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ABSTRACT

A turbine stage with constart hiade-tip clearance Is modelled by a two-dimensional
actuator disk to Investigate the flow fleld perturbation. It Is solved analytically and numerically.
The analytical solution uses inverse coordinates and a two-level velocity model. The numerical
solution partitions the channel into a grid in the inverse coordinates and uses a pseudo-time
marching technique on the non-linear model. For the two-level velocity model a shear layer forms
at the blade tip and produces all the vorticity associated with the stage. This leads to constant
axial velocities in both the blade and gap reglons at the disc. The flow is therefore uniformly
affected by the gap. Since these models overestimate the loss caused by the gap, two
modifications were made to the two-level velocity model. First, variable density was Introduced
and was found to have only a small effect. Second, the theory of retained lift was used and

significantly improved the resuits.
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LIST OF SYMBOLS

B Bernoulli constant
C velocity
C, axial velocity far upstream

h static enthalpy
H total enthalpy or blade span
| error from variation of equation

K retained lift constant

P pressure or power
Q shear constant

R reaction

U blade speed

V] diffusivity

o, infinite series constants

o, stator leaving angle

Ba relative rotor leaving angle

o gap size, variation of, or the delta function
A flow lost to gap

(0 vorticity

v stream function

b 4 work coefficient

[} normalized stream function

] ﬂO\'N coefficlent

P density



Subscript

1 stator inlet

2 stator exit and rotor inlet
3 rotor exit

1 in the x-z plane

T at the blade tip

Superscript
~ perturbation
+ slightly above the blade tip

- slightly below the blade tip



CHAPTER 1

INTRODUCTION

Vibrational instabliity Is a major problem in high power turbomachinery. An example of this
problem occurred In the Space Shuttle Main Engine turbopump system! during its initial testing.
Vibrational instability creates shaft stresses that reduce fatigue life and can even cause
catastrophic failure. The two major kinds of vibrational Instabilities are forced and
subsynchronous vibration. The first is due to rotor imbalance and Is easily detected. Its
vibrational frequencies are proportional to the shaft rotation speed. Subsynchronous vibration?
can be the result of several things; hysteretic whirl®, dry friction whip4, fluld bearing whip and

whiri5, seal forces®, and Alford force’ are some possibiilties.

The most relevant to this thesis Is the Alford force. This mechanism was discovered
Independently by Alford” and Thomas®. It Is considered one of the most important destabllizing
forces because it is proportional to the turbomachine loading, which is being increased in more

advanced turbomachine designs.

The Alford force is caused by varlations of the blade-tip clearance. Turbine rotors should
be perfectly centered with respect to the casing, and the blade-tlp clearance held constant. In
reality, however, the rotor will be slightly off-center. This creates a blade-tip clearance varlation.
Fluid passing through this varying tip clearance does no work, or at least reduced work and
lowers the bl.de efficiency. Integrating the blade forces around the turbine produce a resultant
force that Is perpendicular to the shaft eccentricity. This destabilizing force is in the direction of

the rotor rotation and thus produces a forward whirl.

Both the Alford and Thomas models ignore the effect of the flow disturbances created by
the blade-tip variation. Steady flow is assumed, and the only effect of the blade-lip clearance
variation Is on the mass loss through the tip gap. This is an oversimplification that needs to be
explored. Because the rotor blades are seen as a resistance to the flow, while the gap is not, the

flow fleld will alter itself to allow more fluld to pass through the larger gap section. To simulate



this flow fleld disturbance a three-dimensional actuatoi disc model should be constructed.
However, that Is beyond the scope of this thesis, and instead a two-dimenslonal actuator disc
model with censtant tip leakage Is used to Investigate the flow perturbations due to the gap In the
meridional plane. This is a continuation of the research of Yuan Qiu? who Investigated the effect
of flow fleld perturbations of the Alford force by creating a two-dimensional actuator disc that
distributed the effect of the gap over the biade, and solved for the flow disturbances In planes

normal to the blades.



CHAPTER 2

ANALYSIS

2.1 Assumptions

In this analysis a turbine stage Is répresented by an actuator disk with constant blade-tip
clearance. It is assumed that any perturbation of the flow Is caused by this tip clearance. In
developing this model tha following assumptions were made:

1) Incompressible flow (for initlal derivation)

2) constant axial velocity and two-dimensional geometry
3) no radial forces

The first assumption simpiifies the analysis by assuming constant density. This implies the
flow Is restricted to low Mach numbers, and the pressure drops across the rotor are not large.
Large pressure drops could result in choked flow and prevent downstream information from
reaching upstream making this model useless. Incompressible flow Is a falrly good assumption
for some turbines since the Mach numbers are generally restricted to below .3. This assumption

Is removed In section 2.3.1.

Under steady conditions and constant density, constant axial veloclty implies constant
channel area by conservation of mass. But even under more general conditions, constant axial
velocity is, by design, a common condition in real turbines. Even though real turbines have a
significant change in channel area this simplification Is made because it would be to difficult to
solve otherwise. Also the error introduced by doing so Is relatively small, and usefull data can still
be produced. Also by Imposing two-dimensional geometry we can use simple rectanguiar

coordinates. This Is only valid for turbines with hub/tip ratios close tc one.

2.2 Actuator Disk Model

Since the flow field is considered two-dimensional, the annular channel Is unwrapped and
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represented by a rectangular channel of helght H (Fig. 2.1). The stator and rotor are shown as

planes perpendicular to the flow, and the subscripts 1, 2, and 3 are used to denote upstream,

between the stator and rotor, and downstream. The rotor gap, §, Is considered constant for this

analysis.

The veiocity triangles are shown in Fig. 2.2 where C Is the absolute flow velocity and W Is

the relative flow velocity. The resulting y-velocities are

C,, = Ctanay

Cyy =U - C.tan;

where C, Is the axial velocity, U Is the rotor velocity, and a, and B, are the flow angles.

The stream function, y, Is introduced to satisfy continuity by

¢
C. =3,
.oy
Ce=-55

Substituting the stream function into the vorticity equation gives

(2.1a)

(2.1b)

(2.2a)

(2.2b)
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Vi = w, (23)

Using conservation of momentum it can be shown that the Cy Is convected downstream.

Simillarly oy is convected downstream and is therefore only a function of the stream function.

Because It Is assumed thera Is uniform irrotational flow upstream of the blades, the vorticlty

is zero. Thus the govemning equation there Is the Laplace equation

Vi =0 (2.4)

Downstream, however, the flow Is rotational. The blades and rotor gap produce vorticity which is
carried downstream. The goveming equation downstream of the blades is therefore the non-

linear Poisson equation

V2¢ — wy(,/,) (2.5)

The function my(\p) Is determined by the boundary conditions imposed by the stage. To find

a useful form of the vorticity we first take the two-dimensional part of the momentum equation.

V(C_i £)+ax 0 (2.6)
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where

C? = 0?4 C? 2.7)

Next take the dot product of the equation with the normal vector and make the substitution

9 d
—_ = —_ 2.8
gn =t dp (29)
which gives
a8 (ci P 29
w35 (F+7) =

The quantity In the parenthesis is the Bemouill constant, B, , which is constant along streamlines,

and is set by the stage parameters. Since the flow is uniform upstream

8B, _, (2.10)
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Downstream B i is glven by

, PS

By, = % (et +ci) + " @.11)

Since the velocities before and after the disk approach the same values at the disk, equation

(2.11) can be written

= (ch e+ 2 2
By adding and subtracting P,/p
By, = % (cz +cz)+ % _h ;P“ (2.13)
a substitution can be made with B 1,
P, — Ps (2.14)
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Taking the derivative with respect to y and using equation (2.10) gives

0By, _ 0 (L_P_") (2.15)
i o p

Now the pressure drop Is calculated across the blade row. For the portlon of the tlow that passes

through both the stator and rotor we use the isentropic substitution

PP (2.16)

hl - h3 =
and the Euler turbine equation to get
P, - P 1
‘T‘i = UC.tana; - 3 (U? - C2tan?s) (2.17)

The rest of the flow must pass through the rotor gap. Since the gap Itself is assumed to have no
resistance to the flow, all the pressure drop must occurs across the stator. No energy Is
extracted from this fluld so we can use Bernoulil's equation to calculated the pressure drop. Note
that this is not strictly correct, since some of the gap streamtubes are partially deflected and do a
fraction of the work done by the streamtubes far from the gap. This will be reconsidered in

section 2.3.2. For now we set
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h-b -;-tanzaz {2.18)

Now we substitute equations (2.17) and (2.18) Into equation (2.15) and make a change of

variables using

J 1 (aC; 0
b2 (2)_ )

Taking the derivative with respect to C, gives the resulting equations.

