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Flat Bands

Jeong Min Park,1, ∗ Yuan Cao,1, ∗, † Kenji Watanabe,2

Takashi Taniguchi,2 and Pablo Jarillo-Herrero1, †

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2National Institute for Materials Science,

Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

Interaction-driven spontaneous symmetry breaking lies at the heart of many quan-

tum phases of matter. In moiré systems, broken spin/valley ‘flavour’ symmetry in flat

bands underlies the parent state out of which ultimately correlated and topological

ground states emerge1–10. However, the microscopic mechanism of such flavour sym-

metry breaking and its connection to the low-temperature many-body phases remain

to be understood. Here, we investigate the symmetry-broken many-body ground

state of magic angle twisted bilayer graphene (MATBG) and its nontrivial topology

using simultaneous thermodynamic and transport measurements. We directly observe

flavour symmetry breaking as a pinning of the chemical potential µ at all integer fill-

ings of the moiré superlattice, highlighting the importance of flavour Hund’s coupling

in the many-body ground state. The topological nature of the underlying flat bands

is manifested upon breaking time-reversal symmetry, where we measure energy gaps

corresponding to Chern insulator states with Chern numbers C = 3, 2, 1 at filling factors

ν = 1, 2, 3, respectively, consistent with flavour symmetry breaking in the Hofstadter’s

butterfly spectrum of MATBG. Moreover, our concurrent measurements of resistivity

and chemical potential allow us to obtain the temperature dependence of the charge

diffusivity of MATBG in the strange metal regime11, a quantity previously explored

only in ultracold atom systems12. Our results bring us one step closer to a unified

framework for understanding interactions in the topological bands of MATBG, both

in the presence and absence of a magnetic field.

In condensed matter systems with flat electronic bands, the Coulomb interaction between elec-

trons can easily surpass their kinetic energy and give rise to a variety of exotic quantum phases,

ranging from Mott insulators to quantum spin liquids13,14. In this strongly correlated regime, elec-

trons may spontaneously order themselves to minimize the total Coulomb energy at the cost of
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increasing their kinetic energies, leading to the breaking of certain symmetries. Such symmetry-

broken states can occur at a relatively high energy scale and act as a parent state for phases that

appear at lower energy scales, such as superconductivity. Furthermore, when there is nontrivial

topology in the system, the interplay between strong correlations and the underlying topology

could lead to novel phases of matter, such as the fractional quantum Hall state15. Understanding

the physics behind this interplay could guide us in designing next-generation strongly-correlated

topological quantum materials.

Magic-angle twisted bilayer graphene (MATBG) serves as a unique platform to investigate in-

teraction driven phenomena in a highly tunable flat-band system. When two layers of monolayer

graphene (MLG) are stacked with a small twist angle of θ ∼ 1.1°, the interlayer hybridization in

the resulting moiré superlattice renormalizes the Fermi velocity of the Dirac electrons and creates

flat bands at low energies16–19. In this regime, a plethora of exotic correlated and topological

phenomena have been experimentally demonstrated, including correlated insulator states, super-

conductivity, and the quantum anomalous Hall effect1,2,4–7. Scanning tunneling microscopy (STM)

experiments have directly shown the significance of on-site Coulomb interactions in MATBG20–23.

More recently, scanning single-electron transistor and further STM measurements have suggested

that the Coulomb interactions induce phase transitions that break the spin/valley symmetry9,10.

Despite significant experimental and theoretical progress, the microscopic picture that underlies

the broken symmetry states in MATBG and their possible connections to the correlated phases

and unusual superconductivity is still far from being complete and requires investigation.

Here we study the interplay between interaction-driven symmetry breaking and nontrivial topol-

ogy in the flat bands of MATBG by directly measuring the combined thermodynamic and transport

properties of its many-body ground state. For this, we use a unique technique24,25 that involves

a MLG probe layer in close proximity to MATBG to sense the chemical potential of MATBG at

different charge densities, temperatures, and magnetic fields. Measuring chemical potential or com-

pressibility is a class of techniques26,27 complementary to the spectroscopic techniques that probe

the excitation spectra, such as tunneling or photoemission spectroscopy. We find that the chemical

potential distinctively reaches local extrema when the number of electrons per moiré unit cell (ν)

is close to integers ±1,±2,±3 and ±4. We show that these results can be naturally explained

in the framework of spin/valley ‘flavour’ symmetry breaking, but where in addition to Coulomb

repulsion9,10,21,23, we need to consider the intra-flavour Hund’s coupling. The latter interaction

results in the pinning of the chemical potential, favouring single flavour occupancy in a way anal-

ogous to the Hund’s rule for spin alignment in multi-electron atoms. Surprisingly, the response of
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FIG. 1. Device structure and demonstration of chemical potential measurement. (a) Schematics of the
measurement technique. MATBG and monolayer graphene (MLG) are separated by a thin (∼ 1 nm) h-BN
spacer and dual-gated. We simultaneously measure the resistance of MATBG and MLG. (b) Band diagram
of the heterostructure, showing the relationship between the chemical potentials of MATBG (µMATBG) and
MLG (µMLG), the back gate voltage Vbg and top gate voltage Vtg, and the electrostatic potential drops V0,
V1, and V2. e is the electron charge. (c) Transport characterization of MLG, showing a sharp resistance
RMLG
xx peak versus MLG carrier density nMLG, with full width half maximum of less than 3× 109 cm−2.

Inset: Landau fan diagram (RMLG
xx versus nMLG and magnetic field B) in MLG, which shows that the

Landau levels become visible already at ±0.03 T. (d) Transport characterization of MATBG. The twist
angle of MATBG is θ = 1.07± 0.03°. We find correlated states at filling factors νMATBG = 1,±2, 3, as well
as superconducting domes (blue) at −2− δ and +2 + δ, respectively. (e-f) Combined plot of the resistance
of MLG and MATBG, represented by purple and orange colour scales, respectively, and overlaid in the
same axes. As a proof of principle, we use the charge neutrality point (CNP) of MATBG (orange diagonal
feature) to probe the chemical potential of MLG, at (e) B = 0 and (f) B⊥ = 1 T. The horizontal purple
stripes are the resistive features in MLG. From the CNP of MATBG, we extract the chemical potential
µMLG versus density nMLG, which is shown in the insets of (e-f). The white line in the inset of (e) is a fit
to µMLG = ~vF

√
π|nMLG|sgn(nMLG). The red ticks in the inset of (f) denote the expected Landau level

energies ±vF
√

2e~B|N |, where vF = 1.12× 106 m s−1 and N is an integer.
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the chemical potential to the in-plane magnetic field indicates that a finite in-plane magnetization

develops at ν = ±1,±2,±3 at finite magnetic field, including the half-filling (ν = ±2), suggesting

that the magnetic state of the ν = ±2 correlated states might be more intricate than previously

thought1,4,28. Furthermore, the nontrivial topology of the MATBG flat bands is revealed when

the time-reversal symmetry is broken by applying a perpendicular magnetic field27–31. We di-

rectly observe and measure the size of the correlated gaps with Chern numbers 3, 2, and 1, and

demonstrate that all the experimentally observed states can be explained in the unified framework

of symmetry broken Hofstdater spectrum32,33. With combined chemical potential and transport

measurements, we compare the temperature dependence of resistivity, compressibility, and charge

diffusivity in the high-temperature regime of MATBG where linear resistivity-temperature be-

haviour is observed11,34. Our data suggest that the diffusivity of MATBG is close to a diffusivity

bound35 proposed in the incoherent transport regime.

