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ABSTRACT

An interactive decision-aiding technique was developed to assist a human
operator in selecting a satisfactory goal in a control task. This technique is also
applicable for solving traditional multiple criteria decision making problems.

An attainability set of a system was introduced as a set of all goals that the
system can potentially achieve. A goal was defined as a collection of constraints on a
desirable final state of the system. The goal was considered achieved as soon as all
these constraints were satisfied. The notion of the attainability set was extended to
the case of a system operating in the environment with perturbations. The goal
selection problem was modeled as a decision problem of exploration of the
attainability set.

The developed decision-z2iding technique is based on dynamic approximation of
the attainability set and permits the decision maker to scan the desired regions of the
attainability set to select a goal that is satisfactory. The technique can be used as a
tool for supervisory control of systems whose goals are characterized by conflicting
and incommensurable criteria. The proposed technique is especially useful when
neither the utility function nor the distribution of ‘the perturbations is available.

The advantage of the proposed technique was demonstrated in experiments
with human subjects, performed to compare the proposed technique with
conventional control methods. A simple sixth order dynamicai system was selected
for experimental tasks that required operating the system at the limit of its
capabilities. Performance of human subjects using the proposed technique was
compared with their performance using conventional manual and automatic controls.
Using a computer aid based on the. techuique developed in this thesis, the subjects -
achieved significantly better performance than when using traditional methods.

Thesis Committee: Prof. Thomas B. Sheridan (Chairman)
Prof. David C. Gossard
Prof. David H. Marks
Prof. Derek Rowell
Prof. Duvvuaru Sriram
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Preface

This thesis consists of 7 chapters.

Chapter 1 describes the goal-control paradigm and its relation to the
traditional multiple-criteria decision making problem; defines the attainability
set; and discusses some general considerations concerning the design of decision

aids.

Chapter 2 reviews the existing research in the area of multiple-criteria

decision making.

Chapter 3 contains a formal description of the proposed decision-aiding

technique for the goal-control paradigm, the Dynamic Range Tradeoff (DRT).

Chapter 4 discusses the implementation of the DRT human-computer

interface and describes the software system developed for discrete static tasks.

Chapter 5 introduces a special class of systems, resource-sharing systems,
and describes the implementation of the DRT technique for the goal-control of

such systems.

Chapter 6 describes experiments dealing with control of an experimental

system, conducted for the purpose of evaluating the DRT technique.

Chapter 7 contains conclusions; research contributions; and suggestions for

further research.



Abbreviations

DM - Decision Maker

MSS - Maximum Satisficing Set
PCC- Pareto Cluster Cell

RSS - Resource-Sharing Systems

Notation

1,N - a set of integers from 1 to N
Q, - set of admissible controls
P, t+ - A-attainability set from time to at time t*

".—bt,o, ¢ - B-attainability set from time ty by time t*
1—5% or Z’to,oo - (I-) attainability set from time tg

5, - aset of terminal times t* for which the A-attainability set at time t* has a

»

non-empty intersection with interval [ 1,r ]
RM . an M-dimensional space, or a set of real-valued k-tuples
y - (bold character) a point (vector) in RM with coordinates y;



Chapter 1

Goal Setting Paradigm

1.1 Introducticn

We are considering a class of systems that are goal or target oriented. A
system of this kind performs a task that is described by some goal. The goal is
usually specified as a set of conditions on a desirable final state of the system. As
soon as all these conditions are satisfied, the goal is considered achieved. The sys-
tem gets the goal specifications from a human operator/decision-maker (DM).
After accepting the goal, the system operates autonomously and independently of

the human.

The human however can monitor the system’s advancement towards the

goal and can intervene if needed. The human’s involvement in controlling such a



system is best described by the supervisory control paradigm(58](59]. The major
feature of a system in consideration is that during its operation the system con-
stantly assesses its current state and uses some state feedback mechanism (algo-
rithm) to generate actions necessary to attain its goal. A system of this kind is
also adaptive in the sense that it attempts to generate corrective control actions to

accomplish the goal, even in the case of unforeseen perturbations.

The corrective control might be able to compensate for some perturbations,
such as small disturbances, inaccuracies of computation, etc. Any system, how-
ever, is limited in the ability to generate control actions. A large perturbation or
an accumulation of small ones may be impossible to compensate with available
controls. A system that has been subjected to such perturbations might never be
able to attain its goal. The task either has to be abandoned or another goal must
be given to the system. A human decision is usually needed to .come up with a

new goal.

The present work addresses the problem of selecting an initial attainable
goal as well as 2 new goal when the old goal becomes unattainable. A decision-
aiding technique described in this thesis helps the operator to explore different

alternatives and make an informed decision as to which new goal to select.

The goal setting paradigm can be applied to a broad number of existing sys-
tems - from automatic controllers to Al problem-solving programs. This para-

digm also closely relates to the Muitiple Criteria Decision Making.



1.2 Goal Selection
Two questions need to be asked by a DM controlling any system:
¢« How to chose the task goal for the system?
o How to achieve that goal?

The second question in the case of dynamical systems is usually considered
by control theory. The first question somehow is presumed to have been
answered. In fact, this question is rarely even considered. The issue of how to
choose a goal for a system is very important, howe'ver, because it is closely con-

nected to the question of how to achieve this goal, or how to control the system.

The basic question - whether the system can accomplish its goal - is also
rarely addressed in the research literature. In the meantime, every system has its
internal limitations, that affect the range of goals that the system can actually
achieve. For instance, the system’s actuators can generate limited power, the
resources for accomplishing the task might be limited, etc. However, the system
conventionaily is operated with such a margin of capabilities, that the issue of
accomplishing the task is usually resolved before the task begins. Only when a
system has to operate at the limit of its capabilities and the outcome of the task
is critically important, then the issue of choosing a proper goal for the task

becomes relevant.

Another situation, however, occurs when the system experiences unexpected
perturbations, whose cumulative effect over time on the system could be much

greater than it was anticipated at the beginning of the task. At some point

-10-



during the execution of the task the problem might arise - whether to change the
task and have the system do something different, or to scrap the task altogether.
This problem can develop due to a gross deviation (as the result of the perturba-
tions) of the system from the initially planned path. This is the situation when it
needs to be decided whether the system has enough capability to continue the old
task, potentially operating at its limits, or the task should be modified. It rﬁ\ight
also become evident at some point Fhat the task cannot at all be accomplished as

planned.

If the decision is to modify the original task, then the questidn emerges: how
much does the original task need to be modified? In most cases it is desired that
the original goal would be repiaced with é satisfactory substitute. On the other
hand, the new goal must be such that it would not immediately generate the
same problems that have plagued the old one - i.e. the new goal must be achiev-

able (or at least look achievable) at the onset.

