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Exploiting Redundancy to Facilitate Physical
Interaction

James Hermus, Johannes Lachner, David Verdi, and Neville Hogan

Abstract—The control of kinematically redundant robots is
often approached using nullspace projection, which requires
precise models and can be computationally challenging. Humans
have many more degrees of freedom than are required to
accomplish their tasks, but given neuro-mechanical limitations, it
seems unlikely that biology relies on precise models or complex
computation. An alternative biologically-inspired approach lever-
ages the compositionality of mechanical impedance. In theory,
nullspace projection eliminates any conflict between two tasks. In
contrast, superposition of task-space impedance and a full-rank
joint-space impedance may impose a task conflict. This work
compared nullspace projection with impedance superposition
during unconstrained motion and forceful physical interaction. In
practice, despite their theoretical differences, we did not observe a
substantial influence of the nullspace projector weighting matrix.
We found that nullspace projection and impedance superposition
both resulted in measurable task conflict. Remarkably, when
the dimensionality of the nullspace was increased, impedance
superposition was comparable to nullspace projection.

I. INTRODUCTION

AProminent challenge in the fields of robotics and human
motor control research is to manage systems with a

large number of degrees of freedom. Controlling high-degree-
of-freedom robots tends to be challenging, especially using
popular optimization-based methods, which scale poorly with
system dimension. This is the infamous ‘curse of dimen-
sionality’ [1]. Nevertheless, observations from biology are a
source of inspiration. Biological systems regularly articulate
appendages vastly more complex than state-of-the-art robots
and use them to accomplish complex physical interactions
such as tool use [2]–[6]. Furthermore, ‘excess’ anatomical
degrees of freedom are commonplace in biological systems;
the human arm has between 9 and 10 degrees of freedom [7],
and the human hand has more than 20 degrees of freedom.
It seems peculiar that biology would present this complexity
in the configuration of its mechanical structure if it was not
complementary to the controller. Perhaps dimensionality is not
a ‘curse’ but actually a ‘blessing’, not a ‘bug’ but a ‘feature’.
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The work reported here explores the notion that a ‘wealth of
degrees of freedom’ may alleviate control challenges.

The human arm was one motivation for many of the recently
developed seven-degree-of-freedom robotic manipulators (e.g.
Kuka LBR iiwa, ABB Yumi - IRB 14000, Franka Emika,
and Rethink Robotics Sawyer). They provide an additional
kinematic degree of freedom during the performance of any
end-effector task. The work reported in this paper investigated
approaches to manage this redundancy, not only during free
motion but also in tasks which involve forceful physical
interaction. Remarkably, we found that with a sufficient excess
of robot degrees of freedom over task degrees of freedom, a
superposition of simple impedances performed as well as more
complex null-space projection methods.

A. Managing Redundancy

One way to approach the control of a robot with many
degrees of freedom is to express the desired robot behavior
in the space of its end-effector actions1. This representation
is bounded by a maximum number of independent variables
(m ≤ 6). If the differential map J(q) ∈ Rm×n (Jacobian)
from configuration variables q ∈ Rn to end-effector variables
is known and the desired end-effector behavior can be ex-
pressed as a force f ∈ Rm, a unique map to joint torques
τ ∈ Rn will always exist:

τ = J(q)Tf . (1)

This is a beneficial feature of torque-controlled robots, since
eq. (1) also holds for kinematically redundant robots with n >
m.

Finding the end-effector forces f that are balanced by a
given set of joint torques τf ∈ Rn represents an optimization
problem that may be solved by a generalized inverse of J(q)T :

f =
(
J(q)T

)#
τf , (2)

If n > m, a nullspace exists in
(
J(q)T

)# ∈ Rm×n. This
means that the end-effector forces can be balanced with
infinitely many different joint torque solutions. The kernel of
the optimization is the weighting matrix W ∈ Rn×n:

J(q)# = W−1J(q)T
(
J(q)W−1J(q)T

)−1
. (3)

Accordingly, J(q)# yields a joint torque that minimizes the
quadratic cost

g(q̇) =
1

2
q̇TWq̇. (4)

1Also called task space or work space.
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The projector in the nullspace of
(
J(q)T

)#
can be expressed

by
Nτ = I − J(q)T

(
J(q)T

)#
, (5)

where Nτ ∈ Rn×n. All torques τany ∈ Rn that are projected
into this nullspace do not interfere with end-effector forces of
higher priority and can be used for additional tasks [8]–[11],
e.g. to avoid obstacles or joint limits:

τ = J(q)Tf +Nττany. (6)

Note that τany can incorporate further projections in the
nullspace of lower-priority tasks. In this way arbitrarily many
task levels can be produced with either the successive [9]
or augmented [11], [12] methods. The lowest priority level
is often chosen to be a joint damper to avoid oscillations
due to nullspace motions [13]. The feasibility of these task
levels depends on the dimension of the nullspace, i.e. a
one-dimensional nullspace only allows projection of a one-
dimensional task. Hence, theoretically, a robot with n >> m
degrees of freedom is capable of accomplishing multiple tasks,
without disturbing the main task.

The literature on redundancy resolution is predominantly
concerned with nullspace projection approaches [12], [14]–
[21]. A general overview of nullspace projections was pre-
sented in [22]. Implementations of hierarchical nullspace-
projection-based control have been applied to tasks which
involve contact [9], [11], [23]–[29] and systems with multiple
contact points [10], [30], [31]. Problems with instabilities have
been discussed in [32] and [33]. This led to the development
of conservative nullspace projection methods [34], [35]. Stable
nullspace projection methods have also been developed for
mobile robot platforms [8], [36]–[38] and to cope with velocity
actuator saturation [39]. Energy tank methods have been
applied to render nullspace projection methods passive [40],
[41].

1) Mechanical Impedance Superposition: While many ap-
proaches have been developed to ensure stability when
nullspace projections are employed, neither the nullspace
projector nor the stabilizing corrections would be required if
each controller were formulated as an energetically passive
impedance. A simple—even naive—solution to control the
desired dynamic robot behavior can be achieved by assigning a
set of impedances, which can be visualized as a spring-damper
system [42]–[45]. These impedances can be applied in end-
effector space and in joint-space. Even if these impedances
are non-linear, they can be superimposed:

τ =

k∑
i=1

J(q)Ti Z{x}i +

l∑
j=1

Z{q}j , (7)

with k end-effector impedances Z{x}i : Rm → Rm and
l joint impedances Z{q}j : Rn → Rn. If each component
impedance is passive, their sum is energetically passive, and
since no inverse kinematics are needed, this approach works
at kinematic singularities.

If n > m, the end-effector impedance does not control the
nullspace of J(q). To achieve predictable joint motion, a full-
rank set of joint-space impedances can be assigned. These

impedances push the robot toward a desired configuration q0.
However, the joint-space impedance may conflict with the end-
effector impedance—which is usually the task of interest—
except in the rare cases when the end-effector position cor-
responds to that configuration, q0. This may be the reason
why nullspace projection approaches have rarely [46] been
compared with impedance superposition: in theory nullspace
projection approaches should eliminate the end-effector task
error, while the simple superposition of impedance controllers
may result in task conflict. However, as we show below, due
to imperfections in a robot’s kinematic and dynamic models,
in practice nullspace projection may also cause task-space
disruption.

