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A Spectral Condition for Spectral Gap: Fast Mixing in

High-Temperature Ising Models

Ronen Eldan∗ Frederic Koehler† Ofer Zeitouni‡

Abstract

We prove that Ising models on the hypercube with general quadratic interactions satisfy

a Poincaré inequality with respect to the natural Dirichlet form corresponding to Glauber

dynamics, as soon as the operator norm of the interaction matrix is smaller than 1. The in-

equality implies a control on the mixing time of the Glauber dynamics. Our techniques rely

on a localization procedure which establishes a structural result, stating that Ising measures

may be decomposed into a mixture of measures with quadratic potentials of rank one, and

provides a framework for proving concentration bounds for high temperature Ising models.

1 Introduction

In this paper we study the high temperature behavior of the Sherrington-Kirkpatrick model and

more general Ising models, especially with regards to mixing of the Glauber dynamics (i.e.

Gibbs sampling) chain. More precisely, if µ is the uniform measure over the hypercube {±1}n,

we consider a general Ising model of the form

dν0
dµ

(x) =
1

Z
exp

(

1

2
〈x, Jx〉+ 〈h, x〉

)

(1)

for an arbitrary symmetric quadratic interaction matrix J and external field h ∈ Rn, where Z,

the partition function, is a normalization constant. Because the evaluation of the partition func-

tion Z is a difficult computational task, in practice samples from (1) are generally constructed

by simulating a Markov chain such as the Glauber dynamics, where at each step (in discrete

time) a site i is chosen uniformly at random from [n] and the random spin Xi is resampled from

its conditional law given X∼i. (Here and throughout, we write x∼i for the collections {xj}j 6=i,

with similar notation for X∼i.)

The behavior of Glauber dynamics in the Ising model is a classical and well-studied topic

with rich connections to structural properties of the Gibbs measure ν and concentration of mea-

sure. As far as sufficient conditions for fast mixing are concerned, one of the most general

∗Weizmann Institute of Science. Supported by a European Research Council Starting Grant (ERC StG) grant

agreement no. 803084 and by an Israel Science Foundation grant no. 715/16. Email: ronen.eldan@weizmann.ac.il.
†Massachusetts Institute of Technology. This work was supported in part by NSF CAREER Award CCF-

1453261, NSF Large CCF-1565235, Ankur Moitra’s ONR Young Investigator Award, and European Research

Council (grant no. 803084). Email: fkoehler@mit.edu (corresponding author).
‡Weizmann Institute of Science. This project has received funding from the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 692452).

Email: ofer.zeitouni@weizmann.ac.il.

1

1            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

and well-known situations where rapid mixing is guaranteed is under Dobrushin’s uniqueness

condition [7], which requires that ‖J‖∞→∞ < 1 or equivalently that
∑

j |Jij| < 1 for all

rows i. Unfortunately, even though there exist situations where this bound is tight (the mean-

field/Curie-Weiss model), in other situations of interest this bound is far from tight.

One notable model where Dobrushin’s condition is not satisfied at interesting situations

is the celebrated Sherrington-Kirkpatrick (SK) model from spin glass theory [21]. In the SK

model, J is given by a rescaled matrix from the Gaussian Orthogonal Ensemble so that J is

symmetric with off-diagonal entries Jij ∼ N (0, β2/n), where β > 0 is a parameter specifying

the inverse temperature of the model. Here the expected ℓ1 norm of a row of J is on the order

of β
√
n, so that Dobrushin’s uniqueness condition only holds under the restrictive condition

β = O(1/
√
n). Nevertheless, it is expected that in reality the Glauber dynamics are actually

fast mixing for all sufficiently small constant β = O(1) (i.e. not shrinking with n). We indeed

prove this below, see Theorem 11 and Section 5.

In the classical case of ferromagnetic Ising models on a lattice, it is known that there are

close connections between rapid mixing of the Glauber dynamics and functional inequalities

such as the log-Sobolev inequality. In a recent breakthrough result, Bauerschmidt and Bod-

ineau [3] proved a form of the log-Sobolev inequality for the SK model at sufficiently high

temperature (β < 0.25). More precisely, they proved that if J is a positive semidefinite matrix

of operator norm ‖J‖OP , then for any probability measure ρ on {±1}n,

D(ρ||ν0) .
1

1− ‖J‖OP

n
∑

i=1

Eν

∣

∣

∣

∣

∣

∂i

√

dρ

dν0
(X)

∣

∣

∣

∣

∣

2

(2)

for any model of the form (1), where D(ρ||ν0) = Eρ log
dρ
dν0

is the relative entropy and ∂if(x) =
f(x∼i, xi = 1) − f(x∼i, xi = −1) is the discrete gradient on the hypercube. By a standard

argument (see e.g. [15, 23]), this implies the following Poincaré-type inequality

Var(ϕ) .
1

1− ‖J‖OP

n
∑

i=1

Eν0 |∂iϕ(X)|2 (3)

as well. Their proof is based upon an explicit decomposition of the measure ν0 into a mixture

of product measures.

