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Abstract. I apply Barwise and Seligman’s theory of information flow
to understand how sets of signals can carry information. More precisely I
focus on the case where the information of interest is not present in any
individual signal, but rather is carried by correlations between signals.
This focus has the virtue of highlighting an oft-neglected process, viz., the
different methods that apply categories to raw signals. Different methods
result in different information, and the set of available methods provides
a way of characterizing relative degrees of intensionality. I illustrate my
points with the case of folktales and how they transmit cultural infor-
mation. Certain sorts of cultural information, such as a grammar of hero
stories, are not found in any individual tale but rather in a set of tales.
Taken together, these considerations lead to some comments regarding
the “information unit” of narratives and other complex signals.

1 A Theory of Information Flow

In their book “Information Flow: The Logic of Distributed Systems,” Barwise
and Seligman [1] present a mathematically sophisticated theory of how things
can carry information about other things. Barwise and Seligman started from
Dreske’s seminal work on information flow [2], and expanded and formalized
his observations, integrating his approach with related approaches, resulting in
a more general formulation. (From here on out I will refer to this general for-
mulation as the “DBS” theory of information flow, short for Dreske-Barwise-
Seligman). I observe that the DBS theory is, in fact, even more general than it
at first appears, and it is my aim to illustrate how it can be used to frame and
describe several important facets of information flow, knowledge, and belief that
were left unelaborated in both Barwise and Seligman’s and Dreske’s work. In
particular, I will show how the DBS theory, without modification, can be used
to conceptualize two important items which Dreske touched upon only tantaliz-
ingly: learning and intensionality. I show how this conceptualization brings into
relief a part of information channels that is often taken for granted in philosoph-
ical analyses, namely, the process by which categories are applied to raw signals.
I will then apply these insights to make some comments on the information
content of cultural narratives (folktales).

I set the stage by reviewing in brief the relevant parts of the DBS theory.
The theory involves, at its core, classifications and infomorphisms. These two
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objects are used to model how information flows across distributed systems, which
are systems that can be analyzed in terms of both a whole and constituent
parts. In Barwise and Seligman’s terminology, an information channel brings
classifications and infomorphisms together into a full model of the information
flow of a particular system.

We shall lose no generality if we restrict ourselves to discussing a distributed
system W comprising only two parts, a proximal part P , to which we have
direct access and be thought of as the “receiving” end, and a distal part D, from
which information is flowing. There are infomorphisms that map properties of
the classifications of the distal and proximal parts to the whole; call these d and
p, respectively. To provide a concrete example to discuss, let us take Barwise and
Seligman’s example of a nuclear reactor: in this case W is the whole reactor, D
will be the reactor core, and P will be a gauge in the reactor control room, and
d and p are the regularities that connect the core to the reactor to the gauge.

A classification is similar to what one thinks of when considering the standard
classification task in cognitive psychology: it is a set of labels or classes that may
be applied to some object or phenomenon. Classifications can be, for example,
mutually exclusive (e.g., {square,circle}), exhaustive (e.g., {true,false}),
or overlapping (e.g., {tall,fat}). They can also be none of those things. Im-
portantly, though, each part, as well as the whole, receives a classification. For
our reactor example we might consider the reactor core D to be classified by the
exclusive types normal and overheating, the reactor status gauge can show
one of green or red, while the reactor overall can be in one of the four states
achieved by the cross product of these two classifications.

An infomorphism relates classifications on a part to classifications on the
whole. It is a way of describing how classifications are transformed as the in-
formation they carry moves through the distributed system, from one part to
another: they are models of the regularities that allow information flow. In such
a system one infomorphism d may be applied to the distal part’s classification
to obtain a classification on the whole, and then another infomorphism p may
be applied in reverse to the classification on the whole to obtain a classification
on the proximal part. We need not say too much about infomorphisms except
that, as they are applied in the forward and reverse directions, the resulting
classifications loose some of their guarantees and internal relationships and are
downgraded to what Barwise and Seligman call local logics. In the reactor exam-
ple, the combined infomorphisms from reactor core to reactor whole, and then
from reactor whole to control room gauge, given a reactor in working order,
results in a display of green on the gauge when the core is normal, and a
display of red on the gauge when the core is overheating. Thus information
flows from the distal part of the system (the reactor core) to the proximal part
of the system (the control room gauge).

