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Mechanism Design with Set-Theoretic Beliefs∗

Jing Chen, Silvio Micali
CSAIL, MIT

Cambridge, MA 02139, USA
{jingchen, silvio}@csail.mit.edu

Abstract— In settings of incomplete information, we put for-
ward

(1) a very conservative —indeed, purely set-theoretic— model
of the beliefs (including totally wrong ones) that each player
may have about the payoff types of his opponents, and

(2) a new and robust solution concept, based on mutual belief of
rationality, capable of leveraging such conservative beliefs.

We exemplify the applicability of our new approach for single-good
auctions, by showing that, under our solution concept, a normal-
form, simple, and deterministic mechanism guarantees —up to an
arbitrarily small, additive constant— a revenue benchmark that is
always greater than or equal to the second-highest valuation, and
sometimes much greater. By contrast, we also prove that the same
benchmark cannot even be approximated within any positive factor,
under classical solution concepts.

Keywords-single-good auctions; beliefs; revenue

1. INTRODUCTION

We focus on settings of incomplete information. Here, a
player i knows precisely θi, his own (payoff) type, but not
θ−i, the type subprofile of his opponents. Accordingly, he
may have all kinds of beliefs (even wrong ones) about θ−i.
We refer to such beliefs as i’s external beliefs, and to θi as
his internal knowledge.

For achieving a desired goal, a mechanism designer
should in general consider leveraging both the players’
internal knowledge and their external beliefs. Mechanisms
working in dominant or undominated strategies leverage the
former, but not the latter.1 Bayesian mechanisms leverage
both, under the assumption that the players’ beliefs con-
sist of probability distributions.2 Such an assumption is
quite natural because uncertainty is traditionally modeled by
probability distributions, but is an assumption nonetheless.
Independent of whatever additional assumptions may be
required by specific mechanisms (e.g., that the distribution
from which θ is drawn is known to the designer or is
common knowledge to the players), it imposes significant
structural constraints on the players’ external beliefs. For
instance, consider a player i who, in a single-good auction,

∗Supported in part by ONR Grant No. N00014-09-1-0597.
1Whenever such mechanisms exist, they achieve their goals no matter

what external beliefs the players may have.
2For instance, when θ is assumed to be drawn from a distribution D that

is common knowledge to the players, and the underlying solution concept
is Bayesian equilibrium, the external belief of a player i can be taken to be
D|θi, that is, “the distribution of θ−i obtained by conditioning D on θi.”

values the item for sale 50 and believes that one of his
opponents values for more than 100. Such a belief is not
a distribution —i may not know whom such a high-valuing
player might be, nor what the probabilities for his valuation
being 101, 102, etc. might be— and is not leverageable by
Bayesian mechanisms.

In sum, classical mechanisms exploit two extremes —
namely, (1) the players have no external beliefs and (2) their
external beliefs consist of probability distributions— but not
the vast ground in between. Personally, we consider the first
extreme as too pessimistic and the second as too optimistic,
and wish to explore a “middle road” to mechanism design.

Our Focus While our belief model and solution concept
are very general, our theorems focus solely on single-
good auctions where all valuations are non-negative integers
upperbounded by some value V , and all mechanisms provide
each player with a finite number of pure strategies.

1.1. The Conservative-Belief Model

Definition 1. A conservative context C consists of a tuple
(n,Ω,Θ, u, θ,B), where
• (n,Ω,Θ, u, θ) is a traditional context of incomplete

information,3 and

• B is a profile such that, for each player i, (1) Bi ⊆ Θ
and (2) ti = θi for all t ∈ Bi.

We refer to B as the conservative belief profile, and say
that Bi is correct if θ ∈ Bi.

In a conservative context, Bi represents all possible candi-
dates for the true type profile in player i’s view. (We do
not include the players’ higher-level beliefs in our contexts
because our solution concept prevents such beliefs from
affecting a rational play of our mechanism.)

Knowledge and Beliefs Components n, Ω, Θ, and u are
common knowledge to everyone. Each player i individually
knows θi and Bi, is rational, and believes that his opponents
are rational. (Any unspecified knowledge and belief of
players or mechanism designers can be chosen arbitrarily.)

3That is, {1, . . . , n} is the set of players; Ω the set of outcomes; Θ =
Θ1 × · · · ×Θn the set of all possible (payoff) type profiles; u the profile
of utility functions, each ui mapping Θi × Ω to R, the set of reals; and
θ ∈ Θ the profile of true types. If ti ∈ Θi and ω a distribution over Ω,
then ui(ti, ω) is the expectation induced by ω.
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Conservative Single-Good Auction Contexts A conser-
vative single-good auction context is a conservative context
(n,Ω,Θ, u, θ,B) where: Θ = {0, 1, . . . , V }n for some
positive integer V referred to as the valuation bound;
Ω = {0, 1, . . . , n} × Rn;4 and each utility function ui is
so defined: ui(ti, (a, P )) equals ti − Pi if i = a, and −Pi
otherwise.

If ω = (a, P ) ∈ Ω, then player i’s utility for ω, ui(ω),
is ui(θi, ω); and the revenue of ω, REV (ω), is

∑
i Pi. We

denote by C V
n the set of all conservative single-good auction

contexts with n players and valuation bound V , and by DV
n

the set of all contexts in C V
n where the conservative belief

of every player is correct.

Remarks
• Working solely in our model, we may drop the term

“conservative” or use it for emphasis/clarity only.
Further, since all auctions we consider are single-good,
we may also omit the term “single-good.”

• Note that an auction context C is identified by n, V ,
θ and B alone: that is, C = (n, V, θ,B).

• In an auction context, a player i’s true type θi —also
called i’s true valuation— represents i’s value for the
good for sale, and i’s conservative belief Bi is a set
of non-negative integer profiles.

• Players’ beliefs can be wrong. Indeed it may even be
the case that θ 6∈ Bi for each player i.

• The profile B is compatible with the players having
additional beliefs, even of a probabilistic nature. In no
case, however, can these additional beliefs contradict
B. For instance, if a player i believes that the true
type profile has been drawn from some distribution D,
then Bi should coincide with D’s support.

