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Abstract

Although substituted benzimidazoles are common substructures in bioactive small molecules, 

synthetic methods for their derivatization are still limited. Previously, several enantioselective 

allylation reactions of benzimidazoles have been reported that functionalize the nucleophilic 

nitrogen atom. Herein, we describe a reversal of this inherent selectivity toward N-allylation by 

using electrophilic N–OPiv benzimidazoles with readily available 1,3-dienes as nucleophile 

precursors. This CuH-catalyzed approach utilizes mild reaction conditions, exhibits broad 

functional-group compatibility and forms exclusively the C2-allylated product with excellent 

stereoselectivity.

Graphical Abstract

The development of effective small-molecule therapeutics often requires the evaluation of a 

library of compounds containing diverse chemical structures.1 Thus, the discovery of new 

methods for the rapid derivatization of substructures commonly represented in biologically 

active molecules is an important goal for organic synthesis. Benzimidazoles are one such 

class of heterocycles found in a variety of pharmaceuticals and interesting natural products.2 

In many of these compounds, the benzimidazole core is functionalized at C2 with a chiral 

substituent (Figure 1).3 However, despite the prevelance of these substructures in bioactive 

molecules, methods for their synthesis are limited, especially in an enantioselective manner. 

Most protocols for the syntheses of C2-substituted benzimidazoles involve late-stage 
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construction of the imidazole ring and often require the use of harsh reaction conditions, 

being limited to the synthesis of achiral products.4 Approaches for the asymmetric 

functionalization of benzimidazoles predominantly involve bond-formation at the 

nucleophilic nitrogen. For example, Hartwig and Breit have independently demonstrated that 

enantioenriched N-allylated benzimidazoles can be prepared from allyl carbonates or 

allenes, and chiral iridium or rhodium catalysts (Figure 2A).5 Of the few reported examples 

of enantioselective C2-functionalization of benzimidazoles,6 most rely on an intramolecular 

cyclization of an N1-tethered alkene (Figure 2B).7

Our laboratory and others have previously shown that CuH-based catalysts can reliably 

convert olefins to chiral alkyl copper intermediates, which can be utilized to form new bonds 

stereoselectively.8 This chemistry has enabled a variety of C–N and C–C bond-forming 

reactions, including hydroacylation,9 hydroamidation,10 and formal hydrocyanation11 of 

olefins as well as the allylations of both imines12 and ketones.13 Recently, we have 

employed this hydrofunctionalization strategy to alkylate indole electrophiles with divergent 

site-selectivity, enabling C- or N-alkylation depending on the supporting ligand that is 

selected (Figure 2C).14a A similar tack has also enabled the C3-allylation of indazoles.14b 

We reasoned that by using an electrophilic N–OPiv benzimidazole as a substrate, we might 

be able to extend this chemistry to achieve asymmetric addition to the C2 position of 

benzimidazoles (Figure 2D).

We began by investigating the reaction of potential alkene coupling partners with N–OPiv 

benzimidazole (6), using (S,S)-Ph-BPE (L4) as a ligand and (MeO)2MeSiH (DMMS) as the 

silane. Our initial results with p-phenylstyrene were unsatisfactory, giving only 18% yield 

and poor e.r. (see the Supporting Information for details). However, with (E)-1-phenyl-1,3-

butadiene (7), we observed a 65% 1H NMR yield of the allylated product (8) with 95:5 e.r. It 

was found, not unexpectedly, that the use of geometrically pure (E)-butadienes was critical, 

as employing an E/Z mixture resulted in decreased enantioselectivity. Notably, the product 

obtained was almost exclusively the Z-isomer, regardless of the geometry of the diene 

starting material (>20:1 Z:E, see the Supporting Information for details). Several chiral 

bisphosphines were examined as supporting ligands, and high enantioselectivity was 

observed employing (R,R)-QuinoxP* (L2), (R)-DTBM-SEGPHOS (L3), and (S,S,)-Ph-BPE 

(L4) (Table 1, entries 1–4). Although the utilization of either L3 or L4 provided comparable 

enantioselectivity, the use of L4 provided 8 in the highest yield. A comparison of solvents 

(entries 5–8) revealed that the reaction was most efficient in MTBE. The use of silanes other 

than DMMS led to a decrease in product yield (entries 9–11).15

We next explored the scope of this method by examining the use of an assortment of 

benzimidazole electrophiles (Table 2). The reaction proceeded efficiently with both electron-

rich and electron-poor benzimidazoles, giving the C2-allylated products in good yields and 

enantioselectivities (9, 10). The reaction also worked well with halogenated benzimidazoles 

(12, 13). The stereochemical assignment of 13 was confirmed by X-ray crystallography. We 

note that we were also able to utilize the 4-thiophenyl substituted N–OPiv benzimidazole to 

synthesize 11, a substructure of the histone deacetylase inhibitor 3 (Figure 1),3c with 

excellent yield and enantioselectivity.
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Next, we evaluated a number of 1-aryl-1,3-butadienes as pronucleophiles. The use of 

reagents containing electron-rich arenes generated the allylated benzimidazoles with good 

yields and high e.r. (14, 16, 17). Additionally, heterocycle-containing dienes could be 

utilized, allowing us to obtain products such as indole 18. Aryl groups substituted with 

strongly electron withdrawing groups such as p-CF3 were found to give significantly 

diminished e.r. (19). A modest level of enantioselectivity was obtained with more 

moderately electron poor 1-(3-bromophenyl)-1,3-butadiene, which allowed access to 20, 

which contains both an aryl chloride and bromide functional group as potential sites for 

further diversification. We also found that 1,1-disubstituted butadienes furnished 

benzimidazoles bearing a C2-adjacent quaternary center with high enantioselectivity (15) Of 

note, 15 was the only allylation product obtained as the predominately E-isomer, and both 

the E- and Z-isomers of 15 were found to be highly enantioenriched.