U ac
BLADE: = — | o—a— 2 z 2.20
wl’ [(Cz)a::O tan * + tan ﬁa] ( az )z—o ( a)
) 0C,
GAP: w, = — [tan’as] o (2.20b)
=0

The vorticity In the blade and gap reglons can now be calculated, but the discontinuity at the
blade tip produces a shear layer. To find the strength of the shear layer we integrate the vorticity

across the the blade tip to get

/ wy 0y = B}, — B, (2.21)
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where B J_: and B 1.,' are the Bemoulll constants Just above and just below the blade tip. By

substituting in the values of these Bemoulli constants we get the resulit

1 2
/wy 0y =UC tana; — 3 (U2 - C-';’ tanzﬂs) - %C’: tan’a, (2.22)

which means the vorticity produced by the shear layer Is

wy, = [U C, tanay — % (U2 -c;’ tanzﬂa) - -;-C’:' tan’ag] §(v —v,) (223)

where vy Is the streamline that passes through the blade tip. Substituting equations (2.20a),
(2.20b) and (2.23) into equation (2.5) gives the governing equation for the downstream region.
The govemning equations are solved in twn ways. The first Is an analytic approach which uses
inverse coordinates and a two-level veloity model. The second Is a non-linear numerical

approach using inverse coordinates and a pseudo-time marching technique.

2.2.1(a) Transformation to Inverse Coordinates

Since the forcing term in the governing equation is a function of the stream function a
change of coordinate is made from (x,z) to (x,y). The axlal and radial velocities are now

represented by



Ce = 7 ] (2.24a)

(2.24b)

and the Laplacian becomes

Vi = % (22200 + 22,24 Zey — (1 + 22) Zy] (2.25)
¥

where the subscripts represent the partial derivatives of Z with respect to that subscript. With the
additional substitution

0C.\ _  (Zue
9z ==o—_ Tg' o (2.26)

the governing equations can be written
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UPSTREAM:
—% [z,z Zow — 22.24 20y + (1 + 22) zw,] =0 (2.27a)
¥
DOWNSTREAM:
1
_Z_,?, [Z:,Z,,, - 2Z=Z¢Z:¢ + (1 + Z:) Zl/’d’] =
2 Zw HC
[tan. (12] —ZT 1!’1, < ",[J < To
¥ xz=0
: . (2.27b)
< [U Cs tan oz — 3 (U2 -c; tanzﬂa) ~3 ct tanzaz] 6(¢ —,)
2 Zyy o
[U (Z,,,)ﬂo tan a, + tan /33] ( 73 ) 0< ¢ <y,
\ ) =0

2.2.1(b) Two-Level Velocity Model

These equations are highly non-linear and Impossible to solve exactly by analytical means.

They are, therefore, linearized using

+Z (2.28)

where Z Is the perturbation of Z. Now the axial and radial velocities become
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C.=C.,—-C%2Z, (2.29a)

C.=0C..2, (2.29b)

After calculating the partial derivatives of Z in terms of 2. neglecting terms higher than linear in f

and dividing through by -C, 3, the goveming equations become
(-]

UPSTREAM:
1 - .
g7 Zazt Zyy =0 (2.30a)
DOWNSTREAM:
1 _
Cz Z::: + de, =
r '
- [tan 02] (Z"W')a:—o 1»[’1- < d‘ < cho
- (2.30b)
1 2 (Cz Cy ? M ? 2
< [‘1’ (c ) A T (c) ar' = (G2) tartn] 60642
|- [— tan a; + tanzﬂs] (ZW,) 0 0< <y,

where @ Is defined as the flow coefficient, i.e., °'Cx°/U° Note that the velocities in the shear
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layer term are not fully linearized, but instead are plecewise constant. The ratios C,/C, and

C,*/C, will be solved for later.

To solve the Laplace-Poisson governing equation we need to Impose the boundary

conditions.

1) Lower wall Z(y=0)=0 Z(y=0) = 0

2) Upper wall Z{y=HC, ) =H i(w-cho) =0
3) Upstream Y(X = -00) = CX.Z Z+0asx-o
4) Downstream  C,= -g-;!:(x vw)s0 2

5) At disk C,, C, continuous Z

+0asx—+o

, fw. fcontlnuous

It can be shown that solutions of the following form satisfy all five boundary conditions (as well as

the governing equation for x<0).

-Igf- = Zan enﬁisinn‘n’d) z<0
%:Zan (2—e—nﬁ!) stnnrg = >0

where ¢ is the non-dimensional form of the stream fuction glven by

(2.31a)

(2.31b)

(2.32)
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The following analysis shows how the constants o, were determined. First, the Bernoulll
constant was written In its velocity components and pressure form. Then Its derivative with
respect to y was taken at x — <, and the C, was replaced by its definition from conservation of

mass.

() .- ()
oy ) " \“ ) T 02),_00 (2.33)

At x=0 the derivative of the Bemoulli constant with respect to y has already been found and is

given by

8B, aC. |
(%)= (52)..,

where F(y) is given by the equations (2.20a) and (2.20b). Since the Bemoulli constant Is
constant along streamlines, its derivative with respect to y at the disc should be equal to its

derivative with respect to y at infinity.

3B.L: (aB.L: )
—_— =\\—- 2.35
( a'lb )::oo ad) z=0 ( )

This leads to

60; _ ac":n
( 6Z )::oo - F(¢) ( aZ ):::0 (236)
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Linearized actuator disks have a common property of distributing the perturbation evenly so that

the perturbation at infinity is twice the perturbation at the disk.! if we assume this, then it follows

8C.\ . (9C.
( az )c:oo =2 ( aZ )c=0 (2-37)

The only way to satisty both of the previous equations Is if 1) F(y)=2, which is generally

impossible except for some exceptional conditions, or 2)

(3_01) =0 (2.38)
z=0

This means that (C,),., Is a constant for both the blade and gap regions with a discontinuity at

the blade tip (Fig 2.3).

The Fourier cosine expansion for something of this shape gives the form of the constants

a,. The velocity perturbations In the axial direction must sum to zero to satify continuity. This

gives (with ¢-|-=l|l-|-/(Cx°H)-1-M

AZF+(1=X)Z5=0 (2.39)
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Anywhere on the shear layer (in particular when x — =) we have

Bf-lj =g 4= 240)
where Q Is defined from equation (2.30b) as
2 (C: 1 (cr\, e\, (2.41)
Q=$ C” tana2—$+ o tan®B; — - tan‘a, .

If the quantity 2; - 2;, Is evaluated at the disk, a factor of 1/2 must be introduced to reflect the
general property of linearized actuator disk theory that the perturbation on the disk is 1/2 that

downstream.

(2 -2;) _ = -2 ¢ =¢r (2.42)

Combining equations (2.39) and (2.42) gives

5o __(1-A) @ (2.43a)

Z; = AQ (2.43b)
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By taking the derivative of equation (2.31a) with respect to y and evaluating it at the disk we get

(Z¢.)z=0 = CT Z na, cosnweo (2.44)

'To pn=1

Using Fourier analyslis with a cosine expansion of Zv over the Interval (-1,1) gives

T

Caz,

1 oo 1
/ Zycosmunpdep = Z na, / cosnmwe cosmnopddp = ma, (2.45a)
-1 n=1 -1

Taking the same integral but using equaions (2.43a) and (2.43b) for ZP gives

/_2 Zy cosmnpdp = 2(/:’? 4/\69 co.ssm7rgl$dq{>+/;l —-(1—4_0/\—)Qcosm7r¢d¢)

Q sinmwg, (2.45b)

- 2C¢,, mnr

Now equating the two previous equations gives us the solution for o,

sinnmwg
o‘% SINNTPr (2.46)

a, =
" n?
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where ¢ is ¢ evaluated at the blade tip. If we define the non-dimensional flow lost to the gap as

A=1-¢, (2.47)

then equation (2.46) can be rewritten

Q sinnm)

_ n+41
an = (-1) 2x2  n?

