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Abstract

The strip theory in hydrodynamics has been widely used for predicting com-
plex vortex induced vibrations (VIV) behind bluff bodies, but the question of
how accurate such predictions are has not been addressed adequately before.
In order to corroborate the application of strip theory in VIV, we present a
comparative study between free mono-frequency vibrations of a long flexible
cylinder in both uniform and linearly sheared flow and corresponding forced
vibrations of a rigid cylinder with prescribed sinusoidal motions. We employ
the entropy-viscosity large-eddy simulation (LES) to resolve the vortical flow
and the coupled cylinder response, which we validate by companion exper-
iments of the same configuration. We then extract from LES, at the same
Reynolds number, the values of the sectional vibration amplitude, frequency,
and phase angle (between inline and crossflow motions), and use them as
input parameters for the forced vibration case, for which we perform two-
dimensional simulations. We show here by systematic simulation studies
that the hydrodynamic coefficients exhibit strong similarities between the
two cases, and the forced vibration closely resembles the sectional near wake
of the free vibration.

Keywords: Vortex-induced vibration, Large-eddy simulation, Strip theory

∗Crresponding author
Email address: mistetri@mit.edu (Michael S Triantafyllou)

1Contributed equally

Preprint submitted to Journal of Fluid and Structure March 25, 2022



1. Introduction1

The vortex-induced vibration (VIV) of a circular cylinder is of great in-2

terest due to its importance in the design and operation in a wide range3

of engineering applications, such as marine risers oscillating in the ocean,4

bridges, heat exchangers, and even cables in electric networks. In the off-5

shore industry, VIV of marine risers may lead to severe structural fatigue6

damage [1], therefore a great amount of research has focused on better un-7

derstanding and predicting the VIV response as well devising suppressing8

methods, e.g. streaks, to mitigate the excessive fatigue damage [2].9

In general, the VIV prediction methods can be categorized into two ap-10

proaches: the empirical/semi-empirical models and the computational fluid11

dynamics (CFD). The major difference between them is on how they describe12

the flow characteristics and corresponding hydrodynamic forces on cylinders13

[3]. Specifically, the first approach applies strip theory [4] and predicts the14

VIV response by employing the hydrodynamic coefficients from the experi-15

mental database, while the second approach calculates the VIV response by16

solving the coupled problem of a vibrating cylinder and ambient fluid flow17

together. In general, the CFD approach yields more accurate predictions,18

but due to the extensive computational resources required for the CFD, even19

today in the era of exaflop computing, the offshore industry still relies heavily20

on the semi-empirical prediction tools, such as the formulations in codes like21

Shear 7 [5], VIVA [6] and VIVANA [7].22

The database employed in these semi-empirical prediction codes is mainly23

obtained from experiments on forced vibrations of rigid cylinders [8]. In24

such experiments, a rigid cylinder is forced to vibrate in the cross-flow (CF)25

direction and possibly in the in-line (IL) direction with sinusoidal trajectories26

at prescribed frequencies and amplitudes. With controlled cylinder motion27

and measured fluid forces, the corresponding hydrodynamic coefficients can28

be obtained, such as the mean drag coefficient Cd, the lift/drag coefficient29

in-phase with the velocity Clv/Cdv, and the added mass coefficient in the30

CF/IL direction Cmy/Cmx, namely the component in the lift/drag force in-31

phase with the acceleration.32

One of the first and most comprehensive set of experiments on CF-only33

forced vibration of a rigid cylinder was performed in the MIT Towing Tank34

facility [9] with varying non-dimensional parameters of the true reduced ve-35

locity Vr = U∞
fD

and non-dimensional CF amplitude Ay
D

, where U∞ is the36

prescribed fluid velocity, f is the prescribed motion frequency, Ay is the pre-37
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scribed motion amplitude and D is the cylinder diameter. The findings from38

these experiments revealed that regions of positive Clv, indicating net energy39

transferred from the fluid to structure over one motion period, were located40

in a certain range of Vr and Ay
D

. In addition, it was found that the added41

mass coefficient could vary significantly from a negative value to a large pos-42

itive value around the true reduced velocity Vr = 5.9. The importance of43

the aforementioned measured hydrodynamic coefficients is that they provide44

accurate predictions of the rigid cylinder VIV in the CF direction [10], and in-45

deed they have served as databases for fluid forces for multiple semi-empirical46

prediction tools. Later, this hydrodynamic database was extended to include47

the effects of the IL amplitude and the phase angle θ between the IL and the48

CF trajectory. The experiments on forced vibration of rigid cylinders in both49

CF and IL directions were performed by [11, 12], and the results showed that50

the phase angle θ has a strong influence on the fluid forces, and favorable51

positive energy-in (Clv > 0) was strongly associated with θ corresponding to52

a counter-clockwise (CCW) trajectory [13, 14].53

Nonetheless, the application of the hydrodynamic coefficient database to54

any semi-empirical prediction model depends on a fundamental assumption55

of strip theory, which states that the fluid forces, and hence the wake pattern56