The problem of selecting a goai for a system is inseparable from the issue of
how the system is controlled while working to achieve the geal. It might also be
that the system is unable to accomplish its goal not because of its intrinsic limita-
tions, not due to the perturbations, but because it is simply poorly controlled. It
is in the realm of control theory to come up with better and more robust controll-
ers. In this thesis we will concentrate on the question of how to help the DM
select the goal so that it is both satisfactcry to her and in the same time is achiev-

able by the system.

Before proceeding with formal definitions, let us consider several examples.

-11-



1.2.1 Examples
Manipulator.

An illustrative example of a system under consideration is a manipulator
that automatically generates and executes a trajectory, moving from its initial
configuration to the one that corresponds to a given target position of the end-

effector.

Figure 1.1. 2D 3-link Manipulator.

Consider a 3 degree of freedom manipulator that operates in the upper
half-plane (Fig. 1.1) in 2D. A configuration of the manipulator is restricted due
to the limitation on the values of the joint angles. The base joint angle Z AOX
V can range from —180° to 180°, while the angle between two adjacent links! can-

not be greater than some minimal angle oz o < £ BAO (or £ CBA).

1. All angles in this example are non-oriented angles, so that the angle between two adjacent
links never exceeds 180°.

-12-



One can compute a workspace of such a manipulator - i.e. a set of all
reachable positions of the end-effector (Fig. 1.2). Given a target point from the
workspace (e.g. Target 1), the manipulator would move along a trajectory that
positions its end-effector in the target point. The trajectory can be generated by

one of the path-generating algorithms.

QGERSRAS
BB
Sa'a’a’a’a’s

Figure 1.2. Workspace of a normal manipulator (the hatched region).

The outer half-circie boundary of the workspace has a radius equal to the length
of a fully extended manipulator when £LCBA = £ZBAO = 180° (the manipulator
joints are iabeled on Fig. 1.1). The inner half-circle has a radius equal to the dis-
tance from the base joint to the tip of the manipulator in a configuration when
both angles between the adjacent links are at their minima «, when

ZCBA = ZBAO =a.

Suppose that a perturbation has manifested itself in the failure of the base
joint actuator. After the perturbation has occurred, the base joint ceased to
move and got stuck at some position, so that the base joint angle cannot be
changed any longer. The workspace of what is now a semi-handicapped manipu-

lator is different from the original workspace (Fig. 1.3). Point Target 1 no longer

-13-



belongs to the workspace of the manipulator. If the original task was to move the

end-effector of the manipulator to point Target 1, then this task can no longer be

accomplished.

One of the options is to shut off the manipulator and to repair it. However,
there may be additional considerations that require the original task to be accom-
plished, at least partially. In the latter case a new target point, that does belong

to the reduced workspace, might be given to the manipulator.

Figure 1.3. Workspace of a broken manipulator (the hatched region).

The lower boundary of the workspace is the arc centered at joint A and having a
radius equal to the distance from joint A to the tip of the manipulator in a
configuration when both angles between the adjacent links are at their minima a,
when ZCBA = ZBAO = o (the manipulator joints are labeled on Fig. 1.1). The
upper boundary of the workspace is a composition of two arcs. The right part of
the boundary is the arc centered at joint A and having a radius of two fully
extended links (AB+BC). The left part of the boundary is the arc centered at the

rightmost position of link (AB) and having a radius equal to a length of one link.

-14-



The rationale for sélecting a new target point depends on the original task.
If the manipulator was performing spray painting, then the selection of Target 4
as a new goal might be acceptable. Target 4 does belong to the new workspace
and is also in close proximity of the old goal Target 1. For some other task there
might be no clear need for a proximity of the new goal to old one. Target 2 could
be selected as a new goal instead. After a new target has been selected, the task
can be resumed, and the DM will be sure that the new task can be accomplished

(at least under the present circumstances).

Computer-Aided Design.

A different kind of an application can be taken from the computer-aided
design area. In a course of a conceptual design[57], a designer sequentially adds
. constraints on the designed object. The computer verifies the consistency of those
constraints and detects it if an incoming constraint is inconsistent with the previ-
ous ones. If an incoming constraint is inconsistent with all others, then there is
an impasse. The designer has to make a decision either to change the new con-
straint or to change some of the earlier entered constraints. Changing a con-

straint frequentiy amounts to changing a value of one of the design parameters.

In order to make an informed decision, the designer needs to know how
changing values of these parameters affects the consistency of all accumulated
constraints. The set of all consistent design parameters is an analogue of the

workspace of the manipuiator example.
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As an example? consider a design problem: find unknown values x and y
that satisfy a set of constraints. The designer sequentially adds new constraints
and the computer checks whether a new constraint is consistent with all the pre-

vious ones.

Suppose that at some point of the design process there are only two con-

straints:

x+y=>4
x2 -y <15 B

There are infinite number of solutions (x,y) that satisfy them. Suppose the

designer enters a new constraint:
y<o0 (1.2)

It is easy to verify that this constraint is incompatible with (1.1). Scme-

thing has to be done to correct the impasse.

Suppose that it is possible to change only one or both constraints (1.1) by
changing their right-hand sides.® One can consider the following problem: find a

and b for which constraints (1.3) are consistent:

2. This problem is an artificial one. Its only purpose it to demonstrate what is meant by a set of
all consistent design parameters.

3. These are the so-called soft constraints, while (1.2) is the hard constraint.

-16-



XxX+y>a
xXX —y<b (1.3)
y<0

Parameters a and b can be viewed as parameters of some goal in the space

of target parameters (a,b)!. The old goal was:
a=4, b=15 (1.4)

The old goal was consistent with the old set of constraints (1.5):

Xx+y>a
x> —y<b (1.5)

but it is no longer consistent with the new set of constraints (1.3).

If a different constraint were entered instead of (1.2), and if that constraint
were consistent with t1.5) and goal (1.4), then the designer could have continued
adding more constraints to (1.5) without changing the goal. The addition of (1.2)
tlo (1.5) makes goal (1.4) no longer attainable. This constitutes (as far as the com-

puter is concerned) an irreparable perturbation.

To select a new goal, the designer needs to know for which values of (a,b)

inequalities (1.3) are consistent. All such pairs (a,b) form the feasibility set of

4. The notion of a goal that is used here is different from the notion of the design goal. It would,
however, be appropriate to interpret (a,b) as one of the sub-goals of the design process.

-17-



parameters of the problem (13) This set is equivalent to the workspace in the

manipulator example.

A feasibility set of constraints (1.5) is the entire 2D plane (a,b) € R%. The

feasibility set of (1.3) is described by the following relations:
a? <b, whena >0 (1.6)
b>0, whena <0

The old goal (a=4, b=15) is located outside of the new feasibility set
(affected by the “perturbation (1.2)) (Fig. 1.4). A new goal (a',b') (e.é.
(a'=4,b'=17)) could be selected from the set defined by (1.6). Having modified
the goal, the designer can resume adding new constraints until another “impasse”

occurs.