(2.48)

and the non-dimensional size of the gap can be found from equation (2.31a), using x=0, ¢=1-3,

and Z,p=H(A-8) with the help of the infinite series solution

X gin?nwrA 7wl
- - 249
P R (249
which gives the result
) Q ]
—_ = — X (1=
T Al n (1 ) (2.50)

Since we can't solve for the perturbatlons exactly for the rest of the channel, we tum to the
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derivatives of Z wnich we can solve exactly. For the upstream region the derivatives of Z with

respect to x and y are

Z, =7 Z na, enﬁlsin nwe (2.51a)
n=1
Qo
Z-,,, = Czr Z nap, enﬁ‘cos nweo (2.51b)
To n=1
Plugging in equation (2.48) gives
s Q& we1 BEF Sinnm\ sinnwo (2.52a)
Z:c - g ngl (_1) € n
7 Q i (=1)"+! eﬂﬁl sinnwA cosnme (2.52b)
¥ 2rCe, T n

Now we use the trigonometric substitutions

(-1)™! sinnrd = sinnw (1—9) (2.53a)

(—=1)" cosnme = cosnm (L—¢) (2.53b)
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to get

n

2& i age ginnr A sinnw (l—¢)

= Q & g sinnw) cosuw (l1—¢)
Zy = 2nC e n

To n=1

This can be manipulated again using trigonometric substitutions to get

z. 243 i:: cosn‘rr(l—q&—/\);cosmr(l—¢+))

7, = 4:2 Z a2 sinnm (1—¢—A) — sinnm (1—-9+)

To p=1 n

With the help of the following infinite series solutions

>, p"cosny 1
E —=ln
st M V1 —2pcosy + p?

(2.54a)

(2.54b)

(2.55a)

(2.55b)

(2.56a)
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i psinny _ tan-1 | _P5"Y (2.56b)
it n 1—pcosy

the derivatives of Z for x<0 become

7 =gln 1-2e" cos7r(]-—-¢+/\)+e‘ﬁ‘] (2.57a)
T 8 1-2e% cos1r(1—¢—)\)+ezf"
Z.,z Q tan-1 sinm(l—¢-A) B
ir (', e H —cosm(l—¢p=1)
(2.57b)
fan-1 sinw(l-o04)\) 1
a "
e H —cosm({l—@+A) I
For the downstream solution we get
Z==8£ln 1-2¢° % co.s7'r(1—¢;$+)«)-l—e-ﬂ’E't (2.58)

T 1-2¢ % co.s1r(1—(,15—A)+e_l'}"rt

Itis the same as the upstream solution except the exponent has changed sign. The derivative of

Z with respect to y for the downstream section is a little more difficult to find because it has two

parts.



29

- r = -
v = a Znan (2 — € nﬁ‘) C08n1r¢ (2.59)

° n=1

The first term can be rewritten by Inserting equaticn (2.48)

2r & oo .
Cﬂ' Z na, cos 'n7r¢ = Q Z (_ 1)n+1 sinnw) cos n1r¢ (260)
To n=1 To p=1 n

This is the same as the upstream solution (2.52b) except it is multiplied by two and doesn't have
the exponential. So the first part of the downstream solution for the derivative of Z with respect to

y is (from 2.57b)

2r &

C

To n=

_ sinm(l—¢—2A) - sint(l—¢+A)
{tan 1 [1 —cosr(l—cﬁ—/\)l — tan™ [1 —cosm(l—¢+A) }

na, cosnwd =
1

(2.61)

2rC,,

Using the trigonometric substitutions

sinf 1 (2.62)
1—cosd tan%

and
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tan=t [ —— ) =T - g 2.63
an tan% T2 2 (2.63)
we get the resuit
2_1r°° . Q —m(1-}) ¢, <9<
Ca, & T On COSTTY = 505 { ™ 0<$<e, (2684)

The discontinuity is caused by the first term on the right hand side of equation (2.61) which jumps
from /2 to -2 at ¢ = 1-A. This is shown In Fig 2.4. The second part of the derivative of Z with
respect to y is the same as the upstream solution except the exponent and the terms change

sign. Combining the solutions for the two parts gives for x>0

) Q {[ —21r(1—/\)] L sinw(i—g-n
Z,/, = — tan 1
4rC., 2mA ¥ _ cosm(l—gp—\)] ¥

) (2.65)
l- sinmw(l—¢p+)) }

—cosm(l—g+)\)]

e

tan

"

€

At the disc the derivative of Z with respect to x and y become (from 2.57a and 2.57b)
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(Z,) _Q [2—2cos1r(l—¢+,\)]

T 2—-2cosmw(l—-¢p—)) (2.66a)

. Q an-! sinm(l-¢—)) _ sinm(l—¢+A)
(Z"b)’:o {t [l—coﬂr(l—tﬁ——/\) - tan” [1—cos1r(1—¢+A)]} (&.680)

which simplify to

5 Q sinZ(1—¢+A
(Z::)==0 == ; (1—¢—,\;} (2.67a)
7 Q —(1-2A ¢T < ¢ <1
(2v)__, = rou { ( \ ) AN, (2.67b)

This last equation is indeed of the right form (see Egs. 2.43a,b). Since we defined the radial and

axlal velocities in equations (2.29a) and (2.29b) we can calculate the velocitles at the disk
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__QChln[dng(L—¢+A)

4r sinZ (1-¢—X) (2.68a)

B 1+42(1-)) ¢, <9<
C: = C’,,{ 14_ % \ 0”< b< b, (2.68b)

The axial velocity is not a function of $ and is constant in the blade and gap regions. This means

aC.\
(32).,:0_0 ¢ # ¢r (2.69)

and the vorticity is only produced by a shear layer at the blade tip. Thus the governing equations

simplify to

UPSTREAM: oo+ 24y =0 (2.70a)

1
DOWNSTREAM: g Zee t 2y = —55— 6 (v —9) (2.70b)
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We con now solve for Q by using equation (2.68b) to find the velocity ratios, C,*/C, and C,’/C,
o o

in terms of Q and substit'iting these into equation (2.41). This glves the quadratic equation

[\ 1-2)?
Q* T tan®pB,y — (1-4) tanzaz] +
[ (1= A A
Q -— ( ) tanzaz — 5‘5 tan oy — E t¢1112/33 — l] + 2.71)
[ 2 ; 1 2 2
B anaz — &5 + tan®f; — tan az] =0

that can be solved for Q.

To solve for the streamline that passes through the blade tip we start with (see equation

(2.58) with ¢=1-A)

Ze (pyz>0) =

Q. [1-2%cos2 s
B_ﬂ,l" e "cos2tA +e 2.72)

(1-¥)

which can be rewritten

. _ -5
Z,(¢T,z>0)=gln L+ 2(1 cos21rz\)2e
8 (1-¢¥) (2.73)




This is not integrable analytically, but for A small and x>>HA this can be approximated by

Z.(¢y, >0) = Q 4 sin’n ) i (2.74)
T ™ ~ 87r (1 B e_*)z
Integrating this gives
: L QH ., 1
Z(¢pp,z>0)=C oz Sin TA (1 = e—ﬁ) (2.75)

To solve for the constant of integration, C, we note that the perturbation at Infinity Is twice that at

the disc. This Is a common property of actuator disks.

(¢p,00) =2 (A - %) (2.76)

| N

Since we know what 8/H equals from equation (2.50), we can solve for the perturbation of the

streamline that passes through the blade tip.



35

fgf (¢'rvw > 0) =

| O

{,\(1 M)+ (’i"ﬂ”’\) [1 - '(]__’I;T)]} 2.77)

We can now solve for the streamline by adding 1-A to the perturbation.