as well, of the flexible cylinder at each cross-section along the cylinder span57

is similar to the forced vibration of a rigid cylinder at similar conditions.58

Several researchers have experimentally studied the fluid force distribution59

along the flexible cylinder via inverse methods and compared with that from60

the experiments of forced vibration of rigid cylinders [15, 16, 17, 18]. Specifi-61

cally, the experiments in [19, 20] revealed a remarkable similarity in the wake62

modes between the forced vibration and free vibration. However, due to the63

insufficient measurement data and the experimental errors, the experimental64

results could only provide some qualitative insights [16].65

Meanwhile, some progress was made by the CFD approach to address66

the aforementioned similarity. A series of high-fidelity DNS studies were pre-67

sented in [21, 22, 23, 24] using the spectral element method for simulating68

VIV of a flexible cylinder with aspect ratio of 4π in uniform flow at Reynolds69

numbers 100, 200 and 1000. Specifically, the structural response and the70

hydrodynamic force distributions were reported in order to connect the VIV71

of flexible cylinders to the forced vibration of rigid cylinders. In particu-72

lar, [25] presented a direct comparison between DNS and the experiments73

of [26]. Moreover, [27] confirmed that the θ values of the counter-clock wise74

(CCW) trajectory along the flexible cylinder were also favorable to the pos-75
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itive energy-in from fluid to structure, which agrees with that of the forced76

vibration of rigid cylinders [13].77

More recently, we have used an underwater optical tracking system to re-78

construct the sectional fluid forces in a flexible cylinder, and compared them79

with the rigid cylinder hydrodynamic database [28]. We concluded that80

employing strip theory with the hydrodynamic coefficients obtained from81

forced rigid cylinder experiments could predict the distributed forces accu-82

rately. However, the relevance of the vortex shedding pattern between the83

free vibrating flexible cylinder and the forced vibrating rigid cylinder could84

not be answered. To this end, in the current work, we first employ the en-85

tropy viscosity method (EVM) to perform large-eddy simulations (LES) of86

VIV of a flexible cylinder in both uniform and linearly sheared current, and87

we validate them by our companion experiments in uniform flow at exactly88

the same set of structural (mass and damping ratio) and flow parameters89

(Reynolds number Re). Subsequently, we conduct two-dimensional simula-90

tions of a rigid cylinder undergoing prescribed motions with amplitude and91

frequency taken from the free vibration. Finally, we examine the similarity of92

the hydrodynamic coefficients and wake patterns between the free vibration93

and the forced vibration.94

The rest of the paper is organized as follows. In Sec. 2 we present the95

numerical methods and simulation parameters. In Sec. 3 we present the96

numerical results emphasizing the strong connection between free vibration97

and forced vibration. In Sec. 4 we summarize the main findings of this paper.98

In the Appendices, we provide details on the validation of the simulation99

results by our experiments.100

2. Numerical method and model101

In this paper, both the free vibration and forced vibration simulations are102

performed by employing the entropy viscosity method (EVM), which was103

originally proposed by [29, 30], and further extended in [31, 32]. In par-104

ticular, the mixed spectral-element/Fourier method, with spectral-element105

discretization on the (x − y) plane and Fourier expansion along the cylin-106

der axial direction (z) is used to discretize the incompressible Navier-Stokes107

equations [33]. The boundary deformation due to the vibration is taken into108

account by a coordinate transformation method first proposed in [22]. Note109

that after taking the Fourier expansion, the three-dimensional flow problem110

is transformed into a series of two-dimensional computations, which can sig-111
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nificantly reduce the computing time, plus the nonlinear step where FFTs112

are employed for efficiency.113

For the LES of the free vibration subject to uniform flow, the computa-114

tional domain has a size of [−6.5D, 23.5D] × [−20D, 20D] on the (x − y)115

plane with a spanwise length 240D, which is the same as that of the exper-116

iment in [28, 34]. Here D = 1 is the diameter of the cylinder, whose center117

is placed at (0, 0). On the left boundary of the domain where x/D = −6.5,118

a uniform inflow profile, i.e., u = U, v = 0, w = 0, is imposed, where u, v, w119

are the three components of the velocity vector u. On the right boundary120

where x/D = 23.5, p = 0 and ∂u
∂n

= 0 are prescribed, where p is the pres-121

sure and n is the normal vector. On both top and bottom boundaries where122

y/D = ±20, a periodic boundary condition is used. Furthermore, the domain123

on the (x−y) plane is partitioned into 2 616 quadrilateral elements clustered124

around the cylinder in order to resolve the boundary layer. Specifically, on125

the radial direction, the size of the first layer element around the cylinder is126