40 — ' new goal:
b 5a'=4,b’=17
20 - : :
> old goal
0N N N NN NNT a=4,b=15
Ll 1 |
-5 0 5
a

Figure 1.4. Feasibility set (1.6) of inequalities (1.3) (the shaded area).

1.3 Attainability Set

The key element of the presented examples is the computation of a
workspace or a feasibility set of a problem. Determining this set is critical for

-18-



selecting the system’s goal and deciding how to replace it if the previousiy
selected one becomes unattainable. Both the workspace and the feasibility . :t are

particular cases of what we will call hereafter the attainability set.

We define attainabijlity using the concepts of task goal, and perturbations.

1.3.1 Task Goal

Let us envision a system that evolves in time while performing some task.
We assume that the system performance during the task is characterized by
several scalar indicators G; (i = I_,—I\Z), which can be calculated at every moment
6f time. In the most general case the values of these indicators at any instant of
time are functions of time, the system’s initial state and the entire history of the.

system’s evolution from the beginning up until that instant of time.

The purpose of the task is to achieve some goal. The goal is defined by a
set of acceptable, or target levels, (g , gi¥), (i = 1,M) that are specified for each
of the system’s indicators. A goal is achieved as soon as the values of all indica-

tors fall within these levels, i.e. when
gi <G <gf (1.7)
for all i=1,M

The goals considered in this thesis can be characterized as terminal goals.
The goal is accomplished at the first instant of time when the goal conditions
(1.7) become true. The goal cannot be something that needs to maintained. For

example, a driving task with a goal of staying within a lane is not a legitimate
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task in this interpretation.

A goal specifies a region (a hyper-parallelepiped) in the space of the target
function G;. This region will be called the goal boz. This box can obviously

degenerate into a point when gi” = gt.®

The range of goals that the system can reach depends on the system’s abil-
ity to generate control actions necessary for achieving the goal and on the pertur-

bations the system is subjected to.

1.3.2 Perturbations

The system strives to achieve the task goal in the environment with pertur-
bations. Two types of perturbations are considered in this paradigm: the

planned and the unplanned perturbations.

1. The planned perturbations p(t) belong to a certain, known in advance, set Qp.
These perturbations are similar to noise terms in control systems. Usually these
perturbations are small in some sense, but their cumulative effect on the system
over time can be potentially signiﬁcant. Different models could be put forth to
account for their effect on the system. Since that model might not accurately

predict the future perturbations, replanning, or selecting another goal might

5. In fact, a goal (gi",gi") in (1.7) can be interpreted as a single point in R?M,



become necessary as the result.

2. The perturbations of the second type are unplanned perturbations. It is
presumed here that these perturbations occur only at discrete instants of time,
but each time they occur they make a very significant impact on the system and
its ability to do the task. A breakdown of a system’s component or a major
chanée of the environment in which the system operates, are the examples of
these perturbations. A perturbation of this kind at time t; can be viewed as an
instantaneous modifier of the current state of the system, or of the set of admis-
sibie control actions, or of the set of admissible trajectories of the system’s state
over time. These perturbations are not planned for, in the sense that the task
goal is selected without expecting these perturbations to occur. However, as

they occur, replanning, or selecting another goal might become necessary as the

result.

These two types of perturbations are very different in the eyes of the DM.
In contemplating the course of actions and selecting the task goal, the DM consid-

ers only the planned perturbations. However both type of perturbations affect

the system’s ability to achieve the goal.

Consider an example of driving a car (the system) to some destination. The
goal can be formulated as the desired destination together with the desired range

" of the times that it would take the car to get to that destination.

A planned perturbation could be the traffic congéstion that can slow down
the car’s advancement towards the goal. This perturbation is to be expected and

it can be modeled. The goal is selected with this perturbation in mind. However
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the traffic congestion can be so bad, that after a while it might become clear, that
the goal of getting to the desired destination in the desired time is no longer
attainable. Moreover, it might be impossible‘ to accomplish the goal even if the
rest of the road is clear from traffic. The car might already have lost so much
time, that it cannot accomplish the goal even if it is driven with its maximum

possible speed.

A unplanned perturbation could be a road accident making the road com-
pletely impassable for a long period of time. Or the road might get closed for
repair. Or, for example, the car might get a flat tire, etc. The important thing
about the unplanned perturbations is that they are dealt with only as they occur,
not at the time when the goal is selected. In many cases the unplanned perturba-

tions might actually not occur at all.

The failure of the aétuat-oz‘ in the manipulator example is a manifestation of
the unplanned perturbation. The inaccuracy of the positioning and measurement
devices are planned perturbations. So are the computational errors of the control
algorithm. In the meantime, all perturbations in the CAD/CAM example are

unplanned.

The planned perturbations are comnsidered at the time when the goal is
selected. The nature of these perturbations depends on the circumstances of the
‘system and the task. However these perturbations are always expected to be

present during the task.

The decision problem that the DM faces is to select a goal for the system.

In selecting the goal the DM must always be conscious about the question whether

-22-



that goal can be reached at all. The reachability, or attainability of the goal
depends on two factors: the controls that the system generates and the perturba-

tions that obtain during the system advancement towards the goal.

There can be different schemes to account for the effect of the future pertur-
bations when selecting the goal for a task. The following planning scheme is sug-
gested and followed in this thesis: Since the perturbation are not known in
advance, during the planning stage they are approximated by a constant. The
full treatment of the issue of how to choose that constant is outside of the scope

of this thesis.5

For example if the values of perturbations are known to be within a certain
interval, then the middle value or the extreme values of that inteﬁal can be
taken as approximating constant. Or if the distribution of the values of the per-
turbations is known, then the expected value of this distribution can be taken as

the constant approximating the perturbations.

The main idea of the goal planning process followed in this thesis can be
formulated as follows: since the range of attainable goals depends on both the
control actions and the perturbations that obtain in the future, making a deter-
ministic assumption about the future perturbations removes uﬁcertainty from the

problem of finding the set of attainable goals. As scon as the perturbations are

6. This problem largely depends on the model of perturbations that is used by the DM.
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approximated as a constant, the set of attainable goals becomes a function of con-

trol actions only.”

To summarize the role of the perturbations in the proposed goal setting
paradigm, it can be said that the perturbations are the main reason why a once
selected and attainable goal might become unattainable sometimes later. The
reason why the perturbations are subdivided into planned and unplanned is due
to the fact that only the planned perturbations are accounted for in the computa-
“tion of the set of attainable goals. At the same time, perturbations of both types
can make a goal unattainable. Selecting an appropriate class of planned pertur-

bations therefore is a part of the system modeling process.

Another reason why a goal might become unattainable are some bad control
decisions. Even if the system has a built-in mechanism that helps it to cope with
the perturbations (e.g. an automatic feedback controller), it might not be able to
cope with the perturbations. Or the system might be manually controlled by the

DM, and it is known that the humans are not optimal controllers at all.