One novel aspect of the work reported here is that it assessed
task-space errors due to implementing both approaches on
hardware. For nullspace projections, we assigned different
weighting matrices. The choice of nullspace weighting matrix
has been discussed in several contexts: to generate favorable
kinematic behavior [47], to prioritize different motions [48],
to perform motion control with joint constraints [49], [50],
and to ensure dynamic consistency [13]. In this work, we
compare nullspace projection methods to the superposition
of mechanical impedance in both unconstrained motion and
during physical interaction with a constraint.

B. Factors that influence controller design
To find an appropriate control approach for a given robot

task, many factors should be considered. Some factors are
determined by the robotic system and the environment with
which it interacts. Another factor is the available information
about the robot model, i.e. kinematic and/or dynamic data.
Lastly, the desired task may or may not be achievable by
the robot. We took several of these factors into account
when comparing nullspace projection methods with impedance
superposition.

1) Environmental factors: A robot is influenced by its own
controller and the dynamics of the environment which acts
on it. Since it is impossible to have a perfect model (or
in many cases even a competent model) of the interacting
environment [51], most algorithms solely concentrate on the
robot’s controller. With an impedance controller, a desired
interactive dynamic behavior can be implemented (though
perhaps imperfectly). To specify how well a robot performs
its tasks both in and out of contact, quantitative measures are
required. In unconstrained motion, we assessed the difference
between the desired and actual position and orientation. In
tasks involving continuous physical interaction, the deviations
between desired and actual forces were used as a quantitative
measure of controller performance.

2) Nullspace dimension: Most industrial robots are serial
kinematic chains with six degrees of freedom. Since it is
desirable to describe the robot task in end-effector space, these
robots have the benefit that the mapping between end-effector
space and joint-space is bijective. However, in practice many
tasks require fewer degrees of freedom. For example, consider
a robot with a welding gun: rotation of the gun about its long
axis has no influence on task performance. Thus even a six-
degree-of-freedom robot is redundant with respect to some
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tasks. Of course, serial kinematic chain robots with seven
degrees of freedom or more always exhibit a nullspace, but
the dimension of the nullspace depends on the end-effector
task. Nullspace projection methods can take advantage of
redundancy by assigning additional tasks in the nullspace of
the main task. In the work reported here, we investigated
whether there could be advantages to decreasing the task
dimensions and thereby increasing the nullspace dimensions.

3) Weighting matrix: Nullspace projection methods require
a weighting matrix. This weighting matrix defines the cost
function minimized in the optimization, as seen in eq. (4).
Even though any positive definite matrix can be used, without
a meaningful choice, physical insight may be lost [52]. A list
of some possible options can be seen in table I. Two common
choices are W = I and W = M(q). The former yields the
least-norm solution [53] and the latter minimizes the kinetic
energy [13], [54] produced by nullspace motion. The dynamic
consistency provided by the mass matrix is superior [22], [55]
especially when inertial dynamics are significant. In theory,
this is the only nullspace projector that does not produce
accelerations that interfere with the main task. Moreover,
it is the only projector that does not inject energy during
nullspace motion and should therefore have superior stability
properties [54]. However, in practice, without a perfect model
of the mass matrix, other choices may be better [18], [21],
[22], [56]. Often when working with low-cost robots, the
mass matrix is not well known. In addition, poorly-modeled
joint friction and motor rotational inertia, amplified through
a gear transmission, may dominate the dynamic response of
the robot [57]. Yet another reasonable choice is W = Bq .
By using the joint-space damping matrix Bq ∈ Rn×n the
nullspace motion with least energy dissipation is produced.
The choice W = Kq produces the solution that minimizes
potential energy at equilibrium. We acknowledge that there
are many other weighting matrix choices not considered here,
including [47]–[50]. For notational convenience we also define
W−1 = 0 ∈ Rn×n, a matrix with only zero entries. With this,
the nullspace projection matrix is equal to the identity matrix,
corresponding to a superposition of all task levels.

4) Inertial dynamics: A robot’s performance is affected
by its inertial dynamics. If the robot moves slowly enough,
inertial dynamics can be neglected and the task can be con-
sidered quasi-static. At fast speeds, however, inertial dynamics,
damping, and stiffness must all be considered. The choice of
task execution speed (slow/quasi-static vs. fast/dynamic) was
expected to have a substantial impact on task performance for
certain choices of nullspace projection weighting matrices.

5) Relative impedance magnitudes: Using impedance su-
perposition, a large joint-space impedance will result in
a substantial conflict with any end-effector task, while a
smaller joint-space impedance will evoke a lesser conflict.
This prompted the question: if a small joint-space impedance,
sufficient to ‘manage the redundancy’2 is superimposed, how
large will the task disruption be? When comparing mechanical
impedance superposition and nullspace projection methods,

2This was defined operationally as an impedance as small as possible, but
still capable of restoring the robot to a position near its nominal configuration
after a large null-space position disturbance.

the magnitude of the joint-space stiffness was taken into
account.

TABLE I
OPTIMIZATION CRITERIA FOR NULLSPACE PROJECTORS.

Weighting matrix Cost Description

W−1 = 0 − Impedance Superposition

W = I 1
2
q̇T q̇ Least Velocity Norm

W = M(q) 1
2
q̇TM(q)q̇ Least Kinetic Energy

W = Bq
1
2
q̇TBq q̇ Least Energy Dissipation

W = Kq
1
2

∆qTKq∆q Least Potential Energy

C. Summary

The principal aim of this study was to quantify and com-
pare the performance of mechanical impedance superposi-
tion and nullspace projection methods to manage redundancy
on real hardware in practice. Quantitative assessment was
performed during both unconstrained and constrained mo-
tion. A secondary aim was to understand and quantify how
the dimension of the nullspace—the wealth of degrees of
freedom—influenced performance. Our results show that for
a nullspace of sufficient dimension, the task conflict from
simple impedance superposition was comparable to that of all
nullspace projection methods.

II. METHODS

The goal of these experiments was to examine the behavior
of a redundant robot placed under an end-effector impedance
controller (Task 1), along with a joint-space impedance con-
troller (Task 2). Task 2 was either superimposed directly
(W−1 = 0) or projected into the nullspace of Task 1
using each of the four weighting matrices listed in Table I.
The experiments investigated both unconstrained motion and
forceful physical contact with a circular constraint, specified
in Task 1. For all five weighting matrices, performance was
quantified for different nullspace dimensions, joint stiffnesses,
and task speeds.

A. Experimental Setup

All experiments were conducted with a seven degree of
freedom torque-controlled KUKA LBR iiwa R800 (LBR) [58].
To facilitate measurement, in each experiment the LBR was
coupled to a customized InMotion2 Shoulder-Elbow robot
(Interactive Motion Technologies Inc.) via a U-joint and
bearing connection. The InMotion is a highly back-drivable
light-weight torque controlled x − y planar robot, which
was designed for stroke rehabilitation and human motion
research. The custom control system for the InMotion robot
was implemented on a CompactRIO 9034 controller, with low-
level functionality implemented at 2 kHz on a CompactRIO
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FPGA, and high-level functionality implemented at 1 kHz on
a CompactRIO real-time processor. InMotion joint positions
were measured by a 16-bit/rev encoder and interaction forces
were measured at the end-effector of the InMotion robot
using an ATI Gamma force/torque transducer [59], [60]. The
experimentally coupled robots are shown in Figure 1.