The details are not critical to my argument, but there are two essential points
to take away from this description. First is that regularities across the sys-
tem, modeled by chains of infomorphisms, are what allow information to flow
from one part of the system to another. (It is often helpful to think of these
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regularities, like Dretske did, as lawful relationships, but one must remember
that not all regularities are lawful.) Second, classifications are the language by
which the information is communicated and information flow is relative to the
classifications of the whole and its parts.

2 Information Flow via Sets of Signals

Information flow in the DBS theory is intimately connected, whether explicitly or
implicitly, with signals. The examples in Dretske’s and Barwise and Seligman’s
work are all concerned with individual signals. A signal is not defined precisely
in either work, but one gathers it follows the natural intuitions: signals carry
information and they are relatively localized in time and space. Signals flow
across a distributed system from the distal part to the proximal part. They are
the messages that contain the information. A light flashing SOS, reading the
symbols off a map, a speech act: these are all signals.

I turn to an interesting and important case, that where the information of
interest is not present in any individual signal, but rather is carried by correla-
tions between signals. Regularities in a distributed system can result not only in
information carried in a single signal; certain types of regularities can also result
in correlations between signals.

How can this be so? Here is an example. Let us consider the reactor, and ask
a simple question: Is the reactor more often normal or overheating? Perhaps
not a very interesting question, and one whose answer is obvious to anyone who
knows much about nuclear reactors and how they are designed and run. But
imagine that you know very little at all about nuclear reactors. Then, certainly,
you would agree that if you were to learn the answer to this question about
a particular reactor, then you would be the recipient of information. How we
answer the question is straightforward: we simple observe the gauge periodically,
noting whether it the gauge is normal or overheating. Eventually, we stop
and count up our observations, and whichever type outnumbers the other, that
is our answer for this particular reactor.

How often we observe the gauge, for how long, doesn’t matter much for my
argument. What is important is that we cannot know, by observing any individ-
ual signal from gauge, whether the reactor is more often normal or not. The
information is not contained in any one signal, it is only contained in a collec-
tion of those signals. Now, one may object that this question is contrived and
uninteresting, and does not represent the sort of information we are interested
in studying. But, in fact, this is a common scientific question: “Is it more likely
that X or Y for some type of signal?” Doctors, for example, ask the question
of whether or not patients are more likely to die or be cured (or something in
between) when they use or don’t use a particular drug. Engineers ask whether a
building is more likely to fall down in an earthquake when designed this way or
that. Astronomers ask whether it is more likely for a type of star to go supernova
sooner rather than later, or not all, if it has this or that characteristic. All of
these examples are more complex than the reactor example, in that answering
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these questions usually involves correlating signals from multiple parts of the
system at many different times, using much more complex methods, but the ba-
sic principle is the same: one cannot obtain the information from any one signal.
The set of signals itself becomes an information channel.

How may this be analyzed within the DBS theory? The distributed system
becomes, not a single instance at a particular time of the system under con-
sideration, but a set of distributed systems, each one at different times. Each
instance might be a specific time instance of a particular distributed system, they
might be different instances of different distributed systems (all similar in some
relevant way), or some mixture in between. The infomorphisms still reflect the
regularities that underlie the system, they now just describe regularities spread
across distributed system instances, and thus, time and space. The classification
may be thought of as all the possible answers to the question — what those who
do statistical analyses might call the hypothesis space of the problem. When we
finally determine what is the actual answer, we have pinned a particular type
on the receiving end of our set-of-signals distributed system, and we are the
recipient of information.

This focus on the set of signals and the observation that scientists use sets
of signals to answer scientific questions highlights an important fact: the way
one correlates the signals in the set is key to the extraction of the information.
Different methods result in different information flowing across the system. This
choice of method contains much of the contribution of science: how do we process
the raw data so as to uncover the information that we seek?

