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Moiré superlattices of transition metal dichalcogenide (TMD) bilayers have been shown to host correlated
electronic states, which arise from the interplay of long wavelength moiré potential and long-range Coulomb
interaction. Here, we theoretically investigate structural relaxation and single-particle electronic structure of
twisted TMD homobilayer. From the large-scale density functional theory calculation and continuum model
with layer degrees of freedom, we find that the out-of-plane gating field creates a tunable charge transfer gap
at the Dirac point between the first and second moiré valence bands. We further study the charge orders at the
fractional band fillings. In the flat band limit, we find from Monte Carlo simulations a series of charge-ordered
insulating states at various fillings n = 1

4 , 1
3 , 1

2 , 2
3 , 1. We predict that gating field induces a phase transition

between different electron crystals at fixed filling n = 1
2 or 2

3 . At half-filling n = 1, the ground state is a Mott
insulator with electronically driven ferroelectricity. This work demonstrates that TMD homobilayer provides a
powerful platform for the investigation of tunable charge transfer insulator and charge orders.

DOI: 10.1103/PhysRevB.103.155142

Moiré superlattices are a fruitful platform for realizing
and controlling correlated electron states, as evidenced by
the remarkable success in twisted bilayer graphene (TBG)
[1–12] and trilayer graphene-hBN heterostructures [13–16].
Recently, a family of moiré materials based on transition
metal dichalcogenides (TMDs) [17–29] have attracted great
interest. They host an abundance of correlated insulating
states at a series of fractional fillings [30–34].

In TMD bilayers, moiré bands are formed from parabolic
bands of individual layers. In twisted TMD homobilayers, the
moiré bandwidth can be made arbitrarily small by reducing
the twist angle, which gives rise to strong correlation without
fine tuning. Electrons or holes in these moiré bands are tightly
localized in high-symmetry stacking regions, which can be
well described by a simple effective tight-binding model.
This description offers a convenient starting point for inves-
tigating interaction-induced states at finite density. Despite
the conceptual simplicity, a quantitative modeling of moiré
bands in TMD is highly nontrivial. For example, the moiré
bandwidth of TMD heterobilayer WSe2/WS2 is only on the
order of 10 meV and depends highly on the lattice relaxation
[30,31,35,36].

In this paper, using the large-scale density functional the-
ory (DFT), continuum model approach, and Monte Carlo
simulation, we study the effect of structural relaxation and
electric field on the moiré band structure in twisted TMD
homobilayers and predict novel charge order at fractional
fillings in the strong-coupling regime. We focus on the moiré
valence bands originating from the � pocket [37–41]. Due to
interlayer tunneling and lattice relaxation, these moiré bands
are derived from localized orbitals in MX and XM stacking
regions that form a honeycomb lattice. We find a pair of
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massless Dirac fermions at K, K ′ points of the mini-Brillouin
zone (BZ), which is protected by the D3 point group symmetry
of the moiré superlattice. Applying an out-of-plane electric
field breaks the sublattice symmetry of the honeycomb lattice
and opens a tunable gap � at the Dirac point. We introduce
a continuum model for twisted TMD homobilayers, which
captures the layer degrees of freedom and the electrically
tunable gap.

We further use an extended Hubbard model on the hon-
eycomb lattice and perform Monte Carlo simulations to
study the insulating electron crystals in the flat band limit.
We find a distinctive set of charge orders at hole fillings
n = 1

4 , 1
3 , 1

2 , 2
3 , 1 on the honeycomb lattice. Interestingly, the

charge orders at n = 1
2 and 2

3 both break the rotational sym-
metry and differ from the proposed states in the WSe2/WS2

heterobilayer. The n = 1 insulating state has a spontaneous
out-of-plane ferroelectric polarization, which can be switched
by the electric field. These symmetry-breaking charge orders
can be directly probed by the optical anisotropy experiments
[34,42]. Moreover, we predict that phase transitions between
distinct charge-ordered states at the same filling can be in-
duced by the electric field, which tunes the charge-transfer gap
�. This paper shows that twisted homobilayer MoS2 provides
an ideal platform for investigating electrically tunable charge
transfer gap and charge orders.