Figure 1a illustrates our experimental scheme. The MATBG is separated from a monolayer

graphene (MLG) layer by an ultrathin layer of h-BN (∼ 1 nm). The MATBG layer is fabricated by

a ‘laser-cut & stack’ method (see Supplementary Information), which reduces the strain compared

to our previous ‘tear & stack’ method. We use the top gate voltage Vtg and back gate voltage

Vbg to control the densities in MLG and MATBG, and measure the transport properties of the

two layers simultaneously. In this setup, direct probing of the chemical potential µ of one layer

is achieved by sensing the screening of electric field from the gates by the other layer24,25. From

the band alignment diagram shown in Fig. 1b, we can deduce the relationship between (Vtg, Vbg)

and (nMLG, µMLG, nMATBG, µMATBG), the latter being density (n) and chemical potential (µ) in

MLG and MATBG, respectively (see Supplementary Information for details). In particular, when

one layer is at the charge neutrality point, e.g. nMLG = 0, the chemical potential of the other

layer (µMATBG) is directly proportional to one of the gate voltages, which in this case is given by

µMATBG = −(eCtg/Ci)Vtg, where Ctg and Ci are the geometric capacitances per unit area of the

top and middle h-BN dielectrics, respectively.

The MLG layer used in our experiments has very low disorder < 3× 109 cm−2 and excellent

field-effect mobility > 300 000 cm2 V−1 s−1 (Fig. 1c). The Landau levels start developing from

magnetic fields as low as ±30 mT. The MATBG layer has a twist angle of θ = 1.07± 0.03°, and

exhibits correlated states at integer filling factors νMATBG = 4nMATBG/ns = +1,±2,+3 of the flat

bands (ns = 8θ2/
√

3a2 is the superlattice density of TBG and a = 0.246 nm is the lattice constant

of graphene), as well as superconducting states at both ν = −2 − δ and +2 + δ, where δ is a

small change in filling. The superconducting transition temperature Tc reaches as high as 2.7 K for
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ν = −2 − δ, as determined from the 50 % normal state resistance (see Extended Data Figure 1).

The outstanding quality of both the MATBG and the MLG probe layers creates an exceptional

platform to study the underlying physics in MATBG.

To demonstrate the measurement principle, we first measure the chemical potential and resis-

tivity of MLG with and without a magnetic field. A key advantage of this experimental technique

is that we can simultaneously measure electronic transport in both layers and accurately correlate

the chemical potential to the transport features. Fig. 1e and f show the resistance of MATBG and

MLG as a function of Vtg and Vbg at B⊥ = 0 T and B⊥ = 1 T, respectively. µMLG as a function

of nMLG is obtained by tracking the charge neutrality of MATBG (see inset of Fig. 1e and Sup-

plementary Information for the conversion formulae). From these extracted values, we determine

the Fermi velocity to be vF = 1.12× 106 m s−1 by fitting to µMLG = ~vF
√
π|nMLG|sgn(nMLG). In

a magnetic field B⊥ = 1 T, the spectrum of MLG is quantized into discrete Landau levels. The

extracted chemical potential in these Landau levels fits well to the Landau level spectrum of MLG,

where the energy of the N -th Landau level is ±vF
√

2e~B|N |. Our technique can thus determine

the chemical potential of either layer with a sensitivity of . meV.

The chemical potential of MATBG is shown in Fig. 2a. Hereafter we will simply use n (ν)

and µ to denote nMATBG (νMATBG) and µMATBG. We show the data as a function of the MATBG

filling factor ν and Vtg, which is directly proportional to the chemical potential of MATBG µ if one

tracks the charge neutrality point of MLG (shown as the green curve). The resistance data of MLG

(purple) and MATBG (orange) are overlaid for qualitative comparison of features, and the gray

dash lines indicate the integer filling factors ν = 0,±1,±2,±3 of MATBG, which correspond to

filling 0, 1, 2, or 3 electrons (holes) per moiré unit cell, respectively. The rate that µ increases with

n (or ν), known as the inverse electronic compressibility χ−1 = dµ/dn, is inversely proportional to

the density of states (DOS) for a non-interacting system. Around the charge neutrality (ν = 0),

µ rises quickly with ν, consistent with a minimal DOS at the Dirac point. However, once we

start filling electrons into the flat band, its rate of increase decreases quickly and µ reaches a local

maximum around ν = 0.6. Surprisingly, it then starts decreasing, exhibiting a negative χ−1,36

and it gets pinned at a local minimum around the integer filling ν = 1. Having this as a turning

point, µ rises again until it hits the next maximum. This intriguing pinning behaviour repeats

itself at each integer filling factor, including ν = 4 (see Fig. 2a inset). On the hole-doped side

(ν < 0), the pinning behaviour of the chemical potential is opposite and weaker (i.e creates weak

maxima in µ). The total bandwidth estimated from the chemical potential at low temperatures

is around ∼40 meV, where both the electron and hole-doped sides contribute similarly. We also
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FIG. 2. Chemical potential of MATBG as a function of temperature and in-plane magnetic field. (a)
Sensing the chemical potential of MATBG using the MLG charge neutrality point (CNP). Measurement
taken at B = 0 T and T = 4 K. The green line shows the extracted chemical potential of MATBG. Gray
dash lines mark the four filling factors of MATBG obtained from the Landau Fan diagram, which agree
with the MATBG correlated states resistive features. The chemical potential is pinned at each filling factor,
showing the stabilization of the state. The inset shows the same features probed by tracking the N = 1
MLG LL at B = 0.7 T. (b) Mean-field estimate of the chemical potential with various Coulomb repulsion
energy U and exchange energy J in units of the single-particle bandwidth W ≡ 1. The experimental
data are best explained qualitatively when both terms are nonzero. (c) Illustration of interaction-driven
chemical potential stabilization at ν = 1. Chemical potential curve at T = 2 K near ν = 1 is shown. A phase
transition associated with flavour symmetry breaking occurs before each integer filling factor (except ν = 4).
The exchange energy J stabilizes the filled flavour when the filling factor is close to one. (d) Temperature
dependence of the chemical potential of MATBG from T = 2 K to T = 70 K, probed with the MLG CNP.
Clear pinning behaviour at integer filling factors persists up to T = 20 K. (e) In-plane magnetic field, B‖,
dependence of the chemical potential of MATBG at T = 4 K and B⊥ = 0.7 T, probed with the N = 1 MLG
LL. The pinning in chemical potential around odd filling factors ν = ±1 gets intensified as B‖ is applied,
whereas those at filling factors ±2 do not display significant change. Inset: Magnetization M‖ in units of
Bohr magneton µB per moiré unit cell, which shows that all states at ν = ±1,±2,±3 are magnetized in
an in-plane field. Error bands (blue) correspond to 95 % confidence interval. (f) Zoom-in of the chemical
potential (top) and transport resistance (bottom) aligned for comparison, shown for ν = +1,+2.

investigated the behaviour of µ while varying temperature from 2 K to 70 K, as shown in Fig. 2d.

The observed pinning behaviour persists prominently up to 20 K. We note that the observation

of a negative compressibility indicates that our system might be in a strong Coulomb frustration

regime37, which acts to suppress macroscopic phase separation that may occur otherwise in an

unconstrained system.

The pinning of µ at all integer ν is reminiscent of the stabilization of electronic shells in atoms
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when they are half-filled or full-filled, which is known as Hund’s rule for maximum spin multiplicity.

The physical origin of the Hund’s rule stems from the Coulomb exchange interaction between the

electrons. Here in MATBG, we also find that the pinning behaviour of the chemical potential is

naturally explained when both the on-site inter-flavour Coulomb repulsion energy U and inter-

site intra-flavour exchange energy J are considered. We focus on the ν > 0 side in the following

description. Figure 2b shows the chemical potential calculated with a mean-field model for different

values of U and J . Our model can reproduce qualitatively the experimentally measured chemical

potential only when both U and J are nonzero and of similar magnitude (purple solid curve),

beyond the currently established understanding9,10,23. We wish to emphasize the importance of

the exchange energy in stabilizing the chemical potential by illustrating a possible mechanism

for the ν = 1 case (see Fig. 2c). Near charge neutrality, as the density is increased, all four

flavours are filled at the same rate. As ν starts to approach one, the Coulomb repulsion between

different flavours starts to surpass the kinetic energy penalty of filling up only one flavour. As ν

reaches a certain value (still below 1), a flavour-symmetry-breaking phase transition occurs and

all electrons are transferred into a single flavour to minimize the Coulomb repulsion9,10. From

this phase transition point all the way to ν = 1, i.e. while a single flavour is being filled, the U

term does not have any contribution to the free energy, while the J term decreases the total free

energy as ∼ −Jν2 (see Supplementary Information). This term decreases the chemical potential

and results in a negative inverse compressibility χ−1 ∝ D−1 − 2J (D is the single-particle DOS

per flavour) when 2J > D−1. At ν = 1, maximal stabilization by the exchange term J is reached,

and thus the pinning of µ. Further increase in ν populates the other three empty flavours and it

increases the chemical potential before the next phase transition occurs. We also note that the

pinning of chemical potential on the hole-doped side occurs at slightly more negative values of ν

compared to exact integers, which may be attributed to smaller U/W and/or J/W ratios on that

side, where W is the single-particle bandwidth (see Supplementary Information).