However, in the case of the SK model the estimates (2) and (3) are not known to imply

polynomial time bounds on the mixing time (or relaxation time) of Glauber dynamics. The

reason is a subtle discrepancy between different notions of discrete gradients. A simple exam-

ple which illustrates this is the uniform measure µeven on the set of vertices with even parity,

{(x1, . . . , xn ∈ {±1}n;∏i xi = 1}. It is not hard to check that the right hand side of (3) remains

unchanged if the measure µeven is replaced by the uniform measure µ, therefore, if we apply the

law of total variance, we see that µeven satisfies a Poincaré-type inequality of this form. On the

other hand, the Glauber dynamics with respect to this measure is trapped at one vertex.

For the Glauber dynamics, having spectral gap γ (or equivalently, relaxation time 1/γ) is

equivalent to the following Poincaré inequality (see e.g. [23]):

Var(ϕ) ≤ 1

γ
Eν0(ϕ, ϕ) :=

1

γ
Eν0

n
∑

i=1

(Eν0 [ϕ(X)|X∼i]− ϕ(X))2 (4)

where the rhs Eν0(ϕ, ϕ) here is the Dirichlet form corresponding to the continuous time Glauber

dynamics. For distributions with full support on the hypercube {±1}n, the right hand side of

(3) can be realized as the Dirichlet form for a certain dynamics in continuous time, see [17,

2
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Equation (3.6)], but these dynamics can have a rate that is super-polynomial (see discussion

below). Similarly, the canonical log-Sobolev inequality for the Glauber semigroup in the sense

of Gross [10], which implies (4) as well as rapid mixing, replaces the sum on right hand side

of (2) by the Dirichlet form Eν0
(√

dρ
dν0

,
√

dρ
dν0

)

. For some models, the discrepancy between the

rhs of (3) and (4) is at most a constant factor and so the difference between the Dirichlet form

of the Glauber dynamics and the ℓ2-norm of the usual discrete gradient can be disregarded.

Unfortunately, for the SK model it turns out the right hand side of (3) can be size eΘ(β
√
n)

larger than the right hand side of (4) in some simple examples. (We give such an example in

Appendix A.) On the other hand, it is not hard to show that in the reverse direction, the rhs of (4)

is never bigger than (3) by more than a constant factor, so that (4) is a stronger estimate. This

inequivalence of the two Dirichlet forms reflects the fact that the rate of the continuous-time

dynamics corresponding to (3) can be as large as eΘ(β
√
n).

The main result of this paper is a proof of the Poincaré inequality (4) with γ = 1 − ‖J‖OP

(for J psd, as before), from which we obtain polynomial bounds on the mixing time of the

Glauber dynamics. It is unclear how to obtain such a result from the product measure decom-

position used to prove (2), so a key technical idea in our work is the construction of a new

decomposition of the measure ν as a mixture of rank-one Ising models (i.e. where J has rank

one). This can be thought of as a natural analogue of the needle decomposition used in convex

geometry [12]. A structural theorem of this form, however not used directly in our result, is for-

mulated in Section 4 below. The needle decomposition itself is generated by a natural stochastic

process (a version of stochastic localization [8]) and the smooth nature of the decomposition al-

lows us to explicitly analyze the evolution of the Dirichlet form along this process, allowing us

to prove the result.

In the next section, we formulate and prove our basic Poincaré inequality, Theorem 1.

The related Appendix A discusses the inequivalence between the Dirichlet forms Eν(ϕ, ϕ) and

E|∇ϕ(X)|2. Section 3 is devoted to the estimate on mixing time, Theorem 11. In Section 4

we outline a structural theorem in the spirit of the needle-decompositions mentioned above.

Finally, Section 5 is devoted to examples.

Acknowledgements. We would like to thank Fanny Augeri for enlightening discussions.

We also thank Roland Bauerschmidt for some useful comments. We thank Ahmed El Alaoui,

Heng Guo, Vishesh Jain, and the anonymous reviewers for useful feedback.

