friction between
the object and the ground, m is the mass of the object, g
is the gravitational acceleration, A is the surface area of the
object exposed to friction, and rdm is the position of an
infinitesimal mass dm relative to the origin of the object.
The ellipsoidal approximation captures well the shape of
the limit surface for object-surface contact interactions that

Figure 6. Friction cone constraint. The applied force must
remain within the blue shaded region.

have uniform pressure distributions and yields a convenient
invertible analytical form Lee and Cutkosky (1991).

5.4 Motion Model
The principle of maximal dissipation states that an object
will react to an applied force by moving in the direction
that maximizes the system’s dissipated power. In practice,
this establishes a constraint between the applied force on
the object and the resulting velocity of the object. Given
the convex limit surface described by H(w), the resulting
object twist subjected to an external force will be in the
perpendicular direction to the limit surface,

t = ∇H(w) = Lw, (2)

where the applied frictional wrench by the set of pushers to
the object is

w =

C∑
c=1

JTc (ncfn,c + tcft,c) (3)

=
[

JT
1 n1 . . . JTCnC

]︸ ︷︷ ︸
N

 fn,1
...

fn,C

 (4)

+
[

JT
1 t1 . . . JTCtC

]︸ ︷︷ ︸
T

 ft,1
...

ft,C

 (5)

= Buf , (6)

with

B = [N T], Jc =

[
1 0 −yc
0 1 xc

]
, uf = [fTn fTt]T,

and where nc and tc denote the normal and tangential
directions of the applied forces in Fb and fn,c and ft,c
represent the magnitudes of the normal and tangential
applied forces in Fb.

Consider the planar manipulation system with multiple
contact points shown in Fig. 4. The motion equations of the
system can be expressed as

ẋ = f(x,u)

=

[
Rt
uφ

]
=

[
RLBuf

uφ

]
=

[
RLB 0

0 1

]
u, (7)

with

R =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,
Prepared using sagej.cls

6 Journal Title XX(X)

(a) Sticking. The relative
velocity between the pusher
and object is zero. (Kine-
matic constraint).

(b) Sliding left. The fric-
tional force lies on the lower
boundary of the friction
cone. (Force constraint).

(c) Sliding right. The fric-
tional force lies on the upper
boundary of the friction
cone.

Figure 7. Mode dependent constraints following Coulomb’s frictional interaction law.

where R is a rotation matrix and uφ represents the relative
sliding velocity between pusher and object. Equation (7)
assumes that all points maintain contact with the sliding
object and that the applied forces satisfy physical interaction
laws as presented in Section 5.5.

5.5 Frictional Constraints
The motion equations in Eq. (7) do not enforce that the
reaction forces between manipulator and sliding object
are feasible. For example. if the input uf = [fTn fTt]T is
unconstrained, negative normal forces could be applied to
the object, which is physically inconsistent, since contact
interactions cannot transmit such forces. To ensure that the
motion equations are associated with physically reasonable
behavior, we must impose constraints on the control input
u, ensuring that the motion model obeys contact interactions
laws. An important property of contact mechanics is that the
physical constraints dictating the magnitude and direction of
the frictional forces vary with the contact interaction mode.

Friction Cone In accordance with Coulomb’s frictional
law, the following constraints on the inputs are always
satisfied independently of the contact mode:

C0 :

{
fn,c ≥ 0,

|ft,c| ≤ µpfn,c
(8)

implying that each pusher can only exert a compressive force
on the object and that the net frictional force applied on
the object remains within the bounds of the friction cone in
Fig. 6. In addition, we must enforce constraints that depend
on the contact interaction mode.

Sticking When the pusher is sticking relative to the object,
the tangential velocity is stationary, as in Fig. 7(a)

C1 : φ̇c = 0 (9)

Sliding Left When the pusher is sliding left relative to
the object, the tangential velocity is strictly positive and the
frictional force must remain on the right hand side of the
friction cone, as in Fig. 7(b)

C2 :

{
φ̇c > 0,

ft,c = µpfn,c
(10)

Sliding Right When the pusher is sliding right relative to
the object, the tangential velocity is strictly negative and the
frictional force is constrained to remain on the left hand side
of the friction cone, as in Fig. 7(c)

C3 :

{
φ̇c < 0,

ft,c = −µpfn,c.
(11)

5.6 Pusher Force-Velocity Mapping
The motion equations in Eq. (7) are expressed in terms of
the object state x, the applied forces uf , and the relative
pusher sliding velocities uφ. This mapping from applied
forces to object velocity is desirable from a controller
design perspective as the motion equations in Eq. (7) are
independent from the contact mode. This is not the case for
the relation between pusher velocity and object velocity, as
described in Hogan and Rodriguez (2016).

In practice, it is easier for most position controlled robots
to control the robot kinematically (i.e. velocity control)
rather than in force control. As such, once the target control u
is computed, it is necessary to map it back to a desired robot
velocity vp,c, resolved in the body frame. The robot velocity
is linearly related to the object velocity through the kinematic
relation

vp,c = Jct + ṙc (12)

= JcLBuf +
∂rc
∂φ

φ̇c (13)

=
[

JcLB ∂rc
∂φ 1c

]
︸ ︷︷ ︸

Gc

u. (14)

We can think of vp,c as the velocity of the contact point on
the pusher side, Jct the velocity of the contact point on the
object side, and ṙc their difference, i.e. the velocity of sliding.

5.7 Linearization
This section briefly describes the linearization of the motion
equations in Section 5.4 about a given nominal trajectory.
We will see that this linearization yields approximate
dynamic equations, which can be enforced as linear
matrix inequalities in an optimization program and are
computationally tractable. This will be essential for the
real-time execution of the controller design presented in
Section 6. Consider a feasible nominal trajectory x?(t) of
the sliding object with nominal control input u?(t) of the
pusher. The notation (·)? is used to evaluate a term at the
equilibrium state and (̄·) is used to denote a perturbation
about the equilibrium state. The linearization of motion
equations Eq. (7) about a nominal trajectory is

˙̄x = A(t)x̄ + B(t)ū,

Prepared using sagej.cls

7

where x̄ = x− x?, ū = u− u?, and

A(t) =
∂f(x,u)

∂x

∣∣∣∣
x?(t),u?(t)

, B(t) =
∂f(x,u)

∂u

∣∣∣∣
x?(t),u?(t)

.