The U-joint (Neapco Components, Pottstown, PA) and bear-
ing connection enabled a ±45◦ rotational range of motion
about the x and y axes. Rotation around the z axis was
facilitated by an ultra-low-friction dry-running sleeve bearing,
which also enabled translation along the z axis. Thus, if the
center of the U-joint is viewed as the kinematic coupling point,
the two robots are constrained relative to each other transla-
tionally in the x− y plane, but not constrained translationally
along the z axis. Furthermore, the U-joint decoupled rotations
about all three axes.

Once the two robots were coupled together with the U-joint
and bearing system, the total amount of free-play or backlash
in the coupling connection was quantified. The brakes were
applied on the LBR, nominally fixing it rigidly in space. The
handle of the InMotion robot was then lightly perturbed by
hand in several directions, and the resulting handle displace-
ments were measured using the InMotion encoders. It was
found that the InMotion handle could undergo a displacement
of ±1.5 mm in the x− y plane without applying appreciable
forces to the LBR.

B. Impedance controller

The end-effector and joint-space impedance controllers were
implemented on the LBR using the KUKA Fast Research
Interface (FRI), via an external PC, with torque commands
computed at 200 Hz. The FRI friction and gravity com-
pensation was active throughout all of the experiments. The
analytical Jacobian matrix J(q) ∈ R6×n of the robot was
denoted by:

J(q) =

[
J(q)x
J(q)θ

]
. (8)

Here, J(q)x ∈ R3×n maps the joint velocities q̇ ∈ Rn to
translational end-effector velocities and J(q)θ ∈ R3×n maps
q̇ to rotational end-effector velocities. In order to define the
controller, three reference frames were defined: a fixed base
frame denoted Σb (this is displayed in Figure 1 as x, y, and z),
a moving frame fixed to the center of the U-joint (which was
taken to be the robot’s end-effector), denoted Σe, and a frame
moving with the LBR robot’s zero-force trajectory, denoted
Σ0. Both, J(q)x and J(q)θ were expressed with respect to
the end-effector frame Σe. For the end-effector translational
impedance controller, the desired control torque τx ∈ Rn was
computed by:

τx = J(q)Tx

(
Kx(x0 − x)−Bxẋ

)
. (9)

τx ∈ Rn described a translational spring-damper system
with linear stiffness Kx ∈ R3×3 and linear damping Bx ∈
R3×3. Both Kx and Bx were chosen to be diagonal matrices.
The virtual spring was attached between the Σe and Σ0

frame. The position of the end-effector x ∈ R3 and the zero-
force position x0 ∈ R3 were represented in the base frame

coordinates Σb. The zero force trajectory, x0, moved with
constant speed around a circular path with a radius of 0.1
m. For the end-effector rotational impedance controller, the
desired control torque τθ ∈ Rn was computed with:

τθ = J(q)Tθ

(
Kθû0θ0 −Bθ θ̇

)
. (10)

The rotational torque τθ aligned the axes of frame Σe and
moving frame Σ0. The rotation between Σe and Σ0 was
expressed by the rotation matrix 0Re ∈ SO(3). To calculate
the rotational torque τθ ∈ Rn, 0Re was converted to axis-
angle representation, with unit axis û0 ∈ R3 and angle
θ0 ∈ R [61], [62]. Thus, a virtual rotational spring with
rotational stiffness Kθ ∈ R3×3 was attached around û0 to
rotate about θ0. The rotational velocity θ̇ ∈ R3 was damped
with dissipating element Bθ ∈ R3×3. Note that all vectors
and matrices of Equation (9) and (10) were expressed in Σb.
The stiffness in the z direction was chosen to ensure the
robot maintained contact with the sleeve bearing in all trials.
Finally, the translational and rotational end-effector torques
were combined,

τe = τx + τθ. (11)

A diagonal Kθ and Bθ were chosen to approximate a constant
damping ratio for each rotational direction in the end-effector
impedance controller. The damping ratio along each of the
three rotational directions was roughly approximated as:

ζi =
bi

2mi

√
ki/mi

. (12)

Here, bi and ki represent the ith diagonal elements of Bθ and
Kθ respectively, and mi is one of the corresponding three
diagonal elements of the rotational end-effector mass matrix
Λθ ∈ R3×3 [63], given by:

Λθ =
(
Jθ(q)(M(q))−1Jθ(q)T

)−1
, (13)

where M(q) ∈ Rn×n is the manipulator mass matrix. Given
our choice for the values of ki, the values of bi were chosen
to yield ζi ≈ 0.4. This was a reasonable balance between an
undamped (ζ = 0) and critically damped (ζ = 1) behaviour.
For the joint-space impedance controller, the commanded
torque τq ∈ Rn was expressed by

τq = Kq(q0 − q)−Bqq̇, (14)

with joint-space stiffness Kq ∈ Rn×n and joint-space
damping Bq ∈ Rn×n. The nominal joint position
q0 ∈ Rn was constant throughout the trial and cor-
responded to a robot end-effector position at the ori-
gin of Σb with a 15◦ rotation about both the x and y
axes. This configuration was chosen so that the joint-space
impedance controller always conflicted with the end-effector
impedance controller. The nominal joint-space pose was
q0 = [−56.16,−47.4, 87.7, 83.2,−42.1,−71.9, 28.8]T (de-
grees) and is shown in Figure 2. Bq was chosen as a function
of Kq to yield an approximate damping ratio of 0.32 to 0.42
along each joint. This was done in a manner similar to (12),
but with ki, bi, and mi being each of the seven diagonal entries
of Kq , Bq , and M(q) respectively.



5

Fig. 1. Experimental setup. (Left) Planar depiction of the InMotion Robot and reference frame. The dotted circle denotes the zero-force trajectory of the
InMotion robot and the dashed circle denotes the zero-force trajectory of the LBR. (Right) The LBR was coupled with a U-joint and sleeve bearing to the
handle of the InMotion robot. The inset in the upper left illustrates the rotational degrees of freedom allowed by the U-joint and sleeve bearing.

Fig. 2. The nominal joint-space position (q0) used in the experiments.

Finally, to vary the nullspace dimension, we composed
the sub-controllers in two ways: using the complete 6D
rotational and translational end-effector torque τe, yielding a
1D nullspace; or using only the 3D translational end-effector
torque τx, yielding a 4D nullspace. The nullspace projectors
were modified as follows in the 1D and 4D nullspace cases:

τ1D = τe︸︷︷︸
Task 1

+N1Dτq︸ ︷︷ ︸
Task 2

(15a)

and
τ4D = τx︸︷︷︸

Task 1

+N4Dτq︸ ︷︷ ︸
Task 2

(15b)

Here, the nullspace projector N1D ∈ Rn×n is defined using
the complete Jacobian matrix by

N1D = I − J(q)
T

(J(q)
#

)T (16a)

to project the torques of the joint-space impedance controller
(Task 2) into the nullspace of the six dimensional end-effector
impedance controller (Task 1). The nullspace projector N4D ∈

Rn×n is defined using only the translational component of the
Jacobian matrix by

N4D = I − J(q)
T
x (J(q)

#
x )T . (16b)

Likewise, it projects the torques of the joint-space impedance
controller (Task 2) into the nullspace of the three dimensional
end-effector impedance controller (Task 1).