2 Poincaré Inequality

Recall that µ denotes the uniform measure on {±1}n, and that for a matrix J and a vector h,

the Ising measure is defined as

dν0(x) =
1

Z
e

1

2
〈x,Jx〉+〈h,x〉dµ. (5)

We can clearly assume without loss of generality that J is symmetric and positive definite,

which we do henceforth. For any measure ν on {±1}n, we define the Dirichlet form

Eν(ϕ, ϕ) = Eν

n
∑

i=1

(Eν [ϕ(X) | X∼i]− ϕ(X))2, (6)

where the associated generator of the Glauber dynamics is

(Lνϕ)(x) =

n
∑

i=1

(

Eν [ϕ(X) | X∼i = x∼i]− ϕ(x)
)

.

3
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The main result of this section is a dimension-free Poincaré inequality for ν0 under the Glauber

dynamics, provided that ‖J‖OP < 1.

Theorem 1. For ν0 as in (5) with 0 � J ≺ Id and any test function ϕ : {±1}n → R, we have

the following inequality:

(1− ‖J‖OP )Varν0(ϕ(X)) ≤ Eν0(ϕ, ϕ).
Proof. The proof proceeds by a dynamical approach. It is clearly enough to consider ϕ with

Lipshitz norm 1 and ϕ(1) = ϕ((1, . . . , 1)) = 0, which implies that ‖ϕ‖∞ ≤ n. We will

introduce a path of measures

dνt(x) = ect+
1

2
〈x,Jtx〉+〈qt+h,x〉dµ(x) =: Ft(x)dν0(x), (7)

where Jt, qt are processes, adapted to the filtration Ft generated by an n-dimensional Brownian

motion Wt, and ct is a normalization constant. For νt as in (7), introduce the barycenter

at :=

∫

x dνt(x) (8)

and the test-function adjusted barycenter

Vt :=

∫

ϕ(x)(x− at) dνt(x). (9)

To define the process Ft(x), we will first need the following technical result. Define by H
the set of all linear subspaces of Rn.

Lemma 2. For every δ > 0, there exists a function C : Rn × H → Mn×n which attains the

following properties. For any linear subspace H ⊂ Rn,

1. For any v the matrix C(v,H) is positive semidefinite and Im(C(v,H)) ⊆ H .

2. The map v 7→ C(v,H) is Lipschitz continuous.

3. If dim(H) = d > 1 then Tr(C(v,H)) ≥ d− 1.

4. For any v we have

|C(v,H)v| ≤ δ (10)

If the continuity assumption is ignored, then one may simple take C(v,H) as the orthogonal

projection onto H ∩ v⊥, and for the sake on intuition, the reader may think of C this way.

Otherwise, the actual construction (and proof of the lemma) is postponed to subsection 2.0.1.

Fix δ ≪ 1 (possibly depending on n), and let C be the function provided by the above

lemma. For a symmetric matrix J , introduce the subspace HJ spanned by the eigenvectors of

J corresponding to positive eigenvalues (when J is positive semidefinite, this is Im(J)).
We are finally ready to introduce the dynamics for Ft, as the solution to the system of

equations

dJt

dt
= − C(Vt, HJt)

2, J0 = J (11)

dFt(x) = Ft(x)〈C(Vt, HJt)(x− at), dWt〉, F0(x) = 1, ∀x ∈ {±1}n, (12)

see (8) and (9) for the definitions of at, Vt. Note that the system in (11)-(12) is a stochastic

differential equation of dimension 2n + n(n+ 1)/2. The existence and uniqueness of solutions

to this system follow from the next lemma, whose proof is also postponed to Subsection 2.0.1

below. In the proof of existence, we also show that Jt remains positive semidefinite, which

essentially follows from the fact Im(C(Vt, HJt)) ⊆ HJt .

4
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Lemma 3. For any positive semidefinite matrix J , the system of stochastic differential equations

(11)-(12) admits a unique strong solution. Furthermore, the matrix Jt is positive semidefinite

for all times t ≥ 0, almost surely.

We continue with the proof of Theorem 1. Define now Ht = HJt and Ct = C(Vt, Ht). We

start by verifying that the measure νt with density dνt(x) = Ft(x)dν0(x) is indeed a probability

measure on {±1}n. The nonnegativity of Ft(x) is easily verified (it follows from (17) below)

so it remains to check that the total mass of νt is 1. Note that, due to (8) and (12), we have for

the total mass

zt :=
∑

x∈{±1}n
Ft(x)ν0(x) (13)

that

dzt =
∑

x∈{±1}n
Ft(x)〈Ct(x− at), dWt〉ν0(x) = 〈Ct(at − ztat), dWt〉

and because z0 = 1, by uniqueness of the solution we have zt = 1 for all time, and hence νt is

a probability measure as claimed.

Define now

Mt =

∫

ϕ(x)Ft(x) dν.

We have from (12) that

dMt =

〈
∫

ϕ(x)Ct(x− at) dνt, dWt

〉

= 〈CtVt, dWt〉 , (14)

where Vt :=
∫

ϕ(x)(x− at)dνt. Note that

|d[M ]t/dt| = |CtVt|2 ≤ δ2, almost surely, (15)

see (10).