(15)
The terms A(t) and B(t) are computed symbolically using
the function jacobian() in matlab, where f(x,u) is
given by Eq. (7).

6 CONTROLLER DESIGN
In this section, we present a closed-loop controller design
that can stabilize the motion of a pushed object about a
nominal trajectory. A key feature of this controller is its
ability to reason across a sequence of contact modes to fully
exploit the dynamics of the system. The proposed controller
determines the desired pusher motion (applied force and
velocity) at each time step based on the sensed pose of the
object.

The following section first presents an offline optimal
control solution to the hybrid control problem by formulating
a Mixed-Integer Quadratic Program (MPC-MIQP). We then
introduce a novel hybrid controller termed Model Predictive
Control with Learned Mode Schedules (MPC-LMS), that
leverages solutions from the MPC-MIQP program offline to
enable real-time control.

6.1 Hybrid Model Predictive Control
A successful feedback controller must:

1. Allow for sliding and sticking at contact.
2. Recover from applied perturbations to the nominal

trajectory.
3. Be fast enough to solve online.

To satisfy these requirements, we elect to use an MPC
formulation, which takes the form of an optimization
program over the control inputs during a finite time horizon
t0, . . . , tN . The decision variables of the optimization
program include the perturbed states of the system about
the nominal trajectory for N time steps x̄1, . . . , x̄N and
the perturbed control inputs ū0, . . . , ūN−1. The goal is
represented by a finite-horizon cost-to-go function that we
minimize subject to the constraints on the control inputs and
the dynamics of the system detailed in Section 5. We express
the cost-to-go for N time steps as:

J(x̄i, ūi) = x̄TNQN x̄N +

N−1∑
i=0

(
x̄Ti+1Qx̄i+1 + ūT

i Rūi
)
.

(16)
The terms Q, QN , and R denote weights matrices

associated with the error state, final error state, and control
inputs. These represent standard objectives in a trajectory
optimization problem where the planned trajectory must
reach the goal, the intermediate trajectory should approach
the nominal trajectory, and the actuation effort should be
minimized. We subject the search for optimal control inputs
to the constraints:

∀(i, c)

x̄i+1 = x̄i + h [Aix̄i + Biūi] ,
fn,ci ≥ 0,

ft,i ≥ 0,

µfn,i ≥ ft,i,

(17)

developed in Section 5 where i is the time index and
c denotes the contact point. The first constraint is the
linearization of the dynamic equations of motion, with Ai
and Bi from Eq. (7). This leads to linear constraints that are
computationally tractable for real-time execution.

Additionally, depending on the contact mode at play at
each iteration i of the prediction finite horizon, the controller
enforces the extra constraints

if Mode(i) = Sticking:
{
φ̇ci = 0, (18)

if Mode(i) = Sliding up:

{
φ̇ci > 0,

µpfn,ci = fn,ci,
(19)

if Mode(i) = Sliding down:

{
φ̇ci < 0,

µpfn,ci = fn,ci,
(20)

where the term Mode(i) denotes the contact mode of
interaction at the ith step of the prediction horizon.

The constraints in Eqs. (18), (19), and (20) depend on
the contact mode and complicate the search for optimal and
feasible control inputs. Contact modes and control inputs
must be chosen simultaneously. In its naive form, this
problem takes the form of a tree of optimization programs
with (Mn)N possible contact schedules, where M denotes
the number of possible contact modes for each contact point,
n the number of contact points, and N the length of the
control horizon. Each branch of the tree requires solving
a convex quadratic program, which is too computationally
expensive to solve online.

6.2 Mixed-Integer Quadratic Program
(MPC-MIQP)

The combinatorial hybrid nature of the pusher-object dynam-
ics can be modeled by introducing integer decision vari-
ables into the optimization program, as is commonly done
in mixed-integer programming. The resulting mixed-integer
quadratic program (MIQP) can be solved efficiently using
commercial numerical tools, such as Gurobi (Gurobi Opti-
mization (2015)).

In the case of the pusher-object system, we introduce
the integer variables: z1i ∈ {0, 1}, z2i ∈ {0, 1}, and z3i ∈
{0, 1}, where z1i = 1, z2i = 1, or z3i = 1 indicate that the

t0 tN

m1 m2 mM

t1 . . .

. . .

Error states

Control inputs

Contact modes

Figure 8. Hybrid MPC framework. A sequence of control inputs
is computed that will drive the predicted states to the reference
trajectory while simultaneously finding the schedule of optimal
hybrid mode transitions m = {m1, . . . ,mM}. The control input
ū0 + u?

0 is applied to the system.

Prepared using sagej.cls

8 Journal Title XX(X)

MI-MPC
Plant

x? x̄ ū

u?

u x+

−

+
+

(MIQP)

Figure 9. Block diagram of the hybrid controller design
proposed in Eq. (21). The resulting MPC controller design
involves solving a non-convex mixed-integer quadratic program.
Note that the integer variables are internal to the controller,
necessary to represent the hybrid dynamics, and as an aid to
find the optimal control sequence.

contact interaction mode at step n is either sticking, sliding
up, or sliding down, respectively. The hybrid MPC problem
with additional integer variables denoting the contact modes
is detailed as:
Optimization Problem 1 (MIQP): Given the current error
state x̄0 and nominal trajectory (x?i , u?i), solve

min
x̄i, ūi, zi

x̄TNQN x̄N +

N−1∑
i=0

(
x̄Ti+1Qx̄i+1 + ūT

i Rūi + zTi Wizi
)

subject to x̄i+1 = x̄i + h [Aix̄i + Biūi] ,
ūc,i ∈ C0,
ūc,i ∈ C1 if c is sticking (i.e., z1c,i = 1),

ūc,i ∈ C2 if c is sliding left (i.e., z2c,i = 1),

ūc,i ∈ C3 if c is sliding right (i.e., z3c,i = 1),

z1c,i + z2c,i + z3c,i = 1,
(21)

with zi = [z1c,i, z2c,i, z3c,i]
T. The term Wi is a weight

matrix that can be used to penalize contact switches between
the nominal trajectory and the corrected actions. We enforce
that the sum of integers values must be unity at each time
step to ensure that only one mode can be active at a time.