To directly probe the magnetic properties of the correlated states, we measured the chemical

potential in MATBG as a function of in-plane magnetic field up to 11 T. The results are shown

in Fig. 2e and zoomed-in in Fig. 2f. In the lower panels of Fig. 2f, we also show the resistance

of MATBG as measured by transport. At ν = ±1, the pinning of the chemical potential is

clearly strengthened by B‖, as is the intensity of the transport resistance peak (see Methods and

Extended Data Figure 2). These findings suggest that the states ν = ±1 develop a spin-polarization

in response to the magnetic field. To confirm this, we directly obtained the magnetization by
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FIG. 3. Probing the correlated Chern gaps of MATBG in a perpendicular magnetic field. (a) Experiment
and (b) simulation of the chemical potential versus ν in MATBG, at B⊥ from zero to 6 T. W is the
bandwidth used in the simulation (see Supplementary Information). Near charge neutrality we find gaps
that correspond to Landau level filling factors νLL = 0,±2, and ±4, while the pinning of µ at ν = 1, 2, 3
shown in Fig. 2 evolves into topological gaps with Chern numbers C = 3, 2, 1, respectively, as evident from
their slope in magnetic field dn/dB = C/φ0, where φ0 is the flux quantum. (c) The Hofstadter’s butterfly
spectrum of TBG up to a flux per unit cell of φ0/2 (calculation shown for 1.8°, but spectrum is qualitatively
similar for MATBG). The major gaps in the spectrum have Chern numbers of C = 0,−1,+1, 0 per flavour,
respectively. (d) Calculated total Chern number of TBG using the mean-field model with Coulomb repulsion
and exchange interactions for a flux of φ0/6. The correct Chern number is reproduced, both in the Landau
levels near the charge neutrality (C = −4,−2, 0, 2, 4, indicated by red bars) and in the correlated Chern gaps
(C = 3, 2, 1, indicated by the blue bars). The dots above the plot show the configuration of the four flavours
in each gap. The colouring scheme of the dots matches the ones shown in (c). Adding the Chern number
of each flavour gives the total Chern number. (e) Extraction of energy gaps in the correlated spectrum of
MATBG at B⊥ = 6 T. See Extended Data Figure 4 for their dependence on B⊥.
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integrating the Maxwell’s relation
(
∂M‖
∂ν

)
B‖,T

= −
(
∂µ
∂B‖

)
ν,T

, where M‖ is the magnetization per

moiré unit cell induced by the field10. The inset of Fig. 2e shows M‖ in units of Bohr magneton

µB per moiré unit cell. We indeed find that the magnetization reaches a value on the order of one

µB at ν = ±1, consistent with a spin-polarized state at finite field, which would indicate either a

very soft paramagnetic state or a ferromagnetic state at zero field. We do not observe hysteresis

in transport, which suggests it may be the former. The ν = ±2 states, on the other hand, have

been speculated to be spin-unpolarized insulating states1,4,28. However, we find that, while the

resistance of these insulating states is indeed suppressed by the in-plane magnetic field (see Fig. 2f

and Extended Data Figure 2), to our surprise the chemical potential measured at ν = ±2 does not

show significant dependence on the in-plane magnetic field (Fig. 2f). Furthermore, M‖ does not

return to zero when ν is tuned from ±1 to ±2 (Fig. 2e inset). While the lack of dependence of µ on

B‖ at ν = ±2 can be partially captured by our theoretical model (see Supplementary Information),

the persistence of magnetization near ν = ±2 is at odds with the finite-field spin-unpolarized state

inferred from the suppression of the transport gap. These observations suggest that in an in-plane

field the ν = ±2 gaps might select a ground state with nontrivial spin and/or valley texture, beyond

simply occupying two flavours with opposite spins.

Our experiment also puts constraints on the possible mechanism of superconductivity in

MATBG. As shown in Extended Data Figure 5b, the superconducting dome lies in the region

where χ−1 is high, with maximum Tc corresponding to a maximum in χ−1. Since, in the non-

interacting limit, χ is equal to the single-particle DOS, a Bardeen-Cooper-Schrieffer (BCS) type

superconductivity would be enhanced when the DOS is high and thus have the highest Tc when

χ−1 is low. Therefore, our observation of an opposite trend indicates that it is not easy to reconcile

the superconductivity in MATBG with a weakly-coupled BCS theory. Future theories attempting

to model the superconductivity in MATBG will likely need to take into account the importance

of Coulomb interactions, including both repulsion and Hund’s coupling, and the consequent phase

transitions.

We now turn to the topological properties of MATBG. By measuring the chemical potential of

MATBG in a perpendicular magnetic field, we can gain insight into the energy gaps in MATBG

that result from the interplay between the topology of the Hofstadter spectrum and the Coulomb

interactions, as suggested by recent experiments27–31. The helical nature of the Dirac electrons

in graphene endows each flat band of MATBG a Chern number of C = ±1, which however is

only explicitly manifested when the composite inversion-time reversal (C2T ) symmetry is broken,

either by alignment to the h-BN substrate (breaks C2) or by applying a magnetic field (breaks
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T ). Fig. 3c shows the Hofstadter butterfly spectrum of TBG, where the topologically nontrivial

gaps with C = ±1 and the trivial gaps with C = 0 are shown. The former gaps are smoothly

connected to the Landau level gaps at νLL = ν/(φ/φ0) = ±4 at low fields, where φ is the magnetic

flux per unit cell and φ0 = h/e is the flux quantum. Without interactions, the only possible total

Chern number in this picture is Ctot = 0,±4, since all flavours are in the same gap. The Coulomb

interactions among the flavours can cause their Chern numbers to be different, and can give rise

to new hierachies of correlated Chern gaps.

These topological gaps are directly observed in our chemical potential measurements, as shown

in Fig. 3a. Near charge neutrality, we observe the quantum Hall gaps as steps in the chemical

potential at the Landau level filling factors νLL = 0,±2,±4, whose positions evolve according to

the Streda formula dn/dB = νLL/φ0
38. The appearance of the Landau level gaps at νLL = 0,±2

indicates that the flavour symmetry is already broken. In the meantime, the extrema in the

chemical potential at ν = 1, 2, 3 at B⊥ = 0 evolve into topological gaps at B⊥ = 6 T. The

topological nontriviality of these gaps is evident from the fact that their evolution follows the same

Streda formula dn/dB = C/φ0 that indicates the total Chern number of C = 3, 2, 1 associated

with the states originally at ν = 1, 2, 3, respectively.

The appearance of the broken-symmetry Landau levels and topological Chern gaps can be

analyzed in a unified way using a correlated Hofstdater spectrum model32,33. We consider the

single-particle DOS to be representative of the Hofstadter spectrum shown in Fig. 3c33, with

possible Chern numbers C = 0,−1,+1, 0 associated with the major gaps for each flavour, and

add the mean-field Coulomb repulsion and exchange terms U and J in a similar manner as above.