TABLE II
CONTROLLER PARAMETERS. ALL NON-DIAGONAL STIFFNESS AND

DAMPING TERMS WERE ZERO.

Variable Values Units

Kx diag([1800, 1800, 2000]) N/m

Bx diag([43.3, 31.68, 37.19]) N-s/m

Kθ diag([260, 260, 100]) N/rad

Bθ diag([3.0, 3.4, 1.6]) N-s/rad

Kq diag([10, 10, 10, 10, 5, 5, 1]) N-m/rad

Bq diag([2.5, 3.6, 2.1, 2.1, 0.3, 0.2, 0.1]) N-m-s/rad

Kq,low,1D 0.1Kq N-m/rad

Bq,low,1D

√
0.1Bq N-m/rad

Kq,low,4D 0.3Kq N-m/rad

Bq,low,4D

√
0.3Bq N-m/rad

C. Test Conditions

The performance of impedance superposition (W−1 = 0)
and a conventional choice of nullspace projector (W = I) was
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evaluated under several test conditions. First, each condition
was tested when the circular constraint was off and when it was
on, denoted ‘unconstrained’ and ‘constrained’, respectively.
Second, in each case the nullspace dimension was either one or
four. Third, the influence of the LBR controller parameters was
investigated. Fourth, to compare nullspace projection methods,
the effect of weighting matrix was evaluated. Each of these
conditions is described in detail in this section; a summary is
presented in Table III.

1) Circular Constraint: In all conditions, the LBR was
coupled to the InMotion with a U-joint and bearing system
described above. In the unconstrained trials the InMotion robot
was turned off; it remained passive and highly back-drivable,
but still coupled to the LBR. In the constrained trials, the
InMotion robot enforced a circular constraint (radius = 0.08
m). This constraint was enforced by an impedance controller,
with a normal stiffness of 2,500 N/m, and a normal damping
of 40 Nm/s. The accuracy of rendering the constraint was
verified by kinematic and end-point force/torque measure-
ments obtained from the InMotion robot. The differing radii
of the LBR’s zero-force position (0.1 m) and the constrained
circular path enforced by the InMotion robot ensured that
the observed behavior occurred under conditions of significant
forceful contact. In all experiments, the InMotion encoders and
force transducer were used to record the planar interaction-
point positions and interaction forces presented herein.

2) Nullspace Dimension: For all experiments, Task 2, the
nullspace-projected joint-space impedance controller, was al-
ways active. However, the number of dimensions in Task 1
was varied. In some experiments, only the end-effector trans-
lational impedance controller was applied (Equation 16b). This
meant that the end-effector task was three-dimensional, result-
ing in a four-dimensional nullspace. For other experiments,
both the translational and rotational controllers of Equation
(16a) were applied. This resulted in a six-dimensional end-
effector task, leaving a one-dimensional nullspace.

3) Weighting Matrix: To quantify performance differences
due to the choice of weighting matrix W , five different
weighting matrices were tested: 0, I , M(q), Bq , and Kq .
A weighting matrix choice of W−1 = 0 which results in
N = I; this is the case of simple superimposition of the end-
effector and joint-space tasks, without a nullspace projector.
We initially compared that case to a representative weighting
matrix, W = I , which corresponds to the well-known Moore-
Penrose pseudo-inverse [53]. Subsequently, performance with
the other weighting matrices was quantified.

4) Controller: To understand the influence of robot inertial
dynamics and the joint-space impedance controller used to
manage redundancy, three conditions were examined: moder-
ate joint-space stiffness and slow speed (13 sec/rev), which is
hereafter referred to as a ‘standard’ condition; moderate joint-
space stiffness and fast speed (4 sec/rev); and low joint-space
stiffness and slow speed. A period of 13 sec/rev was extremely
slow; at this speed, all dynamic effects were negligible, the
motion was quasi-static, and behavior was dominated by the
controller stiffness. If joint-space stiffness is sufficiently large
relative to task-space stiffness, managing redundancy using
joint-space impedance will substantially interfere with the

end-effector task. In this work the ‘moderate’ joint-space
stiffness was chosen to be large enough to cause substantial
deviation from the desired end-effector task (more than 10 cm
when unconstrained and more than 10 N when constrained)
when the impedances were superimposed (i.e. the 0 projector
case). The fast speed, a period of 4 sec/rev, was chosen to
elicit significant dynamic effects due to the robot’s inertial
dynamics. Quantitative analysis of the quasi-static vs. dynamic
speeds is presented in Appendix A.

To test whether a nullspace projection is even required
in the first place, a low joint-space stiffness condition was
included, executed at the slow speed (13 sec/rev). This stiffness
was chosen to be the smallest value that would ‘manage the
redundancy’ of the robot within a single cycle. If a large
joint-space position disturbance was applied to the LBR arm,
it would return to a set of joint angles near the nominal
joint configuration within one crank-turning cycle. This low
joint-space stiffness and damping differed when the nullspace
dimension varied; the exact values used are reported in Table
II.

TABLE III
TEST CONDITIONS AND NOTATIONS IN THIS PAPER.

Condition Parameter Notation

LBR

Weighting Matrix W See methods 0, I , M(q), Bq , Kq

Nullspace Dimension n−m = 1 1D

n−m = 4 4D

Controller Kq , 13 s/rev Standard

Kq , 4 s/rev Fast Speed

Kq,low , 13 s/rev Low Stiffness

InMotion

Circular constraint − Unconstrained

radius 0.08 m Constrained

D. Data Analysis
In each trial the LBR completed two separate motions

of three revolutions each. The abrupt engagement of the
robot controller at the start of each motion induced transient
behavior in the robot end-effector motion as task 1 was not
critically damped. To eliminate possible transients from the
data analysis, the first revolution in each of these trials was
discarded.

In the standard condition, since the robot moved quasi-
statically, dominated by stiffness, the robot was expected
to closely follow the target position of the end-effector
impedance controller when a nullspace projector was used.
To quantify errors in position, the displacement normal to the
closest point on the circle was computed,

∆x = 0.1− rn (17)
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where 0.1 m was the desired distance from the origin and
rn =

√
x2 + y2 was distance from the origin to the actual

robot position. This was the dependent measure for the un-
constrained case.

In the constrained condition, the radius of the zero-force
LBR path was x0 = 0.1 m, while the radius of the InMotion’s
virtual constraint was 0.08 m. Thus the LBR robot was
expected to move in a perfect circle at a radius determined by
equilibrium between the stiffnesses of the LBR and InMotion
robots. This required a constant normal force of 20.93 N to
be exerted on the InMotion handle. Positive normal force
denoted an outward-directed force exerted on the InMotion
handle, away from the circular constraint center; conversely,
negative normal force was directed inwards, toward the con-
straint center. Thus the dependent measure in the constrained
condition was the deviation of the measured normal force from
the expected normal force:

∆f = 20.93− fn. (18)

For each of the dependent measures, the root-mean-squared-
error (RMSE) was computed for four crank cycles. While this
metric was expected to approach zero only in the quasi-static
case, it was also applied to the fast trials, even though the
dynamic effects were expected to be significant and result in a
non-zero mean force error, e.g. due to centrifugal acceleration.
Nevertheless, it remained a suitable metric with which to
compare the behaviors of different projector choices and
nullspace dimensions.