The resulting mixed-integer optimization program is
simultaneously tasked with finding the optimal hybrid mode
schedule during the prediction horizon (zi) and the optimal
control sequence (ui). In practice, we employ the big-M
formulation (Nemhauser and Wolsey (1988)) to formulate
the problem, where M is a large scalar value used to activate
and deactivate the contact mode dependent constraints,
through a set of linear equations.

To speed up computation and reduce the number of integer
variables, it is useful to constraint adjacent time steps within
a prediction horizon to have the same contact mode. This
is shown in Fig. 8, where the agglomerated mode sequence

Algorithm 1: Learned Mode Scheduling (LMS)
input : x̄(t0), x?(t),u?(t),Σ
output: ū(t0)

Offline;
Mθ = Mode Classifier(Σ)

Online;
m̃ = Mθ(x̄(t0));
x̄i, ūi, J = FM-MPC (x̄(t0), x?(t),u?(t), m̃)
ū(t0) = ū0

Plant
x? x̄ ū

u?

u x+

−

+
+

m̃

FM-MPC

Classifier
model

(QP)

Figure 10. Block diagram of the hybrid controller design with
learned mode schedule classifier. The resulting MPC controller
design is a convex quadratic program.

m = {m1, . . . ,mM} is introduced, with mm ∈ {S,L,R}
denoting sticking, sliding left, and sliding right.

6.3 Learned Mode Scheduling (MPC-LMS)
The Mixed-Integer Quadratic Formulation presented in
Section 6.2 offers a powerful solution to stabilize hybrid and
underactuated dynamical systems and achieve closed-loop
tracking of a nominal trajectory. However, its computation
requirements remain too great for real-time control (see
Section 7 for more detail). This section introduces a
controller design that separates the search for the mode
schedule from the optimal control sequence. We describe
how this splitting of the problem permits us to leverage
offline computations to achieve real-time control (see
Section 7 for more details).

Consider the controller design architecture proposed in
Fig. 10. Suppose that given the state error x̄, we had
access to an oracle function that returned an effective mode
schedule m̃ = {m1,m2, . . . ,mM} to be enforced during the
prediction horizon. In such a case, the control problem would
reduce to determining the optimal control inputs under the
prescribed mode sequence by solving Optimization Problem
2. Although we do not have direct access to a real-time
function that determines the optimal mode schedule, we can
query Optimization Problem 1 as much as desired offline to
find optimal mode sequences given errors in the input state.

Random State
Error Generator

MPC (MIQP)

Training Examples Learning Algorithm

x̄e

m̃e

D : {x̄1,m1, . . . , x̄E,mE}

Classifier modelx̄

Training

Prediction

m̃(Mθ)

Figure 11. Supervised learning framework for mode schedule
selection. A dataset of E labelled datapoints is generated by
solving Optimization Problem 1. From the training examples, a
classifier is trained to return the mode schedule based on the
state error vector.

Prepared using sagej.cls

9

This formulation lends itself well to a supervised learning
setting, where the objective is to train a classifier model that
can select an effective mode schedule given the error state.

Optimization Problem 2: Given current error state x̄0,
nominal trajectory (x?i , u?i), and mode schedule m, solve

min
x̄i, ūi

x̄TNQN x̄N +

N−1∑
i=0

(
x̄Ti+1Qx̄i+1 + ūT

i Rūi
)

subject to x̄i+1 = x̄i + h [Aix̄i + Biūi] ,
ūc,i ∈ C0,
ūc,i ∈ C1 if mi specifies that c is sticking,
ūc,i ∈ C2 if mi specifies that c is sliding left,
ūc,i ∈ C3 if mi specifies that c is sliding right.

We present the learning framework used to design the
classifier model shown in Fig. 11. Using the Optimization
Problem 1 presented in Eq. (21), we generate a dataset of E
training example {x̄e,me}, where me represents the mode
schedule associated with the eth datapoint. The purpose
of the machine learning algorithm is to train a classifier
model that minimizes the cross-entropy error function of the
labelled training set. In this paper, we use a fully connected
neural network as described in Table 1.

This new hybrid control architecture leads to a convex
optimization program with a prescribed mode sequence. The
main attraction of this approach, detailed in Algorith 1, is to
convert a non-convex mixed-integer quadratic program into
a convex quadratic program that can be solved in real-time.

7 NUMERICAL RESULTS
This section performs a numerical simulation study to
evaluate the performance of the controller MPC-LMS
introduced in Section 6 on a planar manipulation task. We
consider the task of stabilizing an object with perturbed
initial conditions about a nominal trajectory. We compare
the performance of the proposed controller against three
baselines controllers: MPC-MIQP, which is optimal with
linearized dynamics, MPC with Sticking Contacts, and LQR
with Frictionless Contact.

1. MPC-MIQP. The MPC controller with Mixed-Integer
Quadratic Programming is described in Section 6.2
and represents the optimal baseline. This controller
can only be executed in numerical simulations as it is
not fast enough for online executions.

2. Sticking Contacts. To evaluate the value of a
controller design that can reason across multiple
contact modes, we compare the performance against
a controller that is limited to reason over a
single contact configuration: sticking. This controller
requires solving Optimization Program 2 with the
mode sequence fixed as m = {S, . . . , S} for the
entirety of the control horizon. This strategy is
equivalent to that used by Posa et al. (2016), Woodruff
and Lynch (2017), and Pardo et al. (2017).

3. Frictionless Contacts. When controlling systems with
sustained contact interactions, one could assume a
frictionless contact model that neglects tangential
frictional forces. This assumption leads to a smooth

dynamical system that can be stabilized using a
Linear-Quadratic-Regulator (LQR). This controller
can be interpreted as assuming a contact that can slide
freely while applying positive normal forces.

This section investigate a comparison of the application
of the MPC-LMS controller on a straight-line trajectory
with perturbed initial conditions. We compare the sensitivity
to initial state errors of the proposed algorithm against
three benchmarks across 100 simulations with random initial
perturbations. Finally, we test the robustness of the MPC-
LMS controller to errors made in contact classification.