Using this model, we calculate the Chern number C as a function of total filling ν and reproduce

the experimentally observed sequence of 0,±2,±4 at the charge neutrality Landau levels, and 3, 2,

and 1 at densities ν = 1 + 3 φ
φ0
, 2 + 2 φ

φ0
, and 3 + φ

φ0
, respectively, as shown in Fig. 3d. In the top

part, we also illustrate the contribution to the total Chern number from each flavour by colour-

coded dots in accordance with Fig. 3c. By performing a similar calculation (see Supplementary

Information), we can simulate the evolution of the chemical potential with the magnetic field, as

shown in Fig. 3b. The remarkable similarity with the experimental data clearly indicates that

this model captures the main features of the correlated spectrum of MATBG with and without a

magnetic field.

A more quantitative analysis is performed on the chemical potential measured at B⊥ = 6 T, as

shown in Fig. 3e. From the steps in µ, we can directly extract the sizes of all energy gaps in the

spectrum without relying on any temperature-dependent measurement. The Landau level gaps at
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νLL = −4,−2, 0, 2, and 4 are 5.9, 3.3, 5.9, 2.3, and 4.9 meV, respectively. The small sizes of the gaps

at νLL = ±4 translate to a vastly renormalized Fermi velocity of approximately vF ∼ 6× 104 m s−1,

consistent with other experimental probes in MATBG1,27. The gaps at νLL = 0,±2, on the

other hand, are broken-symmetry gaps created by the Coulomb interactions U and J , and have

similar sizes as those found in the νLL = 0,±1 broken-symmetry states in MLG39,40. However, a

fundamental difference with MLG is that the broken-symmetry gaps in MATBG have the same

energy scale as the single-particle gaps at νLL = ±4, another manifestation of the fact that U, J

are on the same order as W . We also find clear evidence of smaller gaps at νLL = ±1,±3, which

require further symmetry breaking than those discussed here (see Supplementary Information).

Furthermore, the sizes of the topological Chern gaps at ν = 1 + 3 φ
φ0
, 2 + 2 φ

φ0
, and 3 + φ

φ0
are

extracted to be 2.2, 5.0 and 1.9 meV respectively. The larger gap at ν = 2 + 2 φ
φ0

is consistent with

the fact that this state is more readily resolved in electronic transport experiments1,2,4,5,28,30. Its

difference with the gaps at ν = 1 + 3 φ
φ0

and 3 + φ
φ0

might be attributed to the different magnetic

ground state, with contributions from both orbital and spin degrees of freedom of the two fully

filled flavours. These gaps have a weak dependence on B⊥, as shown in Extended Data Figure 4,

consistent with the Hofstadter spectrum in Fig. 3c.

In correlated metals with multiple bands near the Fermi energy, the atomic Hund’s coupling is

known to play an important role in their many-body physics, including the strange metal regime41.

In MATBG, recent experiments have reported evidence for strange metal behaviour11, manifested

as resistivity linear with temperature, from very low T up to T above the Fermi energy. As shown

in Fig. 4a and c, the resistivity in our MATBG sample is largely linear with T over a range of

densities around the correlated states, and with a slope that is weakly dependent on n, consistent

with recent works11,34. The resistivity keeps increasing with T without any sign of saturation

up to 50 K, suggesting non-Fermi liquid transport in this system11. It has been hypothesized

that the strange metal behaviour can be universally described by a ‘Planckian’ scattering rate

bound Γ ∼ kBT/~ in the framework of incoherent non-quasiparticle transport42,43. However, the

construction of a microscopic picture for this bound is still in progress44,45.

An appropriate framework to investigate the strange metal regime, regardless of the existence

or absence of quasiparticles, is the Nernst-Einstein relation, which connects the resistivity ρ, com-

pressibility χ, and charge diffusivity D of a generic conductor by ρ−1 = e2χD. A linear in T

resistivity could thus originate from: (i) χ−1 ∝ T , which could come from thermodynamic con-

tributions when kBT & W 35,46; from (ii) D−1 ∝ T , which would represent a linear scattering

rate; or (iii) from a more complex combined T dependence of both. Differentiating between these
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FIG. 4. Resistivity, electronic compressibility, and diffusivity of MATBG in the strange metal regime. (a)
Resistivity and (b) inverse electronic compressibility χ−1 = dµ/dn of MATBG versus ν and temperature.
Colour marks show the position of ν where the line-cuts are taken in (c-f). (c) Linear resistivity-temperature
behaviour across a range of densities around the correlated states, with only a weak dependence of slope on ν.
(d) Line-cuts of χ−1 do not show significant dependence on T . (e) Effective diffusivity D∗ = χ−1/e2(ρ−ρ0),
where ρ0 is obtained by fitting the linear T range and extrapolating to T = 0. (f) 1/D∗ shows linear trend
as a function of T . The gray dash line denotes a diffusivity bound Dbound(T ) = ~v2F /(kBT ), where we used
a Fermi velocity of vF = 6× 104 m s−1.

possibilities could help constrain theoretical models for strange metal behaviour35,47,48. However,

to the best of our knowledge, there are no reported measurements of the electronic compressibil-

ity or charge diffusivity for any correlated materials in the strange metal regime, and only recent

experiments have begun to explore this physics in the very high temperature regime in ultracold

atom systems12.

Our combined resistivity and compressibility measurements allow us to extract the charge dif-

fusivity of MATBG. Figure 4b shows the inverse compressibility χ−1 as a function of ν and T .

While for T < 20 K χ−1 becomes negative before each integer filling factor, as discussed above,

at higher T it converges to a roughly constant value of order 1 eV nm2 for any value of ν. Fig-

ure 4d shows some representative traces of χ−1 vs T for the same ν values as in Fig. 4c. The

traces exhibit only a weak dependence on T , albeit for all these densities ρ exhibits a prominent
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linear T behaviour. Therefore, this suggests that the linear ρ-T behaviour in MATBG is mainly

due to a T -dependent charge diffusivity D. Figure 4e shows the T -dependence of the extracted

effective diffusivity D∗ = χ−1/e2(ρ − ρ0), where ρ0 is the residual resistivity extrapolated at zero

temperature, and Fig. 4f shows its inverse 1/D∗. These quantities indeed do appear to roughly

follow a ∼ T−1 and a ∼ T trend, respectively. Our observations therefore indicate that the strange

metal transport regime in MATBG is consistent with a scattering rate linear in T . Note that these

arguments do not apply to regions with negative electronic compressibility and thus negative D∗,

as the interpretation of diffusivity in this case needs to be modified49 (see also Supplementary In-

formation for relevant data and discussion). Interestingly, we find the extracted diffusivity D∗(T )

at all these fillings to be within about a factor of 2 from a diffusivity bound Dbound = ~v2F /(kBT )

proposed for incoherent metals35, using vF = 6× 104 m s−1 estimated above at low temperatures.

While this bound is known to be violated in the low-temperature region in a large-U system47, this

is not at odds with our observations if MATBG is in the intermediate U regime (U/W ∼ 1), as

suggested by the range of U that qualitatively reproduce our experimental data, as well as other

recent experiments.9,10,20
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METHODS

1. Sample Fabrication

The multilayer heterostructure consists of one sheet of monolayer graphene (MLG) and twisted

bilayer graphene (TBG) twisted at a small angle θ ∼ 1.1°, separated by a thin (∼ 1 nm) h-

BN layer. This sandwich is encapsulated by two h-BN flakes. All flakes were first exfoliated

on SiO2/Si substrates, and subsequently analyzed with optical microscopy and atomic force mi-

croscopy to determine their thicknesses and quality. The multilayer heterostructure was fabricated

by a modified polymer-based dry pick-up technique, where a layer of poly(bisphenol A carbon-

ate)(PC)/polydimethylsiloxane(PDMS) on a glass slide fixed on the micro-positioning stage was

used to sequentially pick up the flakes. The order of the pick-up was h-BN-MLG-h-BN(1 nm)-

MLG-MLG, where the last two MLG sheets were laser-cut from one MLG flake (see Supplemen-

tary Information) and twisted by an angle ∼ 1.1°. All h-BN layers were picked up at 90 ◦C, while

the MLG layers were picked up at room temperature. The h-BN-MLG-h-BN(1 nm)-MLG-MLG

heterostructure was then released on the pre-stacked h-BN-Pd/Au back gate at 175 ◦C. Hall-bar

geometry for transport measurements was defined with electron beam lithography and reactive ion

etching for each of the MLG and MLG-MLG layers. The top gate and electrical edge-contacts were

patterned with electron beam lithography and thermal evaporation of Cr/Au.
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2. Measurement Setup

Electronic transport measurements were performed in a dilution refrigerator with a supercon-

ducting magnet, with a base electronic temperature of 70 mK. Current through the sample, ampli-

fied by 1× 107 V A−1, and the four-probe voltage, amplified by 1000, were measured with SR-830

lock-in amplifiers synchronized at the same frequency between 1 Hz∼20 Hz. Current excitation of

1 nA or voltage excitation of 50 µV to 100 µV was used for resistance measurements. We measured

both MLG and MATBG layers simultaneously for accurate comparison.