Naturally, the differences in information between methods may result from
different classifications used or implied by each method. This is exactly the
same as in the individual signal case where different information flows when we
have a different classification for a part or the whole. But, there is an important
distinction I would like to highlight, namely, that different methods might pro-
duce different answers for the same classification. For example, some correlation
techniques might give a wider or narrower range for an answer (on an ordinal
scale); on the other hand, a different technique might give a completely different
answer. Thus in the scientific literature much effort is spent on justifying one’s
technique on principled grounds, and much is made of two different techniques
converging on the same answer.

3 Learning and Intensionality

The above treatment shows that the DBS theory may be applied beyond exam-
ples containing a single signal. This allows us to frame two phenomena that are
left unelaborated in the DBS analysis.

The first phenomenon is learning. Dretske noted that “Learning, the acquisi-
tion of concepts, is a process whereby we acquire the ability to extract . . . infor-
mation from the sensory representation.” [3, p. 61] Learning can be described in
the DBS theory by framing it as a set-of-signals information channel. We begin
with individual signals that are unclassified. Moving up to the set of signals level,
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we apply a correlation method for identifying the type that applies to particular
signals in particular circumstances. Having learned this classification we may
return to the single signal case, and apply the newly learned classification. In
the reactor example, suppose we learn, via observations at multiple times, and
application of a particular correlation method, that certain gauges on the reactor
always move in synchrony. This is a classification. When next presented with an
individual signal, where perhaps we can observe only a single gauge, we can infer
the state of the other gauges from a single observation. Similarly with what pre-
sumably happens when a child learns a new word. Daddy says “airplane!” and
points. This happens several times. Perhaps there are some near-misses that aid
learning (“No, honey, that’s a butterfly.”) Eventually, by correlations between
all these signals, the child learns the category, and now can say “airplane” herself
when seeing only a single signal. Learning has occurred.

The second phenomenon is degree of intensionality. Dretske said: “Our expe-
rience of the world is rich in information in a way that our consequent beliefs
are not. . . . The child’s experience of the world is (I rashly conjecture) as rich
and as variegated as that of the most knowledgable adult. What is lacking is a
capacity to exploit these experiences in the generation of reliable beliefs (knowl-
edge) about what the child sees. I, my daughter, and my dog can all see the
daisy. I see it as a daisy. My daughter sees it simple as a flower. And who knows
about my dog?” [3, p. 60] Dreske describes these differences in the perceptions
as differences in intensionality. We can characterize this degree of intensionality
by equating it with the method for extracting the information from the signal.
The more sophisticated the correlation method, the more complex and varied
the proximal classification, the more intensionality we assign to the agent in
question. (This observation might lead us to hope that we can provide a full or
partial order over intensionalities. Unfortunately this is not to be — see the next
section.)

There are a number additional observations that may be made on this topic.
For example, if we talk about information carried by sets of signals, why not talk
about information carried by sets of sets of signals? Or sets of sets of sets? This,
perhaps, is the same as talking about learning about learning, and so forth.
We might also explore how the scientific method in general, or specific fields
of inquiry, such as machine learning, are illuminated by these observations. We
could examine in more detail how the learning method intervenes between signal
and classification. But rather than explore these interesting lines of inquiry, I turn
my attention to an application of these observations to a domain of particular
interest to me: cultural information as carried by sets of folktales.

4 Folktales and Narrative Structure

My switchings gears to the topic of cultural information as carried by sets of
folktales may seem like a non sequitur. I assert several reasons for the attention.
First, narratives are an excellent example of a complex signal which contains
myriad subtle sorts of information. Everyone is familiar with folktales, and so
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they will serve as an effective proxy for all sorts of complex signals with multiple
possible interpretations without the overhead of detailed setting of the ground.
I would like to use what I know about them to explore more this idea of varying
degrees of intensionality, and for this purpose they have the advantage of us not
yet knowing, scientifically speaking, what exactly is the information contained
in them, and therefore we need not suspend our disbelief to imagine that there
may be several ways of interpreting the information contained in folktales: we
have several proposals (I will consider two) and we don’t know which one (or
ones) is right. Second, these observations allow me to pose, and explore a bit,
some interesting questions about the nature of information carried in narratives.
Third, narratives and culture are of central importance my work, and I am the
one writing this paper. So bear with me.