We study TMD homobilayers with a small twist angle
starting from AA stacking, where every metal (M) or chalco-
gen (X) atom on the top layer is aligned with the same
type of atom on the bottom layer [58]. Within a local re-
gion of a twisted bilayer, the atom configuration is identical
to that of an untwisted bilayer, where one layer is later-
ally shifted relative to the other layer by a corresponding
displacement vector d0. For this reason, the moiré band struc-
tures of twisted TMD bilayers can be constructed from a
family of untwisted bilayers at various d0, all having 1 × 1
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FIG. 1. (a) Lattice structure of MM, MX, and XM spots for AA
stacking heterobilayer; M stands for metal atom, and X stands for
chalcogen atom (green for the top layer, yellow for the bottom layer).
Density functional theory (DFT) band structures of MM and MX
(XM) stacking homobilayer in (b) MoS2/MoS2 with identical layer
spacing; (c) MoS2/MoS2 with relaxed layer spacing.

unit cells. Our analysis thus starts from untwisted bilayers
[43].

Specifically, d0 = 0,−(a1 + a2)/3, (a1 + a2)/3, where
a1,2 is the primitive lattice vector for untwisted bilayers, cor-
responding to three high-symmetry stacking configurations of
untwisted TMD bilayers, which we refer to as MM, XM, and
MX. In MM (MX) stacking, the M atom on the top layer
is locally aligned with the M (X) atom on the bottom layer,
see Fig. 1(a); likewise for XM. The bilayer structure in these
stacking configurations is invariant under threefold rotation
around the z axis.

In homobilayer TMD, the spin degenerate � pockets in the
valence band arise from electron tunneling between the two
layers. The kp Hamiltonian takes the form

H(d0) =
[
− h̄2k2

2m∗ + εb(d0) �T (d0)

�
†
T (d0) − h̄2k2

2m∗ + εt (d0)

]
. (1)

Here, m∗ = 1.07me is the effective mass for the valence band.
Also, �T (d0) is the interlayer tunneling amplitude which de-
pends on the in-plane displacement between the two layers.
In contrast to the complex tunneling amplitude for the K
pockets [44], here, the time-reversal symmetry at � pocket
enforces �T (d0) to be real. The potential term εb,t (d0) denotes
the energy of the valence band maximum in the absence of
tunneling, which arises from the unequal layer weight of the
wave function at MX and XM stacking configurations.

We expand �T (d0) in Fourier components up to the second
harmonic term:

�T (d0) = w0 + 2w1

3∑
j=1

cos(G j · d0)

+ 2w2

3∑
j=1

cos(2G j · d0), (2)

where Gi(i = 1, 2, 3) are the three reciprocal lattice vectors
in monolayer TMD. Due to threefold rotational symmetry,
�T is a local extremum for MM, MX, and MX stackings,
with �T = w0 + 6w1 + 6w2 for d0 = 0 (MM) and w0 −
3w1 − 3w2 for d0 = ±(a1 + a2)/3 (MX or XM). The zero-
momentum-transfer tunneling term w0 is responsible for the
large bonding and antibonding energy splitting for all d0,
while w1,w2 capture the variation of the tunneling amplitude
at different lateral displacements.

The interlayer tunneling strength depends significantly on
the layer spacing d . From the DFT calculation, we find the
equilibrium layer spacing of untwisted TMD bilayers in MM,
MX, and XM stackings: dMM = 6.63 Å and dMX = dXM =
5.97 Å. The 10% variation of layer spacing is comparable with
that in bilayer graphene [45] and strongly impacts the energy
splitting of � pockets.

By calculating the work function, we plot in Fig. 1 the band
structure of MM- and MX-stacked bilayers, with reference
energy E = 0 chosen to be the absolute vacuum level. Using
the relaxed layer spacings, we find the energy splitting in MX
(or XM) stacking to be stronger than in MM, as a result of
its smaller layer distance. From the different energy splitting
in Fig. 1(c), we obtain the tunneling parameters as w0 = 338
meV, w1 + w2 = −18 meV. If the same layer spacing were
used for both MX and MM bilayers, the opposite (and incor-
rect) conclusion about the energy splitting would be found,
see Fig. 1(b). Thus, lattice relaxation is crucial for obtaining
the correct moiré band structure.