Define the stopping time T = min{t : rank(Jt) ≤ 1} and let Yt := Varνt [ϕ]. Then

dYt = d

(
∫

ϕ2 dνt −M2
t

)

= −d[M ]t + martingale.

Consequently, we get from (15) that

|EYT − Y0| = |EYT − Varν0[ϕ]| ≤ δ2ET. (16)

Next, Ito’s formula gives d logFt(x) = 〈Ct(x − at), dWt〉 − (1/2)|Ct(x − at)|2dt so by inte-

grating, we have

logFt(x) = ct + 〈qt, x〉 − 〈Btx, x〉/2 (17)

with ct, qt being some Ito processes and with

Bt =

∫ t

0

C2
s ds (18)

(here we use that the matrix Ct is symmetric). Note that, with Jt as in (7), we obtain that

Jt = J − Bt, (19)

where J is the original interaction matrix.

5
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We next claim that almost surely, T ≤ 1
2
Tr(J0) =: T0. Indeed, d

dt
Tr(Jt) ≤ −2dim(Ht) +

2 ≤ −2 for all t < T , which means that if T > T0 then Tr(Jt) < 0, contradicting the positive

semidefinitenessof Jt. We also deduce by monotonicity that

0 � JT � ‖J‖OP Id.

Thus, (7) implies that

dνT (x) = ecT+ 1

2
〈U,x〉2+〈qT+h,x〉dµ(x) (20)

where |U |2 ≤ ‖J‖OP .

To deduce the final result we use two more facts, proved below: Lemma 8, which says the

Poincaré inequality holds for the rank one model νT , and Lemma 9, which says the Dirichlet

form is a supermartingale under the dynamics (11)-(12). Given these facts, it follows from (16)

that

(1−‖J‖OP )Varν0(ϕ) ≤ (1−‖J‖OP )EVarνT (ϕ)+δ2T0 ≤ EEνT (ϕ, ϕ)+δ2T0 ≤ Eν0(ϕ, ϕ)+δ2T0.

Taking δ → 0 proves the result.

2.0.1 Proof of the existence of the process

In this section we prove the technical lemmas 2 and 3.

Proof of Lemma 2. Introduce a smooth function φ : R+ → [0, 1] satisfying

φ(0) = 1, φ′(0) = 0, sup
z∈R+

zφ(z) ≤ δ. (21)

For example, the function

φ(z) = e−z2/2δ2

will do. Given a vector v ∈ Rn and a linear subspace H of Rn, write v = v1+ v2 where v1 ∈ H
and v2 ∈ H⊥, write v̂1 = v1/|v1|, and set

C(v,H) = ProjH∩v⊥ + φ(|v1|)v̂1 ⊗ v̂1. (22)

When v1 = 0, C(v,H) is just ProjH , the orthogonal projection onto subspace H . The function

C(v,H) is a smooth approximation to the function A(v,H) = ProjH∩v⊥ ; the latter is not

smooth owing to a discontinuity when |v1| is small. Indeed, when v = v2 ∈ H⊥, we note that

A(v,H) is the projection onto H , while if v = ǫv̂1 + v2 for ǫ > 0, then the operator A(v,H)
is a projection onto a codimension 1 subspace of H . On the other hand, C(v,H) smoothes this

transition, at the cost that it is not a projection.

From the definition of C(v,H) we have

|C(v,H)v| = φ(|v1|)|〈v̂1, v〉| ≤ |v1|φ(|v1|) ≤ δ.

which shows the last claim (10) in the lemma.

We now justify the second claim of the lemma; the remaining claimsfollow directly from

the definition. Rewrite C(v,H) = ProjH + (φ(|v1|) − 1)v̂1 ⊗ v̂1 and observe that the first

term is constant and the second term is Lipschitz in v: this is clear away from zero, and in a

neighborhood of zero it follows by rewriting the second term as
φ(|v1|)−1

|v1|2 v1 ⊗ v1 and using that

φ(0) = 1, φ′(0) = 1, and φ is smooth.

6
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Proof of Lemma 3. Informally, both existence and uniqueness follow from the fact that HJt will

be piecewise constant. First we note that for a fixed subspace H , the equations

dJt

dt
= −C(Vt, H)2 (23)

dFt(x) = Ft(x)〈C(Vt, H)(x− at), dWt〉 ∀x ∈ {±1}n, (24)

have Lipschitz coefficients (recall that a product of bounded Lipschitz functions is Lipschitz).