(¢rrz)=1-XA+

|

(2.78)

=] N

Another property of Interest Is the tip loss. To find it, we first calculate the power per unit
depth which is given by

P= / (he, — hey) drin (2.79)

With the help of Euler’s turbine equation and the substitution

div = pdi (2.80)

this becomes
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¥
P=pU /0 [C. (tan oz + tan B5) — U] di

it we linearize and then make the following substitution

C

=2 [tan az + tan fy)

€=U

and use the non-dimensional form of the stream function we get

Ce
Caz,

P = pU*HC,, /:’ (e - 1) dé

(2.81)

(2.82)

(2.83)

Notice that the free wheeling condition occurs when e=1. The ratio of the velocities Is linearized

by

Ca =1—C,,Z-¢

which can be rewritten non-dimensionally as

(2.84)
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Z
ﬁ) (2.85)

so the term in the parenthesis of equation (2.83) becomes

C. 4 (Z

EC —1=€—1—€% H (2.86)

Wae now define the work coefficient as

v-_ L
pU2HC,, (2.87)
and rearrange equation (2.83) to get
br (2

— _l1-e—1|=1ld 2.88
\I'_/o [e 1 anb(H)] ¢ (2.88)

Integration ylelds
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zZ (2.89)
U=(c—1) ¢, —¢ (-f-;-)
and since we know what the blade tip perturbation Is from equation (2.31a), this becomes
= <]
U=(c—1) ¢, —€ Y, ansinnrd, (2.90)
n=1

With the help of equations (2.48) and (2.49) this can be rearranged and the tip loss can be

calculated. The tip loss is given by

K
°

|
&
m
O

2 (1-2) (2.91)

where ¥ Is the value of the work coefficient when A=0.

2.2.2 Non-linear solution

This solution uses a grid and an lteration technique based on pseudo-time marching to
approach the true solution. This technique rearranges the governing equation, multiplies it by a
constant At, and sets It equal to the residual, which is zero at the correct solution. Finite
differences are used to calculate parameter values at grid points. These values are then
substituted into the govemning equation and multiplied by the constant to update the values. By
varying the value of the constant the rate of convergence can be changed. If it is to large the

solution diverges, and it it is to small the rate ot convergance decreases.
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To show how this is done we start by rewriting the governing equation as

0B,

Y =0

vy -

(2.92)

and taking a perturbation dy of y(x,z), we wish to calculate the following integral (which would be

zero for the correct solution):

1=// (vzw— 3311*) 81 dx dz

Wae can rearrange this into

B. §¢| dr dz

0
I=//[V-(wvm—w-vww)— 5

Now with the help of the divergence theorem we get

1=f5¢g-:—/:dt_f/ [5(%(%)’) +6Bl(v¢»)] du dz

With the substitutions

(2.93)

(2.94)

(2.95)
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9y
g - ¢ (2.96)
and
2 _ 2
(Vo) =0l (2.97)
this becomes
, 1,
~h= {/,/ [E C.+ B, (11’)] dz dZ} + fC, 6 dl (2.98)
Imposing the boundary conditions
)dy=0 at the walls
2)C=0 at +e0 and -0
3)dB, =0 upstream

lets us rewrite the equation for a circuit which encloses all of the upstream channel, up to the

disk, and then for one which encloses all of the downstream channel, from the disk down.
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UPSTREAM:

I = 6(//‘-4: %Cl d:cdz) +/0HC', (:c:O‘) 0y, dz (2.99a)

where we made use of 6B ,"=0

DOWNSTREAM:

It = 5{//@“ [% C’ + B, (¢)] da dz} - /0" C.(v=0%) 64,dz  (299b)

Adding these two equations, combining the upstream and downstream integrals, and setting I=I*

+ I we find that equation (2.93) gives

5/ G B) ] -

/OH (cr —c5) o dat [ [ (V2¢r _ 331-:?['1) b4 da dz

(2.100)

This says that the functional
1 2
// (;)-Ci + Bl> drd:

Is at a minimum at the correct solution, and its functional gradient with respect to the local interior

variations dy of y is the residual
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0B,
Cips

Vi —

and Its gradient with respect to variations 3y, of y at the disk is the C, discontinuity.

This opens the way for a gradient-search procedure to find the solution. At Interior points

we can update y using

5 = At [V’¢' — wy (¢)] (2.101)

and for points on the disc we use

8, = At, (CF - c;) (2.102)

Normalize the variables using the following
‘V/cho -y

x/H — x

ZH—-»Z

C,‘/C,‘° - C,



cz/cx - Cz
(-]

u/c, - 1/¢
1]

@ /(Cy H) - @

Q—-+Q

and restate equation (2.101) in the form of the heat conduction equation (with heat generation

represented by -coy):

1 oy

il Vi - wy (¥) (2.103)

where we use a fake diffusivity of a. equal to one, and "time march” with a At less than one half
the square of the smallest grid size. Next the coordinates are changed from (x,z) to (x,y), and

equatlon (2.103) Is rewritten as

Z = -24 (V% - w, (¥)) (2.104)

Now the equation Is discretized and the At Is brought over to the right hand side. This gives

Z™ =2 -2, [V -w, (¥) 6t (2.105)

wJj
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where my(\y) Is glven by the normalized version of the right hand side of equation (2.27b) and V2y

is given by equation (2.25). The derivatives of Z with respect to the other varlables are (to

second order In the Ay and Ax)

Z. = ,’H-ZH-I.J' — F:Zi—hi + h* —h- Z

h* + h- hth-
kg kg kt — k-
— F i+l F ,)—-1
2 kT Rk D

zl‘%l'l zl'—l 1
ch =2 —; -2 .il_
WA lRehe

zl:!i Zi:i_
Z v = 2 -+ = -2 Zi‘j
v Kt + k- kt k=

Z -Z

i+l,g+1 itly

" — Z-‘.‘+1 +2
Zay = h+k+ ’

i3

where we define

(2.106a)

(2.106b)

(2.106¢)

(2.106d)

(2.1066)
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h™ =2~z (2.107a)
h* =2, - = (2.107b)
k™ =y, -y, (2.107c)
K= g, - i (2.107d)

For points along the disc, since the Ax values are taken equal on either side, equation

(2.102) is replaced by

(Z0)ymo = 5 (22 - 22) @108)

which can be rewritten

nt1 n VA _Zo Zo —Z—l
™ =2+ ( e~ Zou oo ) 6t (2.109)



46

and if we use a (8t)/(Ax) = 1/2 then this becomes

SR R |
Zo.j+ = Ezﬂ.j + Z (Z-'.; + Z—l.j)

(2.110)

To calculate Z ; along y we first integrate V2y across the velocity discontinuity. Because
J T

Z, Is continuous, Zv has a discontinuity, and ZW has a delta function, the only term In equation

(2.25) that remalins after Intergration is the last one.

+ VA 14 22 1 1
-(1 2\ ¥ g z _
/' ( +Z=) Zv:l" w 2 (Zf ZJ’)

This must be equal to the integral of the vorticity across the velocity discontinuity:

+ = 1 1
/_ wy dip = %’ tan az — 1 (— ~c7 tanzﬂa) - 56’:’ tanla, = %

2 \P?

where Q Is the same quantity as was Introduced before (Eq. 2.41)

3 (L L)
w02 (57 -757) =

(2.111)

(2.112)

(2.113)
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Using one-sided differences for Zv' with equal Ay on both sides, allows us to rewrite this as

(14 22) (Ay)’ ' - =Q 2.114)

This can't be solved for Z'-l explicitly so it is iterated using the following form.

Q (Zyn —2,) (2 - 2n)
= +
s 2 2 (89) (2,00 — Ziyp) (14 22)

(2.115)

We can now Iterate through the (x,y) grid to calculate the values of Z,J.

2.3 Modifications

After the Initlal theory was complete It was noticed that the calculated flow perturbations
were larger than expected. Two modifications were made to make the model more realistic. The
first was to change the theory to allow compressible flow. This had only a small effect on the flow
perturbations. The second modiiication took Into account the theory of retained lift which was put
forth by Lakshminarayana'®. This can have a substantial effect on the flow perturbation and can

bring it to a level similiar to that observed in experiments.



2.3.1 Compressible Fiow

To approximate a real turbine the variable density model uses constant axial velocitles and
deals with the density change by increasing the channel height through the actuator disc (Fig
2.5). This changes two of the matching conditions at the disc. First the flow perturbation Is
amplified by the density ratio.

(Z).,=o+ =2 (Z)uo_ (2.116)

Second the derivative of the flow perturbation with respect to y Is also amplified by the density

ratio.