3. Maxwell’s Relations

Using Maxwell’s relations between thermodynamic variables, we can obtain information about

various thermodynamic quantities by taking different derivatives of the chemical potential. The

free energy of the system per unit area in the presence of a magnetization can be written as

g = u − Ts + M‖B‖, where u,M, s are the internal energy, magnetization, and entropy per area

respectively. u and g satisfy

du = Tds+B‖dM‖ + µdν, (1)

dg = −sdT −M‖dB‖ + µdν. (2)

By taking the second derivative of g with respective to (ν,B) in different orders, we can obtain

the following Maxwell’s relationship,

(
∂M‖
∂ν

)

T,B‖

= −
(
∂µ

∂B‖

)

T,ν

. (3)

Therefore, we can integrate from the B‖-derivative of µ to obtain the change in M‖ as a function

of density ν,

M‖ = M‖(ν = 0)−
∫ ν

0

(
∂µ

∂B‖

)

T,n

dn (4)

The extracted ∂M‖/∂ν and M‖ versus ν are shown in Extended Data Figure 3. We extract the

uncertainty (95 % confidence interval) of ∂M‖/∂ν from fitting of µ with B‖, and propagate through

the integration to obtain uncertainty in M‖.
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4. Thermal activation gap analysis

Thermal activation gap analysis was performed based on the Arrhenius formulaR ∼ exp(−∆/2kBT ),

where kB is the Boltzmann constant and ∆ is the gap size. A temperature-dependent background

was removed from the raw resistance Rxx of MATBG to avoid being affected by the linear Rxx-T

behaviour in MATBG.28 The corrected quantity is denoted by R∗MATBG and shown in Extended

Data Fig. 2a-b. By fitting the gaps as a function of the in-plane magnetic field B‖ to ∆ = gµBB‖,

where µB is the Bohr magneton, we find effective transport g-factors of ∼ 1.31 for the ν = +2

state and ∼ 0.57 for the ν = +1 state, as shown in Extended Data Fig. 2c.
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Extended Data Figure 1. Superconductivity and Landau fan diagram of MATBG. (a) Superconducting
curves for ν = −2 − δ and +2 + δ domes of MATBG. (b) Landau fan diagram of MATBG at 1 K. The
CNP shows the main sequence νLL = ±4,±8, . . . and broken symmetry states νLL = −1,±2,±3. There are
fans from ν = ±2, where the sequence νLL = +2,+4,+6 and νLL = −2 are seen, respectively. We also find
transport evidence of a correlated Chern gap with Chern number C = 3 from ν = +1.
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FIG. S1. Laser-cutting of graphene. (a) Setup for laser-cutting integrated into a standard microscope. (b)

Example of graphene cut by the laser, showing a clean-cut across multiple layers.

I. LASER CUT & STACK

Conventionally, TBG is prepared by tearing a single-crystal graphene flake and then stacking

the two parts together, or namely the ‘tear & stack’ method[1, 2]. The tearing relies on the stiction

between the top h-BN flake and the part of graphene it covers. However, this method has several

drawbacks. Firstly, it has a limitation on the thickness of the top h-BN. We find that ultra thin

h-BN (≤ 2 nm) is not suitable for tearing graphene, because the stiction is very weak. Secondly,

the graphene near the torn edge is typically not clean and can roll up or develop cracks. Thirdly,

we suspect that the tearing can introduce excess strain in the sample, which increases the twist

angle disorder.

To overcome these issues and improve the sample quality, we developed a new method of cutting

graphene using a focused laser beam, and we call it the ‘laser-cut & stack’ method. The schematic

of the setup is illustrated in Fig. S1a. The laser source and the related optics are all integrated

into the standard dry-transfer setup. The main addition is a laser source and a beam splitter in the

light path before the camera. For cutting graphene, we use a supercontinuum laser with output

filtered to visible range (400 nm to 700 nm) with tunable output power. The supercontinuum laser

has a pulse width on the order of ∼ 10 ps and a repetition rate of 40 MHz. The laser is focused into

a submicron spot using a standard objective (50x, NA=0.75), and its light path is confocal with the

normal imaging path through the microscope. The graphene can be reliably cut while the silicon
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oxide subtrate remains intact in the output power range of 60 mW to 150 mW (measured before

the beam splitter), which translates to an ablation threshold of about 130 mJ cm−2, assuming an

effective spot diameter of 1 µm and transmission of 70 % inside the microscope, consistent with

typical values widely reported in the literature, see e.g. [3–6]. The pulse width and wavelength of

the laser appears to be unimportant for cutting graphene as long as it is less than nanosecond scale.

We find however that shorter pulse width tends to create cleaner cut edges, which is expected as

thermal effects are reduced at shorter time scales.

Fig. S1b shows an example of the laser-cut graphene. We find that few-layer graphene

and graphite up to tens of nanometer thick can be easily cut with the same power, as thicker

graphene/graphite also has higher absorption. The laser ablation of graphene leaves very little

residue on its surface as the products are likely volatile, as can be seen from the optical image.

The rest of the sample fabrication proceeds in the same way as the ‘tear & stack’ method.

II. CHEMICAL POTENTIAL EXTRACTION

A. Conversion Formulae

In the presence of another layer, the electric field from the top and back gates do not fully

penetrate to the layer of interest due to screening. This principle allows us to measure the chemical

potential as a function of carrier density in the double-layer heterostructure device. Here, we will

derive the relations between the experimentally controlled quantities, such as gate voltages, and

the physical quantities of interest, such as chemical potential and carrier densities. When there are

two electronic systems in equilibrium, their electrochemical potential must be equal. We consider

the case where the MATBG and MLG layers are shorted to ground while we apply voltage to the

top and back gates. Figure 1b (main text) shows the increase of electric potential from MATBG

to MLG (V0), from MATBG to back gate (V1), and from MLG to top gate (V2). Balancing the

electrochemical potential, the following relations are obtained

eV1 = eVbg − µMATBG(nMATBG) (1)

eV2 = eVtg − µMLG(nMLG) (2)

eV0 = µMLG(nMLG)− µMATBG(nMATBG) (3)
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The densities in terms of electric potentials are given by the electrostatics equations

enMATBG = CbgV1 + CiV0 (4)

enMLG = CtgV2 − CiV0 (5)

where Cbg, Ctg, Ci are the geometric capacitances per unit area of the bottom, top, and interlayer

h-BN dielectric layers, respectively. Note that the sign conventions in all the equations are chosen

such that the arrow shown in the diagram denotes the positive direction.

Combining these five equations, the following two master equations are obtained that relate

(Vtg, Vbg, Ctg, Cbg, Ci) and (nMATBG, nMLG, µMATBG, µMLG):




enMATBG = Cbg(Vbg − µMATBG(nMATBG)

e ) + Ci(
µMLG(nMLG)

e − µMATBG(nMATBG)
e )

enMLG = Ctg(Vtg − µMLG(nMLG)
e )− Ci(µMLG(nMLG)

e − µMATBG(nMATBG)
e )

(6)

Two simple cases are obtained when the carrier density of one layer is kept constant. At MATBG

charge neutrality point, where nMATBG = 0 and µMATBG = 0, we can obtain the following:




nMLG =

CtgVtg
e +

(Ctg+Ci)CbgVbg
eCi

µMLG = − eCbgVbg
Ci

(7)

This means that the charge-neutrality feature of MATBG in the Vtg and Vbg space can be directly

converted to µMLG(nMLG), the chemical potential of MLG as a function of carrier density.