Even in the case when at every instant of time the system does attempt to
generate a "good" control action with the purpose of achieving the task goal,

there might be problems. The control actions that the system can come up with

7. The problem of finding a set of attainable goals as a function of only controls actions is una-
voidable regardless of the approach. For instance, if the probability distribution of the pertur-
bations is used during the planning stage, the question of what goals are attainable given a par-
ticular realization of the perturbations is equivalent to the one we address.
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at any instant of time are limited, and it might be physically impossible to bring
about an appropriate control action, even if the control algorithm correctly sug-

gests one.

1.3.3 Attainability
Two questions can be posed in.this context:

e Given a goal, would the system be able to accomplish the task and achieve

that goal, if there were no perturbations at all?

e What goals can the system accomplish in the absence of the perturbations,

beginning from its present state?

The latter question is obviously more general than the former. Knowing the
answer to the latter question it would be easier to resolve the former. The notion
of the attatnability set is introduced here to address the second question. Simply

speaking, the attainability set is a set that contains all accomplishable goals.
Here are the formal definitions:

We consider a system that evolves in time. The system’s evolution is

described by (1.8):

x(t1) = H(to,t1,X(to), Uty t,]s Plto, b))

x(t) €Oy, p(t) €Ny, u(t) €N (1.8)

Where:

1) is a given initial time;
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t is current time (t; > tg);

t is any time (t > t;);

x(tp) € R" is the initial system state at time ty (n X 1 real-valued vector);

x(t;) € R" is the system state at time t, (n X 1 real-valued vector);

Uiy is a vector-function of the entire control during the period from t; until t;;
Pltot) is the entire vector-function of perturbations during the period from ty until t;;
u(t) € R¥ is a control vector at time t (k X 1 real-valued vector);

Q, a set of admissible values of the control vector-function of t;

p(t) € R' is a value of perturbation at a particular time t (r X 1 real-valued vector);

Q, a set of possible perturbations as a vector-function of t.

Q, a set of admissible trajectories in the system’s state space.

The system is performing some task that is determined by the task goal.
The goal is specified by a set of M pairs of real numbers (g ,git), i=1,M. The
goal is achieved at the first instant of time t* > t; when the following M condi-

~ tions (1.9) hold:

(87 < Gi(tost*,%(0), U[to, t]s Plto, 1)) <
gz < G2(t'0st*7x(t‘0)’u[to,t']’p[to,t']) <

gM S GM(t'Oat*ax(t’O)!u[to,t’]’p[to,t']) < gltl

Where:

t* is an unknown terminal time;

Wio, ¥ is a vector of the entire control functions during the period from t; until t*;
Plioti] is the entire history of perturbations from t, until t*.



Functions G; are called the indicators of the task, or the target functions.
They are the integral part of the system/task description. The goal (g7,g*) is

specified at the beginning of the task, i.e. at time tq.

The system might use some type of a state feedback algorithm to select its
control action® u(t) € Q, so that it can achieve the task goal (1.9) at some finite
terminal time (t* < 00). The following information is available at any moment of
time t; for making the control decision: the current state of the system, the entire

history of the system'’s evolution, and

[y, 1,](t) - the obtained system’s control function from the beginning,

P[t,,t,] (t) - the encountered perturbation from the beginning.

Suppose that we interested in selecting a goal for the system at some time t,
(to <t1). To do the planning we first transform the system using the approxima-
tion of the future perturbations with a constant. In other words, we assume that

the perturbation terms in (1.8) and (1.9) can be replaced with

Pitott) for to St <ty
Py, [to,t*] = (1.10)

const for t > t,

In other words, the approximation of the perturbation, py, |4, 1] coincides with

already obtained perturbations, pyt, - up until t; and is a constant in the future,

8. The system’s state is a vector function of time, so is the system control. A singular form for
describing the state and the control of the system is used to refer to the entire state vector and
the vector of controls.
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i.e. after t;.

The approximation (1.10) is used for deﬁhing the attainability set of the sys-

tem from time t,.

Definition: The A-attainability set of system (1.8) executing task (1.9)

from time t; at time t* is set 9 i in the M-dimensional space RM that is

defined in (1.11):

for any member of this set: y = (y;,¥2,...,yM). € h, ¢ C© RM

there exists control u®) € 2, such that (1.11)
ul)(t) = up o) (t) for to <t <ty

Vi = Gi(to,t‘,x(to),umt-],pth[to,t'l ), for all i=1,M

where py |1t is a vector function of the perturbations which coincides on the
time interval [tg,t1] with the perturbations that have obtaired from to until t;,

and is constant from t; until t*.

According to this definition, the A-attainability set of the system/task is a
set of all possible values of the target functions G; at time t*, assuming that no
perturbations occur in the future from t; until t*, and everything relevant about
the system is known at t; and before. Time t, thus is the origination time, while

t* is the terminal time.
Two more definitions:

Definition: The B-attainability set of system (1.8) executing task (1.9)

from time t;, by time t* is a union of all A-attainability sets from t; at times
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before t*:

"Y’tl,t‘ = LtJ Y, 8 (1.12)
t

<t e

Definitior: The I-attainability set, or simply the attainability set of sys-
tem (1.8) executing task (1.9) from time t; is a union of all A- (or, which is the

same, of all B-) attainability sets from t; at all times:

B, =P 00 = U e (1.13)
t

t; St <oo

Let’s consider an example:

The system in consideration is a unit mass moving along a single dimension
and contrclled by a force. The mass is also subjected to some exogenous force

perturbations. The system is described by an ordinary differential equation:
x(t) = u(t) + p(t) (1.14)

where x (t) is the position of the mass at time t, u(t) is the control at time t, and

p(t) is the perturbation.
The set of admissible controls is:
ut) €, if |u(t)] <10 (1.15)
and the set of possible perturbations is:

pt) €, iff 19<|p(t)] <21 : (1.16)

v

The initial state of the system at time ty=0 is
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x(0) = %(0) = 0

Let’s consider a task that is specified by a goal on the mass’ position and

velocity. The goal functions of the system/tasks are:®

Gy(t) = x(t)

Goft) = 5(t) (L17)

and the the goal is achieved as soon as

{ 8T < Gy(t*) < sf
(1.18)

gz < Go(t*) < 87

To determine the A-attainability set ¢ of this system from time t;=0 at
some time t* we first select a constant that approximates the perturbation. Based
on (1.16) we select this constant as the middle point of the interval of possible

values of the perturbation, i.e. 20.

The system’s evolution (1.14) can be transformed by this approximation

into (1.19):
x(t) = u(t) + 20 (1.19)

The A-attainability set of the system from time 0 at time t* is a set in R? of
all pairs of the values (G,(t*),Gz(t*)) where the values of the target functions G;

are calculated assuming approximation (1.19).