• Conservative belief is a model rather than an assump-
tion. As usual, a player i knows θi, but we make no
requirement about his external belief. For instance, he
may have no external belief whatsoever. In this case,
Bi = Θ1× · · · ×Θi−1×{θi}×Θi+1× · · · ×Θn. On
the other extreme, he may have no external uncertainty
whatsoever. In this case, Bi = {t} for some type
profile t (not necessarily equal to θ).5

• Aiming at robustness, we are very conservative when
modeling what we may exploit, but very liberal when
modeling what may hurt us. That is, our mechanisms
only leverage B in order to achieve their goals, but
must work no matter what additional beliefs (compat-
ible with B) the players might have.

• Relative to B, the external belief of a player i, Ei, is
formally defined to be the set {t−i : (θi, t−i) ∈ Bi}.

4In an outcome (a, P ), a denotes the player getting the good if > 0, or
that the good is unallocated if = 0; and P denotes the price profile.

5If the context were one of complete information, then necessarily Bi =
{θ} for all i.

• As a player i’s type is a comprehensive description of
i in the strategic situation at hand, we are essentially
separating i’s payoff type, θi, from his external-belief
type, Ei.

1.2. Conservative-Belief Social Choice Correspondences
and Their Advantages

Traditionally, social choice correspondences map type
profiles to sets of (distributions over) outcomes, but can
be naturally extended to map conservative-belief profiles to
sets of outcomes. This extension strictly enriches the set of
“targets” for mechanism design. As noted, each context C
implicitly has a conservative-belief profile B, from which
the true type profile θ could be easily computed. Thus, for
each traditional correspondence f there exists an extended
one F such that f(θ) = F (B), but not vice versa.

The advantage of a meaningful and enlarged “target
space” is pretty clear. Very often we do not know how to
design mechanisms implementing a given, traditional, social
choice correspondence f . Sometimes we can actually prove
that designing such mechanisms is impossible (at least for
some type of implementation —e.g., in dominant strategies).
In these cases, while one can always shop around for new,
meaningful, and achievable targets among traditional social
choice correspondences, extended social choice correspon-
dences provide access to additional ones, i.e., targets that are
not even expressible in terms of θ alone, more tractable, and
yet reasonable. For instance, in [4] we prove the existence
of a very robust mechanism that, in any truly combinatorial
auction and without any knowledge about the players’ true
valuations, generates within a factor of 2 the “maximum
revenue that a player could guarantee if he were charged
to sell the goods to his competitors by means of take-it-or-
leave-it offers.”

In this paper, rather than replacing classical social choice
correspondences with “tamer” ones, we use conservative
beliefs in order to define and then achieve a new correspon-
dence “tougher” than classical ones.

1.3. The Second-Belief Revenue Benchmark

In auction contexts, a revenue benchmark F is a function
mapping each conservative belief profile B to a real number.
Thus, de facto, F is a social choice correspondence: the one
mapping each B to the set of outcomes whose revenue is
at least F (B). Let us now define a revenue benchmark for
single-good auctions.

Definition 2. The second-belief benchmark, denoted by 2nd,
is the revenue benchmark so defined. For a belief profile
B, let smpi = mint∈Bi maxj tj for each player i. Then,
2nd(B) is the second highest value in {smp1, . . . , smpn}.

If t were the true valuation profile, then maxj tj would
be the maximum price that a player is willing to pay for
the good. Thus, relative to Bi, smpi is the maximum price
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for which player i is sure that some player (possibly i or a
player whose identity is not precisely known to i) is willing
to pay for the good.

A Simple Example Consider an auction with three players
where

θ = (100, 80, 60), B1 = {(100, x, y) : x ≥ 0, y ≥ 0},
B2 = {(100, 80, x), (y, 80, 100) : x ≥ 0, y ≥ 0}, and
B3 = {(150, 0, 60)}.

Here, the beliefs of players 1 and 2 are correct, but that
of player 3 is wrong. Player 1 has no external beliefs:
in his eyes, all valuations are possible for his two oppo-
nents. Player 2 believes that either player 1 or player 3
has valuation 100, but cannot tell whom. Player 3 has no
external uncertainty: in his eyes, (150, 0, 60) is the true
valuation profile. According to B, smp1 = smp2 = 100,
smp3 = 150, and thus 2nd(B) = 100, which happens to be
the highest valuation.

Remark Sometimes 2nd(B) can be greater than the highest
valuation, but never when all beliefs are correct. However,
since smpi ≥ θi for every player i, it is always the case
that “2nd(B) ≥ 2nd(θ)”: that is, our benchmark is always
greater than or equal to the second highest true valua-
tion. Accordingly, a mechanism designer concerned with
generating revenue should try to achieve the second-belief
benchmark instead of using the second-price mechanism to
generate revenue equal to the second-highest valuation. If
he succeeds, the seller may have something (possibly a lot)
to gain and nothing to lose.

As we prove, however, this more demanding benchmark
cannot be achieved via classical solution concepts.

1.4. The Impossibility of Classically Implementing the
Second-Belief Benchmark

Recall that a mechanism M provides each player i with
a set of pure strategies, consistently denoted by Si in this
paper, and maps each strategy profile σ to an outcome (or
a distribution over outcomes, if M is probabilistic or σ a
mixed-strategy profile) denoted by M(σ). Also recall that a
mechanism is finite if each Si is finite, and that a game G
consists of a context C and a mechanism M : G = (C,M).
Finally, when the mechanism M is clear, for any strategy
profile σ, we may denote ui(M(σ)) by ui(σ) for short.

For our impossibility results, we consider mechanisms
that allow the players to “stay home”, that is, to opt out of
the auction. Otherwise, one could trivially and meaninglessly
generate high revenue by forcing the players to participate
in a mechanism always giving them very negative utility.

Definition 3. A mechanism M is reasonable if it is finite and
satisfies the following opt-out condition: ∀ player i ∃outi ∈
Si such that for (any possible true type θi and) any strategy
subprofile s−i ∈ S−i,

ui(M(outi, s−i)) = 0.

Remarks
• Having the opt-out condition requiring i’s utility to

be 0 in expectation, rather than for every outcome
in the support of M(outi, s−i), can only make our
impossibility results stronger.