7.1 Straight-Line Tracking Simulation
In this section, we consider the task of controlling the motion
of a square using a single point pusher about a straight
line trajectory at a constant velocity shown in Fig. 12(a).
The point pusher system is defined by the state vector x =
[x y θ pc]

T and the control vector u = [fn ft ṙy], where
ry = a

2 tanφ. The initial conditions are x0 = −0.01 m,
y0 = 0.03 , θ0 = 30 deg, and ry0 = −0.02 m. The physical
parameters used in the numerical simulation are reported in
Table 3.

The classifier model used in the MPC-LMS controller
is learned using a multilayer neural network with
the architecture reported in Table 1. The controller
design parameters used in the numerical simulations are
h = 0.03 s, N = 35, Q = 10 diag{3, 3, 0.1, 0}, QN =
2000 diag{3, 3, 0.1, 0}, and R = 0.5 diag{1, 1}. The
prediction horizon is split into M = 8 bins during which
the contact modes are held constant. The number of time
steps associated with each aggregated contact mode section
mm is {1, 5, 5, 5, 5, 5, 5, 4} with the associated contact mode
weight matrix W = 0.1 diag{0, 3, 1, 1, 1, 1, 1, 1} for all time
steps. To regulate the velocity of the pusher, we include the
pusher velocity constraints |vn| ≤ 0.3 m/s and |vt| ≤ 0.3 m/s
to the optimization program. All MPC based benchmarks
make use of identical design parameters following those of
the MPC-LMS while the LQR based controller uses Q =
10 diag{3, 3, 0.1, 0} and R = 100 diag{0.5, 0.5}.

In Fig. 12(a), we show the tracking performance of the
MPC-LMS controller and compare its performance against
the three baselines algorithms. Results show that the MPC-
MIQP and the MPC-LMS algorithms succeed in tracking the
desired trajectory. The frictionless controller is not able to
track the nominal trajectory as its model neglects tangential
frictional forces which causes the pusher to get stuck in a
position offset from the nominal position. This limitation
leads to the controller’s inability to overcome friction and
control the motion of the object. In contrast, the sticking
controller is not able to track the trajectory as it does not
have the ability to slide, a required skill to recover from the
initial perturbations in ry . In Fig. 13, the error dynamics
of the simulation presented in Fig. 12(a) are shown to
tend towards zero after approximately 2 s. In Fig. 14, we
show the control effort of the simulation in Fig. 12(a). The
control input space u = [fn ft ṙy]T is mapped to the robot
end-effector velocity vc using Eq. (14). Note that although
the commanded velocities are discontinuous during contact
switches, the resultant commanded robot positions xp and yp
are smooth.

Prepared using sagej.cls

10 Journal Title XX(X)

When the initial configuration of the pusher matches the
nominal trajectory as in Fig. 12(b) with initial conditions
x0 = −0.005 m, y0 = −0.02 , θ0 = 20 deg, and ry0 = 0
m, the sticking configuration is able to track the nominal
configuration. However, its limited control authority takes
approximately 3 times longer to converge to the nominal

trajectory. In practice, the controller’s ability to slide the
pusher relative to the object does not only add more control
authority by allowing the pusher to move to a more strategic
location relative to the object, but is also essential to
return to the nominal contact location of the pusher on the

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking
Frictionless

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

0 98

0.99

1

1.01

1.02

1.03

1.04

1.05

0.99

1

1.01

1.02

1.03

1.04

1.05

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking
Frictionless

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

0.99

1

1.01

1.02

1.03

1.04

1.05

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

(a) Both the MPC-LMS and optimal baseline MPC-MIQP are able to track the trajectory. The frictionless
controller that neglects friction is unable to slide to the proper contact location due to unexpected friction.
The sticking controller is unable to to track the trajectory as it doesn’t have the ability to slide.

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking
Frictionless

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

0 98

0.99

1

1.01

1.02

1.03

1.04

1.05

0.99

1

1.01

1.02

1.03

1.04

1.05

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking
Frictionless

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

0.99

1

1.01

1.02

1.03

1.04

1.05

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

MPC-LMS
MPC-MIQP
Sticking

Sliding Up
Sticking
Sliding Down

(b) When the initial configuration of the pusher matches that of the nominal trajectory, the sticking
configuration is able to track the nominal configuration. However, its limited control authority leads to a
significantly slower convergence to the nominal trajectory.

Figure 12. Closed-loop straight line tracking of a pushed square object. The MPC-LMS controller performance is compared to
three benchmark: the optimal baseline MPC-MIPQ, MPC with sticking contacts, and LQR with frictionless contacts.

0 2 4 6 8 10

-0.05

0

0.05

0 2 4 6 8 10

-0.05

0

0.05

0 2 4 6 8 10

-1

0

1

0 2 4 6 8 10

-0.05

0

0.05

Figure 13. Error dynamics response from perturbed initial conditions associated with the MPC-LMS controller shown in Fig. 12(a).
The perturbed initial conditions are shown to converge towards zero after approximately 2 s.

Prepared using sagej.cls

11

0 2 4 6 8 10

0

0.5

0 2 4 6 8 10

-0.2

0

0.2

0 2 4 6 8 10

-2

0

2

0 2 4 6 8

-0.2

0

0.2

0 2 4 6 8 10

-0.2

0

0.2

-0.1 0 0.1 0.2 0.3 0.4

-0.1

0

0.1

Figure 14. Control effort response from perturbed initial conditions associated with the MPC-LMS controller shown in Fig. 12(a).
The control input space u = [fn ft ṙy]T is mapped to the robot end-effector velocity vc using Eq. (14). Although the commanded
velocities are discontinuous at contact switches, the resultant commanded robot positions xp and yp are smooth.

object following unexpected sliding, either caused by model
uncertainty or external perturbations.

It is interesting to compare the contact modes enforced
by the MPC-LMS vs. the optimal baseline MPC-MIQP.
For example, in Fig. 12(a), while both sequences are not
identical, they capture the same general behavior: quickly
slide up, stick shortly, slide down, and stick during the
remainder of the push. While the controller most often relies
on sticking interactions to control the motion of the object,
it exploits the additional sliding modes to increase the ability
of the pusher to rotate the object. The inability of the sticking
controller to recover from external perturbations shows that
this ability is not only desirable for improved performance
but also necessary to perform the task.