The structure of twisted TMD homobilayers can be de-
scribed by a lateral shift d0 that varies slowly in space:
d0 = θ ẑ × r. Therefore, we construct the following contin-
uum Hamiltonian for the moiré bands from the � pocket
two-band kp model:

H =
[
− h̄2k2

2m∗ + εb(r) �T (r)

�
†
T (r) − h̄2k2

2m∗ + εt (r)

]
. (3)

The position-dependent tunneling term is obtained by replac-
ing d0 with θ ẑ × r in Eq. (2):

�T (r) = w0 + 2w1

3∑
j=1

cos
(
Gm

j · r
)

+ 2w2

3∑
j=1

cos
(
2Gm

j · r
)
, (4)

where Gm
i = Giθ × ẑ(i = 1, 2, 3) are the three reciprocal lat-

tice vectors in the moiré superlattice. Likewise, the intralayer
potential εt,b (t, b stand for top and bottom layer, respectively)
can be expressed as the first-order Fourier expansion over the
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FIG. 2. (a) Real-space moiré pattern of transition metal dichalco-
genide (TMD) homobilayer MoS2, where MM, MX, and XM spots
within one supercell are labeled, and the diagram for spatially
dependent layer distance (in Å) in the moiré superlattice; (b) twist-
angle-dependent layer spacing for dfar and dnear, and out-of-plane
corrugation.

moiré reciprocal lattice vector:

εt,b(r) = 2V0

∑
j=1,2,3

cos
(
Gm

j · r ± φ
)
. (5)

The sign of phase factor φ changes under layer exchange,
enforced by C2y symmetry, as shown in Fig. 2(a). The potential
term is crucial for the later modeling with out-of-plane gating
field.

We now compare the band structure from the contin-
uum model with the large-scale DFT. The moiré superlattice
is fully relaxed with van der Waals (vdW) correction in-
corporated by the vdW-DF (optB86) functionals [46] as
implemented in the Vienna Ab initio Simulation Package [47].
We plot the twist-angle-dependent layer distance dfar in the
MM region and dnear in the MX (XM) region, in Fig. 2(b). At
small twist angle θ ∼ 0, the two layers are corrugated, and the
layer distance of MM, MX, or XM stacking region approaches
that of the untwisted structure. The interlayer tunneling ampli-
tude is maximum at MX and XM regions, which are related by
C2y symmetry. As a result, low-energy moiré bands are formed
from layer-hybridized orbitals in MX and XM regions, which
form a honeycomb lattice with identical onsite potential.

We perform the large-scale DFT simulation to calculate the
band structures for various twist angles, shown in Fig. 3. We
find that, above a small moiré period Lm ∼ 4.7 nm with twist
angle θ = 3.89◦, the two topmost moiré s bands are well sep-
arated from the remaining bands. Similar band structures are
also found in large-scale DFT calculation with fully relaxed
lattice structure for homobilayer MoS2 [37,38] and WS2 [39].
Fitting the DFT moiré band structure to the continuum model,
we obtain the parameters as w0 = 338 meV, w1 = −16 meV,
w2 = −2 meV, V0 = 6 meV, and φ = 121◦ at twist angle

FIG. 3. (a) Density functional theory (DFT) band structure for
θ = 3.89◦; (b) twist-angle-dependent bandwidth for the first two
moiré bands [top two valence bands in (a)] of the honeycomb lattice.
DFT (black cross) and continuum model (blue line) band structures
for (c) θ = 2.876◦; (d) θ = 2.876◦ with 0.5 V/nm out-of-plane gat-
ing field.

θ = 2.876◦. These values are consistent with the estimation
from untwisted structures.