E. Statistical Analysis
The difference of RMSE between the superposition of me-

chanical impedance (W−1 = 0) and a standard nullspace pro-
jector (W = I) was computed. This difference was denoted
RMSE 0− I . When unconstrained, the RMSE difference was
computed in terms of position; when constrained, the RMSE
difference was computed in terms of normal force. For both the
unconstrained and constrained conditions, a two-way analysis
of variance (ANOVA) was performed. The ANOVA assessed
the effect of nullspace dimension (1D or 4D) and controller
condition (moderate stiffness, slow; moderate stiffness, fast;
or low stiffness, slow) on the RMSE difference. For both
the unconstrained and constrained results, three post-hoc two-
sample t-tests were performed to determine if a significant
difference existed between the 1D and 4D conditions. Two
post-hoc one-sample t-tests were performed to determine
if impedance superposition was significantly different from
nullspace projection in the constrained 4D nullspace standard
and fast conditions.

In this work, statistical analysis aimed to assess differences
between multiple conditions, each of which possessed more
than one level. To avoid Type I errors (false positive) as-
sociated with performing multiple t-tests, ANOVA was first
employed to determine if statistically significant differences
between the means existed. The test statistic used by ANOVA
is described by the F-distribution. The results present the F-
statistic, its associated degrees of freedom, and the probability
of a non-significant effect. The analysis used in this work is
described in several standard texts, e.g. [64].

The differences of RMSE between the identity weighting
matrix (W = I) and all other weighting matrices (M(q),
B, and K) were computed. These differences were denoted
RMSE I −W . For each nullspace dimension and constraint
condition, a two-way ANOVA was performed to assess the
effect of nullspace weighting matrix (M(q), B, or K) and
controller condition (moderate stiffness, slow; moderate stiff-
ness, fast; or low stiffness, slow). Post-hoc one-sample t-tests
were run to identify significant differences between in RMSE
I −W .

III. RESULTS

In this section, the unconstrained results in the standard
condition (slow, moderate stiffness) are presented first. Next,
constrained results in the standard condition are shown. Third,
the results of fast, moderate stiffness trials are reported.
Fourth, results with low joint-space stiffness and slow speed
are presented. Finally, a comparison of different nullspace
weighting matrices is reported.

A. Standard Condition, Unconstrained

In the unconstrained condition, the InMotion robot did not
enforce a circular constraint. However, the InMotion robot
remained passively coupled to the LBR with the U-joint and
bearing system. With no constraint, we hypothesized that when
the robot was operating with a nonzero nullspace projection
weighting matrix, there would be no disruption of Task 1 from
Task 2, regardless of whether the nullspace had one dimension
or four. The trajectory was expected to be close to or even
overlay the circular robot path x0 (bold dashed line in Figure
3) and with W = I , this was indeed observed.

In the W−1 = 0 case, superimposing impedances was
expected to result in conflict between Tasks 1 and 2, leading
to significant tracking errors in Task 1. This was observed
in the 1D nullspace condition (see Figure 3 top left). The
W−1 = 0 case (blue line) substantially deviated from the
circular trajectory of the LBR end-effector task, as indicated
by the bold dashed line.

While it was expected that Task 2 would visibly conflict
with Task 1 in the absence of a valid nullspace projector,
one unexpected result was that when the dimension of the
nullspace was increased from one to four (by removing the
rotational impedance controller from Task 1), the task conflict
was substantially reduced. This can be seen in Figure 3 (top
middle).

To assess quantitative differences in the unconstrained tri-
als, the RMSE of the robot position was computed. This
provided a measure of the deviation from expected behavior
as seen in Figure 3 (top right) and quantified the qualitative
observations. Remarkably, for both the 1D and 4D nullspace
conditions, there appeared to be no appreciable difference
between the various non-zero projectors. In the 1D nullspace
case, the zero projector (impedance superposition) introduced
substantial task conflict, while in the 4D nullspace case, the
RMSE it evoked was not appreciably higher than any of the
other projectors. These differences are compared statistically
in section III-E.
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Fig. 3. Standard condition, unconstrained: 1D nullspace (left column) and 4D nullspace (middle column). Trajectory plots (top left and top middle) and
the zero-force path of the LBR (bold dashed line). Normal force plots (bottom left and bottom middle). Position RMSE (top right). The superposition of
mechanical impedance is denoted by W−1 = 0 (blue) and the Moore–Penrose inverse denoted W = I (red). The superposition of mechanical impedances
was substantially less disruptive with a 4D nullspace.

B. Standard Condition, Constrained

In the constrained condition, both force and motion must
be considered. In this experiment, the virtual constraint radius
enforced by the InMotion was 0.08 m and the diameter of
the zero-force robot path was 0.1 m. Thus, the LBR was
expected to move along a constant radius circle between the
InMotion (dotted) and LBR (dashed) lines in Figure 4 (top).
In the standard trials, the motion was quasi-static, well within
the stiffness-dominated regime, meaning that all dynamic
effects were negligible (Appendix A). The displacement of the
handle from its zero-force path was determined by the relative
stiffness of the two robots and a constant normal force should
have been exerted.

As expected, with a 1D nullspace the superposition of
joint-space stiffness substantially disrupted the LBR task-space
position and normal force (the solid blue line in the top two
panels of Figure 4). The disruption of the task was sufficient
for the robot occasionally to exert inward normal forces on the
virtual constraint. Inward (compressive) normal forces exerted
on a constraint surface are inherently destabilizing [65]. This
demonstrates that superposition of joint-space and task-space
mechanical impedance may, in some cases, lead to static
instability and potential safety concerns.

As with the unconstrained case, the superposition of me-
chanical impedance (W−1 = 0) performed substantially bet-
ter with a 4D nullspace as seen in Figure 4. These differences
are compared statistically in section III-E.

C. Fast Motion

Fast motions were tested to elicit behavior in which in-
ertial dynamics were substantial. With a 1D nullspace, both
impedance superposition W−1 = 0 and nullspace projection
W = I showed visible deviations from nominal motion
when unconstrained (Figure 5, top left) and from nominal
force when constrained (Figure 5, bottom left). With a 4D
nullspace, these deviations were substantially reduced, both
motions when unconstrained (Figure 5, top middle) and forces
when constrained (Figure 5, bottom middle). A comparison of
RMSE for position is shown in Figure 5, top right and force
in Figure 5, bottom right. While impedance superposition was
clearly inferior with a 1D nullspace, that disadvantage was
nearly eliminated by the 4D nullspace. These differences are
compared statistically in section III-E.