7.2 Sensitivity to initial state errors
To test the robustness of the MPC-LMS controller, we
test its performance on 100 trajectory tracking simulation

with perturbed initial conditions drawn uniformly from the
range ±[0.03 0.03 .4 0.025] associated with the dimensions
[x y θ ry]. Figure 15 shows the mean and variance of
the euclidean distance between the measured and desired
position over the entirety of the trajectories. Results show
that the MPC-LMS achieves an average performance (E =
0.0064± 0.0055 m) that is comparable to that of MPC-
MIQP (E = 0.0051± 0.0051 m). Both the frictionless and
sticking control architectures have high error (E = 0.0247±
0.0063 m) and (E = 0.0499± 0.055 m) respectively, as the
controllers are unable to track the nominal trajectory.

The major advantage presented by the MPC-LMS
controller is it that is allows for real-time execution on
an experimental setup. Results taken over 100 random
simulations show that the MPC-LMS controller achieves
an average computational time of 0.0028± 0.00075 s
compared to that of 0.40± 0.17 s for the MPC-MIQP.

We parametrize the classifier model presented in Fig. 10
using a neural network, as reported in Table 1. Table 2

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03 (a) MPC-LMS

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03(b) MPC-MIQP

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

(c) Sticking

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

(d) Frictionless

Figure 15. Trajectory tracking error mean and variance taking over 100 simulations with random initial states. The error is compute
as the euclidean distance between between the observed center of mass position and its desired location. In general, the sticking
and frictionless controllers cannot control the system.

Prepared using sagej.cls

12 Journal Title XX(X)

Table 1. Neural network parameters.

Property Value
Number of hidden layers 3
Neurons in hidden layer 1 32
Neurons in hidden layer 2 50
Neurons in hidden layer 3 50
Activation functions ReLu
Output layer Softmax
Loss function Cross entropy

shows the prediction accuracy of the neural network
trained on 100, 000 labelled data points on a validation
set of 50, 000 labelled data points both generated by
sampling the error state from a normal distribution with
standard deviation [0.03 0.03 .4 0.025], associated with the
dimensions [x y θ ry]. We evaluate the performance on each
mode individually, as defined in Fig. 8. The prediction
accuracy is above 90 % on all 8 contact mode clusters,
showcasing the neural network’s ability to accurately predict
the contact mode based on the error state.

7.3 Sensitivity to contact mode errors
In Fig. 16, we explore the sensitivity of the MPC-LMS
controller to mistakes committed by the contact mode
classifier. Figure 16 investigates the performance of the
controller when errors are randomly introduced in the contact
mode selection relative to the MPC-MIQP optimal baseline.

0 20 40 60 80 100
0

200

400

600

Figure 16. MPC cost vs. classification mistakes. Random
classification errors are introduced on all contact modes to the
MPC-MIQP solution to understand the sensitivity of the
controller to classification mistakes.

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

0

20

40

60

80

Figure 17. Tracking error vs. classification mistake at a given
time step as defined in Fig. 8. Random classification errors are
introduced (100% error) on individual contact modes to the
MPC-MIQP solution to understand the sensitivity of the
controller. Results show that committed mistakes during the
beginning of the control horizon have the most important impact
on controller performance.

Results show that the MPC controller degrades linearly up to
a classification error of 20%, at which point the performance
degrades significantly. Note that performance of the learned
classifier described in Table 2 are well below this threshold.

In Fig. 17, we explore the sensitivity to classification
errors as a function of the time step of the MPC program
at which it was committed. As expected, results show that
mistakes committed during the beginning of the control
horizon have the most important impact on controller
performance. We hypothesize that this is the case as errors
committed during the beginning of the horizon have a
stronger impact on the future trajectory of the object.
Moreover, mistakes committed during the first time step
are expected to have a more significant influence on the
performance as MPC only applies the first command of the
control sequence.

Table 2. Accuracy results for the straight line point pushing
numerical results. The neural network predictions are evaluated
on a validation set of 50K labelled data points. We evaluate the
performance on each mode separately, as defined in Fig. 8.

Mode Id. 1 2 3 4 5 6 7 8
Accuracy 0.93 0.93 0.92 0.91 0.90 0.90 0.97 0.99

8 EXPERIMENTAL RESULTS

We experimentally validate the MPC-LMS controller design
on a planar experimental setup using an industrial robotic
manipulator (ABB IRB 120) shown in Fig.1. We refer the
readers to the attached video for a visualization of the closed-
loop pushing experiments. The pose of the pushed object
is tracked using a Vicon system (Bonita). The experimental
setup is depicted in Fig. 1, where a metallic rod (pusher)
attached to the robot is used to push an aluminum object on
a flat surface (plywood, abs, delrin, etc.).

Section 8.1 considers a trajectory tracking problem using
a square object with a point robotic pusher while Section 8.2
extends the contact configuration to a two point pusher. The
objective of the controller is to track the trajectory of the
center of mass of the object along the race track defined by
two circles of radii 0.15 m at a constant velocity of v = 0.05
m/s, as in Fig. 18.

Table 3. Experimental system parameters.

Property Symbol Value
Coefficient of friction (pusher-object) µp 0.3
Coefficient of friction (object-table) µg 0.35
Mass of object, kg m 0.827
Object side length, m a 0.09
Line pusher width, m d 0.03

Prepared using sagej.cls

13

(a) Point pusher tracking a trajectory for 7 consecutive laps.
The black line represents the desired trajectory and the blue
lines track the center of mass of the object.

(b) Point tracking of the same trajectory with external
perturbations for a single lap. The black line represents the
desired trajectory and the hand represents the locations and
directions in which the perturbations were applied.

Figure 18. Experimental tracking of the ∞ track with the MPC-LMS controller for the robotic point pusher.

8.1 Case Study A: Single Point Pushing

Figure 19. Experimental setup for point pusher.

Figure 19 shows the experimental setup for the planar
manipulation task with a point pusher. The desired trajectory
is set to 0.05 m/s and all control parameters are kept
identical to those described in Section 7, and we evaluate the
performance of the MPC-LMS controller design approach
on the race track in Fig. 18. First, we consider the ability
of the controllers to track the nominal trajectory without
exerting any external perturbations on the system. Second,
we perform the experiments while subjecting the pusher
to controlled external perturbations to evaluate the reactive
capabilities of the controller.