. P (5
(24) o0 = ',,'1; (Z4),o- 2.117)

The derivative of the flow perturbation with respect to x remains the same since the axial velocity
is constant across the actuator disc. Therefore the solutions to the constant density model are

modified to become

ol A}
Z=H)Y an,e” sinnr d"l x <0 (2.118a)
n=1 'top

z>0 (2.118b)
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To find the constants o, we need to find the vorticity created by the actuator disc. For

compressible flow, we begin the derivation with the enthalpy equation

H=h+- (2.119)

where H is the total enthaipy, h is the static enthalpy and C is the velocity. We define the
perpendicular total enthalpy as

H =H--¢ (2.120)

where Cy Is the y-component of the velocity. Since there are no variations In the y-direction the

relationship

€
X
Q
I

|
<
]

(2.121)

can be written

wiCe —waCy = 0 (2.122a)
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0H ac
w,C; — w,C, = —a—: - C, (gz—") (2.122b)

0H ’
waCy — w,Cy = —EL' - C, (3_;;!) (2.122c)

and the vorticity equations simplify to
—_ aCV
Y=="\1D3z (2.123a)
N AN
“w=\9:) \oz (2.123b)
w, = (%) (2.123¢)
oz

Inserting equations (2.123a) and (2.123c) into equations (2.122b) and (2.122c) gives the result

1 [0H,
Y=\ o (2.124a)

1 (OH,
w =7\ 5 (2.124b)
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The stream function Is used to satisfy continuity. For the variable density case this gives

c,= b (%
==\ %z (2.1250)
c. =2 kd
2=~ o \Bs (2.125b)

Combining equatlons (2.124a) and (2.124b) with (2.125a) and (2.125b) give us the relationship

needed for the downstream goveming equation.

oH
Wy = £2 ( J') (2.126)
p1\ 0Y

Now we have to manipulate this expression of the vorticity into a useful form. To do this we take

the downstream perpendicuiar total en‘halpy

c:, , Ci
Hy, =hs+ 2’ + —2—’ (2.127)

and expand It into
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C: +Ct Cc: - C?
Hy, =h + ('T‘) — (h1—hs) — (__2———) (2.128)
which simplifies to
H,, =H, —(hi—ha) (2.129)

Because the upstream fiow is uniform and unperturbed the perpendicular total enthalpy doesn't
vary with the stream function. Therefore, taking the derivative of the downstream perpendicular

total enthalpy gives

BH.L, )
-—81,—;_ =~ 5 (h1—hs) (2.130)

From Euler's turbine equation we can find the static enthalpy drop for the blade reglon.

hl -—h3 = UC,; tan a; — % ([’2 - C:’: tanzﬂs) ¢) < '¢|T (2.131)

Substituting this into equation (2.130), changing variables with the help of equation (2.19), and
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taking the derivative with respect to C, gives

aC;

0H,, [C% tan as + tan2ﬂ3] ( az ) _ b < g

3

Now we have to find the static enthalpy drop for the gap region. We start by noting

C?
H.L3=HL|'—_2"_' P > Y,

which is equal to

Cz
III._I_3 = H.L; - —21 tanzag 1,[’ > 1,[’1-

Taking the derivative of this with respect to the stream function gives

oOH,, aC. s o
ad, = - [tanzagl(az)uo 'Z >d1‘

Substituting the blade and gap expressions into the vorticity equatlon (2.126) gives

(2.132)

(2.133)

(2.134)

(2.135)



BLADE:

U aC,
Wy = — % [—CZ tan as + tanzﬂs] ( aZ )==o (2-1363)
GAP: ac
—_Ps 2 =
wy, = . tan cxz] (OZ ),,:o (2.136b)

Now we need to calculate the vorticity produced by the shear layer. We start by finding the
integral of the vorticity across the blade tip. This is given by

/ wy dp = :’,—j (a2, - A1) (2.137)

Plugging In the values for H J_; and H J-.,- which we Just found and linearizing C, gives

1
w, = ? {UC,, tanag + > [C2tan?B; — C2 tan’a, — U’]} §(p—1hr) (2.138)
1

Substituting equations (2.136a), (2.136b) and (2.138) Into (2.5) gives the governing equation for
the downstream reglon. From this point on the solution is the same as the incompressible
problem except the vorticities are multiplied by the density ratio. This means the constants o

have the same form as the constant density case (2.48) except Q is now defined as the solution
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to the quadratic equation
A2 1-2)?
Qz {E tanzﬂa - g—lg-l- tanzag] +
[ (1=) A A
QR |- ( ) tana; — 3% tan oz — 3 tan®Bs — % + | (2.139)
[ 1
L% tan oy — 32- + tan2ﬂ3 — tanzazl =0

where the density ratio Is either glven directly or calculated from a given blade Mach number.

2.3.2 Retained Lift

The retained lift theory assumes that the flow passing through the gap does some work on
the blade. Previously we had the pressure drop or total enthalpy drop across the gap equal zero.
For the retained lift theory, the drop in pressure or total enthalpy across the gap is a fraction of
that across the blade. If we define K as the ratio of the total enthalpy drops across the gap and

blade, then we can write

(2.140)

& | e

where f, is a fictitious blade angle that would appear in the gap region to extract work from the
fluld. Note that when the fictitious blade is free-wheeling this corresponds to K=0, and no work Is

done in the gap region. This occurs when

- +\2
(G’ ) tan as + (G’ ) tan’ay (2.141)
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This corresponds to what we had previously for the gap region. If K=1 then B,=p, and the
enthalpy drop across the gap is the same as that across the blade. Since no shear layer forms,

the flow is unperturbed.

The solution to the retained lift problem has the same form as the previous linear solutions.
The only difference Is how Q is defined. Since Q is a measure of the strength of the shear layer,
it Is proportional to the difference in pressure or total enthalpy drop across the gap and the blade.

So for the constant density case Q is

y_\ 2
Q= (C“' ) (tanzﬂs - tan";i,) (2.142)

However, both the blade velocity and the fictitious blade angle are functions ot Q, so to solve for

Q an iteration is needed. For the variable density case Q is

0\ 2
Q=8 (C‘ ) (tan®ds - tan®3,) (2.143)

and again an iteration is needed to solve for Q. By controlling the value of K, the values of &/H

and the tip loss can be kept to realistic values.
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To support the retained lift theory we note that some of the fluid that exits the gap has
actually passed through part of the bladed region and then flowed over the blade tip (Fig 2.6).

This fluld has done some work on the blade. By introducing the fictitious blade In the gap we can

account for this work.
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CHAPTER 3

RESULTS

To see how well the two-level velocity model approximates the non-linear model we
compare their axial and radlal velocities. This Is done for a series of different turbines having
reactions that range from .10 to .975. All turbines are at the design point of no exit swirl, which Is

glven by

1
tanﬂs = 3 (3.10)

For this analysis, ® and tanf, are held constant at .5 and 2, and the reaction is varied by

changing tana, using

1
R= 5 [3 - (tan az + tanﬂa)] (32)

For reactions of zero and one, the pressure drop across the rotor is zero because these represent
the impulse turbine and free-wheeling conditions. Since no pressure drop occurs, Q=0 and the
flow is unperturbed. The two-level velocity model and the non-linear model converge to the same
solution of no flow perturbation at these points. For reactions between zero and one, Q>0. The
two-level model approximates the non-linear model fairly well, but it gets noticeably worse at
large values of Q. This is shown In Figures 3.1-3.16, where the non-linear solution used a 16x32

grid that covered two blade spans upstream and downstream of the actuator disk. Note that the
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given Q Is for the two-level velocity model.

To show that sufficlent grid points were used to generate an accurate solution, a 16X32
grid was compared to a 24X48 grid. When this comparison was performed for a reaction value of
.80 (where Q had the greatest observed value for the two-level velocity model) the differences
between the calculated velocities were relatively small. The grid points common to both grids and

thelr respective calculated velocites can be seen In Table 3.1.

To demonstrate the effect of reaction on the tip loss to gap size ratlo and the gap size, A
was held constant at .10 while the reaction was varied from zero to one. At reactions of zero and
one, both the tip loss to gap size ratio and the gap size were equal to A because the flow Is
unperturbed. At reactions from .70 to .80 the effect on the tip loss to gap size ratio and the gap
size Is quite large, because Q Is relatively large. This is shown In Figures 3.17 and 3.18.