D. Low Joint-Space Stiffness

For a redundant robot, one way of achieving a predictable
motion is to assign joint-space impedances that affect the
nullspace motion of the robot in a repeatable manner. As
can be seen in section III-A and III-B, these impedances
may cause a conflict between Task 1 and Task 2. Of course,
the smaller the joint-space impedance, the smaller the task
conflict. However, as the joint-space stiffness is reduced,
external perturbations or small errors in friction compensation
may cause the redundant degrees of freedom to deviate from
the nominal configuration. This may lead to unpredictable
or undesirable behavior; for example, joint-space drift may
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Fig. 4. Standard condition, constrained: 1D nullspace (left column) and 4D nullspace (middle column). Trajectory plots (top left and top middle), the
zero-force path of the LBR (bold dashed line), and the zero-force path of the InMotion (dotted line). Normal force plots (bottom left and bottom middle) and
the expected normal force (bold dashed line). Normal force RMSE (bottom right). The superposition of mechanical impedance is denoted by W−1 = 0 (blue)
and the Moore–Penrose inverse denoted W = I (red). With a 4D nullspace, the superposition of mechanical impedances was substantially less disruptive.

cause the robot to reach joint limits. In this experiment we
aimed to determine if an acceptable compromise between these
two competing factors could be achieved. We tested whether
joint-space stiffness could be made small enough to reduce
task-space disruption to acceptable levels, yet large enough to
ensure desirable behavior. In this experiment, the joint-space
stiffness of Task 2 was reduced to the point where it was
still sufficient to restore the nominal joint-space configuration
within one cycle of motion. The exact parameters used are
presented in Table II.

The results of using this lower joint-space stiffness can
be seen in Figure 6. In the unconstrained case with a 1D
nullspace, impedance superposition still resulted in greater
RMSE position errors than nullspace projection, though, as
expected, to a much lesser degree. With a 4D nullspace, any
difference became negligible. These differences are compared
statistically in section III-E.

E. Statistical Comparisons

The RMSE 0 − I for the position in the unconstrained
case showed a significant main effect of nullspace dimension
(F1,18 = 8148.94, P << 0.001), a main effect of controller
(F2,18 = 2494.55, P << 0.001), and a significant interaction
between nullspace dimension and controller (F2,18 = 1886.36,
P << 0.001). Post-hoc two-sample t-tests identified signifi-
cant differences between 1D and 4D nullspace dimension at
the standard, fast, and low-stiffness levels of the controller
conditions. Figure 7 (left) shows that the interaction was

clearly due to a greater sensitivity to controller with a 1D
nullspace. Thus, the effect of increasing nullspace dimension
was significant and substantial.

The RMSE 0 − I for normal force in the constrained
case showed a significant main effect of nullspace dimension
(F1,18 = 9960.34, P << 0.001), a main effect of controller
(F2,18 = 3672.30, P << 0.001), and an interaction be-
tween nullspace dimension and controller (F2,18 = 2078.45,
P << 0.001). Post-hoc two-sample t-tests identified signifi-
cant differences between 1D and 4D nullspace dimensions at
the standard and fast levels of controller. Clearly, the negligible
difference at the low-stiffness level of the controller was the
cause of the interaction as seen in Figure 7 (right). Thus, the
effect of increasing nullspace dimension on the RMSE 0− I
normal force was significant and substantial when the joint-
space stiffness was not negligible.

1) Different Weighting Matrices: We found no evident
differences between the various non-zero null-space weight-
ing matrices. The trajectories corresponding to the different
nullspace projections all very nearly lay on top of one another.
With a 4D nullspace, there appeared to be small, systematic
differences in the normal forces but they were minimal.

This was somewhat surprising. Theoretically, using the
M(q) weighting matrix yields a dynamically-consistent
nullspace projector and should therefore show superior be-
havior for fast robot motions [22], [55]. However, without an
accurate inertial model of the robot, other projector choices
may lead to superior performance in practice [18], [21], [22],
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Fig. 5. Fast motion: Comparison of unconstrained (top row) and constrained (bottom row) trials with impedance superposition (W−1 = 0) and nullspace
projection W = I . Trajectories are presented for the unconstrained trials and normal forces for the constrained trials. Performance with a 1D nullspace is
shown in the left column and with a 4D nullspace in the middle column. The right column compares the RMSE of position (unconstrained) and normal force
(constrained). With a 4D nullspace, comparable position errors and smaller force errors were achieved with impedance composition.

Fig. 6. Low stiffness condition: Performance with low stiffness at slow speed, with a 1D nullspace (left column) and a 4D nullspace (middle column).
Trajectories are presented in the unconstrained case (top left and top middle) and normal force in the constrained (bottom left and bottom middle). The right
column compares RMSE for position when unconstrained (top row) and force when constrained (bottom row).
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Fig. 7. Difference in root-mean-squared errors between impedance superposition and nullspace projection for different controller parameters and nullspace
dimensions. * denotes statistical significance with P < 0.05. Left panel: RMSE 0 − I of position for unconstrained motions; Right panel: RMSE 0 − I
of normal force for constrained conditions. With a 4D nullspace, both position and force errors were reduced and occasionally impedance superposition was
superior to nullspace projection.

Fig. 8. RMSE I −W of position for the unconstrained (top) and RMSE I −W of normal force for the constrained conditions (bottom). Note that the
identity weighting matrix was comparable to if not better than the other weighting matrix choices in nearly every condition.

[56]. In the experiments reported here, a negligible difference
between projection methods was observed (See Figure 8). Of
these small differences one notable observation was that using
the mass matrix, W = M(q), was not superior – even in the
fast case. Indeed, in many cases performance using the mass
matrix was slightly worse than with the other choices.

Four ANOVAs were performed to assess the influence of
weighting matrix and controller. With a 1D nullspace, the
RMSE I −W for position in the unconstrained case showed
no significant effects; however the main effect of controller
was nearly significant (F2,27 = 3.31, P = 0.0519). For
constrained motion, the RMSE I−W for normal force with a
1D nullspace showed no significant effect of weighting matrix
or controller.

With a 4D nullspace, the RMSE I −W for position in the

unconstrained case showed a main effect of weighting matrix
(F2,27 = 95.47, P << 0.001), a main effect of controller
(F2,27 = 98.45, P << 0.001), and a significant interaction
between weighting matrix and controller (F4,27 = 43.77,
P << 0.001). The RMSE I − W for the normal force
showed a main effect of weighting matrix (F2,27 = 11.36,
P << 0.001), and a main effect of controller (F2,27 = 9.40,
P = 0.001). Post hoc t-tests revealed that only the uncon-
strained fast speed B matrix condition was significantly better
than the I weighing matrix. To our knowledge this was the
first time a damping matrix was used as a weighting matrix;
it shows promising results.

Despite the statistical significance of some of these com-
parisons, the magnitude of the differences between projection
methods was small (RMSE less than 1.5 mm and less than
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1 N respectively in all cases). These values are close to the
resolution of the measurement system. Furthermore, the robot
variability across trials was extremely low, which increased the
sensitivity of the statistical methods. Thus, while significant
effects of nullspace weighting matrix were detected, these
significant effects were insubstantial and mainly reflect the
repeatability of the robot.

IV. DISCUSSION

The literature on redundancy management, particularly in
the areas of reaching and manipulation, predominantly con-
siders nullspace projection methods and their application. One
direction of research focused on qualitative evaluation of
weighting matrix choice in either free-space or contact tasks
[9], [13], [18], [22], [27], [33], [34], [48]. Another direction
of research explored large task hierarchies in which a full-
rank joint-space redundancy-managing impedance plays an
insignificant role at the bottom of the hierarchy [8]–[11],
[22]. In most of the literature, the case of simple impedance
superposition is not considered. This is presumably because, in
theory, impedance superposition may cause task conflict, while
the use of nullspace projectors will not. In practice, however,
this may not be the case.