• Our impossibility results already hold for auctions with
just two players, and when all beliefs are correct.
Actually, when the players’ beliefs are not correct
these results become trivial.6 Accordingly, we state our
impossibility results in terms of DV

n instead of C V
n .

• In our impossibility results we never assume any
restrictions on the strategy spaces. In particular, our
results also apply to normal-form mechanisms that let
the players report their (alleged) conservative beliefs,
as it is fair to do so when trying to leverage them.

1.4.1. Impossibility of Implementation in Undominated
Strategies

Implementation in undominated strategies is a classi-
cal notion for settings of incomplete information.7 We
strengthen our first impossibility result by adopting a weaker
notion of such implementation.8 Notice that this weaker
notion is already sufficient from a mechanism designer’s
point of view.

Definition 4. A mechanism M sufficiently implements a
revenue benchmark F for a class C of auction contexts in
undominated strategies if, ∀ contexts C ∈ C and ∀ profiles
s of undominated strategies in the game (C,M), denoting
by B the belief profile of C, we have that

REV (M(s)) ≥ F (B).

Theorem 1. ∀ε ∈ (1/2, 1] and ∀ V > d 1
ε−1/2e, no

reasonable mechanism sufficiently implements ε2nd for DV
2

in undominated strategies.

For deterministic mechanisms and purely undominated
strategies, our impossibility result holds for arbitrary approx-
imation factors.

6This is so because, when more than one player’s beliefs are not correct,
it is trivial to construct contexts for which the second-belief benchmark
is much greater than the highest valuation. And no classical notion of
implementation can guarantee revenue greater than the highest valuation.

7Given a game G = (C,M), a strategy si of player i is weakly domi-
nated by another (possibly mixed) strategy σi if ui(σi, s−i) ≥ ui(si, s−i)
for every strategy subprofile s−i of the others, and ui(σi, s

′
−i) >

ui(si, s
′
−i) for some strategy subprofile s′−i. A strategy si is undominated

if it is not weakly dominated by any strategy. A strategy si is purely
undominated if it is not weakly dominated by any pure strategy. Thus,
to compute his own undominated strategies in a game, a player needs not
have any information about his opponents’ (payoff) types.

8Note that the traditional notion of (full) implementation in undominated
strategies —see Jackson [13]— requires not only that every profile of
undominated strategies yields an outcome satisfying the desired social
choice correspondence, but also that, conversely, for each desired outcome
there exists a profile of undominated strategies yielding that outcome. By
removing the latter requirement we weaken the notion of implementation
and thus strengthen the impossibility result of Theorem 1.

7777898989
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Theorem 2. ∀ε ∈ (0, 1] and ∀ V > d1/εe, no reasonable
deterministic mechanism sufficiently implements ε2nd for
DV

2 in purely undominated strategies.

The proof of Theorem 1 is provided in the full version of
this paper [5]. The proof of Theorem 2 is very similar and
thus omitted.

1.4.2. Impossibility of Implementation in Dominant Strate-
gies

Theorems 1 and 2 immediately yield the following about
strictly/weakly/very weakly dominant strategies.9

Corollary 1. ∀ε ∈ (1/2, 1] and ∀ V > d 1
ε−1/2e, no reason-

able mechanism implements ε2nd for DV
2 in strictly/weakly

dominant strategies or in (all) very weakly dominant strate-
gies.

Corollary 2. ∀ε ∈ (0, 1] and ∀ V > d1/εe, no reason-
able deterministic mechanism implements ε2nd for DV

2 in
strictly/weakly dominant strategies or in (all) very weakly
dominant strategies.

A Crucial Clarification Note that, Theorems 1 and 2 not
withstanding, the above two corollaries would be trivial if
the players were restricted to bid valuations only. In such
a case, in fact, the second-price mechanism is “the only”
(weakly) dominant-strategy mechanism for auctions of a
single good. And since the revenue it generates is precisely
equal to the second-highest valuation, no other dominant-
strategy mechanism can generate second-belief revenue.
“QED.” We thus wish to emphasize again that all our
impossibility results hold without any restrictions on strategy
spaces, and in particular that a mechanism asking the players
to announce conservative beliefs cannot be “simulated” by
one asking them to announce only valuations.

1.4.3. Extra Fragility of Implementation at Some Ex-
Post/Very Weakly Dominant Equilibria

A mechanism guaranteeing a given property at some
equilibria of a given type is certainly more fragile than one
guaranteeing it at all equilibria of that type. Indeed, one has
no control over the equilibrium ultimately selected by the
players. But mechanisms implementing ε2nd at some ex-
post or very weakly dominant equilibria have some extra
fragility. Consider the following mechanism for C 100

2 .
Mechanism NAIVE. A strategy of player i has
two components: an integer ai and a set bi ⊆
{0, 1, . . . , 100}. (Allegedly, ai is player i’s true val-
uation, and bi his true external belief.) The win-
ner and prices are decided as follows. Let w =

9A strategy si of player i is strictly dominant if for every other
strategy s′i, ui(si, s−i) > ui(s

′
i, s−i) for every strategy subprofile

s−i. Strategy si is weakly dominant if for every other strategy s′i,
ui(si, s−i) ≥ ui(s

′
i, s−i) for every s−i, and the inequality is strict for

some s−i. Strategy si is very weakly dominant if for every other strategy
s′i, ui(si, s−i) ≥ ui(s′i, s−i) for every s−i.

argmaxi ai (ties broken lexicographically), and let
P = mint∈B′−w

maxj tj where B′−w = {a−w}×b−w.
If aw ≥ P , then the good is sold to player w, w pays
P , and his opponent pays 0. Else, the good is unsold
and both players pay 0.

According to NAIVE, it is clear that every player announc-
ing his true valuation and true external belief in every context
is an ex-post equilibrium. When the players’ beliefs are
correct, this equilibrium guarantees second-belief revenue.
However, consider the context C where

θ = (70, 100), B1 = {(70, x) : x ≥ 90}, and
B2 = {(x, 100) : x ≥ 60}.