0.01D, which gives rise to y+ < 1 in all the simulations of this paper. The127

resolution along the azimuthal direction, in terms of element edge length, is128

πD
64

. Note that the two-dimensional simulations of the forced vibration are129

based on the same computational domain and mesh partition on the (x, y)130

plane.131

Following the convention of the VIV literature, we define the following132

two reduced velocities,133

Ur =
U∞
fn1D

, Vr =
U∞
fyD

, (1)

where fn1 = 1
2L

√
T

(m∗+Cm) ρπd
2

4

is the first modal natural frequency, calculated134

based on the measured tension, where T is the average tension along the span,135

ρ is the fluid density and assuming the added mass coefficient is Cm = 1.0136

along the model, and fy is the actual vibration frequency measured in the137

CF direction. For the free vibration, the cylinder motion is governed by the138

following equation,139

∂2ξJ
∂t2

+ 2ζωn
∂ξJ
∂t

+
EI

µ

∂4ξJ
∂z4
− ∂

∂z

(T

µ

∂ξJ
∂z

)
=
CJ
2µ
, (2)

where ξJ is the displacement along the J-direction (J = x or J = y), and µ is140

the cylinder mass per unit length. The damping coefficient ζ = 8.7% is equal141
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to that of experiment with ωn = 2π U∞
Ur D

, and EI is the bending stiffness. Note142

that of the experiment [28], the riser is placed vertically, which leads to a143

linearly varying tension from the bottom end to the top end of the cylinder,144

therefore here in the current LES, a linear function of z for T is employed,145

as given below,146

T = Tmax −
Tmax − Tmin

L
z, (3)

where Tmax = T ′max
T ′m

Tm and Tmin =
T ′min
T ′m

Tm. Here Tmax, Tmin and Tm are147

the maximum, minimum and mean values of the tension used in simulation.148

Same as those in the experiment [28], T ′max = 1.33T ′min, T ′m = 0.5
(
T ′max +149

T ′min
)
, and using Tm = (2.0 ∗ U∞

Ur D
L)2(µ + π

4
), we can obtain T along the150

cylinder span. Note that in the experiments, EI < 0.01T , while the exact151

value is changing case by case. In current simulations, EI = 0.02Tm ensures152

that the riser is tension dominated, see [23]. CJ is the J-component of the153

hydrodynamic force coefficient exerted on the cylinder surface. Equ. 2 is154

constrained by the pinned boundary condition (ξJ = 0 and ∂2ξJ
∂z2

= 0) at both155

ends.156

For the LES of the free vibration in linearly sheared flow, the computa-157

tional domain and mesh on the (x−y) plane are the same as those of uniform158

flow. However, in order to take the advantage of FFTs, in the spanwise direc-159

tion, the domain size (z/L ∈ [0, 240]) is extended by 10% (z/L ∈ (240, 267]),160

where the buffer layer is set to recover the periodicity, which is explained in161

detail by Bourguet et al. [35]. It is worth noting that in our simulation, for162

the structure Equ. 2 an additional pinned constraint is placed at z/L = 240.163

In total, we performed 8 simulations of the free vibrations subject to164

uniform inflow of Ur in the range of [10.75, 17.22], and we present validation165

tests on displacements and excited frequencies in Appendix B. In addition,166

2 simulations of the free vibrations in linearly sheared current at Ur = 15.65167

are conducted. Note that, here in the case of linearly sheared flow, Ur =168

Um
fn1D

, where Um = (Umax + Umin)/2 is the mean inflow velocity. Umax and169

Umin are the highest and lowest inflow velocity, respectively. Specifically,170

Umax = 1.4U∞, Umin = 0.6U∞ and Umax = 1.375U∞, Umin = 0.625U∞ are171

used in the two cases of linearly sheared current, respectively, and the result172

of the former will be presented in the main text, while the latter will be173

summarized in Appendix C. In both cases, Re = UmD/ν = 800, where ν is174

the kinematic viscosity.175

Equ. 2 is discretized by the 2nd order central-difference scheme in space176

6



Model Parameters Values
Diameter D 1
Aspect Ratio L/D 240
Mass Ratio m∗ 4.0
Damping Ratio ζ 8.7%
Simulation Case
Reynolds Number Re 550 - 900
Reduced Velocity Ur 10.75 - 17.22

Table 1: Key simulation parameters for the simulations of flow past a uniform flexible
cylinder.

and the Runge-Kutta method in time. For all the simulations of the free177

vibrations and forced vibrations in this paper, unless mentioned explicitly,178

we employ three spectral-element modes in each element on the (x, y) plane.179

For the LES of free vibration in uniform current, we use 512 Fourier planes180

along the axis (z-direction), while for the cases of linearly sheared current,181

we use 576 Fourier planes. Note that in order to minimize the aliasing error,182

we employ over-integration, i.e., we use 5-points Gauss-Lobatto quadrature183

in each element and the 3/2 de-aliasing rule in the Fourier direction. For184

each simulation, the total computational time tU∞
D
≥ 500 with a time step185

∆tU∞
D

= 1.5× 10−3, which results in the CFL number less than 1.2. For the186

parameters α and β of EVM, we have followed the rule established in our187

previous studies [32, 31], namely α = 0.5 and β = 0.5 are used in all our188

simulations of this paper. We present some of the key physical parameters189

in Table 1.190

Recall that in the widely used semi-empirical models based on the strip191

theory [36], it is assumed that the sectional force and wake along the flexible192