Similarly, if one tracks the MLG charge neutrality point, where nMLG = 0 and µMLG = 0, the

equations for MATBG are given by:




nMATBG =

CbgVbg
e +

(Cbg+Ci)CtgVtg
eCi

µMATBG = − eCtgVtg
Ci

(8)

B. Extraction with MLG Charge Neutrality

As discussed in the main text, the MATBG chemical potential can be extracted from the Vtg-Vbg

maps of RMLG
xx by tracking the MLG charge neutrality (Dirac point). A self-consistent extraction

procedure is performed on the Vtg − Vbg resistance maps of both MLG and MATBG to solve the

nonlinear equations Eq. 6, as detailed in the following. The capacitances are extracted using

alternative gating configurations, as detailed in Section II C.
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1. Extract µMLG(nMLG) from the charge neutrality peak (µMATBG = nMATBG=0) in the

RMATBG
xx map, using Eq. 7.

2. Initialize µMATBG(nMATBG) with an arbitrary (e.g. linear) function.

3. The Vtg − Vbg resistance maps are converted to nMATBG − nMLG maps using Eq. 6, and the

functions µMLG(nMLG) and µMATBG(nMATBG).

4. We extract the resistance peak position (corresponding to the charge neutrality point of

MLG) in nMLG, for each nMATBG (see Sec. VII for extraction details). If the peak position

npeak is close enough to 0 for all nMATBG, indicating that µMATBG has converged, we stop

the iteration.

5. The new µMATBG is calculated by µMATBG(nMATBG)− h · enpeak/Ci, where h is a numerical

factor controlling the convergence. In the next iteration, the resistance peak positions shall

be closer to zero.

6. Repeat from step 3.

C. Using Alternative Gating Configuration

We can similarly extract the chemical potential by applying voltage Vb between the MLG and

MATBG layers and applying only one of the two gate voltages, as was performed in Ref. [7, 8].

Combining these results with the Vtg-Vbg configuration, we can accurately determine the values of

the geometric capacitance Cbg, Ctg, Ci and the Fermi velocity of MLG, vF . With a bias voltage Vb

on MLG (MATBG is kept at ground), the formulae in Eq. 6 are modified to




enMATBG = Cbg(Vbg − µMATBG(nMATBG)

e ) + Ci(
µMLG(nMLG)

e − µMATBG(nMATBG)
e + Vb)

enMLG = Ctg(Vtg − Vb − µMLG(nMLG)
e )− Ci(µMLG(nMLG)

e − µMATBG(nMATBG)
e + Vb)

(9)

First we wish to obtain the ratio between Ctg, Cbg and Ci. At MATBG charge neutrality, Eq.

9 becomes



µMLG = eVb − eCbg

Ci
Vbg

nMLG =
Ctg

e Vtg +
Ctg+Ci

eCi
CbgVbg

(10)

Interestingly, if Vbg is also set to zero, Vtg and Vb are directly proportional to nMLG and µMLG

respectively, as shown in Fig. S2a for example. If we add Vbg now, the shift of the feature in
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FIG. S2. Measurement of the chemical potential using other gating configurations. (a) The chemical

potential of MLG can be directly obtained from the Vtg − Vb map of RMATBG
xx . Here the perpendicular

magnetic field is 0.5 T, and steps in position of the resistance peak can be clearly identified, which correspond

to the Landau level gaps of MLG. (b) The chemical potential extracted from all possible gating configuration

can be fit with a Fermi velocity of 1.12× 106 m s−1. (c) The RMLG
xx map in the Vbg-V ′b space provides similar

information as Fig. 2a, from which we can obtain the same information on the chemical potential.

the Vtg − Vb map directly gives us the capacitance ratio Cbg/Ci and (Ctg + Ci)Cbg/Ci with a high

precision. From this shift we obtain Cbg/Ci = 0.0263 and Ctg/Ci = 0.109 respectively. Note that

this determination does not depend on any assumption about the chemical potential of either layer.

Next, we pinpoint the absolute value of the capacitances by fitting the Landau fan diagram in

strong perpendicular magnetic fields, which is shown in Extended Data Figure 1. The procedure

of fitting the Landau fan in TBG is detailed in previous works[1, 9, 10]. The fitting gives us the

capacitances Cbg = 4.60× 10−4 F m−1, Ctg = 1.90× 10−3 F m−1, and Ci = 1.75× 10−2 F m−1. The

twist angle is determined to be (1.07± 0.03)◦.

With these values, we can determine the Fermi velocity in the MLG, by fitting the measured

chemical potential and density in MLG at MATBG charge neutrality from Eq. 10 to the formula

µMLG = ~vF
√
π|nMLG|sgn(nMLG). Fig. S2b shows the extracted nMLG and µMLG from measure-

ments performed in different gating configurations with Vbg, Vtg, and Vb. All data points fit well to

a Fermi velocity of vF = 1.12× 106 m s−1.

Similarly to Eq. 10, we can use the configuration Vbg − V ′b to directly measure µMATBG and

nMATBG. −V ′b is the bias voltage applied to MATBG while MLG is grounded (note the minus sign

for consistency with previous discussion about Vb). µMATBG and nMATBG are proportional to V ′b

and Vbg respectively if Vtg = 0. Fig. S2c shows RMLG
xx measured in this configuration. The features
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FIG. S3. Measurement of the chemical potential using a MLG Landau level. (a) Chemical potential of

MATBG can also be extracted from the N = 1 Landau level transition of the MLG. (b) Temperature

dependence of µMATBG extracted using the MLG N = 1 Landau level.

are largely the same as what we identified with the default configuration Vtg − Vbg, as shown in

Fig. 2a. We mainly used the Vtg − Vbg configuration throughout the paper without using Vb or

V ′b because we could then measure both RMATBG
xx and RMLG

xx simultaneously, and the measurement

time is significantly reduced. The plots in Fig. S2 show that the different gating configurations

indeed give equivalent information about the chemical potential.

D. Extraction with MLG Landau Levels

In the presence of a small perpendicular magnetic field B⊥, the Landau levels (LL) of MLG

can be used as an alternative to tracking the Dirac point. Fig. S3a shows the full map of the the

transport in MATBG and MLG in a perpendicular magnetic field B⊥ = 0.7 T, and the extracted

chemical potential on the right axis. Fig. S3b shows the temperature dependence of the chemical

potential extracted using the first Landau level. We find that the features extracted from Landau

levels or the charge neutrality are largely consistent, and there is no obvious change of chemical

potential in MATBG in this small perpendicular field, as opposed to the large field case where

correlated Chern gaps are observed (see Sec. III).
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FIG. S4. Extraction of chemical potential in a perpendicular magnetic field. The data plotted are RMLG
xx

and RMATBG
xx (see Fig. 2 caption for explanation). The blue dots denote the µMATBG versus νMATBG we

extract for each field. Measurement temperature is 1 K.

III. CHERN GAP ANALYSIS

To identify the correlated Chern gaps, we analyze the transport data measured in perpendicular

magnetic fields from 1 T to 6 T, as shown in Fig. S4. Similar to Fig. 2 in the main text, here we

also show the resistance of the MLG overlaid with the resistance of the MATBG. The perpendicular

magnetic field induces a strong asymmetry on the MLG resistance, likely due to a contact resistance

effect. To extract µMATBG from these data (proportional to Vtg), we track different features for

different ranges of νMATBG, as illustrated in Fig. S4. We subsequently stitch these different pieces

together manually to obtain the full µ-ν data as shown in Fig. 3a.