In this context, all beliefs are correct, 2nd(B) = 90,
the truthful ex-post equilibrium yields the strategy profile
((70, {x : x ≥ 90}), (100, {x : x ≥ 60})), and it
generates revenue 90 as desired. However, it is also clear
that ((70, {x : x ≥ 0}), (100, {x : x ≥ 60})) is an
alternative Nash equilibrium —corresponding to another ex-
post equilibrium— whose revenue is only 70.

In principle —e.g., when two Nash equilibria differ at
multiple players, one can argue that a player may be able to
establish some belief about which equilibrium is going to be
played out by the others, and best respond to his belief. But
in the above example, the “truthful” and the “alternative”
equilibria differ only at player 1’s strategy. Thus, even if
player 1 believed that player 2 will play his truthful strategy,
it would also be perfectly rational for player 1 to play his
own alternative strategy. Viceversa, even if player 2 believed
that player 1 will play his alternative strategy, it would also
be perfectly rational for player 2 to stick to his own truthful
strategy (which coincides with his alternative one in the
above example).

Accordingly, which revenue should we expect from NAIVE
at context C? The answer is 90 if player 1 is “generous”
towards the seller and 70 otherwise.10 In the full version of
this paper [5], we formalize this phenomenon and prove that
such extra fragility is actually unavoidable for any mech-
anism implementing (or even approximating) the second-
belief benchmark at some ex-post or very weakly dominant
equilibria.

1.5. Conservative Strict Implementation: Our New Solution
Concept

The inability of achieving the second-belief benchmark
via classical notions of implementation encourages us to

10Notice that the truthful ex-post equilibrium actually specifies a very
weakly dominant strategy for each player in each context, and thus
illustrates the lack of robustness for implementation at some very weakly
dominant equilibria as well. Such lack of robustness was already pointed
out by Saijo, Sjostrom, and Yamato theoretically [15] and by Casona,
Saijo, Sjostrom, and Yamato experimentally [2]. In [15] the authors also
propose secure implementation: essentially, implementation via mechanisms
ensuring that (a) each player has a very weakly dominant strategy, and that
(b) the desired property holds at all Nash equilibria (and thus all very
weakly dominant ones). As we have discussed, therefore, the second-belief
revenue benchmark is not securely implementable.
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develop a new one. Intuitively, but erroneously, our notion
can be taken to consist of “two-round elimination of strictly
dominated strategies” (hardly a new solution concept!). The
problem is that such elimination is not well defined in
a setting of incomplete information: without knowing his
opponents’ payoff types, a player is not capable of figuring
out what strategies are left for them after the first round, and
thus is not capable of figuring out which of his own strategies
are dominated in the second round. Therefore we must be
more careful. Our notion is formally defined in Section 3,
but can be summarized as follows.

Sketch of Our Notion We say that a normal-form mech-
anism M conservatively strictly implements a social choice
correspondence F for a class of contexts C if, for any
context C ∈ C , denoting by B the belief profile of C,
we have M(s) ∈ F (B) for any strategy profile s surviving
the following two-step elimination procedure:

1. Each player eliminates all of his strictly dominated
strategies;

2. Based on his conservative belief Bi, and assuming that
everyone completes Step 1, each player i eliminates all
his remaining strategies that are dominated relative to
Bi.

The real novelty of our notion, and the key for meaningfully
leveraging set-theoretic beliefs, lie with properly defining
“domination relative to Bi” in Step 2. As usual, after
Step 1, to determine which of his remaining strategies are
dominated, i should know what are the currently surviving
strategies of the other players. However, to figure this out,
player i must also know what are the true types of the other
players —which is precisely a piece of information that
he does not have in a setting of incomplete information.
We address this concern by breaking down Step 2 into two
conceptual sub-steps as follows.

2.1 Each player i, for each type profile t in Bi, computes
the profile S(t), where each S(t)j represents the set
of surviving strategies for player j after Step 1, if t
were the true type profile.

2.2 Each player i eliminates a Step-1 surviving strategy
si if and only if there exists another (possibly mixed)
Step-1 surviving strategy σi that (classically) strictly
dominates si with respect to S(t) for each t ∈ Bi.

Remark Let us emphasize a subtle point hidden in Step
2.2. Consider the following two ways of defining si to be
“dominated relative to Bi”:

(i) for each t ∈ Bi, si is strictly dominated with respect
to S(t) by some σi, and

(ii) for each t ∈ Bi, si is strictly dominated with respect
to S(t) by the same σi.

Although both ways are based on the players’ set-theoretic
beliefs B, we have adopted the latter one. The reason is
that, when he eliminates a strategy si dominated according

to (ii), player i is sure to have a better strategy to play,
namely σi, no matter which type profile in Bi might be the
right one. But the same is not true when he eliminates a
strategy dominated according to (i).

Example11 Consider a mechanism M played by two
players, where the true type profile is θ = (θ1, θ2), and
the belief of player 1 is B1 = {(θ1, θ2), (θ1, θ

′
2)}. (Since

we are going to analyze only player 1’s behavior, we do
not need to specify B2 nor the other possible type profiles.)
The mechanism gives player 1 the pure strategies a, b, and
c, and player 2 the pure strategies d and e. For each type
profile in B1, the players’ utilities under M are as follows.

(θ1, θ2) (θ1, θ
′
2)

HHH
H1
2

d e

a 2,0 2,1
b -100,0 3,1
c 3,0 -100,1

HHH
H1
2

d e

a 2,1 2,0
b -100,1 3,0
c 3,1 -100,0

Notice that, in Step 1 of our notion, player 1 cannot
eliminate any strategy. Player 2 instead would eliminate d
(strictly dominated by e) if his true type were θ2, and e
(strictly dominated by d) if his true type were θ′2. Let us
now consider Step 2. If we adopted definition (i) in Step
2.2, then player 1 should eliminate strategy a, because it is
strictly dominated by b with respect to his candidate type
profile (θ1, θ2), and by c with respect to his other candidate
type profile (θ1, θ

′
2). However, whether player 1 should play

b or c in place of a really depends on whether (θ1, θ2)
or (θ1, θ

′
2) is the true type profile. If he makes the wrong

choice, then his loss is huge compared with his possible gain:
namely, -100 versus 3. Without any “likelihood” associated
with each candidate type profile in his belief B1, it might
be reasonable and safer for player 1 to use a to always get
utility 2. (Thus, if M banked on player 1 not choosing a in
order to implement its desired social choice correspondence,
it may not implement it in a robust sense.)