cylinder at each location resemble those of the forced vibration of a rigid193

cylinder in the open flow at the same Re. To corroborate this assumption,194

we systematically performed dozens of simulations of the forced vibration,195

with the cylinder motions in CF and IL direction given by the following196

equations,197

Y (t) =
Ay
d
cos(ωt), X(t) =

Ax
d
cos(2ωt+ θ), (4)

where the values of Ax
d

, Ay
d

, ω and θ are taken from the simulation results of198

the two cases of the free vibrations : Ur = 12.66 (Re = 650) and Ur = 13.61199

(Re = 700), shown in Fig. 1 and Fig. 2, respectively. In total, for the case200
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of uniform inflow, we simulated 36 sectional planes of the former and 40 of201

the latter case using Eq. 4. For the two cases of linearly sheared flow, we202

simulated 40 sectional planes. Note that the locations of sectional planes are203

equally spaced along the flexible cylinder.204

3. Simulation results and discussion205

3.1. Free vibration: motions and fluid force distributions206
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Figure 1: Free vibration: structural response along the cylinder span at Ur = 12.66,
Re = 650: (a) CF frequency; (b) IL frequency; (c) IL (red) and CF (blue) amplitudes; (d)
phase angle θ.

The simulation results for frequency (f), amplitude (1/10th highest peak)207

response (A) and the phase between the IL and the CF trajectory (θ) along208

the cylinder span are plotted in Fig. 1 of uniform flow for Ur = 12.66209

(Re = 650), in Fig. 2 of uniform flow for Ur = 13.61 (Re = 700) and in Fig.210

3 of linearly sheared flow for Ur = 15.65 (Re = 800). First of all, as shown in211

the three figures, in both uniform and linearly sheared current, the cylinder212

response frequency is single narrow-banded in the CF direction (subfigure213

(a)), while in the IL direction (subfigure (b)), although there are additional214

frequency components, the exact 2nd harmonic vibration dominates the re-215

sponse. However, even for the two cases of uniform flow at different reduced216

velocities, the amplitude response and phase response exhibit quite different217
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Figure 2: Free vibration: structural response along the cylinder span at Ur = 13.61,
Re = 700. See Fig. 1 for the caption of each subfigure.
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Figure 3: Free vibration in linearly sheared current at Ur = 15.65 with Umax = 1.4U∞
and Umin = 0.6U∞. See Fig. 1 for the caption of each subfigure.

characteristics. In Fig. 1 (c) at Ur = 12.66, the flexible cylinder vibrates at218

the 4th mode in the IL direction and at the 2nd mode in the CF direction,219

while at Ur = 13.61 shown in Fig. 2 (c), it vibrates at the 5th mode in the220
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IL direction and at the 3rd mode in the CF direction. Moreover, for the case221

of Ur = 13.61 in Fig. 2 (d), the phase response along the span shows a pure222

standing wave pattern, with the magnitude of θ kept relatively constant in223

the half wavelength of the IL mode and a jump of 180 degrees at the IL224

nodes. In contrast, for the case of Ur = 12.66 in Fig. 1 (d), a traveling wave225

response develops in the CF direction, and instead of being a constant value226

θ varies continuously in the half wavelength of the IL mode. For the case of227

linearly sheared flow at Ur = 15.65 with Umax = 1.4U∞ and Umin = 0.6U∞,228

as shown in Fig. 3(c), the flexible cylinder vibrates at the 6th mode in the229

IL direction and at the 3rd mode in the CF direction. In Fig. 3(d), strong230

traveling wave response could be observed in the CF direction, and the value231

of θ varies continuously in the half wavelength of the IL mode. Note that232

such observation of θ is similar to the findings obtained in the analysis in233

[37].234

The frequency components of the Cl and Cd signals along the flexible235

cylinder at Ur = 12.66 are plotted in Fig. 4 (a) and Fig. 4 (b), respectively.236

We observe that Cl along the span not only exhibits the 1st harmonic but also237

a strong 3rd harmonic term. The 2nd harmonic dominates Cd, but weak 1st238

and 3rd harmonic terms can also be observed. Note that the time trace of the239

sectional Cl and Cd at z/d = 0.395 (denoted in Fig. 4 (a) and (b) with black240

dashed line) are plotted in Fig. 4 (c) and (d) for Cl and Cd, respectively.241

Fig. 5 shows the corresponding results from the simulation of linearly sheared242

current at Ur = 15.65 with Umax = 1.4U∞ and Umin = 0.6U∞, very similar243

behavior of Cl and Cd are observed, despite the fact that notable traveling244

waves exist along the entire cylinder span.245

3.2. Comparison between the forced vibration and the free vibration: hydro-246

dynamic coefficients and wake patterns247

Knowing the vibration response and the fluid forces, the widely used248

hydrodynamic coefficients in VIV community, namely the fluid coefficient in249

phase with velocity Cv (Clv in the CF direction and Cdv in the IL direction)250

and the added mass coefficient Cm (Cmy in the CF direction and Cmx in the251

IL direction), can be obtained using the following equations,252

Cv =
2
Tv

∫
Tv

(C̃(t)
˙̃
ξ(t))dt√

2
Tv

∫
Tv

(
˙̃
ξ2(t))dt

, (5)
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Figure 4: Free vibration: Fluid force coefficients along the cylinder span of uniform current
at Ur = 12.66: (a) Cl frequency response; (b) Cd frequency response; (c) and (d) Cl and
Cd time traces at location z/d = 0.395, respectively (denoted by black dash line in (a)
and (b)).