Additionally, through the use of 2-aryl-1,3-butadiene pronucleophiles we could access C2-

substituted benzimidazole products bearing a methyl substituted stereogenic center and a 

1,1-disubstituted alkene (21).16 The reaction proceeded well with 2-substituted butadienes 

containing electron rich aryl groups, furnishing products such as indole 23, or compound 25. 

Electron poor benzimidazoles could also be utilized to obtain C2-substituted products in 

high enantioselectivity (24), however we found that the use of electron poor 2-substituted 

butadienes resulted in severely diminished yields (22).17

Whereas overall this C2-allylation protocol shows generally good functional group 

tolerance, we did find that substrates containing N-tosyl protecting groups performed poorly, 

oftentimes forming a precipitate during the reaction and giving products in poor yield. 

Investigating the use of alkyl-substituted dienes, such as 1-cyclohexyl-1,3-butadiene or 

myrcene suggested these types of pronucleophiles are poorer substrates.

On the basis of our previous studies on the addition of allyl copper species to indazoles, we 

believe the allylation of benzimidazoles may proceed as depicted in Figure 3.14b The in situ 
generated (S,S)-Ph-BPE ligated copper hydride I undergoes a hydrocupration of diene 7 to 

generate isomeric allyl copper intermediates, IIa and IIb, which are presumably in 

equilibrium.13, 14b, 18 These engage with 6 in a process that likely proceeds through a six-

membered transition state in which the methyl group occupies the endocyclic axial position 

(TSA), leading to the dearomatized intermediate III. The corresponding transition state 

leading to the minor E-isomer (TSB) would require the methyl group adopt an equatorial 

orientation, resulting in steric interaction between the methyl group and the large Ph-BPE 

ligand, perhaps explaining the allylation’s observed Z selectivity. Next, a net loss of copper 

pivalate generates 8a, which may isomerize to 8 following a 1,5-hydride shift. The active 

CuH species I is then regenerated after σ-bond metathesis of IV with DMMS. Alternatively, 

it is conceivable that intermediate III may undergo a σ-bond metathesis followed by 

oxidation to generate the desired product 8. In depth mechanistic studies to shed light on 

these proposed elementary steps are ongoing.

In conclusion, we have developed a method for the asymmetric synthesis of C2-allylated 

benzimidazoles, utilizing 1,3-diene pronucleophiles. The method allows for the preparation 

of substituted benzimidazoles bearing either aryl or methyl groups at the stereogenic center, 
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as well as quaternary stereocenters. The reaction tolerates benzimidazoles and dienes with a 

variety of electron rich, electron poor, and heterocyclic substituents, which we have utilized 

to generate several substructures found in biologically active compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative C2-functionalized benzimidazoles
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Figure 2. 
(A) Hartwig and Breit’s asymmetric N1-allylation. (B) Cyclization of N1-tethered alkenes to 

generate C2-alkylated benzimidazoles. (C) Our group’s divergent C- or N-alkylation of 

indoles. (D) CuH-catalyzed C2-allylation of benzimidazoles.
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Figure 3. 
Proposed mechanism for the copper hydride catalyzed C2-allylation of N–OPiv 

benzimidazoles.
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Table 1.

Optimization of the Synthesis of 8.
a

Entry Ligand Solvent Silane Yield e.r.

1 JosiPhosJO11 THF DMMS 93% 69:31

2 QuinoxP* THF DMMS 37% 96:4

3 DTBM-Segphos THF DMMS 44% 94:6

4 Ph-BPE THF DMMS 65% 95:5

5 Ph-BPE Toluene DMMS 91% 96:4

6 Ph-BPE 1,4-Dioxane DMMS 30% 74:26

7 Ph-BPE Cyclohexane DMMS 52% 96:4

8 Ph-BPE MTBE DMMS 95% 97:3

9 Ph-BPE MTBE TMCTS 67% 95:5

10 Ph-BPE MTBE Me2PhSiH 19% 97:3

11 Ph-BPE MTBE (EtO),MeSiH 50% 95:5

a
Reactions were performed using 0.15 mmol of 6. All yields were determined by 1H NMR with 1,1,2,2-tetrachloroethane as an internal standard. 

Enantiomeric ratios were determined using supercritical fluid chromatography (SFC) employing chiral columns.
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Table 2.

Substrate Scope for the CuH-catalyzed C2-allylation of N–OPiv Benzimidazoles.
a

a
All yields and enantiomeric ratios reported represent the average of at least two runs on a 0.5 mmol scale. Enantiomeric ratios were determined by 

HPLC and SFC analysis employing chiral columns.

b
Average of two runs on a 1.00 mmol scale.
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