Therefore, for any initial condition, a strong solution exists and is unique [13]. Consider (23)-

(24) with H := HJ = Im(J) and initial conditions J0 = J, F0(x) = 1 and define the stopping

time τ1 = inf{t ≥ 0 : dim(HJt) ≤ dim(HJ0)− 1}. We use this system of equations to define

Jt, Ft on the interval [0, τ1] and observe that this solution satisfies (11)-(12), provided we show

that HJt = H for t < τ1, which we do next. First, observe that for v ∈ ker J that

Jtv =

(

J +

∫ t

0

−C(Vs, H)2ds

)

v = 0

where the first equality is by (23), and the second equality uses that Jv = 0 and C(Vs, H)v =
(vTC(Vs, H))T = 0 using that C(Vs, H) is symmetric, Im(C(Vs, H)) ⊆ H , and v is in ker J
which is the orthogonal complement of H . Thus, ker J ⊆ ker Jt for all t ≤ τ1. Next, by the

definition of τ1, we have for all t < τ1 that dim(HJt) = dim(HJ0); by a dimension count, this

implies that ker J = ker Jt, that HJt has no negative eigenvalues, and finally that HJt = HJ0

since they are both equal to the orthogonal complement of ker J .

More generally, for all i ≤ rank(J0) we define the stopping times

τi = {t ≥ τi−1 : dim(HJt) ≤ dim(HJ0)− i}
and define Jt, Ft on t ∈ [τi−1, τi] by the solution to (23)-(24) with initial condition Jτi−1

, Fτi−1

at time τi−1 and H = HJτi−1
. Finally, define the solution for t ≥ τrank(J0) similarly, with H = ∅

(i.e. the solution is constant). This shows existence of the solution and positive semidefiniteness

of Jt and essentially the same argument proves uniqueness as well.

2.1 Rank one inequality

In this section we prove the needed Poincaré inequality for rank one models (Lemma 8). We

use the result of [24], which establishes a Poincaré inequality under a condition on the influence

matrix referred to as the ℓ2-Dobrushin uniqueness regime (also studied in [11, 18]).

Definition 4. For two probability measures P and Q defined over the same measure space, their

Total Variation (TV) Distance is defined to be

‖P−Q‖TV := sup
A

|P(A)−Q(A)|

where A ranges over all measurable events.

Definition 5. Suppose that X is a random vector supported on a finite set X n and distributed

according to ν. Define the influence matrix A to be the matrix with diag(A) = 0 and

Aij := max
x∼i,x′

∼i

‖Pν [Xi= ·|X∼i = x∼i]− Pν [Xi= ·|X∼i = x′
∼i]‖TV

where x∼i and x′
∼i in X n−1 are allowed to differ only in coordinate j, and Pν [Xi= ·|X∼i = x∼i]

denotes the conditional law of Xi under ν given X∼i = x∼i. We say that (the law of) X satisfies

the ℓ2-Dobrushin uniqueness condition if ‖A‖OP < 1.

7
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Note that in contrast to the interaction matrix J , the influence matrix A has nonnegative entries.

We specialize the following Theorem to the setting of spins valued in {±1}, though it holds in

more general settings.

Theorem 6 (Theorem 2.1 of [24]). Suppose that X ∼ ν is a random vector valued in the

hypercube {±1}n and let A be the corresponding influence matrix (as in Definition 5). For any

test function ϕ : {±1}n → R,

(1− ‖A‖OP )Var(ϕ) ≤ Eν(ϕ, ϕ)

where Eν(ϕ, ϕ) is the Dirichlet form associated to the Glauber dynamics under ν.

To use this Theorem, we need to upper bound the spectral norm of the influence matrix for

rank one models, which we do in the following Lemma.

Lemma 7. Suppose that

dν(x) = exp

(

1

2
〈x, u〉2 + 〈h, x〉 − c

)

dµ(x) (25)

where µ is the uniform measure on {±1}n. The influence matrix A of ν (from Definition 5)

satisfies ‖A‖OP ≤ |u|2.
Proof. First observe that

E[Xi | X∼i] = tanh(ui〈X∼i, u〉+ hi).

Therefore, from the definition of Aij and since tanh(·) is 1-Lipschitz, we have

Aij =
1

2
max
x∼i,x′

∼i

|Eν [Xi|X∼i = x∼i]− Eν [Xi|X∼i = x′
∼i]| ≤ |uiuj| (26)

where x∼i, x
′
∼i range over vectors in {±1}n differing only in coordinate j. Define v to be the

element-wise absolute value of u, i.e. vi = |ui|. Since A is a matrix with nonnegative entries,

it follows from the Perron-Frobenius Theorem and (26) that ‖A‖OP ≤ ‖vvT‖OP = |v|2 = |u|2.