Mutual Belief of Rationality Implementation in dominant
or undominated strategies only requires that every player is
rational. Conservative strict implementation instead addition-
ally requires that every player believes that his opponents are
rational. However, it does not require “higher-level” beliefs
of rationality, let alone common belief. That is,

Conservative strict implementation solely relies on
rationality and mutual belief of rationality.

In essence, our notion is only “slightly” weaker than
implementation in strictly dominant strategies, yet is defined
carefully to explicitly leverage the players’ beliefs about
others in a robust way.

11We thank Paul Valiant for this example.
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1.6. The Second-Belief Benchmark is Conservatively Strictly
Implementable

Finally, we prove that conservative strict implementation
succeeds where classical notions fail. Namely, under our
solution concept, we exhibit a mechanism M, the second–
belief mechanism, that guarantees second-belief revenue,
within an arbitrarily small additive value ε, in all single-good
auction contexts. Our mechanism is uniformly specified for
all values ε, numbers of players n, and valuation bounds V :
M =Mε,n,V . Formally,

Theorem 3. For any ε ∈ (0, 1], n, and V , Mε,n,V conser-
vatively strictly implements 2nd − ε for C V

n .

The second-belief mechanism is defined in Section 4
and analyzed in Section 5. In Section 6 we address three
concerns raised about our mechanism.

2. RELATED WORK

Works centered on true-type prior distributions, known
or not to the designers/players, are unrelated to our set-
theoretic framework. There are, however, relevant works
whose probabilistic assumptions are less central.

Other Models of Incomplete Information Postlewaite
and Schmeidler [14] studied differential information settings
for exchange economies. They model a player’s uncertainty
as a partition of the set of all possible states of the world,
and assume such partitions to be common knowledge. In
our case, we do not assume a player to have any knowl-
edge/beliefs about the knowledge/beliefs of another player,
and we certainly do not have any common-knowledge re-
quirements. In addition, they further assume that each player
has a probabilistic distribution over the state space, and
use Bayesian equilibrium as the key solution concept. Their
model actually reduces to Harsanyi’s incomplete information
model [11] if the state space is finite.

Chung and Ely [7] model a player’s belief about the state
of the world via a distribution, but assume that he prefers
one outcome ω to another ω′ if he locally prefers ω to ω′

in every state that is possible according to his belief. In this
sense, what matters is the support of the distribution, which
is set-theoretic. The authors show that, even when the players
only have very small uncertainty about the state of the world,
the set of social choice rules implementable at (essentially)
undominated Nash equilibria is highly constrained compared
with that in complete-information settings. Their result is
less relevant for settings, like ours, where a player has
no uncertainty about his own payoff type. In addition, in
our purely set-theoretic model, we have no requirement on
how big a player’s uncertainty about his opponents can be.
Finally, instead of studying implementation at all equilibria
(of a given type), we study the fragility of implementation
even at some of them.

Impossibility Results Several impossibility results have
been proved for implementation in dominant strategies: for
instance, for many forms of elections (see Gibbard [8]
and Sattherwaite [16]), for maximizing social welfare in
a budget-balanced way (see Green and Laffont [10] and
Hurwicz [12]), and for maximizing revenue in general
settings of quasi-linear utilities (see Chen, Hassidim and
Micali [3]). As for mechanisms working in undominated
strategies, Jackson [13] shows that the set of social choice
correspondences (fully) implementable by bounded mech-
anisms (which include finite ones) is quite constrained.
We note, however, that none of these results imply ours
for implementing the second-belief benchmark in either
dominant or undominated strategies (indeed, our results do
not require full implementation).

Prior-Free Mechanisms Prior-free mechanisms for auc-
tions have also been investigated —in particular, by Baliga
and Vohra [1], Segal [17], and Goldberg, Hartline, Karlin,
Saks, and Wright [9], although the first two of them do
not consider auctions of a single good. The term “prior-
free” seems to suggest that this approach be relevant to
our set-theoretic setting, but things are quite different. For
instance, all cited prior-free mechanisms work in dominant
strategies, and we have proved that no dominant-strategy
mechanism can even approximate our revenue benchmark.
More generally, as for all mechanisms, prior-free ones must
be analyzed based on some underlying solution concept, and
as long as they use one of the solution concepts we prove
inadequate for our benchmark, they would automatically fail
to guarantee it.

Our Own Prior Work In [4] we studied mechanisms
leveraging only (what we now call) external correct beliefs,
and, as already mentioned, constructed one such mechanism
for truly combinatorial auctions. (This mechanism would
also work with incorrect external beliefs, but under a slightly
different analysis.) In a later work with Valiant [6], we
were able to extend our combinatorial-auction mechanism
so as to leverage also, to a moderate extent, the internal
knowledge of the players.12 In neither of these two prior
papers we proved any impossibility results: given that no
significant revenue guarantees were known for combinatorial
auctions, we were satisfied with achieving new, reasonable
benchmarks. Perhaps interestingly, our prior mechanisms
were of extensive form, and we still do not know whether
equivalent, normal-form ones exist.

3. CONSERVATIVE STRICT IMPLEMENTATION

The following two auxiliary definitions envisage a game
with context C = (n,Ω,Θ, u, θ,B) and mechanism M
(whose strategy-profile set is denoted by S as usual).

12The emphasis of [6] actually was the possibility of leveraging the
internal knowledge of coalitions rather than individual ones.
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Definition 5. Let i be a player, ti a type of i, and T =
T1 × · · · × Tn a set of pure strategy profiles. Then,
• We say that a strategy si ∈ Ti is strictly ti-T -

dominated by another strategy13 σi ∈ ∆(Ti), in sym-
bols si <tiT σi, if for all strategy subprofiles s−i ∈ T−i,
ui(ti,M(si, s−i)) < ui(ti,M(σi, s−i)).

• We denote by S(ti) the set of pure strategies of i
that are not strictly ti-S-dominated, and, for any type
profile t, we set S(t) = S(t1) × · · · × S(tn) and
S(t−i) = S(t1)×· · ·×S(ti−1)×S(ti+1)×· · ·×S(tn).