The effect ot A on the jet velocity Is relatively small for a given turbine. This can be seen in
Fig. 3.19. As A increases more flow Is lost to the gap causing the blade velocity to fall. This

agrees with experimental data which shows the et velocity remains approximately constant.

To show the effects of turbine operation at off-design conditions the turbine blade angles
were held constant at tanc,=2 and tanfi,;=.2, and the flow coefficient was varied from .46 to .54.
Therefore the turbine would only operate at design when ®=.5. By holding the gap size, 6H,
constant the tip loss to gap size ratlo can be found as a function of ®. Similarly by holding the
work coetficlent, ¥, constant the tip loss to gap size ratio can be found as a function of ®. This is
shown In Fig. 3.20 for different values of gap size and work coefficient. As ® increases, both the
tip loss to gap size ratlo and the work coefficient increase for a given gap size. This Is because
for small values of @ the rotor is aimost unloaded. As @ increases, so does the turbine loading
and the work coefficient. The fluid sees the rotor as a resistance to the flow and tries to avoid It
by moving toward the gap. Therefore as the turbine loading increases so does the tip loss to gap

size ratlo.

The tip loss to gap size ratio for real turbines is generally in the 1.2 to 1.8 range. Since the
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linear model produces values between 3.0 and 4.0, two modifications were made to the theory.
The first was to allow compressible flow. This reduced the tip loss to gap size ratio but not
significantly. The second modification used the theory of retained lift which allows the fluld in the
gap to do some work. This produces reasonable tip loss to gap size ratlos. To demonstrate the
effects of these modifications, the flow coefficient versus the tip loss to gap size ratio was plotted
for a constant gap size ot .05 for four different cases. This Is shown In Fig. 3.21 where K is
defined by equatlon (2.140), and d3/d1 is the density ratlo. By combining the retained lift theory

and variable density the tip loss to gap size ratlo can be significantly improved.
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CHAPTER 4

RECOMMENDATIONS

To galn more understanding Into the gap’s effect on the flow perturbations, three
recommendations are made. First, accurate experimental data is needed to verify the theory of
constant axlal velocities for the gap and blade regions Second, a means of determining the value
of K tor the retained lift theory Is needed. Lastly, a theory that takes into account variable gap
size Is required. Since real rotors are generally slightly off-center, they produce varlable gap
sizes that can affect the flow field upstream of the rotor. It is felt that a three dimensional actuator

disk model Is needed to simulate this flow field.
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Fig. 2.6 Gap fluid that does Some work on the rotor



Axial Velocity / Cx

69

1105 T LI T T T T T T T
104+ Epsilon = 2.80
Reaction = .10
Flow Coefficient = .50
1.03 - Lamda = .05
Q=.190
1.02+
- Two Level Method
o Non-linear Method
101}
1 -
0.99 1 L A —rl i 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Stream Function

Fig. 3.1



Axial Velocity / Cx

1.1 T T T L) L T T T -1
1.08 Epsilon = 2.60 |
Reaction = .20
Flow Coefficient = .50
1.06 Lamda = .05 1
Q=.402
1.04 -
- Two Level Method
o Non-linear Method
1.02 -
1 i
0.98 L 4 L . . L : —L .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

70

Stream Function

Fig. 3.2



Axial Velocity / Cx,

7

1.25 r L v T T T Y
12k Epsilon = 2.20
' Reaction = .40
Flow Coefficient = .50
1.15F Lamda = .05
Q=.905
L1F
- Two Level Method
1.05+ o Non-linear Method
l i o o 0 o (]
0.95 : : . : . - . . -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Siream Function

Fig. 3.3




Axial Velocity / Cx

72

1.4 v i T T T T T T T
1.35F Epsilon = 1.80
Reaction = .60 400
L3k Flow Coefficient = .50
| Lamda = .05 ’
125} Q=148 |
1.2+ .
L15}F - Two Level Model |
' o Non-linear Model
1.1} i
1.05F i
1 i —
o o o o ° |
0.95 L L . " . . N , .
? 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Stream Function

Fig. 3.4



Axial Velocity / Cx

73

1.45 T T T T T L T T T
L4k Epsilon = 1.40
) Reaction = .80
1350 Flow Coefficient = .50
’ Lamda = .05
13+ Q=173
1.25F
12+ - Two Level Model
’ o Non-linear Model
1.15 r—
1.1}
1.05¢
l i [+] [+] [*]
° o o © 0 9qng
0.95 . ‘ P E— ‘ — - : -
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

Stream Function

Fig. 3.5



Axial Velocity / Cx,

74

1.3

1.25F

1.15

1.05

Epsilon = 1.20
Reaction = .90

Flow Coefficient = .50
Lamda = .05

Q=122

- Two Level Model
o Non-linear Model

A

000

0.95
0

0.2 0.3 0.4 0.5

Stream Function

Fig. 3.6



Axial Velocity / Cx

75

l. 18 L} Ll LI T L] L] T T T
i Epsilon =1.10
116 Reaction = .95 °00]
L1k Flow Coefficient = .50 |
' Lamda = .05
1.12+ Q=686 .
1.1+ -
Lo8k - Two Level Model .
) o Non-linear Model
1.06 .
1.04}+ .
1.02} ]
1 4
_Q Q Q Q Q rou.
0.98 L L A Il A I A A i
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Stream Function

Fig. 3.7



Axial Velocity / Cx

1.09

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01

0.99

76

L} L) ¥ T L] !

Epsilon = 1.05
Reaction = .975

Flow Coefficient = .50
Lamda = .05

Q=.358

- Two Level Model
o Non-linear Model

o o 0. 0

e n

vﬁ,uao

0.1 0.2 03 0.4 0.5 0.6

Stream Function

Fig. 3.8

0.7

0.8

0.9




0.05
0.045
0.04

0.03s
o]

o
S

Radial Velocity / Cx
o
e S
S B

C.015
0.01

0.005

Epsilon = 2,80
Reaction =10
Flow Coefficient = .50
Lamda = 05

Q=.190

- Two Level Method
0 Non-linear Method

2 4

4
4

0 ———

0.1

——

0.2 0.3 0.4 0.5 0.6

Stream Function

Flg. 3.9

0.7

0.8




=]

Radial Velocity / Cx

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

78

T T T T T

Epsilon = 2.60
Reaction = .20

Flow Coefficient = .50
Lamda = .05

Q=.402

- Two Level Method
o Non-linear Method

0.2 0.3 0.4 0.5 0.6

Stream Function

Fig. 3.10




Radial Velocity /Cx

79

0.25

0.2

0.15F

o
—
T

0.05F

Epsilon = 2.20
Reaction = .40

Flow Coefficient = .50
Lamda = .05

Q=905

- Two Level Method
o Non-linear Method

0.2 03 0.4 0.5 0.6

Stream Function

Fig. 3.11




Radial Velocity / Cx

0.4

0.35

0.3

0.25

e
)

0.15

0.1

0.05

80

T

T

T

T

T

Epsilon = 1.80
Reaction = .60

Flow Coefficient = .50
Lamda = .05

Q=148

- Two Level Method
o Non-linear Method

o

A L

1

0.1

0.2 0.3 04 0.5 0.6

Stream Function

Fig. 3.12




Radial Velocity / Cx,

0.45

0.4

0.35

03

0.25

0.2

0.15

0.1

0.05

81

T

Ll \J

Epsilon = 1.4
Reaction = .80

Flow Coefficient = .50

Lamda = .05
Q=173

- Two Level Method
o Non-linear Method

, O

0.1

0.2 03

0.4

Stream Function

Fig. 3.13




Radial Velocity / Cx,

82

0.3

0.25+

e
N
T

e

—

[V}
T

e
—
T

0.05

Epsilon = 1,20

Reaction = .90
Flow Coefficient = .50
Lamda = .05

Q=122

- Two Level Method
o Non-linear Method

o

pmm* Y e e, i S ]

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Stream Function

Fig. 3.14




o

Radial Velociry / Cx

0.18

83

T

0.16

0.14

0.12r

0.1+

0.08 +-

0.06

0.02+

T LI T Li T T T

Epsilon = 1,10
Reaction = .93

Flow Coefficient = .50
Lamda = .05

Q=.686

- Two Level Method
0 Non-linear Method

°

. A i

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

Stream Function

Fig. 3.15




84

0.08 Epsilon = 1,05
Reaction = 975

0.07 Flow Coefficient = 50
Lamda = g5

=.358

° 0.06 Q

J .