Cm = −2U2
∞

πD2
·
∫
Tv

(C̃(t)
¨̃
ξ(t))dt∫

Tv
(

¨̃
ξ2(t))dt

, (6)

where ξ̃ is the oscillatory IL or the CF non-dimensional displacement response253

(ξ̃ = ξ− ξ), and
˙̃
ξ and

¨̃
ξ are the first and second derivatives of ξ with respect254

to time, namely the IL or the CF non-dimensional velocity and acceleration.255

C̃ is the sectional fluctuating drag or lift coefficients (C̃ = C −C) along the256

model span. Tv is the period of the cylinder vibration.257

The values of above hydrodynamic coefficients obtained from the free258

vibration and forced vibration are plotted together in Fig. 6, where the top259

three subfigures show the amplitude response Ax
d

, Ay
d

and phase response θ260

along the flexible model, while the subfigures of the second to fifth row plot261

the distributions of Clv, Cmy, Cdv and Cmx, respectively, where the solid line262

is the result of free vibration and the dots are results of forced vibration. In263

general, in both uniform (left and middle panels) and linearly sheared flow264

(right panel), we observe that for all the hydrodynamic coefficients, the forced265
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Figure 5: Free vibration: Fluid force coefficients along the cylinder span subject to linearly
sheared current at Ur = 15.65 with Umax = 1.4U∞ and Umin = 0.6U∞. See Fig. 4 for the
caption of each subfigure.

vibration is in good agreement with the free vibration. Nonetheless, there are266

several points that deserve our attention. First of all, the simulation of forced267

vibration correctly predicts the variation of positive and negative Clv, shown268

in Fig. 6 (d), (e) and (f). The positive Clv is mainly associated with a269

counter-clockwise (CCW) trajectory, which was first established in the rigid270

cylinder experiment by Dahl et al. [38] and flexible cylinder simulations by271

Bourguet et al. [27]. Note that the CCW trajectory could be identified by272

θ ∈ [0, π], while the clockwise (CW) trajectory corresponds to θ ∈ [π, 2π], as273

shown in Fig. 6(a), (b) and (c). Secondly, in both free vibration and forced274

vibration simulations, the magnitude of (Cdv) varies less significantly along275

the cylinder span than that of Clv, see Fig. 6 (j), (k) and (l). Furthermore,276

similar to the free vibration, the simulation of forced vibration also correctly277

predicts the Cmy variation. In contrast to Cmy’s large variation along the278

span, all the cases show that Cmx remains relatively flat, see Fig. 6 (m), (n)279

and (o).280

So far we have shown that all the four hydrodynamic coefficients are sim-281

ilar between the free vibration and forced vibration. However to corrobarate282

the strip theory, it is necessary to demonstrate that the near wake patterns283
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Figure 6: Cylinder response and hydrodynamic coefficients distributions along the cylinder
span at Ur = 12.66 of uniform flow (left panel), Ur = 13.61 of uniform flow (middle panel)
and Ur = 15.65 of linearly sheared flow (right panel): (a), (b) and (c), IL and CF amplitude
and phase θ responses; (d), (e) and (f), Clv; (g), (h) and (i), Cmy; (j), (k) and (l), Cdv;
(m), (n) and (o), Cmx. Solid line is from the the simulation of free vibration, dot denotes
the corresponding simulation results from the forced vibration.
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Figure 7: Free vibration in uniform flow: connection between the wake pattern and the
hydrodynamic coefficients at Ur = 12.66. (a) vortices behind the flexible cylinder; (b)
amplitude response; (c) PSD of CF displacement; (d) PSD of CF component of the flow
velocity; (e) relative phase angle of the CF component of the flow velocity that is probed
at three diameters downstream from the mean IL displacement. Note that the vortices
are visualized by iso-surfaces of Q = 0.1 and colored by the magnitude of ωz.

also resemble each other, as the fluid flow and the structure response of a VIV284

problem are fully coupled. Here, the wake flow behind the flexible cylinder285

at Ur = 12.66 of uniform flow is visualized in Fig. 7 (a), where the vorti-286

cal structures are represented by iso-surfaces of Q = 0.1 and colored by ωz.287

We observe that the vortices behind the cylinder are separated into different288

cells along the cylinder span. Specifically, the vortices along the span can289
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Figure 8: Free vibration in linearly sheared flow: connection between the wake pattern and
the hydrodynamic coefficients at Ur = 15.65 (Umax = 1.4U∞ , Umin = 0.6U∞). (a) vortices
behind the flexible cylinder; (b) amplitude response; (c) PSD of CF displacement; (d)
PSD of CF component of the flow velocity; (e) relative phase angle of the CF component
of the flow velocity that is probed at three diameters downstream from the mean IL
displacement. Note that the vortices are visualized by iso-surfaces of Q = 0.1 and colored
by the magnitude of ωz.