The goal of the present work was to investigate real kine-
matically redundant robots with all of their non-ideal behavior,
including friction, kinematic errors, etc. These robots are
increasingly used to manage complex physical interaction. We
aimed to quantify the performance in practice of commonly
used control methods – specifically nullspace projections –
and compare them with impedance superposition. The sta-
bility concerns presented by physical interaction motivate
understanding any differences between theoretical and actual
performance.

The experimental paradigm investigated in this work, turn-
ing a crank, embodies a number of key challenges encountered
in physical interaction tasks. The first is contact and/or coupled
instability; it has been known since the 1970’s that a robot
capable of stable unconstrained motion may become unstable
on contact with a physical constraint. A well-established
solution to this problem is to ensure energetic passivity of
the robot’s dynamic interactive behavior [66], [67]. Generally,
nullspace projection approaches are not passive, since the pro-
jector only acts on the force/torque factor of the product that
determines mechanical power and is not power-continuous.
For this reason energy tank methods have been applied to
ensure the passivity of nullspace projection methods [40],
[41]. Even if the interactive behavior is dynamically passive
(by the usual definition) static instability may be induced
by the curvature of a kinematic constraint. Forces applied
towards the center of curvature (compressive) are statically
de-stabilizing while forces applied away from the center of
curvature (tensile) are statically stabilizing [65], [68]. This is
an important distinction as the usual definition of passivity
and its relevance to coupled stability does not encompass the
static (in-)stability that may be induced by exerting forces [69].
Managing both of these challenges is a minimum requirement
for safe and successful physical interaction [70], [71].

This work quantified the performance of existing controllers
in practice on real hardware. We report three major findings:
(1) Using different nullspace weighting matrices made no
substantial difference; (2) In practice, task conflicts were
still present even with nullspace projections; (3) Increasing
the nullspace dimension dramatically decreased task conflicts
resulting from impedance superposition.

It is important to note that, in nearly every condition,
the identity weighting matrix achieved comparable or better
performance than the more complex weighting matrices. In
practice, there may be little need for complex nullspace
projections. In this experiment, the simplest approach, identity
weighting, worked equally well or better than the other options
investigated. Since the identity weighting matrix facilitates
computation, this result might be beneficial for controlling
robots with many degrees-of-freedom based on nullspace
projection methods.

In the work reported here, we implemented only two multi-
dimensional tasks, enabling us to manipulate the ‘wealth’
of nullspace degrees of freedom left by the first task. This
allowed us to examine the impact of excess degrees of freedom
between the primary task and the redundancy-management
task. Additionally, we went beyond qualitative comparison,
and statistically examined the impact of weighting matrix
choice, task speed, impedance magnitude, and degree of task
error with simple superposition in both unconstrained motion
and contact scenarios. A key result of this study was that
increasing the effective nullspace dimension decreased the task
conflict when impedance superposition was used.

1) Limitations: There are several potential sources of arti-
fact in this work which include errors in the robot’s kinematic
model, dynamic model, friction-compensation model, and the
choice of task conflict metric. Using nullspace projection, the
task conflict was theoretically expected to be zero. When
implementing controllers on real hardware, errors may be
expected due to numerical artifact and/or imperfect low-level
torque control. Both of these effects should have been small;
errors observed in our experiments were much larger than
could be explained by imprecise torque control. Nevertheless,
the torque commands may have been influenced by the highly
nonlinear effects of friction. In the experiments, the LBR’s
friction compensation was active to ameliorate these effects
but in practice this compensation was not expected to per-
form perfectly. However, the same imperfections were present
whether impedance superposition or nullspace projection was
used. They cannot account for the differences we observed.

It may seem that the choice of impedance parameters could
have influenced the results. This was avoided by experimental
design. This work investigated a possible conflict between
two impedance controllers. The experiment was designed such
that the impedance of one controller was held constant and
the other was varied. In this experiment, the end-effector
impedance was fixed and two levels of joint impedance were
investigated. The ‘standard’ condition used a joint stiffness
which was deliberately chosen to be large enough to cause a
task conflict in the 1D nullspace case. The second ‘low joint
stiffness’ condition was chosen by decreasing the stiffness to
the lowest value that would ‘resolve the redundancy’ (restore
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unperturbed motion within one cycle of motion). The main
results of the paper were observed in both the standard and
low joint stiffness conditions. They cannot be dismissed as
due to a fortuitous selection of impedance parameters.

Another possible source of artifact might have been the
choice of metric with which to quantify task conflict. For
statistical analysis we chose to use the difference in RMSE
(of position and force for unconstrained and constrained tasks,
respectively) between the two controllers. This avoided any
concern related to the absolute magnitude of these RMSE
measures.

Another potential source of error was the model assumed
by the nullspace projectors. Considering that the task conflict
was observed when moving quasi-statically, dynamics could
not have been the cause of artifact. All nullspace projections
depend on the Jacobian, which requires a model of the
robot kinematics. If the kinematic model was incorrect, a
difference between the actual robot nullspace and the model
robot nullspace would exist. Our observations suggest that
nullspace projection may be more sensitive to errors in the
kinematic model than impedance superposition. This would
be consistent with previous theoretical work which has shown
that the stability and passivity of an impedance controller is
remarkably insensitive to errors in the kinematic model of the
robot [67].

Finally, a concern might be raised that our results were
peculiar to the mechanics and kinematics of the particular
robot, task and configuration that we studied. To address this
concern we performed simulations of arguably the simplest
hypothetical case that could demonstrate the influence of
increasing nullspace dimension (Appendix B). A planar 3
degree-of-freedom linkage performed a 3 degree-of-freedom
end-effector task (nullspace dimension 0) and a comparable
2 degree-of-freedom end-effector task (nullspace dimension
1). Figure 9 clearly demonstrates the substantial influence of
nullspace dimension, even with idealized kinematics and zero
friction. Our results are unlikely to be an accident of the
particular robot, task and configuration that we studied.

A. Analogy to Polynomial Kernel Methods?
When the nullspace dimension was increased, a substantial

decrease in task space disruption was observed. One explana-
tion of this result may be that increasing nullspace dimension
with respect to a primary task increases the number of poses
that the robot can take. This makes the robot more likely
to reach a configuration which will result in a smaller task
conflict. This approach, which casts a low-dimensional prob-
lem into a high-dimensional space, appears loosely analogous
to common-practice data-driven methods for classification.
It is well known that a low-dimensional problem which is
sparsely populated can be non-linearly cast into a higher
dimensional space, e.g. using the polynomial kernel method
[72]. This projection increases the likelihood that a problem
which was not linearly separable in the low-dimensional space
will be linearly separable in the high dimensional space [73].
We suspect that a similar phenomenon may account for our
results but testing this speculation requires further investigation
beyond the scope of this report.

B. Applications

1) Understanding Human Motor Control: Humans do not
simply regulate kinematics. Humans also modulate the in-
teractive dynamics of their limbs [43]–[45]. Human limb
impedance varies as a function of many factors including:
muscle activation [74], movement [75], activity preparation
[76], force exertion level [77], task stabilization [78], and
walking gait state [79], [80]. Despite about three times as many
muscles as skeletal degrees of freedom, if the human limb is
viewed as an actuator configured to produce an arbitrary time-
varying impedance in an arbitrary configuration, it becomes
clear that the human limb is profoundly underactuated.