Integrating equations of motion (1.19) from t=0 to t=t*, we get:

9. The target functions in this example are equal to the system’s state variables. It happened only by coincidence, and this
fact plays no role in the computation of the attainability sets for this example.
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Gy(t*) = f}u(r)drdt +10(t°)? = } (t* — t)u(t)dt + 10(t*)?
oo 0
- (1.20)

Gz(t*) = [ u(t)de + 20t*
0

From (1.20) and (1.15) it follows that
10t* < Gy(t*) < 30t° (1.21)

To determine the attainability set of the problem at time t*, let’s take some
value of G, from the interval (1.21). Using the following result (1.22) which can

be easily proven using the variational calculus:

"

if fu(t)dt =y and [u(t)] U then:
°

. Y (1.22)
t)? ‘U

t‘+'L t* 1
< [tu(t)dt<U .

U _ (t‘ )2
2 2

U

we get from (1.20)

0.025(G(t*))>—0.5t*Go(t*)+7.5(t*)* < G;(t*) < —0.025(G(t*))%+1.5¢*Go(t*)—7.5(t*)?
10t* < Gy(t*) < 30t* (1.23)

The A-attainability set, 1, described by (1.23) is shown on Fig. 1.5 for
t*=5 and t*=10. Each attainability set is confounded inside of two parabolas

plotted on these figures.

The cxpression (1.24) for the B-attainability set can be obtained from (1.23).
It is easy to show that this set is contained between two parabolas that are the

envelope curves for the A-attainability sets:
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Figure 1.5. A-attainability sets.
The smaller curve confines the A-attainability set ¢ for t* =35,

the bigger curve confines the A-attainability set ¥ o for t* = 10.

. \ 0.05(Gy(t))? \ for 0 < Gy(t) < 10t*
30 (G2t < Gi(t) < —0.025(G4(t))2+1.5¢*Go(t)—7.5(t*)? for 10t* < Gy(t) < 30t*
10t* < Gy(t) < 30¢* (1.24)
0Kttt ’

IN IN

The B-attainability set JO.IO is plotted on Fig. 1.6 for t*=10. The set is
confined between two outer curves. The inner curves confine ¥,5 and g0

respectively (the same sets as displayed on Fig. 1.5).

The attainability set of the system is a set between two envelopes of all A-

attainability sets:

L(Galt))? < Gy(t) < 0.05(Galt))?

This set is shown on Fig. 1.7.

To summarize the distinction between A-, B- and (I-) attainability sets: the

A-attainability set spans values of the target functions at some given time, the B-
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Figure 1.8. B-attainability set.
The outer curve confines EO.IO , the B-attainability set.

The inner curves confine the A-attainability sets ¥ 5 and ¥g 1o.

attainability set spans values of the target function for a period of time, the (I-)
attainability set spans values of the target function for an infinite period of

time.10

If an explicit time constraint is imposed as part of the task specification,
then this time constraint can be incorporated as another target function of the
task Gpyyp =t'. In this case the I-attainability set coincides with the B-

attainability set by a.sufﬁciently large time.

10. This definition of attainability corresponds to the accepted in control theory notion of the set
of attainability in the case when Gj = x;(t*) (e.g. see [38]). In the present paradigm the
definition is extended to arbitrary scalar functions of the terminal time and the state variables.
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Figure 1.7. The (I-) attainability set.

Using the nction of the attainability set, it is possible to answer a question
whether a particular goal is accomplishable. Each goal defines a goal box region,

which will be denoted [g~,g*] in the goal space:

Y = (V1,¥2,---YM)" € [g7,8"] iff
g7 <y <g*t foralli=1,M

If the goal region has a non-empty intersection with the attainability set of the
system from time ty; then the goal is achievable from time ty, in the absence of

future perturbations:

if P, 00 N[g,e%] # @

then goal (gi,g;") is attainable from time t, (1.25)

If there where no perturbations, the attainability set would have had to be

calculated only once - at the beginning of the task. Any goal that satisfied (1.25)
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from tg =0 would have been an attainable goal. However even in the absence of
perturbations, the once selected goal might become unattainable in the future. In

the absence of perturbations this might happen only due to a bad control action.

An example of a bad control action is to drive a car in a wrong direction on
the highway. If the goal was to get to some destination within some desired time,
and that goal was accomplishable at the onset, then it might becorie unattainable

after the car has driven for a while in the wrong direction.

A reasonable aid in this situation might be the one that recalculates the
attainability set as time goes by. If wrong control actions are being executed,
then the intersection of the attainability sét with the goal region (1.25) would
reduce to the empty set. If this reduction takes place gradually, then just moni-
toring the change of the attainability set with time might be helpful to correcting
control actions. However by the time the intersection of the attainability set with
the goal region vanishes, no future control actions could remedy the situation. A
new goal must be selected then. The presence of perturbations makes the need

for recalculation of the attainability set as the time passes more pronounced.

1.4 Attainability-Based Controller

So far the attainability set was introduced as a feedback monitoring tool for
observing the system'’s progress towards accomplishing the goal. The selection of
the control actions was supposed to be done by a controller separate from the

attainability set evaluator.
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It seems beneficial to combine the controller with the attainability set
evaluator in a single control loop. The diagram of this type of a controller and
the human-computer interface that could go along with it is shown on Fig. 1.8.

Control System

..........................................

‘p(t)

Controlled
Object

111(!.) ‘
x(t)

= oF :

Decision TN L_E_’gl) Attainability gi" ,SE" . e — —
j Computer |————————= Controller

Maker je— e —— Evaluator .

¥ ¥
: lu(t)

‘p(t)

Predictor

Gi(t)i ............ 1 A

Figure 1.8. Goal-Setting Control Interfa,c;a.

Control actions at time t; are selected based on the same assumption that
was used for the estimation of the attainability set. Namely the control is syn-
thesized assuming that the future perturbations are known. The constant for

approximation of the future perturbations is provided to the controller by the

DM.

The control u(t;) at time t; is selected in such a way that the system can

reach the goal in the absence of future perturbations. To be consistent with the
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attainability condition, the control action selected at time t; should satisfy the

following conditions:

there exist some terminal time t* 2> t; such that:
gi < Gi(to,t',x(to),“t,,[to,t‘],Pt,,[to,t‘]) < Si+
utl (t) e Qu

(1.26)

Where:

Uy, (104 18 & vector-function of the entire control selected at time t,. This function coin-
cides with the control that has already been implemented up until time t, on the
interval [to,t;). In effect this function is selected only for interval [t;,t*).

Piyltos’] 1S @ vector function of the perturbations which coincides on the time interval
[to,t1) with the perturbations that have obtained from ty until t;, and is a con-

stant from t; until t*.

If the constant approximation of the future perturbations were correct, then
any control satisfying (1.26) at time t; could be used in the open loop. Since per-
turbations that will occur in the future may be different from the approximation,
conditions (1.26) have to be constantly tested. However in any practical (digital)
implementation the same control selected at t; will stay in effect for some dura-

tion of time.