As shown in Figs. 3(a) and 3(c), the moiré bands exhibit
Dirac points at K and K ′ points of the moiré BZ. These Dirac
points are protected by the D3 point group of twisted TMD
homobilayer: the doublet at K or K ′ forms a two-dimensional
E representation. The bandwidth of Dirac bands changes
monotonously from 250 to 10 meV when the twist angle θ

ranges from 6◦ to 2◦, as shown in Fig. 3(b). This provides
an ideal platform to study the tunable correlation physics of
Dirac electrons at the filling of n = 2 per moiré unit cell.

In the case of TBG [48], the low energy Dirac fermion is
protected by the C2z symmetry, which cannot be broken by
the out-of-plane field. However, in MX and XM regions of the
twisted homobilayer MoS2, the wave functions have unequal
layer weight, as indicated from the untwisted calculation.
Thus, the out-of-plane gating field breaks the C2y symme-
try and gaps out the Dirac fermion. A simplified continuum
model targeting at antibonding orbitals captures well the top-
most moiré bands but cannot describe the band structure and
charge distribution involving layer degrees of freedom.

We further calculate the band structure of the fully relaxed
moiré superlattice of homobilayer MoS2 with the applied gat-
ing field. As shown in Fig. 3(d), an out-of-plane gating field
0.5 V/nm creates a 2.4 meV gap at the K point, while the
bandwidth of the first energy-separable moiré band is 12 meV.
At the K point of the band edge, the wave function of the first
band is localized at the MX region, while the second band is at
the XM region. For small twist angle θ = 2◦ with wavelength
Lm = 9.1 nm, the gating field Ed = 1 V/nm induces a charge
transfer gap � up to 5 meV, even larger than the bandwidth of
the topmost moiré band (see Supplementary Material [49]). A
larger field-induced � can be achieved in twisted TMD homo-
bilayers with reduced interlayer tunneling (which competes
with the layer potential asymmetry). This can be realized by
inserting an hBN layer in between the top and bottom TMD
layers [24].
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In the TMD superlattice, the local minimums of the pe-
riodic moiré potential can be viewed as the effective moiré
atoms to host charge. Under the harmonic approximation, the
size of the Wannier orbital for the topmost moiré band is given

by ξ =
√

h̄
m∗ω = 2(π )−

1
2
√

Lm( h̄2

m∗Vm
)

1
4 [35] (Vm is the moiré

potential integrated to antibonding orbitals). In a homobilayer
system without lattice mismatch, the kinetic energy over near-
est neighbor interaction (t/V1) can be tuned arbitrarily small,
so that the classical model is well justified at sufficiently small
twist angle. The effective extended Hubbard model without
kinetic energy is given by

H0 =
∑
j∈B

�n j +
∑

i

Uni↑ni↓ + 1

2

∑
i 
= j

Vi jnin j . (6)

Here, � is the charge transfer gap between two sublattice sites
A and B, and Vi j is the extended interaction between i and j
sites.

In twisted homobilayer MoS2, the gating field introduces a
charge transfer gap �. We first discuss the situation with large
�. At filling n < 1, the effective tight-binding model reduces
to a triangular lattice model, as in the case of WSe2/WS2,
and exhibits similar charge order. Various insulating states
have been observed at fractional fillings n = 1

4 , 1
3 , 2

5 , 1
2 , 3

5 , 2
3

[30–32]. Due to the strong onsite Coulomb repulsion U � �,
the system at n = 1 should be regarded as a charge transfer in-
sulator [35]. When doped to a higher filling n > 1, additional
charges transfer to the other sublattice and/or layer.

Here, we further study the charge orders of honeycomb
lattice with small � including � = 0 in the flat band limit.
We perform classical Monte Carlo simulation up to 120 ×
120 sites with periodic boundary condition for the extended
Hubbard model with different gate distances from d = Lm/2
to d = 10Lm. The distance-dependent interaction strength is
plotted in Fig. S2 up to V100, and the interaction cutoff is
chosen as 0.1%V1. We identify a series of charge orders at
n = 1

4 , 1
3 , 1

2 , 2
3 , 1. For n < 1

2 , moiré electrons are all filled to
one sublattice, exhibiting similar charge orders (or general-
ized Wigner crystals) as observed in WSe2/WS2 heterobilayer
[30,52,53]).