>

. 0.05

8

:;' 0.04 - Two Level Method
g © Non-linear Methog

L4
U

o

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Stream Function

Fig. 3.16



Tip Loss / Gap Size

85

24

2.2

1.8

T

1.6

1.2+

Lamda =.10

— Flow Coefficient = .3
- - Flow Coefficient = .5

--- Flow Coefficient = .7

A L

0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Reaction

Fig. 3.17



Gap Size

86

0.1

0.09

0.08

0.07

0.06

0.05

0.04

N Lamda = .10

- . *
.....

— Flow Coefficient = .3
- - Flow Coefficient = .5

--- Flow Coefficient = .7

A 1 It L i

.

0.1

0.2 0.3 04 0.5 0.6 0.7

Reaction

Fig. 3.18

0.8

0.9




Axial Velocity / Cx,,

1.35

1.3

1.25

1.2

1.15

1.1

1.05

0.95

0.9
0

87

------
------
---------
--------
________

Reaction = .50

Flow Coefficient = .50
tan(b3) = 2.0

tan(a2) = 2.0

4
Cx Gap -

)

-
Cx Blade

0.02

0.04

006 008 0.1 0.12

Fig. 3.19



Tip Loss / Gap Size

36

34+

3.2+

2.8
261
24}

22y

tanp,=2.0

i

—

. Psi=.10

.. Psi=.075
i

e Pei=05

0.46

0.47

048 049 0.5 0.51

Flow Coefficient

Fig. 3.20

052 053 054 055



Tip Loss / Gap Size

89

3-6 v A T LS T
3.4} ]
32 r .
I W
2.8 L / -
=00 d3/d1=0.8
261 4
2.4f .
221 .
2}t 4
L8k K=0.6 d3/d1=1.0 |
iy _——————K=06 34108
045 046 047 048 049 0.5 051 052 053 0354 0.55

Flow Coefficient

Fig. 3.21



90

Table 3.1 Axial and radial velocities at x=0 for two grid sizes

9750
.9250
.9000

.9750
.9250

Grid 16X32
(Cx)x-o

1.36396
.97904
.98285

(CZ)X-O

.13404
.14692
.09922

Grid 24X48
(Cx)‘-o

1.36279
.97962
.98326

(CZ)I-O

13677
.15054
.09976
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCECCECECeCee
c

c LAYER

c
CCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCe
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
c This program calcualates the axial and radial velocities at the
c actuator disk using the inverse coordinates (x,psi)
CCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCLCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCece

integer n,i, j, jsh,side, ppl,pp2

double precision z1(50,50),zr(50,50),x%1(50),xx(50)

double precision psi(50),zd(50),vort(50),cxd(50),czd(50)
double precision cxinf(50)

double precision lbda

double precision ¢,b,a,pp

double precision fid,rd,wkd,ta2,tb3,fi,wk,r,alfa2,betal
double precision t,dt

double precision kp,km, z0,zdn,zds, zdpsi, zdpsi2

double precision dpsi,cx0g,cx0b,q,zsh0,hp,zw,ze,it,zx,zsh
double precision zr,hm,zn,zs,zne,zpsi,zxx,zpsi2, zxpsi,lap
double precision resr,resl,ztl,delte,hold,hold0,time,oldq

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCECe
c zl=z values to the left of 0

c zr=z values to the right of 0

c xl=x values to the left of 0

c xr=x values tc the right of 0

c zd=z values along the actuator disk

c vort=vorticity

c cxd=axial velocity at the disk

c czd=radial velocity at the disk

c cxinf=axial velocity at infinity

c lbda=lamda

c a,b,c are terms in a quadratic equation

c fid=flow coefficient at design

c rd=reaction at design

c ta2=tan (alpha2)

c tb3=tan (betal)

c fi=flow coefficient

c rareaction

c dpsi=change in psi

c cxOg=axial velocity in the gap

c cxOb=axial velocity in the blade

c g=shear constant

c resr=residues on the right

c resl=residues on the left

c lap=laplacian

c zsh=z values along the shear layer

c zpsi=derivative of z with respect to psi

c zxx=second derivative of z with respect to x

c zpsi2=second derivative of z with respect to psi
c zxpsi=derivative of z with respect to z and to psi
CCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
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print*, ’Input no. of points across (multiple of 4)’
read*, n

print*, ‘Input fractional leakage lamda’

read*, lbda

CCCCCCCCCCCCCCCCCCECCCCCCCCCCCCECCCCCCCCCCCeCececcececceccececcecceeeeceecee
c To Increase the rate of convergance the time step is

c increased for points far from the gap. This is done

c by adding a term to the time step used for the gap region.

c This additional term is linear in grid size, and is given by

c dt* (delta psi)
CCCCCCCCCCCCCCCCCCCEECCCCCCCCCCECCCCCEECCCCCCECCCCCCeccceececeecececcceee

print*, ’Input dt factor (.0008)’
read*, delte

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCcececccecececceecceeace
c The time step used for the gap region is ’‘time’
CCCCCCCCCCCCCCCCCECECErSCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeace

print*, ‘input time step (.000005)’
read*, time

CCCCCCCCCECCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCEeC
c The value of q is averaged with its previous value to prevent
c it from diverging

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcecccececceccecceece

oldqg=.6

CCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccececceccece
c Making the grid
CCCCCCCCECCCCCCCCCECCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCeecCe

do 10 j=1,n/2
psi(j)=l-4*£float (j)/float (n)*lbda
print*, ‘psi(’,3j,") =',psi(})
10 continue

cm4* (1-2* (3+4/f1loat (n)) *1bda) /float (n) / (float (n) +2)
b=8/float (n) *1bda-(£float (n) +1) *c
a=l-(float (n)+1)*b-(float (n)+1) **2*c

do 20 j=n/2+1,n
psi(j)=l-a-b*float (j)-c*£float (j) *£loat (J)
print*, ‘psi(’,3,') =',psi(])
20 continue

do 30 i=1,n/2
xr (1)=4/float (n) *£loat (i) *1bda
x1l (1) ==xr (i)
30 continue

c=8*(1-3*1bda)/float (n) / (float (n) -2)
b=8*1bda/float (n) - (float (n) +1) *c
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a=2~-float (n) *b-£float (n) *£loat (n) *c

do 40 i=n/2+1,n
xr (i) =a+b*£float (i) +c*£float (i) *£float (i)
x1l (1) ==xr (i)
40 continue

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCce
c Inputting turbine parameters
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCe

print*, /Input design flow coefficient’
read*, fid

print*, ‘Input design degree of reaction’
read*, rd

wkd=2* (1-rd)

ta2=2* (1l-rd)/£fid
alfa2=atan(ta2)*180/3.14159
tb3=1/fid

beta3=atan (tb3)*180/3.14159

print*, ta2,alfa2,tb3,betal

print*, ‘Input operating flow coefficient’
read*, fi

wk=(ta2+tb3) *fi-1
r=.5% (tb3**2-(ta2-1/£i)**2)/(ta2/£fi-(1/£i**2-tb3**2)/2)

print*, ’fid =’ fid

print*, ‘rd =/, rd

print*, ‘wkd =’ ,wkd

print*, ‘alfa2(deg) =',alfa2
print*, ’‘beta3(deg) =',betal
print*, 7£i =’/ fi

print*, 'wk =',wk

print*, ‘r =/,r

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCe
c Initialize flow for undisturbed solution
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccecceccee

do 50 j=1,n
zd () =psi (J)
c print*, fzd(',3,') =',zd(])
do 60 i=1l,n
z1 (i, 3)=psi(3J)
zr (i, j)=psi(j)
60 continue
50 continue

t=0

dt=.000001

m=1
CCCCCCCCCCCCCCCCCCCCCQCCCCCCCCCCCCCCCCCCCCCCCCLCCCEC
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c Update z on disc and calculate vorticity
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
print*, ‘ok’

512 do 540 j=1,n

.