Table 5 shows the prediction accuracy of the neural
network trained on 120, 000 labelled data points on a
validation set of 50, 000 data points both generated by
sampling the error state from a normal distribution with
standard deviation [0.03 0.03 .4 0.025], associated with the
dimensions [x y θ φc]. The system parameters used in the
experiments are presented in Table 3.

Table 4. Accuracy results for the point pushing experimental
results on a 8 track trajectory. The neural network predictions
are evaluated on a validation set of 50K labelled data points.
We evaluate the performance on each mode separately, as
defined in Fig. 8.

Mode Id. 1 2 3 4 5 6 7 8
Accuracy 0.95 0.95 0.95 0.93 0.95 0.96 0.96 0.98

8.1.1 Point Pusher Experiments Figure 18 shows the
robot manipulator pushing the square object about the race
track without any external perturbations for 7 consecutive
laps. The black line is the desired trajectory and the blue
line tracks the geometric center of the object. The MPC-
LMS controller succeeds in tracking the desired trajectory
within an average state error of 0.02 m. The stability of the
MPC-LMS can be seen in Fig. 18(a) by the small variance
associated with the 7 consecutive trajectories that overlap
within a very small tolerance.

In Fig. 18(b), we apply four successive impulsive forces
in the transverse motion to the object to perturb the system
about its nominal trajectory and evaluate the stabilizing
capabilities of the feedback controller. The forces are applied
to ensure that the object is pushed at the same location by an
equal distance on each experiment. The controller quickly
reacts to external perturbations and acts in such a manner
to eliminate the perturbation. During real-time executions,
the controller reasons about both future control inputs and
contact modes to eliminate errors at an average frequency of
250 (Hz).

8.2 Case Study B: Pushing with Line Contact

Figure 20. Experimental setup for line pusher.

The experimental setup for the planar manipulation task with
a line pusher is shown in Fig. 20. The task of the controller
is to determine the motion of the robot in real-time to control

Prepared using sagej.cls

14 Journal Title XX(X)

(a) Line pusher tracking of the 8 track for 7 consecutive laps.
The black line represents the desired trajectory and the blue
lines track the center of mass of the object.

(b) Line tracking of the 8 track with external perturbations for
a single lap. The black line represents the desired trajectory
and the hand represents the locations and directions in which
the perturbations were applied.

Figure 21. Experimental tracking of the 8 track with the LMS controller for the robotic point pusher.

the motion of the object about a race track shaped trajectory
defined by two circles of radii 0.15 meters at a constant
velocity of v = 0.05 m/s. We model the line pusher as 2
contact points that are constrained to move as a rigid-body,
with the position of the center point of pusher denoted as ry
and state vector defined by x = [x y θ ry]T, only one sliding
velocity is considered as both points move as a rigid body.
We include the sliding velocity of only one point pusher,
since both points move as a rigid body.

Following a similar approach to that described in
Section 8.1, we train a classifier model using 80 K labelled
data points to predict the optimal mode schedule based on
the error state of the system. The physical properties used
to parametrize the classifier model and the neural network
properties are related in Tables 1 and 3, respectively.

For the line pusher, both contact points are constrained
to have the same contact mode as they are constrained to
move together as a rigid body and remain in contact with the
object. The controller design parameters are selected as h =
0.03 seconds, N = 35, Q = 10 diag{1, 1, 1, 0.1}, QN =
2000 diag{1, 1, 1, 0.1}, and R = diag{1, 1, 1, 1, 0.01}. We
split the prediction horizon into 8 parts during which the
contact modes are held constant. The number of time
steps associated with each contact mode section mm is
{1, 5, 5, 5, 5, 5, 5, 4} with the associated weight matrix W =
0.1 diag{0, 3, 1, 1, 1, 0, 0, 0} for all time steps.

8.2.1 Line Pusher Experiments Figure 21(a) depicts the
robotic line pusher pushing the square object about the race
track without any external perturbations for 7 consecutive
laps. Figure 21(b) depicts the robotic line pusher pushing the
square object about the race track with external perturbations
for a single lap. Each time a perturbation is encountered,

Table 5. Accuracy results for the line pushing experimental
results on a 8 track trajectory. The neural network predictions
are evaluated on a validation set of 50K labelled data points.
We evaluate the performance on each mode separately, as
defined in Fig. 8.

Mode Id. 1 2 3 4 5 6 7 8
Accuracy 0.96 1.0 0.95 0.98 0.99 1.0 1.0 1.0

the pusher reacts to reduce the error by following a fast
sliding motion to stabilize the object and then push it back
towards the desired trajectory using a sticking phase. The
controller is executed online at an average frequency of
200 Hz. Note that the frequency is lower because of the
extra complexity associated with the larger input space and
consequent additional constraints.

9 Influence of Control Parameters
In this section, we investigate the dependence and sensitivity
of the proposed controller to design parameters. Specifically,
we evaluate the effect of the controller frequency, tracking
velocity, planning horizon, estimated coefficient of friction,
and radius of curvature of the track on the closed-loop
performance of the pusher-object system.

We evaluate the performance of the controller by
computing the average mean squared error between the
desired trajectory and the actual trajectory for the point
pusher system. All experiments are conducted by tracking
three consecutive laps of the race track at 0.08 m/s, with the
last two laps subject to two controlled external perturbations.
An example of this can be viewed in the video attachment.

9.1 Controller Frequency
The pusher-object system is naturally unstable in its forward
motion and can be stabilized using a feedback controller
for trajectory tracking. A natural question to ask is “what
is the lowest controller bandwidth at which the system can
be controlled?” Figure 22(a) depicts the effect of the control
frequency on the closed-loop tracking performance. Results
show that the system requires a minimal control bandwidth
of 20 Hz for closed-loop stability. Above this frequency, the
performance remains unchanged. Note that, intuitively, this
minimum control frequency will change with the velocity of
the target trajectory.