Conditions (1.26) could have a non-unique solution (in regard to t* and
ug, [t,,t7] as the unknowns). It is a separate questi;)n as to which particular solu-
tion is to be executed. One way to go is to have the DM select a particular target
function, say G, and to execute the solution‘ that optimizes Gy subject to con-

straints (1.26).ll An example of the implementation of such a control strategy can
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be found in Chapter 6.

1.5 Multiple Criteria Decision Making

It is often the case that the DM wishes to get as low as possible (or as high
as possible) values of some of the target functions (provided that the values of all
other target functions are the same). Without a loss of generality we will restrict
ourselves to the case when the lower values of the target functions are preferred
to the higher values of the same functions under otherwise equivalent cir-
cumstances.!? A target function for which this preference exists on the values
when values of others are fixed is called a preferentially independent target func-

tion.[34]

If it is desired that the goal value of some target function, say of Gy was as
low as possible, then it implies that only gi is needed for the specification of a
goal for this target function. It certainly makes sense in this case not to restrict
intentionally the values of this goal function from below. It does not matter to
the DM how low a value the target function will actually get when the goal is
achieved, as long as this value is lower than gi". If similar considerations hold for

all indicator functions G;, then the selection of a new goal is closely related to the

11. The DM also needs to specify whether Gy is to be minimized or maximized.

12. The extension to the case of a target function whose higher values are preferred to the lower
ones is obvious.
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traditional problem of Multiple Criteria Decision-Making.

The presence of only a single bound gif on the value of a target function G;
indicates that the DM prefers the lower values of Gy to the higher ones. Tighten-
ing this constraint, i.e. making it even lower, might be beneficial from the DM'’s

point of view.

Tightening bound gi reflects the DM’s preference ordering “the lower the
better" (or at least not worse) for the goal values of Gi. If there are several tar-
get functions having this property, then the preferences to have the value of each

of those function as low as possible might be in conflict with each other.

In choosing a goal, the DM is constrained by the bounds of the attainability
set. Setting some g too low would necessitate the choice of a higher value of
some other g}", so that the goal is attainable. The tradeoff is to be made between
the benefits gained from lowering the values of some git and the subsequent losses
incurred by the necessity to increase the values of some other g}" to keep the goal
attainable. This tradeoff is at the heart of the traditional Multiple Criteria Deci-
sion Making paradigm (MCDM). The overview of the existing research in the

area of MCDM from the perspective of this thesis is presented in Chapter 2.

A traditional MCDM problem(9][29][34][73] is concerned with concurrent

minimization of M scalar functions:

min Fi(x), (i =1,M) (1.27)

In the case of the goal setting paradigm, the functions to be minimized are

G; and the argument x is a tuple (u;, |, ¢:],t*)-
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Every conventional MCDM method prescribes the way of obtaining some
solution x°Pt™ that belongs to the Pareto subset XP* of the problem (1.27) (see
Chapter 2). A solution belonging to the Pareto set, however, might not be the
best choice for a new goal. The reason is that any Pareto solution, gi"'(par),
(selected at time t;) is unstable to future perturbations. This solution is usually
located on the boundary of the attainability set ( from t,) and may be attainable
for only a short time after t;. In the case of a Pareto solution there is simply no
room for the values of G; to go any higher to offset the effect of the perturbations,

and still remain attainable.

On the other hand, the DM might wish to select the goal sufficiently close to
the Pareto boundary. No conventional MCDM allows the exploration of the
alternatives tn the vicinity of the Pareto boundary. A decision-aiding technique
proposed in this thesis alleviate these shortcomings. This technique, the Dynamic
Range Tradeoff helps the DM to select the goal in also the case when the goal is
specified by two parameters g;~ and g;* for 'some target functions and by only one
parameter gif for the others. This technique is also effective in solving a tradi-

tional MCDM problem, i.e. the problem of selecting a "one-sided” goal.

Another connection to the MCDM paradigm can be observed in a situation
where the DM chooses a new goal to replace some goal (gi7,g;") that just became
unattainable. In choosing a new goal the DM might wish to set parameters
(g!",g!*) of the new goal as close to (gi,g{") as possible. In doing so she also
might have to make a tradeoff. Namely, for some target function G; the new goal
parameters might have to be distanced farther away from the old parameters

than for some other target function G;.
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Despite of the apparent similarities between the goal setting paradigm and
the MCDM, the traditional MCDM techniques are often ill-suited for aiding the
DM in choosing an attainable goal. They are useful in helping the DM to explore
the Pareto boundary of the problem, but they are insufficient in helping her to
select a goal that is located at a distance from the Pareto boundary. In addition
to that, a MCDM problem is only a partial case of the goal setting paradigm that
is presented in this thesis. Any situation where two bounds gi~ and gi* need to be
specified for some target function is beyond the scope of the MCDM. An example

of a problem like that is described in Chapter 6.

1.6 Approximation of the Attainability Set

It is apparent that the DM needs to know and be able to explore the attai-
nability set (not only its Pareto boundary in the case of one-sided target func-
tions) in order to select a reasonable goal (gi7,git). To do so she also needs to be

able to establish if a particular goal g~,g* is attainable.

The attainability set is a set in a multi-dimensional space. It is difficult, if
not impossible, for the humans to visualize it. The technique developed in this
thesis helps the DM to get a feel for the attainability set, allows her to explore
this set interactively, and to select an attainable goal. This technique is based on
a causal approximation of the attainability set by adjustable ranges in the goal

space and it is described in Chapter 3.
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1.7 Consideration in the Design of Decision Aids
1.7.1 Decision Aid Design Problem

The problem of designing decision aids is too broad to be addressed at any
depth in this thesis. We only touch upon the issues that are relevant in the con-

text of the goal setting paradigm.

The decision aid design problem consists of specifying a set of characteristics
for a decision aid that ensures that the decision making performance will be
improved. There is a difference between many types of decision situations where

the aid might be needed.

Consider a decision problem of choosing the correct answer in a multiple
choice mathematics test. What could be a good aid for this problem? A calcula-
tor? A textbook with a similar problem already solved? A prompt from a friend?
A throw of a dice? Apparently, all of the above, maybe with the exception of the
last one. However it is conceivable that the DM would have to resort to the last

decision aid (the dice) if no other aid is available.

On the other end of the decision-making spectrum consider an investment
portfolio selection problem. It is well known that many well respected advisers
might have opposite opinions about the merits of & particular investment. What

aid could be suggested for this type of problem?!3
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These two decision situations reflect two extremes of a range of decision
problems. There are decision situations in which the correct answer exists, only
the DM may not know it for some reasons. In decision situations of another kind,
the correct answer may not exist. Different decision makers might have different
views about the correctness of a particular answer. In the meantime the variety
of their opinions may not be the result of their ignorance but a consequence of the

inherent difficulty of the problem.

It is the decision situations of the latter type that cannot be sufficiently
automated and may always require the human presence in the decision loop. So
one cannot expect a decision aid to come up with the solution of the problem.