Accordingly, si is strictly dominated by σi in the tradi-
tional sense if si <θiS σi, and S(ti) represents the strategies
of i that would survive elimination of strictly dominated
strategies (in the traditional sense) if his true type were ti.
Also note that, for any t ∈ Bi, S(ti) = S(θi), because
ti = θi, while S(tj) and S(θj) may be very different for
j 6= i. Thus, in general S(t) 6= S(θ) for t 6= θ.

Definition 6. A strategy si ∈ S(θi) is conservatively strictly
dominated if there exists another strategy σi ∈ ∆(S(θi))
that strictly θi-S(t)-dominates si for all t ∈ Bi. Else, si is
conservatively strictly rational.

We are now ready to define our notion of implementation.

Definition 7. We say that a mechanism M conservatively
strictly implements a social choice correspondence F for
a class of contexts C if, for all contexts C ∈ C and for
all profiles s of conservatively strictly rational strategies in
(C,M), denoting by B the belief profile of C, we have that
M(s) ∈ F (B).

4. THE SECOND-BELIEF MECHANISM

For any ε ∈ (0, 1], n, and V , the mechanism Mε,n,V is
described below. Note that the mechanism applies to any
context in C V

n , and is of normal form because the players
act simultaneously and only once: in Step 1. Steps a through
e are just “conceptual steps taken by the mechanism”. The
expression “X := x” denotes the operation that sets or resets
variable X to value x.

Mechanism Mε,n,V

a: Set a := 0, and Pi := 0 for all players i.
COMMENT. Upon termination, after all proper resettings,
(a, P ) will be the final outcome.

1: Each player i, publicly and simultaneously with the
others, announces a pair (ei, vi) ∈ {0, 1}×{0, . . . , V }.
COMMENT. Allegedly, vi = smpi, and ei indicates whether
i’s announcement is about his internal knowledge (allegedly
ei = 0 signifies that vi = θi), or about his external belief.

b: Order the announced n pairs according to v1, . . . , vn
decreasingly, breaking ties in favor of those with ei =

13As usual, for any set A, ∆(A) is the set of probabilistic distributions
over A.

0. If there are still ties among some pairs, then break
them according to the corresponding players.
COMMENT. It does not matter whether the players are ordered
lexicographically (increasingly or decreasingly), or according
to some other way.

c: Set a to be the player corresponding to the first pair.
COMMENT. Player a gets the good for sure, and thus the
mechanism never leaves the good unassigned.

d: If ea = 0 then Pa := maxj 6=a vj; otherwise Pa := va.
COMMENT. If a’s announcement is about himself, then he
pays the second-highest vi, else the highest.

e: For each player i, Pi := Pi − δi, where δi =
ε
2n

[
vi

1+vi
+ 1−ei

(1+V )2

]
.

COMMENT. Each player i receives a reward δi.

Remark As promised, it is clear that Mε,n,V is uniformly
and efficiently constructible on inputs ε, n, and V . In
addition, it is very simple. In light of our impossibility
results about implementing ε2nd under classical solution
concepts, this simplicity suggests that conservative strict
implementation can be quite powerful.

5. ANALYSIS OF THE SECOND-BELIEF MECHANISM

Theorem 3. For any ε ∈ (0, 1], n, and V , Mε,n,V

conservatively strictly implements 2nd − ε for C V
n .

Proof. Arbitrarily fix ε ∈ (0, 1], n, V , C = (n, V, θ,B) ∈
C V
n , and a strategy profile s. Denoting Mε,n,V by M for

short, it suffices for us to prove that, if s is conservatively
strictly rational in the game (C,M), then

REV (M(s)) ≥ 2nd(B)− ε. (1)

Letting si , (ei, vi) for each i, we start by proving three
claims.

CLAIM 1. ∀ player i and ∀ type ti ∈ {0, . . . , V } of i, if
si ∈ S(ti) then vi ≥ ti.
PROOF OF CLAIM 1. Assume for sake of contradiction that
si ∈ S(ti) and vi < ti. We show that si is strictly ti-S-
dominated by s′i = (0, ti). By definition, this implies that
si 6∈ S(ti), a contradiction. For this purpose, letting s′−i be
an arbitrary strategy subprofile of −i, it suffices to show that

ui(ti, (si, s
′
−i)) < ui(ti, (s

′
i, s
′
−i)).

To do so, let δi and δ′i be the rewards that player i receives
in Step e, in the plays of (si, s

′
−i) and (s′i, s

′
−i) respectively.

By the construction of M we have that

δi = ε
2n

[
vi

1+vi
+ 1−ei

(1+V )2

]
, and δ′i = ε

2n

[
ti

1+ti
+ 1

(1+V )2

]
.

Accordingly,

δ′i − δi =
ε

2n

[
ti

1 + ti
− vi

1 + vi

]
+

ε

2n

[
1− (1− ei)

(1 + V )2

]
=

ε

2n

[
ti − vi

(1 + ti)(1 + vi)
+

ei
(1 + V )2

]
> 0,
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where the inequality holds because vi < ti by hypothesis
and ei ≥ 0 by the construction ofM. Accordingly, we have

δ′i > δi.

Let (a, P ) and (a′, P ′) be the outcomes of (si, s
′
−i) and

(s′i, s
′
−i) respectively, and let s′j = (e′j , v

′
j) for each player

j 6= i. Below we distinguish three cases.
Case 1. a′ 6= i.

In this case, we also have a 6= i, because vi < ti.
Accordingly, Pi = −δi and P ′i = −δ′i, and thus
ui(ti, (si, s

′
−i)) = δi and ui(ti, (s′i, s

′
−i)) = δ′i. There-

fore ui(ti, (si, s′−i)) < ui(ti, (s
′
i, s
′
−i)) as desired.

Case 2. a′ = i and a = i.
In this case, we have that: (i) P ′i = maxj 6=i v

′
j − δ′i;

(ii) Pi = maxj 6=i v
′
j − δi if ei = 0 and Pi = vi − δi

otherwise; and (iii) vi ≥ maxj 6=i v
′
j .