Interestingly, for small �, charge transfer involving two
sublattices already takes place for filling n � 1

2 . At filling
factor n = 1

2 , we find an emerging rectangular lattice with√
3 × 2 periodicity. This state breaks the threefold rotational

symmetry and can be viewed as the combination of the stripe
states on both sublattices, each at 1

4 filling. This rectangu-
lar electron crystal is energetically favorable compared with
the enlarged 2 × 2 honeycomb crystal at all gate screening
distances. In contrast, at large �, the ground state becomes
a simple stripe state on the triangular sublattice with lower
onsite potential, as shown in Fig. 4. We find the critical charge
transfer gap is �c = 2(V2 − V3 − V4 + 2V6 − V9 + V12 + ...).
For d = Lm = 9.1 nm, �c = 0.12 e2

εLm
∼ 3.8 meV can be

reached by realistic gating field. We note the critical �c can
be further lowered by increasing moiré wavelength.

At filling factor n = 2
3 , the charges form a zigzag stripe

order with 6 × 6 periodicity breaking the C3 rotational sym-
metry. This zigzag type charge configuration is energetically
favored compared with a linear stripe at screening distances

FIG. 4. Ground state charge order at filling (a) n = 1
2 with in-

creasing charge transfer gap �, (b) n = 2
3 with increasing charge

transfer gap �.

from d = 1
2 Lm to d = 10Lm. As � increases, the zigzag

charge stripe transitions to the
√

3 × √
3 crystal that occupies

one sublattice site only, as shown in Fig. 4. We find the crit-
ical charge transfer gap is �c = V2 − V3 − 10

3 V4 + 14
3 V5.... =

0.04 e2

εLm
∼ 1.3 meV at d = Lm = 9.1 nm.

The transition between distinct electron crystals at the
same filling is first order. This should lead to a kink in the sub-
lattice and/or layer charge imbalance as a function of the gat-
ing field. This prediction, which is a main result of this paper,
can be tested in the MoSe2/hBN/MoSe2 heterostructure [24],
where the gating field-induced charge transfer between the top
and bottom layers has already been observed at relatively high
temperature.

For n = 1, we find that, even at � = 0, the ground state
is a fully sublattice polarized Mott insulating state, which
spontaneously breaks the honeycomb lattice symmetry. As
the two sublattice sites MX and XM have different layer
weight, the Mott insulating state at n = 1 develops a finite
out-of-plane ferroelectric polarization, which can be switched
by the electric field. The ferroelectricity driven by the Mott
physics in TMD moiré systems goes beyond the conventional
ferroelectricity and enables the fast switching due to elec-
tronic origin [50]. For filling n > 1, charge-2e trimer can be
the lowest energy excitation when tuning the charge transfer
gap �, providing a platform to design unconventional super-
conductivity [51].

In homobilayer WSe2 the valence band maximum is lo-
cated at K with weak interlayer tunneling amplitude and
intralayer potential both on the order of 10 meV. The complex
tunneling term between two layers brings further complica-
tions for the theoretical and experimental investigation of the
insulating states [26,28,44].

In conclusion, we present a combined study of lattice re-
laxation, single-particle electronic structure, and ground state
charge order on the twisted homobilayer MoS2. Unlike the
previous moiré charge transfer insulator in WSe2/WS2 heter-
obilayer, here, out-of-plane gating field breaks C2y symmetry
and induces a controllable charge transfer gap. With Monte
Carlo simulation, we predict additional stripe-type charge or-
ders at fillings n = 1

2 , 2
3 in the emergent honeycomb lattice

with � = 0. When increasing �, these electron crystals transit
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to fully sublattice polarized states. We further predict the fer-
roelectricity at the n = 1 Mott insulating state, which enables
the ultrafast switching of electronic polarization. This paper
demonstrates that the interplay between two moiré regions
leads to the charge transfer insulator [35,54] and serves as
a platform for creating novel correlated states, such as un-
conventional density wave [55,56], charge stripes [34], spin
superfluid [57], and superconductivity [51].
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