Folktales specifically, and narratives in general, clearly communicate infor-
mation aside from any considerations of their properties across a set. They are
like any other text: they communicate information as individual objects. In a
folktale in particular, and narratives in general, we can learn things such as who
the characters are, what their plans and goals are, and what they are doing
and when. (Although, usually being about a fictional world, it is an interesting
question whether this information translates into knowledge.) This sort of infor-
mation, the sort contained in an individual tale, is not the information we are
interested in here. I am interested, rather, in information that is communicated
across a set of tales.

There are numerous types of information communicated by a set of folktales.
My work so far has focused on a particular sort, that of narrative structure of
the plot [4]. This information corresponds to a grammar for plots, specific to the
culture in question. Much like a natural language, a folktale grammar provides
a set of symbols (plot pieces) and rules of combination that allow us to build
folktales in that culture. Much like the grammar of a natural language is not
captured in a single sentence, the grammar of the folktales is not captured in
any single tale. There have been many proposals for the form of these grammars,
proposals that span the range from universal theories across all stories, to highly
culturally-specific theories for certain genres of folktales. I will contrast two
examples, the first being Vladimir Propp’s theory of the morphology of the
folktale [6].

Propp’s theory lays out a grammar in three levels, where the middle level, that
of the function, has 31 pieces that describe the major constituents of Russian
fairy tales. These pieces include such plot fragments as Villainy, Struggle (be-
tween the Hero and Villain), and Reward (of the Hero for defeating the Villain). I
demonstrated that these plot pieces and rules of combination, rather than being
figments of Propp’s imagination, can be learned by a computerized correlation
method from the actual tales [4]. I call the method Analogical Story Merging,
which is modification of a machine learning technique called Bayesian Model
Merging that relies on correlations uncovered by a statistical process leveraging
Bayes’ rule. Key to the method is a bias function called the prior that tells the
method what similarities it should consider important when considering what
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parts of the folktales may be patterns. In the case of learning Propp’s theory,
the prior focuses the method on three important features: the semantic character
of events; which characters are involved in those events; and where the events
occur in the timeline of the tale.

This is all well and good. We have a method that extracts higher-level plot
patterns from sets of folktales, where the patterns themselves cannot be seen by
examining just a single tale. We have identified information flow from a set of
tales, and in contrast to other information in an individual folktale, there is a
fair chance that this information actually reflects something in reality (rather
than a fictional world) — it likely reflects the ideas of participants in the culture
under examination, such as the sorts of bad things that can happen to people,
the proper conduct of a heroic person, and the rewards for heroic behavior. But
is this the only information transmitted by sets of folktales?

Consider a competing proposal for narrative structure, that of Lévi-Strauss [5].
In his structural analysis of myth, he identified units of analysis that he called
mythemes, where each mytheme was a set of semantic units unified by their
treatment of a common theme, such as death or familial relations. In contrast
to Propp’s so-called diachronic analysis of the tales, where each function is laid
out in the order it is encountered in the tale, Lévi-Strauss organized his analysis
synchronically, where mythemes are organized by theme regardless of their po-
sition in the tale. Moreover, Lévi-Strauss’s ‘grammar’ (if it may be called that)
is highly constrained, consisting of two paired binary oppositions arranged in a
specific relationship. While I don’t have an algorithm that demonstrates learning
Lévi-Strauss’s theory from stories, it is clear that the method I used for learning
Proppian structures would not be sufficient, merely from theoretical limitations
of grammatical inference.

Given both Propp’s and Lévi-Strauss’s analyses, what are we to say about
the information they contain, relative to one another? Lévi-Strauss’s theory is
not a specialization of Propp’s, or vice-versa — they are completely orthogonal.
One needs a completely different method to learn Lévi-Strauss’s theory from the
stories. So which is the actual information carried across the set? The answer is
clear, in that it depends on the method one uses. Both theories, if underwrit-
ten by regularities in the distributed system (of people, culture and folktales)
describe equally valid information carried by the set. They are two completely
different interpretations of what is going on.