Combining Lemma 7 and Theorem 6 yields the desired Poincaré inequality for rank one models.

Lemma 8. Suppose that ν, u are as in (25). Then for any test function ϕ : {±1}n → R,

(1− |u|2)Var(ϕ) ≤ Eν(ϕ, ϕ)

where Eν is the Dirichlet form associated to the Glauber dynamics under ν.

2.2 The Dirichlet form is a supermartingale

Lemma 9. Let Wt be a Brownian motion adapted to a filtration Ft. Let Ct be a matrix-valued

process adapted to Ft. Let ν0 be an arbitrary measure on {±1}n and suppose that Ft is a

solution to the SDE

dFt(x) = Ft(x)〈Ct(x− at), dWt〉, F0(x) = 1, ∀x ∈ {±1}n

where dνt(x) = Ft(x)dν0(x) and at =
∫

xdνt(x). Let ϕ : {±1}n → R be an arbitrary test

function. Then the Dirichlet form Eνt(ϕ, ϕ) is a supermartingale.

8
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Proof. We use that the Dirichlet form can be rewritten as

Eνt(ϕ, ϕ) =
∑

x∼y

νt(x)νt(y)

νt(x) + νt(y)
(ϕ(x)− ϕ(y))2 (27)

where x ∼ y denotes the adjacency relation on the hypercube, i.e. x and y differ in exactly one

coordinate. To see this, consider arbitrary ν, let X and Y be two independent samples from ν,

and observe

Eν(ϕ, ϕ) = Eν

n
∑

i=1

Var(ϕ(X) | X∼i)

=
1

2
Eν

n
∑

i=1

Eν [(ϕ(Y )− ϕ(X))2 | Y∼i = X∼i, X∼i]

=
1

2
Eν

n
∑

i=1

(ϕ(Y )− ϕ(X))2 · 1[Y∼i = X∼i]

Pν(Y∼i = X∼i | X∼i)

=
∑

x∼y

ν(x)ν(y)(ϕ(x)− ϕ(y))2
n

∑

i=1

1[y∼i = x∼i]

Pν(Y∼i = x∼i)

=
∑

x∼y

ν(x)ν(y)

ν(x) + ν(y)
(ϕ(x)− ϕ(y))2 (28)

where in the second equality we used the identityVar(X) = 1
2
E[(X−Y )2] for Y an independent

copy of X .

Given this, it suffices to show that
νt(x)νt(y)
νt(x)+νt(y)

is a supermartingale for fixed x ∼ y. Let us

calculate the Ito differential d νt(x)νt(y)
νt(x)+νy(y)

. We have by Ito’s Lemma,

d log νt(x) = 〈dWt, x̃〉 −
1

2
|x̃|2dt.

and

d log νt(y) = 〈dWt, ỹ〉 −
1

2
|ỹ|2dt.

where x̃ = Ct(x− at), ỹ = Ct(y − at). Moreover,

d log (νt(x) + νt(y)) = 〈dWt, αx̃+ βỹ〉 − 1

2
|αx̃+ βỹ|2dt

where α = νt(x)
νt(x)+νt(y)

, β = νt(y)
νt(x)+νt(y)

. Therefore,

d

(

νt(x)νt(y)

νt(x) + νy(y)

)

=

(

νt(x)νt(y)

νt(x) + νy(y)

)

1

2

(

|αx̃+ βỹ|2 + |βx̃+ αỹ|2 − |x̃|2 − |ỹ|2
)

dt+ martingale.

So again by Ito’s Lemma, since deSt = eStdSt +
1
2
eStd[S]t, we have

d

(

νt(x)νt(y)

νt(x) + νy(y)

)

=

(

νt(x)νt(y)

νt(x) + νy(y)

)

1

2

(

|αx̃+ βỹ|2 + |βx̃+ αỹ|2 − |x̃|2 − |ỹ|2
)

dt+ martingale.

By convexity of | · |2 and since α+ β = 1, the above expression is a supermartingale.

9
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3 Consequences for mixing time

By standard arguments which we now recall, the Poincaré inequality implies mixing time esti-

mates for the Glauber dynamics. For a Markov semigroup Pt = etΛ, reversible with respect to

ν, a Poincaré inequality

γVarν [ϕ] ≤ Eν(ϕ, ϕ)
is equivalent to a spectral gap estimate:

γ ≤ λ1 − λ2

where λ1, λ2 are the top two eigenvalues of the transition rate matrix Λ (see e.g. [23]). The

quantity 1/γ is known as the relaxation time of the Markov chain. As usual, we let Pt(·, ·)
denote the transition kernel of the Markov chain. Linear algebraic arguments establish the

following mixing time estimate:

Theorem 10 (Theorem 20.6 of [16]). Let Pt be a reversible Markov semigroup over the finite

state space Ω, with stationary measure π and spectral gap γ. Then,

max
x∈Ω

‖Pt(x, ·)− π‖TV ≤ ǫ

as long as

t ≥ 1

γ
log

1

ǫminx∈Ω π(x)
.