According to (ii) and (iii), Pi ≥ maxj 6=i v
′
j − δi. This

fact, combined with (i) and the fact that δ′i > δi,
implies that Pi > maxj 6=i v

′
j − δ′i = P ′i , which in turn

implies that ui(ti, (si, s′−i)) = ti − Pi < ti − P ′i =
ui(ti, (s

′
i, s
′
−i)), as desired.

Case 3. a′ = i and a 6= i.
In this case, we have that: (i) P ′i = maxj 6=i v

′
j − δ′i;

(ii) Pi = −δi; and (iii) ti ≥ maxj 6=i v
′
j . Accord-

ingly, ui(ti, (si, s′−i)) = −Pi = δi < δ′i ≤ (ti −
maxj 6=i v

′
j) + δ′i = ti − P ′i = ui(ti, (s

′
i, s
′
−i)), as

desired.
In sum, ui(ti, (si, s′−i)) < ui(ti, (s

′
i, s
′
−i)) for any s′−i, and

thus si is strictly ti-S-dominated by s′i, contradicting the
fact that si ∈ S(ti). Therefore Claim 1 holds. �

CLAIM 2. ∀ player i and ∀ type ti ∈ {0, . . . , V } of i, if
si = (1, ti) then si 6∈ S(ti).

PROOF OF CLAIM 2. By definition, it suffices for us to show
that si is strictly ti-S-dominated by strategy s′i = (0, ti). For
this purpose, arbitrarily fixing a strategy subprofile s′−i of
−i, it suffices to show that

ui(ti, (si, s
′
−i)) < ui(ti, (s

′
i, s
′
−i)).

The analysis below is very similar to that of Claim 1.
Indeed, in the plays of (si, s

′
−i) and (s′i, s

′
−i) respectively,

we denote by δi and δ′i the rewards that player i receives
in Step e, and by (a, P ) and (a′, P ′) the final outcomes.
Letting s′j = (e′j , v

′
j) for each player j 6= i, we have that

δ′i =
ε

2n

[
ti

1 + ti
+

1

(1 + V )2

]
>

ε

2n
· ti

1 + ti
= δi,

and we distinguish three cases as before:
• If a′ 6= i, then a 6= i as well, and we have that

ui(ti, (si, s
′
−i)) = −Pi = δi

< δ′i = −P ′i = ui(ti, (s
′
i, s
′
−i)).

• If a′ = i and a = i, then Pi = ti − δi ≥ maxj 6=i v
′
j −

δi > maxj 6=i v
′
j − δ′i = P ′i , and we have that

ui(ti, (si, s
′
−i)) = ti−Pi < ti−P ′i = ui(ti, (s

′
i, s
′
−i)).

• Otherwise, we have that a′ = i and a 6= i, which
implies that

ui(ti, (si, s
′
−i)) = −Pi = δi < δ′i

≤ (ti −max
j 6=i

v′j) + δ′i = ti − P ′i

= ui(ti, (s
′
i, s
′
−i)).

In sum, si is strictly ti-S-dominated by s′i, and Claim 2
holds. �

CLAIM 3. ∀ player i, if si is conservatively strictly rational
in game (C,M), then vi ≥ smpi.

PROOF OF CLAIM 3. Assume for sake of contradiction that
si is conservatively strictly rational and vi < smpi. By
definition we have that si ∈ S(θi), and thus by Claim 1
we have that vi ≥ θi. Accordingly,

θi < smpi.

Let s′i = (1, smpi). Without loss of generality, we assume
that s′i ∈ S(θi), and prove that si is conservatively strictly
dominated by s′i, which contradicts the fact that si is
conservatively strictly rational.14 To prove this, it suffices
to show that ∀t ∈ Bi, si is strictly θi-S(t)-dominated by
s′i. Arbitrarily fixing a type profile t ∈ Bi and a strategy
subprofile s′−i ∈ S(t−i), it suffices to show that

ui(θi, (si, s
′
−i)) < ui(θi, (s

′
i, s
′
−i)).

To do so, letting δi and δ′i be the rewards that player i
receives in Step e, in the plays of (si, s

′
−i) and (s′i, s

′
−i)

respectively, we have that

δ′i − δi =
ε

2n
· smpi

1 + smpi
− ε

2n

[
vi

1 + vi
+

1− ei
(1 + V )2

]
=

ε

2n

[
smpi − vi

(1 + smpi)(1 + vi)
− 1− ei

(1 + V )2

]
≥ ε

2n

[
1

(1 + smpi)(1 + vi)
− 1

(1 + V )2

]
>

ε

2n

[
1

(1 + smpi)2
− 1

(1 + V )2

]
≥ ε

2n

[
1

(1 + V )2
− 1

(1 + V )2

]
= 0,

14If s′i 6∈ S(θi), then by well known properties of strict dominance we
have that there exists a strategy σ′i ∈ ∆(S(θi)) such that s′i is strictly
dominated by σ′i in game (C,M). By similar analysis, it can be proved
that si is conservatively strictly dominated by σ′i, which again contradicts
the fact that si is conservatively strictly rational.
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where the first inequality holds because vi < smpi and
ei ≥ 0, the second because vi < smpi, and the last because
smpi ≤ V . Accordingly we again have

δ′i > δi.

Let (a, P ) and (a′, P ′) be the final outcomes of (si, s
′
−i)

and (s′i, s
′
−i) respectively, let s′j = (e′j , v

′
j) for each player

j 6= i, and let ?(t) = argmaxj tj with ties broken lexico-
graphically. Because t ∈ Bi, by the definition of smpi we
have that smpi ≤ maxj tj = t?(t), which together with the
fact that ti = θi < smpi implies that ?(t) 6= i. Further
because s′?(t) ∈ S(t?(t)), we have that

v′?(t) ≥ t?(t) ≥ smpi > vi,

where the first inequality holds by Claim 1 and the last one
by our hypothesis about vi.