zd (j)=zd (j) /2+(z1 (1, J)+zr(1,3))/4
if(j .eq. n/4)go to 540

kp=psi (j=~1)-psi(j)
if(j .eq. l)then

kp=1-psi (1)
endif

km=psi (})-psi (j+1)

if(j .eq. n)then
km=psi (n)

.endif

z0=zd (j)

zdn=zd (j-1)

if(j .eq. 1l)then
zdn=l

endif

zds=zd (j+1)

if(3 .eq. n)then
zds=0

endif

zdp3i= (km/kp*zdn-kp/km*zds) / (kp+km) + (kp-km) *z0/kp/km
zdpsi2=2* (zdn/kp+zds/km) / (kp+km) -2*z0/kp/km

if(j .1t. n/4)go to 536

vort (j)=(zdpsi*ta2/fi+tb3**2)*zapsi2/:dpsi**3
cxd(j)=1/zdpsi
go to 540

536 vort (j)=ta2**2*z2dpsi2/zdpsi**3
cxd(j)=1/zdpsi

540 continue

do 80 j=1,n
c print*, j,psi(3),zd(j),cxd(j),vort(jJ)
80 continue

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCC
c Calculate shear strength
CCCCCCCCCCCCCCCCCCCCCCCCCCCECCCECCL 2CCCCCCCCCCCECCCCCCCCCCCCCCCCCC

jsh=n/4
dpsi=psi(jsh) -psi(jsh+l)
cx0g=dpsi/ (zd (jsh-1)-zd(jsh))
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cx0b=dpsi/ (zd(jsh) -zd (jsh+l))
gmcx0b/fi*ta2=-(1/£i**2-cx0b**2*tb3**2) /2-cx0g**2*ta2**2/2
qm=(q+oldq) /2

c print*, ‘q =',q,cx0g,cx0b,zsh

oldg=q
CCCCCCCCCCCCCCCcecececeeceececeeecceceeecececeececceceocececececcececccecececcecece

c Update z along shear layer
CCCCECCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCEee

do 90 i=1,n
zshQ=zr (i, jsh)
zsh=zsh0

hm=xr (i) -xr (i-1)

if(i .eq. 1l)then
hm=xr (1)

endif

hp=xr (1+1) -xx (i)

if(i .eq. n)then
hp=hm

endif

zwazr (i-1, jsh)
if(i .eqg. 1l)then

zw=zd (jsh)
endif

ze=zr (i+1, jsh)

if(1i .eq. n)then
ze=zsh

endif

it=1

660 zx=(hm/hp*ze-hp/hm*zw)/ (hm+hp)+ (hp-hm) *zsh/hm/hp
zsh=(zxr (i, jsh+l)+zr (i, jsh-1))/2-q/dpsi**2/(zr (i, jsh+l)
& -zr(i, jsh-1)) * (zr(i, jsh+1l) -zsh) **2* (zsh-zr (i, jsh-1)) **2
& / (l+zx**2)

if(abs(l-zsh/zsh0) .1t. .001)go to 700

hold=zsh-zsh0

if (hold .gt. O)then
ppl=1
else

ppl=0
endif

if (hold0 .gt. O)then
pPpP2=1
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else
pp2=0
endif

if(ppl .ne. pp2)then
zsh=(zsh+zsh0)/2

elseif (zsh-zsh0 .gt. 0.0)then
zsh=z3h-.0005

else
zsh=zsh+.0005

endif

holdO=hold
zsh0=zsh

it=it+l
go to 660

700 zr (i, jsh)=zsh
90 continue

do 100 j=1,n
do 110 i=1,4

c print*, zr(i,3J)
110 continue
c print*, zx(5,3j)

100 continue

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcacecccecece
c Update z for interior points. First compute derivatives.
CCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

sum=0

do 120 i=1l,n
do 130 j=1,n

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecccccecee
c Derivatives downstream
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCce

if(j .eq. jsh)go to 890

hm=xr (i) -xr (i-1)

if(i .eq. 1l)then
hm=xr (1)

endif

hp=xr (i+l)-xx (i)

if(i .eq. n)then .
hp=hm

endif

kp=psi (j-1) -psi (J)
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1f(jJ .eq. l)then
kp=1-psi (1)
endif

km=psi (3) -psi (j+1)

if(j .eq. n)then
km=psi (n)

endif

z0=zr (i, 3)

zn=2zr (i, j-1)

if(j .eq. l)then
zn=1

endif

zs=zr (i, j+1)

if(j .eq. n)then
zs8=0

endif

zw=zr (i~1,3)

if(i .eq. l)then
zw=zd (j)

endif

zemzr (1+1, J)

if(i .eq. n)then
ze=20

endif

zne=zr (i+l, j-1)

if(j .eq. l)then
zne=1

endif

if(i .eq. n)then
zne=zn

endif

side=2

810 zx= (hm/hp*ze-hp/hm*zw) / (hp+hm) + (hp~hm) *z0/hp/hm
zpsi=(km/kp*zn-kp/km*zs)/(km+kp)+(kp-km)*z0/kp/km
zxx=2* (ze/hp+zw/hm) / (hp+hm) -2*20/hp/hm
zpsi2=2* (zn/kp+zs/km) / (kp+km) =2*z0/kp/km
zxpsi=(zne-zn-ze+z0) /hp/kp
1ap--zxx/zpsi+2*zx*zxpsi/zpsi**2-(1+zx**2)*zpsiZ/zpsi**3

if (side .eq. l)go to 980
if(i .eq. n)then

cxinf (j)=1/zpsi
endif

resr=lap-vort (j)
ztrm~-zpsi*resr
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sum=sum+abs (resr)

CCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeceee
c Derivatives upstream of the disc
CCCCCCCCCCCCCCCCCCCCECCCCCChCCCCCCCCCCCCCCCCCeCeeccececececccceeeccee

890 side=1

hp=x1(i-1)-x1(i)
if(i .eq. l)then

hp=-x1(1)
endif

hm=x1 (i) -x1 (i+1)

if(i .eq. n)then
hm=hp

endif

z0=2z1 (1, 3)

zn=zl (i, j-1)

if(j .eq. l)then
zn=1

endif

zs=zl (i, j+1)

1£(j .eq. n)then
zs=0

endif

zw=zl (i+1,3)

if(i .eq. n)then
zw=20

endif

ze=z1l (i-1,3)

if(i .eq. l)then
ze=zd (j)

endif

zne=z1 (i-1, j-1)
if(i .eq. l)then
zne=zd (j-1)

endif

if(j .eq. 1l)then
zne=1
endif

go to 810
9890 resl=lap
ztl=-zpsi*resl

sum=sum+abs (resl)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCECCCCCCCCCCCCCCCCececcee
c updetce z at interior points
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CCCCCCCCCCCCCCCCCeCceceeeccececeecececcecececcececececececcececeeececeececcce

if(j .gt. n/2)then

dt=time + delte* (psi(j)-psi(j+1))
else

dt=time
endif

z1l(i,j)=z1(i, j)+ztl*dt
if(j .eq. jsh)go to 130
zr (i, j)=zr(i, j)+ztr*dt

130 continue
120 continue

CCCCCCCCCCCCCCCCCcCCCCCcecceeceeececececagcececceccecececececcecececece

c Calculate velocities at disc
CCCCCCCCCCCCCCCCCSCCCCCCCCCCCCCCCCCCCCCCCaCCCCCCCCCCCCee

do 150 j=1,n

zx=(zr(l,3j)-z1(1,3))/(xx(l)=-x1(1))
czd (j) =zx*cxd(j)

if (float (m) /50 .eq. int (float(m)/50))then
print*, psi(j),zd(j),zx
endif

150 continue

CCCCCCCCCCCCCCCCcCCccCCCcceccccccecceeccecceeccececcecececcececcecececcecceccecee

c report velocities at disc and downstream

CCCCCCCCCcCcCcCcCccccccecececceeceecececececececeececceccececeeccecececececececeeccecccecccece

if (float (m) /50 .eq. int (float(m)/50))then
print*, 7/
print*, m
do 555 j=1,n
print*, j,psi(j),cxd(j),czd(j),cxinf (]))
555 continue
print*, '
print*, ‘sum of residues =',sum
endif

t=t+dt
m=m+1

go to 512

end