be divided into four zones consisting of two patterns, one of which is the290

region of clear straight vortex tubes and the other one exhibits wavy vortex291

tubes with strong stream-wise vortices. In order to establish the connection292

of such spanwise vortical wake to the hydrodynamic coefficients, the CF and293

IL amplitude, power spectral density (PSD) of the CF displacement, PSD294

and phase angle of the CF component of the flow velocity probed at three295
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diameters downstream from the mean IL displacement are given in Fig. 7296

(b), (c), (d) and (e), respectively. Comparing the PSD of the structure vi-297

bration response in Fig. 7 (c) with the PSD of CF component of the flow298

velocity in Fig 7 (d), we see that the “lock-in” happens in the entire model299

span, as the CF vibration frequency is equal to the vortex shedding frequency300

everywhere. However, the phase analysis of the flow velocity reveals that the301

relative phase angle of the CF component of the flow velocity keeps a rela-302

tively constant value in the half wavelength between two adjacent IL nodes,303

and changes drastically at IL nodes. As a result, over that half wavelength of304

the IL mode, the vortical structures develop into similar patterns and at the305

IL nodes, across which the IL motion changes by 180o in phase angle. In sum-306

mary, for a flexible cylinder in uniform flow, vortices will shed in cells along307

the model cylinder span with the cells separated by the IL nodes. The rela-308

tive motion between the local cylinder and the vortex formation is affected309

by the cell structure, which gives rise to the discontinuous distribution of the310

added mass along the flexible cylinder span.311

The vortices behind the flexible cylinder in linearly sheared flow are also312

separated into different cells along the cylinder span, which is visualized in313

Fig. 8 (a), where the vortical structures are represented by iso-surfaces of314

Q = 0.1 and colored by ωz. However, different from the case of uniform flow,315

here we can observe strong spanwise vortex shedding accompanied denser316

streamwise vortices where inflow velocity is higher. The CF and IL ampli-317

tude, power spectral density (PSD) of the CF displacement, PSD and phase318

angle of the CF component of the flow velocity probed at three diameters319

downstream from the mean IL displacement are given in Fig. 8 (b), (c),320

(d) and (e), respectively. Comparing the PSD of the structure vibration re-321

sponse in Fig. 8 (c) with the PSD of CF component of the flow velocity in322

Fig 8 (d), it can be seen that the “lock-in” doesn’t happen in the entire span323

section, as the CF vibration frequency is not equal to the vortex shedding324

frequency in lower inflow velocity region. Furthermore, the phase analysis of325

the flow velocity reveals that the relative phase angle of the CF component326

of the flow velocity keeps a relatively constant value in the half wavelength327

between two adjacent IL nodes. In addition, compared to the uniform flow328

case, we see the phase shift in span direction indicating an oblique vortex329

shedding subject to linearly sheared flow.330

Keeping the vortex cells of the free vibration in mind, let us examine the331

simulation results of forced vibration. On one hand, for the free vibration at332

Ur = 12.66, the near wake vorticity field as well as the sectional hydrody-333
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namic force at location z/L = 0.127 and z/L = 0.314 are shown in Fig. 9 and334

Fig. 11, respectively. Specifically, subfigures (a)-(d) show four consecutive335

2D snapshots of the ωz field over one period of the CF vibration, subfigure336

(e) plots the time trace of the cylinder motions, and subfigure (f) exhibits the337

time trace of the lift coefficient. On the other hand, the simulation results338

of the corresponding forced vibration are plotted in Fig. 10 and Fig. 12. At339

location z/L = 0.127, the local wake pattern of the free vibration and forced340

vibration are both classical “2S” mode, and the fluctuating lift force is in341

anti-phase with acceleration.342

At spanwise location z/L = 0.314, a similarity can also be found in the343

fluctuating lift force in phase with acceleration, see Fig. 11 (f) and Fig. 12344

(f). However, the vortex formation of the free vibration is slightly different345

from that of the forced vibration; the former displays “P+S” mode while the346

later shows a symmetric “2P” mode, as shown in Fig. 11 (a)-(d) and Fig.347

12(a)-(d), respectively. The pattern difference is due to the difference of the348

motion, as for the forced vibration strictly sinusoidal motions are imposed,349

while for the free vibration, non-sinusoidal motions with non-zero equilibrium350

and slightly varying amplitude are observed, see Fig. 12 (e) and Fig. 11351

(e), respectively. In addition, comparing with the distribution of Cmy along352

the cylinder shown in Fig. 6 (e), we can conclude that the vortex shedding353

pattern is strongly related to the sign of Cmy, e.g., at z/L = 0.314, Cmy < 0 is354

associated with the “P+S” mode , and at z/L = 0.127, Cmy > 0 is associated355

with the “2S” mode.356

The near wake vorticity field and the sectional hydrodynamic force at357

locations z/L = 0.22 and z/L = 0.46 of the free vibration in linearly sheared358

flow, and the corresponding counterparts of forced vibration are shown in Fig.359