If v′?(t) > smpi, then by the construction of M we have
that the pair announced by player ?(t) is ordered before that
by player i in both plays. If v′?(t) = smpi, then we have that
v′?(t) = t?(t), and thus e′?(t) = 0 by Claim 2, which again
implies that the pair announced by player ?(t) is ordered
before that by player i in both plays. Accordingly, no matter
which is the case, we always have that

a′ 6= i and a 6= i,

which implies

ui(θi, (si, s
′
−i)) = δi < δ′i = ui(θi, (s

′
i, s
′
−i))

as we wanted to show. Therefore Claim 3 holds. �
Now we are ready to prove that if s is conservatively

strictly rational then Inequality 1 holds, which implies
Theorem 3. To do so, recall that 2nd(B) is the second high-
est value in {smp1, . . . , smpn}. Let ? = argmaxi smpi and
?′ = argmaxi 6=? smpi, with ties broken lexicographically.
By definition,

smp?′ = 2nd(B).

Because s is conservatively strictly rational, by Claim 3 we
have that for each i,

vi ≥ smpi.

By the construction of M we have that for each reward δi
in Step e,

δi =
ε

2n

[
vi

1 + vi
+

1− ei
(1 + V )2

]
<

ε

2n
· (1 + 1) = ε/n.

Letting (a, P ) be the outcome of s, we have that for each
i 6= a,

Pi = −δi.

If a = ?, then by the construction of M we have that

Pa ≥ max
j 6=a

vj − δa = max
j 6=?

vj − δa

≥ max
j 6=?

smpj − δa = smp?′ − δa = 2nd(B)− δa,

where the first inequality holds because Pa equals either
maxj 6=a vj − δa or va − δa, and va ≥ maxj 6=a vj , and the
second inequality because vj ≥ smpj for each j.

If a 6= ?, then we have that

Pa ≥ max
j 6=a

vj − δa ≥ v? − δa

≥ smp? − δa ≥ smp?′ − δa = 2nd(B)− δa.

Accordingly, whether or not a equals ?, we always have
Pa ≥ 2nd(B)− δa, and thus

REV (M(s)) = Pa +
∑
i 6=a

Pi ≥ 2nd(B)− δa −
∑
i6=a

δi

> 2nd(B)− n · ε/n = 2nd(B)− ε.

Therefore Theorem 3 holds. Q.E.D.

6. THREE CONCERNS ABOUT THE SECOND-BELIEF
MECHANISM “IN PRACTICE”

A concern raised about the second-belief mechanism is
that “ε rewards” may not be enough motivation for the
players to participate. When the relevant players opt to
“stay at home”, the second-belief benchmark cannot be
guaranteed, and thus the second-price mechanism might in
practice generate higher revenue.

Let us have a closer look. First, it should be appreciated
that any rational player prefers a positive utility, no matter
how small, to 0 utility, which is the utility he would receive
if he opted out of the auction, both in the second-belief
and the second-price mechanism. (Saying otherwise requires
an alternative notion of rationality.15) Second, as we have
already observed, conservative beliefs are implicit in any
context, whether or not a designer tries to leverage them.
Accordingly, to compare properly the second-belief and the
second-price mechanism, one should consider the same,
underlying, conservative belief profile B. Consider a player
i who does not believe that his valuation is the highest.
Then i concludes that he will receive “ε utility” under the
second-belief mechanism, and 0 utility under the second-
price one. Therefore, according to any reasonable (traditional
or not) notion of rationality, if i chooses to opt out in the
second-belief mechanism, he should also opt out in the
second-price mechanism. In neither mechanism, therefore,
can player i be relied upon to achieve the corresponding
revenue benchmark. Consider now a player i who believes
that he might be the one with the highest valuation. Then,
in either mechanism, it is dominant for him to participate in

15To be sure, such alternative notions exist: in particular, ε-Nash equi-
librium. Note however that any mechanism which, like ours, achieves a
revenue benchmark —at least in some contexts— close to the highest true
valuation, must rely on the traditional notion of rationality, instead of any
ε-alternative. This is so because, when the revenue benchmark equals the
highest valuation minus ε, by definition the sum of the players’ utilities must
be at most ε. Therefore any ε-alternative notion of rationality will make the
players indifferent between participating and opting out. And when players
opt out, the mechanism cannot guaranteed its desired benchmark.
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the auction. (In particular, in the second-belief mechanism,
opting out is strictly dominated by (0, θi), which always
has positive utility.) Accordingly, if i chooses to participate
the second-price mechanism, he should also participate the
second-belief one.

Another (related) concern was raised for the case in
which the players only have very unprecise external beliefs.
In this case, while the revenue generated by the second-
price mechanism is equal to the second-highest valuation,
2nd(θ), the one generated by the second-belief mechanism
is “2nd(θ)−ε.” Again, such a concern is based on an “unfair”
comparison. The second-belief mechanism works no matter
what beliefs the seller may have about the quality of the
players’ conservative beliefs, and insists on guaranteeing
strictly positive utilities to the players (when they play
conservatively). By contrast, the second-price mechanism
only guarantees that the players’ utilities are ≥ 0, and thus
cannot guarantee the participation of players who believe
that they do not have the highest valuation. Accordingly,
for the seller to gain an extra ε in revenue by adopting the
second-price mechanism instead of the second-belief one,
it is necessary that he has enough information about the
players: namely, he must be sure that each player believes
that he might be the one with the highest valuation. In
absence of this information, to guarantee the participation of
all players, the second-price mechanism must be modified
so as to provide some form of “ε rewards” as well, and thus
will miss its target revenue in its purest form.

A third concern raised is that the second-belief mechanism
may miss its benchmark because its players may prefer
decreasing their opponents’ utilities to increasing their own
ones. Indeed, if (1) the player with the highest valuation
is player i, (2) i believes that he is the player with the
highest valuation, (3) i believes that θi ≥ 2nd(B), and
(4) i further believes that 2nd(B) > 2nd(θ), then, when
all other players act rationally, by sufficiently underbidding
his own valuation —e.g., by bidding (0, 0)— player i will
cause another player to receive negative utility. However,
let us emphasize that, while leveraging the players’ external
beliefs, we continue to use the classical utility function for
single-good auctions: namely, the utility of every player
equals his true valuation minus the price he pays if he
wins the good, and 0 minus the price he pays otherwise.
Under such a classical utility function, the second-belief
mechanism achieves its benchmark at every rational play.
The concern about a player having a different type of
preference is therefore out of the model.
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