This observation points the way toward understanding what is going on with
different degrees of intensionality. Indeed, these examples show that intension-
ality is not a matter of degrees at all. We have an intuitive ranking of the
dog’s, child’s, and Dretske’s classifications of the daisy, but these are all rela-
tive to an implicit value judgement about merely one aspect of the classification
method. Dretske’s classification is a refinement of the child’s, and the child’s a
refinement of the dog’s (we suppose), and we have implicitly associated a more
refined classification with a higher degree of intensionality. But in the case of
narrative structure, there is no such refinement relationship. The two theories
attend to quite different patterns in the texts at hand. Thus we see clearly that
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intensionality, in the general case, does not come with a clear intuitive ranking.
Intensionality is relative to some measure on the method we are using to ex-
tract our information. We may find, for a particular situation, that complexity
of the method, or complexity of classification, or utility for some purpose, are
the appropriate way to rank and order intensionalities. We have refined the ques-
tion from what makes this processor of information more intensional than that
one? to what characteristics of the classification method explain our intuitions
of degree of intensionality?

5 Information in Individual Narratives

Information can flow from a set of narratives. What can we do with it? We can
of course go back and apply that knowledge to a single narrative. For example,
in a Proppian-style analysis, suppose we have learned from our set of narratives
that there is something we decide to call a Villainy in the culture in question,
and it takes certain specific forms. The method shows us what to pay attention
to for when looking for villainies, and so now we can (usually) pick out a villainy
in an individual story. This does not mean, of course, that the individual narra-
tive contains the information about the nature of villainies — we learned that
from the set of narratives. Our concept of villainy depended on analyzing the
whole set. It contains the information that there is (or is not) a villainy in that
particular narrative. This is just another way of emphasizing, as the DBS theory
does, that information flow is relative to the receiver. Interestingly, for cultural
narratives, what information flows at the narrative structure level is a function
not only of the method used (e.g., a Proppian-style analysis, or Lévi-Straussian
analysis, or something else), but also a function of the contents of the set itself.
Change the set of tales, to folktales from another culture, and you get different
functions [4, §6.1.5]. This naturally leads to the questions of how we decide what
set of narratives to analyze? What principles should guide that selection? In my
work, and Propp’s, the principle was a representative selection of a particular
genre of folktale from a particular culture. For other purposes the principle could
be quite different.

There is a second point of interest. Naturally, even if one keeps the selection
principle the same, the nature of the information extracted from the set of folk-
tales varies with the number of tales in the set [4, Fig. 5-3]. For smaller sets, we
learn fewer Proppian, and they are learned with less fidelity. Thus, in a sense,
when fewer tales support the higher-level analysis, the information carried by
the individual tale is coarser, and the information “chunk size” is larger. One
would imagine, when doing a Proppian analysis on a set that properly contains
the set of tales analyzed by Propp, that one might find more than 31 functions.
(Indeed, I noted a possible missing function of this sort [4, §5.5.4].) In this case,
with more tales, the information chunk is smaller, and the information carried
by the tale is finer.

In a Proppian-style analysis, if Propp’s functions can be considered the “in-
formation unit” or “chunk size” of the plot of the narrative, relative to some
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particular set of folktales, how do we know when we have the right sized chunk?
I cannot think of any philosophical reason that the chunks, in this particular
case, will be of one size rather than another. I imagine it will boil down to an ex-
perimental question, where one may find, upon adding more and more folktales
to the original set, that the chunk size does not get any smaller. For another
style of analysis one may find that there is no stable point, and the chunk size
always depends on the number of narratives added. This could potentially be a
discriminator between effective and ineffective theories of narrative structure.

Acknowledgements. This work was funded by the Office of Naval Research
under award number N00014-09-1-0597. Any opinions, findings, and conclusions
or recommendations expressed here are those of the author and do not necessarily
reflect the views of the Office of Naval Research.

References

1. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems.
Cambridge University Press, Cambridge (1997)

2. Dretske, F.I.: Knowledge and the Flow of Information. MIT Press, Cambridge (1981)
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