IV. THEORETICAL MODELING

Our theoretical modeling follows the methodology of the mean-field model in [11] and [12]. We

consider the total free energy of the system G as a function of the total filling ν ∈ [−4, 4], which

is the sum of the four filling flavours ν1, ν2, ν3, ν4 ∈ [−1, 1]. Each flavour has its own chemical
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potential µi, i = 1, 2, 3, 4, which is related to νi as

νi =

∫ µi

0
D(ε)dε, (11)

where D(ε) is the single-particle density of states (DOS). The free energy consists of a kinetic term

and a Coulomb term

G = Gk +GU , (12)

Gk =
∑

i

∫ µi

0
εD(ε)dε, (13)

GU = U
∑

i 6=j
νiνj − J

∑

i

ν2i . (14)

In the last equation, the U and J captures the Coulomb repulsion and Coulomb exchange interac-

tion respectively in the mean-field level of an extended Hubbard model.[13] The Coulomb repulsion

U has the largest contribution from on-site repulsion, which largely occur between electrons of dif-

ferent flavours due to the Pauli exclusion principle. On the contrary, the exchange term requires

two interacting electrons to have the same flavour (for indistinguishability between two identical

quantum particles upon exchanging), and therefore happens between different sites. Eq. 14 that

contains the U and J terms can be rewritten as

GU = (U + 2J)
∑

i 6=j
νiνj − J

(∑

i

νi

)2

(15)

= U ′
∑

i 6=j
νiνj − Jν2 (16)

At equilibrium, the Gibbs free energy is minimized with respect to the four degrees of freedom

νi (or equivalently, µi). We numerically minimize G as a function of these variables within the

constraint that
∑

i νi = ν and νi ∈ [−1, 1]. The global chemical potential, which is determined

by the chemical potential of the flavour(s) that is currently being filled, is calculated from its

thermodynamic definition

µ =
∂G

∂ν
. (17)

In Eq. 16, it is the effective repulsion U ′ = U + 2J that controls the distribution of νi. The

second term in Eq. 16, on the other hand, creates a constant shift in the inverse compressibility,

∆G = −Jν2, (18)

∆µ =
∂G

∂ν
= −2Jν, (19)

∆χ−1 =
∂2G

∂ν2
= −2J. (20)
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FIG. S5. Modeling flavour symmetry breaking in TBG at B⊥ = 0. (a) Triangular DOS we used to capture

the essential features of the flat bands. The orange dashed line plotted on the right y-axis shows the

filling ν versus energy. (b-f) Mean-field calculation of the filling per flavour νi, i = 1, 2, 3, 4 and the chemical

potential µ as a function of total filling ν. The symmetry breaking is completely controlled by the parameter

U ′ = U + 2J , while J itself gives rise to negative compressibility. Note that in (c) where the interactions are

barely enough to induce the phase transitions, the features in the chemical potential can occur away from

the integers, which could explain the shift of features in the hole-doped side data.

When this negative contribution exceeds the other parts of the inverse compressibility coming

from the single-particle DOS and the U ′ term, the total χ−1 = dµ/dν can be therefore negative.

Our mean-field models for capturing the Coulomb physics in the presence and absence of a magnetic

field are largely the same except for a few details, which we elaborate on below.

A. Without Magnetic Field

The band structure of TBG without magnetic field has been well studied in the literature[14, 15].

The notable features of the single-particle DOS is the linear rise near the charge neutrality, and

the divergence at the van Hove singularities (vHs). To significantly simplify the calculation while

still correctly capturing the single-particle physics of the TBG bands, we approximate the DOS of
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TBG as a triangular function, as shown in Fig. S5a. The energy axis and the density axis are now

normalized in units of the bandwidth W and full-filling density per flavour ns/4, respectively, so

−1 < νi, µi < 1. Furthermore, we also assume an exactly particle-hole symmetric spectrum with

respect to the charge neutrality point, and for the simulation at zero magnetic field we limit both

νi and µi to [0, 1].

The flavour symmetry is evidently broken from the plot of νi, i = 1, 2, 3, 4 versus the total

ν =
∑

i νi, as shown in Fig. S5b-f. When the Coulomb interaction is not sufficient, the free energy

is minimized at νi = ν/4, resulting in equal population of all flavours. As U ′ is increased, we start

to observe breaking of the flavour degeneracy (Fig. S5c). We notice that when U ′ is barely large

enough (Fig. S5c), the symmetry breaking is not complete and it occurs away from the integers,

since the reduction in Coulomb repulsion at the integer fillings is not enough to compensate the

kinetic penalty of breaking the symmetry. This regime may possibly explain the shifting of features

we found on the hole-doped side in our experiment, if for example the hole-doped side bandwidth

W is larger than the electron-doped side.

Full flavour polarization is reached when the Stoner ferromagnetism criteria U ′D̄ > 1 is reached,

which occurs around U ′ = 1 since the average DOS D̄ is on the order of 1[11]. Between densities

ν = m and ν = m + 1, m = 0, 1, 2, there is a symmetry-breaking phase transition at density νcm.

Before this transition density ν < νcm there are m fully filled flavours (νi = 1) and 4−m flavours

with density νi = (ν −m)/(4 −m), adding up to total density ν. After this transition, there are

m fully filled flavours, one ‘currently filling’ flavour with density ν −m, and 3 −m flavours with

density zero νi = 0 [11].

We find that the shape of the DOS has a small but noticeable effect on the symmetry breaking

and the chemical potential, most notably right before ν reaches integer values larger than 1. This

means that the chemical potential of each flavour has a tendency to get ‘pinned’ at the maximum

of the DOS, so that the Coulomb energy can be minimized without raising the kinetic energy. In

the case where the emulated “vHs” is far from the band edge, as shown in the case in Fig. S6b and

c, there is another series of phase transition at a different density νdm,m = 1, 2, 3. In the region

νdm < ν < m+1, the already fully filled m flavour(s) ‘unfill’ partially and merge with the currently

filling flavour, so that out of the four flavours there are m+ 1 flavours with density νi = ν/(m+ 1)

and 3 −m flavours with zero density νi = 0. While there are certainly refinements that could be

made on this model, this result shows a general feature of Coulomb-induced symmetry breaking in

TBG: the charges of the full-filled flavours could still participate in further interactions when more

charges are added.
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FIG. S6. Dependence of the flavour symmetry breaking on the DOS shape. Shown are the DOS and νi

versus ν for three different values of Emax, which is the position of the maximum in the DOS. The parameters

are U = 0.45, J = 0.35.

At zero magnetic field, this model qualitatively explains our observed negative compressibility

near all integer fillings, including before ν = 4. However, it should be noted that so far this model

does not have enough information to reproduce the in-plane magnetic field data, since we do not

know the spin/valley texture of each flavour and how their energies evolve in a magnetic field. One

could in principle attempt to include such effects by adding a Zeeman energy term gB
∑

i νisi into

the free energy, where si = ±1 are the spins of the flavours (two up and two down) and g is the

g-factor. However in doing so, at ν = 2 the system will preferably enter a ferromagnetic state to

minimize the Zeeman energy term, which does not match our experimental observations. We will

further discuss the implications of our experimental data at ν = 2 in Section V.

B. With Perpendicular Magnetic Field

The energy spectrum of TBG is quantized into Hofstadter subbands in a strong perpendicular

magnetic field, as shown in Fig. 3c. The largest persisting gaps within the spectrum, besides the

trivial gaps at the superlattice density, are the Chern number C = ±1 gaps shown in Fig. 3c, which

are equivalent to the Landau level gap ±1 for a single flavour. The center band between the C = 1

and C = −1, which is evolved from the zeroth Landau level in graphene, has a Chern number of 2
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FIG. S7. flavour symmetry breaking and creation of correlated Chern gaps in a perpendicular magnetic

field. (a) The single-particle DOS that captures the major features of a Hofstadter spectrum. The central

peaks represent the equivalent of the zeroth Landau level, above and below which there are gaps with Chern

numbers ±1 respectively. (b-g) flavour symmetry broken νi and µ at different perpendicular fields. U is

slightly increased with B⊥ to ensure proper symmetry breaking that matches the experiment. The vertical

brown and blue dashed lines denote the charge neutrality Landau level gaps and correlated Chern gaps

respectively. (h) Positions of the Landau level gaps and correlated Chern gaps as a function of magnetic

field, which clearly shows their Chern number as labeled on top of the plot, consistent with the Streda

formula C = φ0

(
∂n

∂B⊥

)
[16].