9.2 Tracking Velocity
The model used for controller design uses the quasi-
static approximation, which has been shown to be a good
approximation for object velocities under 0.05 m/s by Bauza

Prepared using sagej.cls

15

0 20 40 60 80 100
0

0.05
0.1

25 30 35 40 45 50
0

0.05
0.1

0.02 0.04 0.06 0.08
0

0.02
0.04

0 0.2 0.4 0.6 0.8 1
0

0.05
0.1

11 12 13 14 15 16 17
0

0.05
0.1

(a) Controller frequency

0 20 40 60 80 100
0

0.05
0.1

25 30
0

0.05
0.1

0.02 0.04 0.06 0.08
0

0.02
0.04

0 0.2
0

0.05
0.1

11 12 13 14 15 16 17
0

0.05
0.1 (b) Tracking velocity

0 20 40 60 80 100
0

0.05
0.1

25 30 35 40 45 50
0

0.05
0.1

0.02 0.04 0.06 0.08
0

0.02
0.04

0 0.2 0.4 0.6 0.8 1
0

0.05
0.1

11 12 13 14 15 16 17
0

0.05
0.1

(c) Planning horizon

0 20 40 60 80 100
0

0.05
0.1

25 30 35 40 45 50
0

0.05
0.1

0.02 0.04 0.06 0.08
0

0.02
0.04

0 0.2 0.4 0.6 0.8 1
0

0.05
0.1

11 12 13 14 15 16 17
0

0.05
0.1 (d) Pusher friction coefficient

11 12 13 14 15 16 17
0

0.05

0.1

(e) Radius of curvature of the track

Figure 22. Experimental analysis of the performance as a function the a) controller frequency, b) tracking velocity, c) planning
horizon, d) error in coefficient of friction, and e) radius of curvature of the track.

and Rodriguez (2017). Above this velocity, the unmodeled
inertial forces are appreciable and can negatively impact
performance. In Fig. 22(b), the controller performance
degrades with the increase of the desired velocity. The
controller remains stable until 0.1 m/s at which point the
system becomes unstable. We hypothesize that the tracking
error grows with the tracking velocity as inertial forces start
to have an impact on the object motion and are unaccounted
for in the controller design. Furthermore, trajectory tracking
tasks at higher velocities are more difficult as they require
shorter reaction times to correct mistakes.

9.3 Planning horizon
Due to the underactuated nature of the dynamics of the
pusher-object system, a certain planning horizon length
must be considered for closed-loop stability. The controller
must reason beyond instantaneous actuation since the forces
required to drive the task in the direction of the goal might
not be feasible at the current instant. To investigate the
influence of the planning horizon, we gradually increase the
planning horizon from 5 to 50 time steps, which corresponds
to planning horizons of 0.15 to 1.5 seconds. Results in
Fig. 22(c) show that the system requires a minimal planning
horizon of 20 steps for stability, while performance continues
to increase until it reaches its peak performance around
35 time steps. Beyond that, the controller performance
degrades, possibly due to the additional computational
complexity associated with planning for very long horizons.

9.4 Coefficient of Friction
Coefficients of friction of robotic systems are among the
most difficult parameters to estimate and can have a notable
impact on the system’s dynamics. Often it is difficult or

impossible to estimate without explicit sensing force Fazeli
et al. (2018). Here, we investigate how the performance of
the controller is impacted by varying our estimate of the
coefficient of friction between the pusher and the object from
0 to 1. Our best estimate of this value, based on steel-steel
contact interactions, is detailed in Table 3 as 0.3. Figure 22(d)
shows that the performance increases monotonically with the
estimate of the coefficient of friction.

At first glance, these results seem surprising and counter
intuitive as it is unreasonable that the real value of the
coefficient of friction lies as high as 1. We hypothesize that
the controller benefits from overestimating the pusher-object
coefficient of friction as it leads to more aggressive robot
motions, where the robot favors high tangential velocity
during sliding motion to ensure that the reaction force lies
on the boundary of the friction cone.

9.5 Race Track Radius of Curvature

Finally, in Fig. 22(e) we test the performance of the
controller design by increasing the desired radius of
curvature of the race track trajectory from 11 to 17 cm.
As expected, the performance of the controller degrades
as the radius of curvature decreases because tighter curves
require more aggressive pusher motions with higher control
authority and are more difficult to track. The minimal radius
of curvature achieved is 11 cm prior to the controller
going unstable while the maximum radius of curvature is
constrained to the kinematic workspace of the robotic arm.
The minimal radius of curvature achieved is executed with a
square object with side lengths of 9cm.

Prepared using sagej.cls

16 Journal Title XX(X)

10 CONCLUSION
In this work, we present a feedback controller for a
planar pushing task. The control formulation is based on a
Model Predictive Control approach, where the hybridness
and underactuation associated with contact are explicitly
enforced as linear constraints within a mixed-integer
optimization program. We propose an online approximate
solution MPC-LMS to the offline optimal control problem
to achieve real-time computational requirements while
reasoning across multiple contact modes. The proposed
MPC-LMS approach consists in formulating the search for
optimal modes offline separately from the search for optimal
control inputs online, by leveraging machine learning
methods to select mode sequences from prior experience.

We validate the MPC-LMS algorithm through numerical
simulations and compared to the optimal baseline as well
as two other benchmarks (pure sticking and pure sliding).
We further validate our controller design experimentally,
where the feedback controller successfully stabilizes the
motion of a sliding object about various nominal trajectories.
We demonstrate implementation of the controller for two
manipulation tasks (point and line pushers) while providing
a framework for the mechanics that generalizes to multiple
contact formations and different object shapes. Finally, we
study the changes in the performance of the algorithms for
controlled variations in the control frequency, object velocity,
predictive horizon length, and radius of curvature of the
trajectory.

11 Aknowedgements
We thank Peter K.T. Yu for his help and support in
implementing the experimental results. This paper draws
from Hogan and Rodriguez (2016) and Hogan et al. (2018),
published in the Proceedings of the 2016 International
Workshop on the Algorithmic Foundations of Robotics
(WAFR) and the 2018 International Conference on Robotics
and Automation (ICRA), respectively.

12 Funding
This work was supported by the National Science Foundation
awards through the National Robotics Initiative (grant
numbers NSF-1637753).

References

Alessandro Alessio and Alberto Bemporad. Feasible mode
enumeration and cost comparison for explicit quadratic model
predictive control of hybrid systems. IFAC Proceedings
Volumes, 39(5):302–308, 2006.

M. Bauza and A. Rodriguez. A probabilistic data-driven model
for planar pushing. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 3008–3015, 2017.

A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 35(3):407 – 427, 1999.

Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N
Pistikopoulos. The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1):3–20, 2002.