13, Fig. 14, Fig. 15 and Fig. 16, respectively. Once again, similarities in360

terms of vortex shedding pattern and the value of hydrodynamic coefficients361

could be observed between the free vibration and the corresponding forced362

vibration, although strong traveling waves exist in this case. In addition, the363

correlation between the vortex mode “2P” or “P+S” and the negative value364

of Cmy can be found in the linearly sheared flow case as well.365

4. Summary366

We performed large-eddy simulations of the free vibration of a long uni-367

form flexible cylinder (free vibration) both in uniform and linearly sheared368

flow and corresponding two-dimensional simulations of a forced vibrating369
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(a) (b) (c)

(d) (e) (f)

Figure 9: Free vibration at z/d = 0.127, Ur = 12.66 (Cmy = 1.91): (a)-(d) two-dimensional
slices of the instantaneous field of ωz; (e) time trace of the cylinder motions; (f) oscillating
lift force. The blue line in subfigure (e) corresponds to the CF displacement, and the black
line denotes the IL displacement. The red circle highlights the corresponding time of the
snapshots in subfigure (a)-(e).

(a) (b) (c)

(d) (e) (f)

Figure 10: Forced vibration at Ur = 12.66 (Cmy = 1.56): vorticity field, cylinder motions
and lift force. Note that here the cylinder motions are prescribed by Eq. 4, where the
value of the amplitude and frequency are taken from the free vibration shown in Fig. 9.
See Fig. 9 for the caption of each subfigure.

rigid cylinder (forced vibration). By comparing the simulation results of free370

vibration with those of forced vibration, we observed that the hydrodynamic371

coefficients are in good agreement between the two cases. Along the span,372

at the same vibrating amplitude and frequency, the forced vibration resem-373
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(a) (b) (c)

(d) (e) (f)

Figure 11: Free vibration at Ur = 12.66, z/d = 0.314 (Cmy = −1.02): two-dimensional
vorticity snapshots, cylinder motions and lift force. See Fig.9 for the caption of each
subfigure.

(a) (b) (c)

(d) (e) (f)

Figure 12: Forced vibration at Ur = 12.66 (Cmy = −0.96): vorticity snapshots, cylinder
motions and lift force. See Fig. 9 for the caption of each subfigure. Note that here the
cylinder motions are prescribed by Eq. 4, where the value of the amplitude and frequency
is taken from the free vibration shown in Fig. 11.

bles closely the classical “2S” vortex shedding mode of the free vibration,374

but the forced vibration gives rises to a symmetric “2P” pattern when the375

free vibration shows a slightly different pattern, namely “P+S”. Moreover,376

both forced vibration and free vibration confirm the previous finding that the377

positive Clv is mainly associated with a counter-clockwise (CCW) trajectory.378

They also reveal the fact that a positive value of the added mass in the CF379
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(a) (b) (c)

(d) (e) (f)

Figure 13: Free vibration in linearly sheared current at Ur = 15.65 (Umax = 1.4U∞ ,
Umin = 0.6U∞, Cmy = 1.55), z/d = 0.22. See Fig. 9 for the caption of each subfigure.

(a) (b) (c)

(d) (e) (f)

Figure 14: Forced vibration in linearly sheared current at Ur = 15.65 (Cmy = 2.06). See
Fig. 9 for the caption of each subfigure. Note that here the cylinder motions are prescribed
by Eq. 4, where the value of the amplitude and frequency is taken from the free vibration
shown in Fig. 13

direction (Cmy) is associated with the “2S” mode while a negative value of380

Cmy is always associated with the “P+S” or “2P” mode.381
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(a) (b) (c)

(d) (e) (f)

Figure 15: Free vibration in linearly sheared current at Ur = 15.65 (Umax = 1.4U∞ ,
Umin = 0.6U∞, Cmy = −0.37), z/d = 0.46. See Fig. 9 for the caption of each subfigure.

(a) (b) (c)

(d) (e) (f)

Figure 16: Forced vibration in linearly sheared current at Ur = 15.65 (Cmy = −1.06). See
Fig. 9 for the caption of each subfigure. Note that here the cylinder motions are prescribed
by Eq. 4, where the value of the amplitude and frequency is taken from the free vibration
shown in Fig. 15
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Appendix A. Mesh independence study387

In order to demonstrate that the mesh resolution of 512 Fourier planes388

along the cylinder span is adequate for current LES, for the case of Ur =389

12.66 (Re = 650) in uniform flow, we performed two additional simulations,390

one uses 640 Fourier planes, the other one uses 768 Fourier planes. Note391

that, the two additional simulations start from the simulation result of 512392

Fourier planes, and the computational time 250tU∞/d = 250. The amplitude393

response in both the CF and IL direction are plotted in Fig. A.17. We see a394

good agreement between the simulation and experiment. Both the simulation395

and experiment show that the flexible cylinder vibrates at modal group “4/2”.396

We can also observe that the change of the simulation result is negligible as397

the resolution is increased from 512 to 768 Fourier planes.398

(a) (b)