Applied to our situation, we have γ = 1− ‖J‖OP by Theorem 1 and

min
x∈{±1}n

ν0(x) ≥ 2−ne−2n‖J‖OP−2|h|1

from the definition and Hölder’s inequality. As a result, we obtain the following mixing time

estimate for Glauber dynamics:

Theorem 11. For Pt the continuous time Glauber dynamics on ν0 defined in (5),

max
x∈{±1}n

‖Pt(x, ·)− ν0‖TV ≤ ǫ

as long as

t ≥ 1

1− ‖J‖OP

(

(1 + 2‖J‖OP )n+ 2|h|1 + log
1

ǫ

)

.

One unit of time for the continuous dynamics corresponds to a Poissonian (with parameter n)

number of steps of the discrete-time Glauber dynamics. Correspondingly, Theorem 1 implies

an O
(

n2+‖h‖1n+n log(1/ǫ)
1−‖J‖OP

)

mixing time estimate for the discrete time Glauber dynamics, using

Theorem 12.3 of [16] in place of Theorem 10 above.

4 A needle decomposition theorem

In this section we formulate a structural theorem, which follows as a byproduct of our proof.

As mentioned above, this theorem may be thought of as an analogue to the technique due to

Kannan, Lovász and Simonovitz [12] used in convex geometry (this technique was later gener-

alized to the context of Riemannian manifolds, see [14]). It roughly states that measures with

10
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arbitrary quadratic potentials can be decomposed into mixtures of measures whose potentials

are quadratic of rank one, in a way that: (i) The integral of some test function ϕ is preserved,

and (ii) the operator norm of the quadratic potential does not increase.

For v, u ∈ Rn, consider the measure wv,u on {±1}n defined as

dwu,v

dµ
(x) =

1

Zu,v
exp

(

1

2
〈u, x〉2 + 〈v, x〉

)

where Zu,v =
∫

{±1}n e
1

2
〈u,x〉2+〈v,x〉dµ.

Following roughly the same lines as the proof of Theorem 1 gives rise to the following

result.

Theorem 12. Let ν0 be a probability measure on {±1}n of the form

dν0
dµ

(x) =
1

Z
exp

(

1

2
〈x, Jx〉 + 〈h, x〉

)

, (29)

where J is positive definite, and let ϕ : {±1}n → R. There exists a probability measure m on

Rn × Rn such that ν0 admits the decomposition

ν0(A) =

∫

wu,v(A)dm(u, v), ∀A ⊂ {±1}n,

with the properties that:

1. m-almost surely, (u, v) are such that

∫

ϕdwu,v =

∫

ϕdν0,

2. such that for m-almost every (u, v), we have |u| ≤ ‖J‖OP ,

3. and such that for all x ∼ y on the hypercube, we have the following inequality of conduc-

tances:
∫

wu,v(x)wu,v(y)

wu,v(x) + wu,v(y)
dm(u, v) ≤ ν0(x)ν0(y)

ν0(x) + ν0(y)
.

Proof. (sketch) The decomposition follows by considering the evolution defined in (11) and

(12) and defining the measure m according to the decomposition implied by equation (20)

above. The last property is a consequence of the corresponding supermartingale property shown

in the proof of Lemma 9.

The theorem can be used to reduce the concentration of a test function ϕ over an Ising model

to concentration over the measures wu,v, as demonstrated by the following corollary.

Corollary 13. Let K > 0 and let ϕ : {±1}n → R be a function such that for all u, v ∈ Rn with

|u| ≤ K one has Varwu,v
[ϕ] ≤ 1. Then for every ν0 of the form (29) with ‖J‖OP ≤ K, one has

Varν0 [ϕ] ≤ 1.

11
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Proof. Applying Theorem 12, the law of total variance implies that

Varν0 [ϕ] =

∫

Rn×Rn

(
∫

ϕdwu,v − Eν0 [ϕ]

)2

dm(u, v) +

∫

Rn×Rn

Varwu,v
[ϕ]dm(u, v)

=

∫

Rn×Rn

Varwu,v
[ϕ]dm(u, v) ≤ sup

|u|≤K,v∈Rn

Varwu,v
[ϕ].

The result follows readily.