However, humans modulate impedance not only with mus-
cle activity, but also kinematics [81], [82]. In many tasks
the influence of kinematics can be more than an order of
magnitude greater than muscle activity or joint torque. Thus,
kinematic redundancy increases the range of impedance which
the human limb can produce. The kinematic nullspace is an
essential aspect of human physical interaction. Even though
the work reported here was performed on a robotic platform, it
demonstrated one of the many benefits of the high-dimensional
skeletal anatomy that humans possess.

This substantial influence of kinematics may be the reason
that several example cases, which employ simple models of
impedance, have been able to describe observations of human
behavior [83]–[85] and achieve human-like performance [86].

2) Applications to Robotics: One notable result was that
there may be cases in which there is no need for a
nullspace projector. Instead, the simpler approach of mechan-
ical impedance superposition may be applied. This approach
may be successful when the task dimension is small relative to
the number of joint-space degrees of freedom; or when only
small joint-space stiffness is required; when there are compu-
tational limitations; or when dynamic interactive behavior is
prioritized over exact position or force accuracy.

However, we do not conclude that impedance superposition
is always superior to nullspace projection; in fact our own
results showed cases in which it was not. For moderate joint-
space stiffness, there was substantial disruption of Task 1 (in
end-effector space) by Task 2 (in joint-space) as intended
by the experimental design. That disruption was sufficient
to exert compressive forces on the constraint, which is in-
herently destabilizing and potentially unsafe. With sufficient
end-effector stiffness, instability can be avoided and passivity
preserved [66], [69]. The biological solution to this problem
is that muscle stiffness increases in proportion to muscle
force (one of the most robust observations about mammalian
muscle) [87], [88] but it is unclear whether this is a satisfactory
approach for robotic applications. With a 1D nullspace and
moderate or greater joint-space stiffness, nullspace projections
may be required.

C. Future work

There are several directions of future work which could
provide valuable insight to the observations reported here.
We highlight two of them: First, in this work only two
nullspace dimensions were investigated. Clearly, the nullspace
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dimension can be modulated in two ways, by either changing
the dimension of task one or by changing the dimension of
task two. This simple idea motivates a systematic experimen-
tation or simulation to investigates these factors. Second, this
experiment was specifically designed to make the task conflict
easy to quantify. However, if more complex tasks are to be
understood, alternative metrics for quantifying task conflicts
may be required [89].

V. CONCLUSIONS

In robotics, controlling a large number of redundant de-
grees of freedom has commonly been viewed as a difficult
challenge to overcome, especially if control is performed via
optimization-based techniques. A common approach to deal
with the control of kinematically redundant robots is the
nullspace projection method. A simpler alternative is based
on superimposing mechanical impedances, but that approach is
vulnerable to task conflict, whereas nullspace projections theo-
retically avoid this problem. In practice, we observed that both
nullspace projections and impedance superposition resulted
in measurable task conflict. This surprising observation was
minimally influenced by the choice of projection weighting
matrix. Remarkably, when the dimension of the nullspace
increased, the superposition method showed errors that were
comparable to the nullspace projection methods. With no
disrespect intended to Richard Bellman, high-dimensional
kinematics may be a blessing rather than a curse.

APPENDIX A

Many of the differences between statically consistent and
dynamically consistent nullspace projectors will only be
elicited if the end-effector task (Task 1) involves significant
accelerations with respect to the joint-space task of the robot
(Task 2). To gauge the degree to which Task 1 was dynamic
with respect to Task 2, the principal natural frequencies of the
joint-space task of the robot were quantified.

For any given robot configuration, the local unforced mass-
spring behavior of the joint-space task can be approximated
as follows:

M(q)θ̈ +Kqθ = 0 (19)

where θ = q−∆q. In order to find the natural frequencies of
this system, we can assume solutions of the form:

θ = ai sin(ωit+ φ) (20)

where ai represents a single mode shape, and ωi represents the
corresponding natural frequency. Substituting this into Eqn. 19
yields:

(−ω2
iM(q) +Kq)ai = 0 (21)

Rearranging this yields:

M(q)
−1
Kqai = −ω2

i ai (22)

This has the form of a generalized eigenvalue problem, with ai
and −ω2

i being the eigenvectors and eigenvalues of the matrix
M(q)

−1
Kq . For each experiment, the 7 mode shapes and

natural frequencies were computed at each time step. For all

experiments, the computed natural frequencies remained ap-
proximately similar across revolutions. The computed natural
frequencies were then averaged across time steps and experi-
ments. The natural frequencies of each mode, listed in ascend-
ing order, were ωn = [0.28, 0.38, 0.81, 1.09, 2.52, 3.65, 7.13]
(Hz). The end-effector task frequencies were 0.25 Hz for the
fast case, and 0.0769 Hz for the slow case, which suggests
that in the fast condition, the response was dominated by the
two lowest Task 2 natural frequencies. The slow condition was
clearly quasi-static with respect to Task 2.

APPENDIX B

In this work the benefit of increasing nullspace dimension
was clear. However, this might have been a fortuitous accident
of our experiment, performed with a particular robot in a
particular configuration. In order to determine if the effect
of increasing nullspace dimension was generalizable, planar
simulations were performed which superimposed an end-
effector impedance (task 1) and joint-space impedance (task
2).

In the 0D nullspace condition, the task space consisted of
the x, y, and θ directions (m = 3). In the 1D nullspace
condition, the task space consisted of the x and y directions
(m = 2). Both the 0D and 1D conditions are graphically
displayed in Figure 9 (top). In all cases the manipulator had
three joints (n = 3). The total length of the manipulator was 1
m and the joints were divided into three equal segments. The
total mass of all of the links was 1 kg. The links were assumed
to be thin rods. The stiffness parameters are reported in Table
IV. Here, J(q)x ∈ R2×n maps the joint velocities q̇ ∈ Rn
to translational end-effector velocities, ẋ = [ẋ, ẏ]T while
J(q)θ ∈ R1×n maps q̇ to rotational end-effector velocities,
θ. The torque control laws for the 0D and 1D cases were:

τ0D = τe︸︷︷︸
Task 1

+ τq︸︷︷︸
Task 2

(23a)

and
τ1D = τx︸︷︷︸

Task 1

+ τq︸︷︷︸
Task 2

. (23b)

The nominal joint configuration q0 was constant and is
depicted in Figure 9 (top). The task 1 horizontal position was
constant (x0 = 0.75m), the task 1 orientation (only used in the
0D nullspace condition) was constant (θ = 0o), and the task
1 vertical position was time varying (y0 = 1

2 cos(2πt)). The
simulation was run for one cycle from y = 0.5, to y = −0.5,
and back to y = 0.5 with a period of 35 seconds which ensured
the system was moving quasi-statically.

From the trajectory of the end-effector seen in Figure 9
(bottom left) it is clear that the 1D nullspace condition resulted
in a substantial decrease of task space disruption. This is
supported by the x direction RMSE in Figure 9 (bottom right).
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