Figure A.17: Comparison between the simulation results of different resolutions and exper-
iment measurement of Ay/d and Ax/d along the cylinder span at Re = 650 and Ur = 12.66
(modal group “4/2”): blue symbols, experimental measurement; red lines, 512 Fourier
planes; green lines, 640 Fourier planes; blue lines, 768 Fourier planes.
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Appendix B. Experimental validation of the large-eddy simula-399

tion results400

Here, we validate the LES results by the corresponding experimental mea-401

surements on the frequency and displacement response of the flexible cylin-402

der. In the experiment, we keep the same dimensionless parameters as in403

the simulation, in terms of the Reynolds number, mass ratio and aspect ra-404

tio. Moreover, in order to mimic the linear tension along the cylinder in the405

experiment, the dimensionless tension T in Eq. 2 varies at the same rate406

as that of the experiment. The motion of the cylinder in the experiment is407

recorded by the underwater optical measurement system described in detail408

in [39]. Fig. B.18 shows a sketch (a) and a photo of the experimental setup409

of the flexible model in the MIT Towing Tank Lab.410

(a) (b)

Figure B.18: The flexible model in the MIT Towing Tank: (a) a sketch of the experimental
setup that shows the uniform incoming flow and the black and white strips used for motion
tracking purposes; (b) an actual photo of the flexible model setup with the support frame.

From Ur = 10.75 to Ur = 17.22, the maximum of the 1/10th highest peak411

of the CF and IL amplitude response along the model span as well as the412

non-dimensional frequency response in the CF direction are plotted in Fig.413

B.19, where the experimental measurements are denoted by blue dots and414

the simulation results are denoted by red circles. We see that the simulation415

results agree with those of the experiment very well, as the flexible cylinder416

switches from the modal group ”4/2” to the modal group ”6/3”, when Ur417
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increases from 10.75 to 17.22. In addition, both the experiment and the418

simulation results reveal that the maximum amplitude of the uniform flexible419

cylinder in both the IL and the CF direction monotonically increases with420

Ur in the same modal group, while the non-dimensional frequency stays at a421

relatively constant value inside the same modal group. Both the amplitude422

and frequency responses jump significantly when the modal group changes.423
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Figure B.19: Comparison between the simulation and the experiment from Ur = 10.75 to
Ur = 17.22: (a) maximum of CF displacement response; (b) maximum of CF displacement
response; (c) non-dimensional frequency response in the CF direction. Note red circles
denote simulation results, blue symbols are experimental measurements. The black arrows
indicate the trend of the variation of the amplitude in a same modal group. The dashed
horizontal line denotes nth times model natural frequency in still water.

The comparison of the Clv, Cdv , Cmy and Cmx along the model span424

between the experiment and simulation is presented in Fig. B.20(a), Fig.425

B.20(b), Fig. B.20(c) and Fig. B.20(d), respectively. For all the four hy-426
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drodynamic coefficients, the simulation results agree with those of the ex-427

periment very well. Note that the fluid forces along the model span in the428

experiment are reconstructed from the measured motion via the inverse force429

reconstruction method; see details in [34].430
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Figure B.20: Comparison between the simulation (red line) and the experiment (blue line)
at Ur = 12.66 (modal group “4/2”) along the cylinder span: (a) Clv; (b) Cdv; (c) Cmy;
(d) Cmx.

Appendix C. Additional simulation case on the flexible cylinder431

in linearly sheared flow432

In this section, the main simulation result of the free vibration in linearly433

sheared current of Ur = 15.65 with Umax = 1.375U∞, Umin = 0.625U∞ is434

presented. In Fig. C.21(c), it can be seen that the flexible cylinder vibrates435

at the 6th mode in the IL direction and at the 3rd mode in the CF direction.436

However, different from the sheared flow case shown in Fig. 3, here standing437

wave response is observed in the CF direction. Nonetheless, the simulation438

results of the forced vibration agree with corresponding flexible vibration very439

well, see Fig. C.22(b) of Clv, Fig. C.22(c) of Cmy, Fig. C.22(d) of Cdv and440

Fig. C.22(b) of Cmx.441
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Figure C.21: Free vibration in linear shear current at Ur = 15.65 with Umax = 1.375U∞
and Umin = 0.625U∞. See Fig. 1 for the caption of each subfigure.
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Figure C.22: Cylinder response and hydrodynamic coefficients distributions along the
cylinder span in linear shear current at Ur = 15.65 with Umax = 1.375U∞ and Umin =
0.625U∞: (a) IL and CF amplitude and phase θ responses; (b) Clv; (c) Cmy; (d) Cdv; (e)
Cmx. Solid line is from the the simulation of free vibration, dot denotes the corresponding
simulation results from the forced vibration.
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