Similarly, and analogous to the needle decomposition for convex sets, it allows us to estab-

lish functional inequalities for Ising models by reducing to the case of the rank one measures

wu,v; not just the Poincaré inequality, but also related inequalities such as the Log-Sobolev in-

equality. For the (bounded rate) Glauber dynamics, there is no uniform Log-Sobolev inequality

over the class of models we consider, as there is no such inequality for biased product measures

[6] which are a special case. In subsequent work the Modified Log-Sobolev Inequality has been

shown using this reduction [1].

5 Some examples

Sherrington-Kirkpatrick (SK) Model. This is the Ising model with J symmetric and Jij ∼
N (0, β2/n), i.e. up to rescaling J is drawn from the Gaussian Orthogonal Ensemble. Letting

the diagonal of J be 0, the spectrum of a GOE is contained in [−2 − ǫ, 2 + ǫ] asymptotically

almost surely for any ǫ > 0 (see e.g. [2]). Therefore our result implies the Poincaré inequality

and polynomial time mixing for all β < 1/4.

Remark 14. The Poincaré inequality (Theorem 1) applied to linear functions gives

Var(〈w,X〉) ≤ 1

1− ‖J‖OP
Eν

n
∑

i=1

(Eν [〈w,X〉|X∼i]− 〈w,X〉)2 ≤ 1

1− ‖J‖OP
|w|2

using (28), and estimate (3) from [3] gives a similar bound with a different constant. Thus, both

results imply that in the SK model for any fixed β < 1/4, ‖Σ‖OP = O(1) with high probability,

where Σ = EνXXT is the covariance matrix. This partially verifies Conjecture 11.5.1 of [22]

that ‖Σ‖OP = O(1) for any β < 1.

Diluted SK Model (d-Regular). A variety of spin glass models on sparse graphs have been

studied in the literature; one well-known “diluted” version of the SK model has the interaction

matrix J supported on a sparse Erdős-Reyni random graph — see [21]. Along similar lines, we

can consider a dilution where J is supported on a random d-regular graph with d ≥ 3. If we

take a Rademacher disorder, i.e. Jij ∼ Uni{±β} for i, j neighbors and otherwise Jij = 0, then

it follows from a version of Friedman’s Theorem that ‖J‖OP ≤ β(2
√
d− 1 + ǫ) a.a.s. for any

ǫ > 0 — see [4, 5, 19]. It follows from our results that we have the Poincaré inequality and

fast mixing for all β < 1
4
√
d−1

, whereas the model is only in Dobrushin’s uniqueness regime

for β = O
(

1
d

)

— note that up to constants the latter bound is tight for general Ising models on

arbitrary d-regular graphs [9, 20].
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A Inequivalence of Dirichlet Forms

The Dirichlet form Eν(ϕ, ϕ) can be viewed as the expected norm squared for an appropriate

notion of gradient of ϕ. On the other hand, another natural notion of discrete gradient for

functions on the hypercube is given by (∇ϕ)i(x) = ϕ(x∼i, xi = 1) − ϕ(x∼i, xi = −1) which

is used in the result of Bauerschmidt and Bodineau [3], and the norm of this discrete gradient

squared is the Dirichlet form of a different semigroup with a variable transition rate [17]. In the

case of the SK model, the transition rate of the variable-rate chain is sometimes exponentially

large in
√
n; in what follows, we give a simple example of a function ϕ witnessing that the

Dirichlet forms similarly can differ in size by an exponentially large factor in
√
n.

To compare these two Dirichlet forms, we have the following estimates which follow im-

mediately from (27):

(

min
x∼y

ν(y)

ν(x) + ν(y)

)

Eν‖∇ϕ‖2 . Eν(ϕ, ϕ) . Eν‖∇ϕ‖2.

In the context of the SK Model, the parenthesized term is of size e−Θ(β
√
n) and both estimates are

tight up to constants. To see this for the lower bound, define a ∈ {±1}n by a1 = −1 and aj =
sgn(J1j) otherwise; the significance of this choice is that in the SK model, it’s exponentially

unlikely to see X1 = a1 given X∼1 = a∼1. Let λ be an atomic measure supported on a, so

dλ

dν
(x) =

1[x = a]

ν(a)
.

If we define ϕ =
√

dλ
dν

then, see (28),

E (ϕ, ϕ) =
∑

x∼y

ν(x)ν(y)

ν(x) + ν(y)
(ϕ(x)− ϕ(y))2 =

∑

y:y∼a

ν(y)

ν(a) + ν(y)
≤ n.

In comparison, for the discrete gradient ∇ϕ we have

E|∇ϕ(X)|2 ≥ ecβ
√
nν(a)

ν(a)
= eΘ(β

√
n)

where the lower bound follows by considering the a′ which equals a but flipped on the first

coordinate, and which (from the definition of the SK model) is eΘ(β
√
n) more likely under ν.
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