The aid only can be expected to help the DM to come up with one.

Among the reasons making the human présence in the decision loop neces-

sary are the following[53]:

" 1. Best alternative cannot be computed. This includes the situations in which

different human experts have different opinions about the best solution;

2. No adequate model of the process is available. The human has extraordi-
nary memory, judgment and reasoning powers that enable her to make

decisions even when the process attains some unmodeled state;

13. In fact, there are many aids on the market to help one solve exa.ctly this problem. The useful-
ness of many of those aids is however questionable.

-43-



3. Human’s unique sensory abilities cannot be replaced;
4. Political factors prevent replacement of human.

In this thesis we concern ourselves with helping the decision maker facing
the decision situation of the first kind. The decision situation in consideration is
the goal selection for an evolving system. We specifically consider the type of cir-
cumstances where no single expert opinion exigt about what the best goal selec-
tion is. It is also frequently the case that the very evaluation of performance is

not obvious.

The answer to the question what s a good aid? largely depends on how the
performance is measured with and without the aid. In many domains this ques-
tion is very difficult to answer. It may require a painstaking and laborious statist-
ical processing of a great deal of observations, and even then the results could be

controversial.

A problem of evaluating some decision aids frequently leads to what we call

the Roseborough dilemma [53]:

This is a dilemma of evaluating a decision aid for which the normative
actions cannot be computed. If the decision situation‘were such that the best
actions could be computed, then the normative action shouid be used in place of
the human and the DM is not necessary. However in the decision situations
where the presence of the human is indispensable, the best actions cannot be com-
puted, and a single decision cannot be judged as to its value, optimality, or

correctness.
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In the latter case the decision aid should be studied in the laboratory, in a
completely modelled environment. The latter requirements implies that in the
laboratory environment he evaluation criterion and the normative course of
actions must be computable. The last requirements might seem to contradict the
previously stated nature of the original decision problem, in which neither the

best course of actions nor the evaluation criterion were available.

The Roseborough dilemma is that in spite of this ostensible contradiction
between the real decision situation (for which the decision aid is designed) and a
controlled laboratory environment that is used for testing the aid, the laboratory
testing might nevertheless be the best way to verify and test the aid. The prob-
lem of navigating the boat (Chapter 6) was chosen as an example decision prob-

lem whose elements can be brought into the laboratory and examined carefully.

1.7.2 Types of Decision Aids

If it is impossible to fully model the system about which the decision is to
be made, an alternative way is to model the decision maker instead. Among vari-
ous ways to model the human decision maker, the models based on the utility
theory stand out as the most rigorous (mathematically) and the most consistent
(conceptually) approach. The utility theory as a theory describing an (economic)
behavior of a single decision-maker was first suggested in[17] (see [66]) and later

developed as a rigorous mathematical theory that included the foundation of the

Bayesian statistics in[55].
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Most decision aids based on a model of the human decision maker roughly
operate on the same principle. They operate with a model of DM that contains
several "slots" (or parameters) characterizing individual decision maker in a deci-
sion situation. These slots are filled (i.e. the model is personalized) in the process
of (direct and indirect) solicitation from the human (which might include observ-
ing human actions over time). As soon as the slots are filled, the aid cranks out
the correct decision. In effect, this type of aid operates according to the principle:
find who the decision maker ts and what s it that she wants, and then produce the

best answer that suits her.

A different approach is to design decision aid as a decision tool. The tool
approach is not based on any particular model of the DM. The aid based on the
tool approach still leaves the decision up to the DM. It howéver provides what is
called a Deciston support environment. The proliferafion of the computers has
been accompanied with the spread of this type of tools. In fact, a bulk of the
current Al research has turned from the research geared towards reproducing the
human decision making process to providing the tools for assisting the human in

making decisions. The spread of the expert systems technology attests to that.

The decision aid developed in this thesis belongs to the latter category of
decision aids. The aid contains a set of novel tools that are supposed to create a
supportive decision environment for the DM. The environment that is created
with this decision aid does not preclude the use of any other method, if available.
However in the case of a general goal setting paradigm no other way to aid the

DM has been suggested in the research literature.
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The fact that no normative model of the human is used by a decision aid
does not precludé it from effectively aiding the DM. A model of the decision pro-
cess may be (and should be) eventually created after the decision aid has been
established. An analogy can be found in driving a car. We still are in a process
of building modéls of humans driving cars; in the meantime we already have been

building cars.[71]

Another aspect of decision aiding is a degree of generality of an aid. It is
safe to say that the more general a particular decision aid is, the more it can be
modified and augmented to suit a specific task. The goal setting paradigm sug-
gested in this thesis ¢s a very general paradigm, and it describes a variety of prac-

tical situations.

A decision aid developed in this thesis has been designed to provide the DM
with a general purpose tool to deal with a general case of the goal setting situa-
tion. It is easy to foresee particular goal-setting situations which can be success-
fully approached with specific, sometimes ad-hoc methods. The latter should not
be considered as competitors of the general technique offered in this thesis.
Instead, the method developed in this thesis provides an approach and guidelines

for attacking those problems for which no other decision technique is available.
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Chapter 2

Multiple Criteria Decision Making

2.1 Introduction

The goal setting paradigm as it has been mentioned in Chapter 1, has a
close connection to the Multiple Criteria Decision Making problems. The work on
developing computer decision aids for the latter(10]{11] has led us to the former.
Though the goal setting paradigm is broader and more general than the MCDM

problem, some insights in the latter are useful for the understanding of the

former.

In this Chapter we give a brief overview of the existing research on Multiple

Criteria Decision Making.
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The essence of the Multiple-Criteria Decision Making paradigm is to find x,

an element of some set {2 that minimizes several functions at the same time:

min Fi(x), (i = 1,M) (2-1)

where 0 is a set of potential choices that can be either continuous or discrete.

Problems that can be modelled by this paradigm commonly occur in every-
day life. They pervade all that we do and include tasks ranging from engineering
design to business and political decision-making. This paradigm and its
mathematical formalization have long been subjects of numerous scientific publi-

cations. The surveys (e.g. [25](37](39](65]) list several thousand references on the

subject.

At the inception of the MCDM as a distinct research area, most methods of
solving (2.1) were automated mathematical algorithms that had very little if any
interaction with the DM (see e.g.[14]). These methods were rooted in classical
optimization techniques. Multiple criteria optimization was actually viewed by
some researches as a natural extension of a single-objective optimization. In
recent years the emphasis has been gradually shifting from purely mathematical
algorithms towards the algorithms that extensively communicate with the DM,
i.e. it is recognized that different DMs might prefer different solutions of (2.1). A
number of mathematical models have been developed to provide the human deci-
sion maker (HDM) with computer assistance in solving the MCDM problem (e.g.