Martin Buehler, Daniel E Koditschek, and Peter J Kindlmann.
Planning and control of robotic juggling and catching tasks.

The International Journal of Robotics Research, 13(2):101–
118, 1994.

N. Chavan-Dafle, A. Rodriguez, Bowei Tang R. Paolini, Siddhartha
Srinivasa, Michael Erdmann, M.T. Mason, Ivan Lundberg,
Harald Staab, and Thomas Fuhlbrigge. In Robotics and
Automation (ICRA), 2014 IEEE International Conference on,
2014.

Mehmet Dogar and Siddhartha Srinivasa. A framework for push-
grasping in clutter. Robotics: Science and systems VII, 1, 2011.

Mehmet R Dogar and Siddhartha S Srinivasa. A planning
framework for non-prehensile manipulation under clutter and
uncertainty. Autonomous Robots, 33(3):217–236, 2012.

Nima Fazeli, Russ Tedrake, and Alberto Rodriguez. Identifiability
analysis of planar rigid-body frictional contact. In Robotics
Research, pages 665–682. Springer, 2018.

S. Goyal, A. Ruina, and J. Papadopoulos. Wear. Planar sliding with
dry friction Part 1. Limit surface and moment function, 143:307
– 330, 1991.

Inc. Gurobi Optimization. Gurobi optimizer reference manual,
2015. URL http://www.gurobi.com.

F.R. Hogan and A. Rodriguez. Feedback control of the pusher-slider
system: a story of hybrid and underactuated contact dynamics.
In Proceedings of the 12th International Workshop on the
Algorithmic Foundations of Robotics (WAFR), San Francisco,
CA, USA, December 18 – 20., 2016.

F.R. Hogan, E.R. Grau, and A. Rodriguez. Reactive planar
manipulation with convex hybrid MPC. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on,
2018.

Yifan Hou, Zhenzhong Jia, and Matthew T Mason. Fast planning
for 3d any-pose-reorienting using pivoting. In 2018 IEEE
International Conference on Robotics and Automation (ICRA),
pages 1631–1638. IEEE, 2018.

Michael C Koval, Nancy S Pollard, and Siddhartha S Srinivasa.
Pre-and post-contact policy decomposition for planar contact
manipulation under uncertainty. The International Journal of
Robotics Research, 35(1-3):244–264, 2016.

Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valen-
zuela, Hongkai Dai, Frank Permenter, Twan Koolen, Pat
Marion, and Russ Tedrake. Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid
robot. Autonomous Robots, 40(3):429–455, 2016.

Mircea Lazar, WPMH Heemels, Siep Weiland, and Alberto
Bemporad. Stabilizing model predictive control of hybrid
systems. IEEE Transactions on Automatic Control, 51(11):
1813–1818, 2006.

S.H. Lee and M. Cutkosky. Journal of Manufacturing Science and
Engineering. Fixture planning with friction, 113(3):320 – 327,
1991.

K.M. Lynch and M.T. Mason. Stable pushing: mechanics,
controllability, and planning. The International Journal of
Robotics Research, 15(6):533 – 556, 1996.

K.M. Lynch, H. Maekawa, and K. Tanie. Manipulation and active
sensing by pushing using tactile feedback. In Intelligent Robots
and Systems (IROS), 1992 IEEE/RSJ International Conference
on, 1992.

M.T. Mason. Mechanics and planning of manipulator pushing
operations. The International Journal of Robotics Research,
5(3):53 – 71, 1986.

Prepared using sagej.cls

17

M.T. Mason. Mechanics of robotic manipulation. MIT Press,
Cambridge, Massachusetts, 2001.

Todd D Murphey and Joel W Burdick. Feedback control methods
for distributed manipulation systems that involve mechanical
contacts. The International Journal of Robotics Research, 23
(7-8):763–781, 2004.

G.L. Nemhauser and L.A. Wolsey. Integer Programming and
Combinatorial Optimization. Wiley, Chichester, England,
1988.

Richard Oberdieck and Efstratios N Pistikopoulos. Explicit hybrid
model-predictive control: The exact solution. Automatica, 58:
152–159, 2015.

Diego Pardo, Michael Neunert, Alexander W Winkler, Ruben
Grandia, and Jonas Buchli. Hybrid direct collocation and
control in the constraint-consistent subspace for dynamic
legged robot locomotion. In Robotics: Science and Systems,
2017.

M. Posa, C. Cantu, and R. Tedrake. A direct method for trajectory
optimization of rigid bodies through contact. The International
Journal of Robotics Research, 33(1):69 – 81, 2014.

M. Posa, S. Kuindersma, and R. Tedrake. Optimization and
stabilization of trajectories for constrained dynamical systems.
In Robotics and Automation (ICRA), 2016 IEEE International
Conference on, 2016.

Gerrit Schultz and Katja Mombaur. Modeling and optimal
control of human-like running. IEEE/ASME Transactions on
mechatronics, 15(5):783–792, 2009.

D.E. Stewart and J.C. Trinkle. An implicit time-stepping scheme
for rigid body dynamics with inelastic collisions and coulomb
friction. International Journal for Numerical Methods in
Engineering, 39(15):2673 – 2691, 1996.

Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua B
Tenenbaum. Differentiable physics and stable modes for tool-
use and manipulation planning. In Robotics: Science and
Systems (RSS), 2018.

Andrés Klee Valenzuela. Mixed-integer convex optimization for
planning aggressive motions of legged robots over rough
terrain. PhD thesis, Massachusetts Institute of Technology,
2016.

J.Z. Woodruff and K.M. Lynch. Planning and control for dynamic,
nonprehensile, and hybrid manipulation tasks. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on,
2017.

J. Zhou, R. Paolini, J.A. Bagnell, and M.T. Mason. A
convex polynomial force-motion model for planar sliding:
Identification and application. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, 2016.

J. Zhou, James Bagnell, and Matthew Mason. A fast stochastic
contact model for planar pushing and grasping: theory and
experimental validation. In Robotics Science and Systems,
Cambridge, MA, USA, July 12–16, 2017.

Jiaji Zhou and Matthew T Mason. Pushing revisited: Differential
flatness, trajectory planning and stabilization. In Proceedings
of the International Symposium on Robotics Research (ISRR),
2017.

Prepared using sagej.cls