[73](9][29](46][68][48]).!
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It is only natural that many research efforts have been directed towards
helping the human to solve the MCDM problem. The application of the MCDM
methods has been suggested in many engineering areas (e.g. [64][65](46](48]), includ-
ing design of aircraft control systems[64], structural mechanical systemsi6], space
station optimization[3], to name a few. Most of these application however are
theoretical in nature, they are designed to demonstrate particular methods, and

their results have rarely been implemented in practice.

In spite of a great many methods reported in the literature there is a discer-
nible lack of applications of MCDM techniques in practice, as has been pointed by
different authors (e.g. [41]). It was suggested that the most profound reason for a
limited acceptance of MCDM methods in practice is a lack of DM’s confidence in
the obtained "optimal” decision(’]. The decision makers who have the authority
to exercise their choice have little understanding of the underlying mathematical
models, and therefore have reservations in accepting computer advice. Further,
and perhaps more important, existing technologies seldom include more than one

way of trading between objectives (while the decision-maker may consider many).

-1. In the goal setting paradigm set {2 corresponds to the set 2, of all admissible controls in (1.8).
Functions F; of (2.1) correspond to the target functions G; of (1.9).

-50-



2.2 Existing MCDM Methods

To solve (2.1) means to find 2 point x® from the set Q of all possible alter-
natives that minimizes all criteria Fj(x) at the same time. Most often this is an
impossible task because functions F; attain their minima at different values of x.
Solving (2.1) therefore means finding some compromise solution x® that
corresponds to the best trade-off among values F;(x®) of all functions. However
not all elements of {1 should be considered as possible candidates for this
compromise. ! may be reduced to its Pareto subset OF. Those and only those
alternatives xP € ) belong to the Pareto subset QF, that are better than any
other alternative in { in respect to at least one criterion. Those alternatives that
belong to @ but do not belong to 2F may be termed obviously inferior and
ignored. Any rational compromise solution of (2.1) should be looked for within

OF only.2

It is also useful to talk about the Pareto set in the space of the functions F;
in (2.1). These functions define a mapping: F;: 1 — RM. The image of the set
of all alternatives can be denoted F(f2). Similarly, the Pareto set of this image is

the image of the Pareto subset of : F(QF). Since the space that contains Q is

2. Here is a formal definition of the Pareto subset QF of (2 for a problem (2.1). Those and only
those members xP of © belong to the Pareto set N2F that satisfy the following condition: for
any element x' € 0 there exists some criterion j (1 < j < M), such that Fj(x?) < Fj(x'). An
alternative x'™ that does not belong to F should never be selected as a compromise solution
of (2.1) because there always exists some alternative from the Pareto set xP € QF such that
Fj(xP) < F;(x'™r) for all j (j = 1,M), and for some criterion k: Fy(x?) < F(x'*"). In other
words, xP is better that x"eT in respect to criterion k and at the same time it is no worse that
xinfer in respect to ail other criteria.

-51-



the space of the alternatives, RM, the space of the values of F;, can be called the

space of the criteria.

One can identify two stages of solving a MCDM problem: 1) generating a
Pareto set of alternatives; 2) selecting the "best” or "optimal” alternative from the
Pareto set. These two problems are very different in nature. The first problem
can be solved solely by mathematical means, without any assumption about the
decision maker. Finding an “optimal" alternative from within the Pareto set,
however, is a mathematically incomplete task. Unless some additional assump-
tions are made, the latter problem simply does not have a solution and is

mathematically ill-posed (as well as .problem (2.1) itself).

Different approaches to MCDM are based on different assumptions about
the nature of trade-offs that would make problem (2.1) solvable. These assump-
tions form a foundation of a broad range of models - from normative models of
human decision-making, such as the utility theoryl34], to "unmodeled" decision
making such as satisficing models[70]. It is widely recognized that in order to
complete the mathematical model, some information must be extracted from the

DM. Approaches differ in the way this is done.

Existing techniques can be classified as either one-step {non-interactive) or
multi-step (interactive) methods. In one-step methods, information is elicited
from the DM, then passed on to the computer, and the computer in return gen-
erates the "optimal"” solution of the problem. Classical multiple attribute utility
theory is one example of such methods. These methods use the DM as a source of
values for parameters of their model. An interaction with the DM is basically a

measurement procedure. There are strong arguments questioning practical value
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of these methods (e.g. [71](73]).

Multi-step interactive methods are increasingly recognized as a practical

approach to solving MCDM problemé. All these methods are based on iterative

sessions of human-computer communication. Based on the type of such commun-

ication and the models they use, these methods can be classified into three

categories:

Alternative Set Reduction. On each iteration the DM answers certain
questions that make it possible for the computer to reduce the Pareto set of
possible solutions. The most famous method of this type, the ELECTRE
method[15], was very popular in Europe and was tried in many areas of
application. This method was invented as an alternative to the classical
utility theory and it allows intransitivity of DM’s preferences. This method
was criticized on theoretical grounds, in particular for not "satisfying any
system of consistent and appealing axioms"[2].

Computer Suggests an Alternative and Asks Questions, Human
Answers. On each iteration of methods of this type, the computer offers
the DM a possible solution and then asks some questions pertaining to the
DM'’s liking/disliking of this solution. The answers are then processed
according to some mathematical model and a new alternative solution is
presented to the DM on the next iteration. Methods of this type usually
operate under assumptions about an unknown but implicit utility function.
Some of the better known methods include: Surrogate Worth Trade-off
method[9] and Zionts and Wallenius method[74].

Human Asks, Computer Answers. Methods of this kind usually do not
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assume anything regarding the underlying utility function; they do not even
assume the existence of a utility function. The human specifies some
desired values of the attributes and the computer generates a feasible alter-
native in response. The reference point approaches(22](62](70] belong to this

category.

2.3 Deficiencies of the Existing Methods

There is a strong disagreement between some authors regarding relative
merits of specific methods (e.g. [72(1]). Many techniques have been built, but it is

very difficult to determine which one makes more sense than the others(2].

It is tempting to find the structure of the decision-maker’s preferences about
the domain in order to help her solve (2.1). The only consistent and rigorous way
to do it is the utility theory[34](55]. However, practical implementation of this
theory runs into several major difficulties, including: 1) prohibitive time required
to find out one’s utility function; 2) questionable accuracy and sensitivity of the
utility measurement procedure, and therefore unknown accuracy of the results; 3)
dependency of the utility on the bounds of the set F(2) of alternative solutions -
should this set be moved around, the utility function will have to be recalculated

anew.3

3. Most procedures calculate multi-attribute utility function inside a box in the criteria space.
The larger the box, the less acurate the calculations are. If the set F(Q2) is moved outside of
the box for which the utility has been calculated, it has to be re-caiculated anew.
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It was observed that different methods lead to different solutions[7]. If the
DM understands and believes in the mathematical model run by the computer, it
is very likely that she will accept the results of the interaction with this method.
For instance, a creator of a specific MCDM method will most probably use h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>