(from the two layers) and a density of ∆n = 2B⊥/φ0 (or ∆ν = 2φ/φ0, where φ = 4B⊥n−1s is the

flux per unit cell).

We model the DOS in a similar manner as the zero field case while capturing the ∆C = 2

Chern band at zero energy. Fig. S7a shows the model DOS we used for different magnetic fields.

A triangular peak at E = 0 represents the DOS in the C = 2 Chern band, and the area under this

peak is equal to 2φ/φ0. We set the gap between the peak and upper/lower triangular bands to be

proportional to
√
B, as expected for Landau level gaps in graphene (behaviour of the actual gap

size is more complicated, see Fig. 3c). While there are other gaps in the spectrum, such as the gaps

before reaching the superlattice densities, they are often not observed in TBG near the magic-angle

[9, 17–19], and it is therefore a reasonable approximation to neglect them in this simplified model.

With this model, we can simulate the behaviour of µ versus ν when B⊥ is continuously varied.
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We minimize the free energy G in Eq. 12 within the bounds −1 < νi < 1 using the DOS shown in

Fig. S7a. Our results could account for both the symmetry-broken Landau levels and the correlated

Chern insulator states in a unified way, as shown in Fig. S7b-f. Near the charge neutrality, above

B⊥ = 1 T we observe symmetry breaking in the zeroth Landau level (∆C = 2 band), which gives

rise to the quantum Hall ferromagnetism as in monolayer graphene [20, 21]. When the total filling

ν is increased, the filling per flavour vi increases from -1 to 1 one flavour by one flavour. Note

that when a magnetic field is present, zero density νi is not a ‘stable’ filling anymore. The stable

fillings are now νi = ±1 and νi = ±φ/φ0, where the Chern numbers are C = 0 and C = ±1

respectively (see Fig. 3c and Fig. S7a). In the mean time, the chemical potential extrema that

were near ν = m,m = 1, 2, 3 now shift to higher ν, again because the stable fillings are no longer

ν = m but now ν = m+ (4−m)φ/φ0, corresponding to m fully filled flavours and 4−m flavours

with chemical potential in the C = +1 gap. The Chern number of this gapped state is (4−m)C,

which is evident if we plot their positions versus B⊥, since the Chern number is related to the

slope by C = φ0

(
∂n
∂B⊥

)
. These features are identified in our experiments, as shown in Fig. 3a.

The chemical potential in Fig. S7b-g are also shown in Fig. 3b to compare with the experimental

data side by side.

In our experimental data, we also found evidence for sub-meV gaps for Landau level filling

factors νLL = ±1,±3, denoted by green bars in Fig. 3e. These further broken-symmetry features

cannot be explained in the above model, because the Chern numbers of the gaps near the charge

neutrality always differ by an even number when a flavour is filled from the C = −1 gap to C = +1

gap and therefore cannot produce odd-filling gaps. However it is not hard to account for these gaps

by breaking further symmetries in the system. One possibility is a breaking of C3 symmetry near

the charge neutrality point, which was suggested in recent experiments [22, 23]. Theoretically, the

broken C3 symmetry allows an energy gap with C = 0 to be developed at the center of the zeroth

Landau level[24]. The possible Chern numbers in the gaps are now C = −1, 0, 1 per flavour, and

can give rise to odd filling factors when Coulomb repulsion is turned on.

C. Calculation of the Hofstadter Spectrum and the Chern Number

To numerically calculate the change of the Chern number during the flavour symmetry breaking,

we first use the continuum model for TBG in a magnetic field to calculate the Hofstadter spectrum

shown in Fig. 3c. The detailed algorithm of the calculation follows [25] and [26]. We used θ = 1.8◦

for this calculation, but the qualitative features remain similar at the magic-angle. The spectrum
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FIG. S8. Calculation of the Chern number in the correlated spectrum. (a) Single-particle DOS directly cal-

culated from the Hofstadter spectrum of TBG, and the (per flavour) Chern number (total Hall conductivity

in e2/h). (b) flavour symmetry breaking calculation using the DOS in (a), and the total Chern number C

as the sum of Chern number from all four flavours.

is smoothed to account for possible twist angle disorder in the system, which yields a DOS where

only the C = ±1 gaps above/below the zeroth Landau level are prominent, as is the case in our

simplified model. The Chern number integrated below the Fermi level (i.e. Hall conductivity in

terms of e2/h) as a function of energy is directly calculated from the Hofstadter spectrum (see

Ref. [24]) and smoothed by the same way as above. The smoothed single-particle DOS and Chern

number are shown in Fig. S8a. One could also integrate the DOS and plot the same quantities

versus the filling −1 < ν < 1 (per flavour).

By minimizing the same form of free energy Eq. 12, we obtain the filling per flavour νi in the

ground state and calculate the total Chern number as

Ctot =
∑

i

C(νi), (21)

where C(νi) is the Chern number (Hall conductivity) per flavour as a function of the filling, as

discussed in the previous paragraph. The result of this calculation is shown in Fig. S8b, as well as

in Fig. 3d.

V. MAGNETIZATION AT THE ν = ±2 STATES

In our measurement of the chemical potential in an in-plane magnetic field, we surprisingly find

no dependence of µ on B‖ near ν = ±2, unlike near ν = ±1, where µ shows a clearly spin-polarized
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behaviour in a finite field. This observation is puzzling if one considers the evolution of the chemical

potential as ν is gradually filled up from ν = 1 to ν = 2. If only one flavour is filled at a time (the

other flavours are either fully filled or empty), the dependence of the chemical potential µ with

B‖ would be determined by the magnetic properties of that flavour, i.e. µ decreases (increases)

as gµBB‖ if that flavour has spin aligned (anti-aligned) with B‖. Since ν = 1 has already a spin-

polarized ground state with spin aligned with the magnetic field (µ decreases with B‖), one may

think that the second flavour being filled between ν = 1 and ν = 2 would have an anti-aligned spin

if a spin-unpolarized state were to be obtained at ν = 2, which was suggested by the transport

experiments[9, 17, 27], as also shown in Extended Data Figure 2.

To attempt to resolve this dilemma, one possible scenario is that the flavour being filled is a

mixture of spin-up and spin-down states, which does not have a net spin. Another possibility is

that near ν = 2, there are actually two flavours with opposite spins being filled at the same time.

The latter case is in fact demonstrated in our theoretical model when the vHs in the single-particle

DOS is closer to charge neutrality, as shown in Fig. S6c. Between ν = νd1 and ν = 2, two flavours

are simultaneously being filled while the other two flavours are empty. If these two flavours have

opposite spin (or if they are both spin-unpolarized), the chemical potential would have no net

response to the in-plane magnetic field.

However, our measurement of the magnetization, which is obtained by integrating the depen-

dence of µ on B‖ (see Methods), brings a bigger puzzle to the magnetic ground state of MATBG.

While at ν = ±1 (the ν = −1 state is slightly shifted as discussed before) the magnetization

does reach a value on the order 1µB per moiré unit cell, at ν = ±2 this magnetization does not

reset to zero as one would expect for a spin-unpolarized state. While we wish to leave this as an

open question, it is important to point out a new possibility that the ν = ±2 state might have a

more complicated ground state than previously thought, despite the apparent suppression of their

transport gaps by the in-plane magnetic field.

VI. DIFFUSIVITY AT OTHER FILLINGS

We further analyzed ρ, χ−1, and D for other filling factors of interest. In particular we studied

two regions. Firstly, near the CNP of MATBG, ρ has a quadratic dependence in T up to T ∼ 25 K

(Fig. S9a), which is a signature of Fermi liquid behaviour. In this region, χ−1 exhibits a noticeable

decrease with increasing T for ν very close to the CNP, while the dependence diminishes as ν moves

away from it, as shown in Fig. S9b. Fig. S9c shows the diffusivity (without removing residual
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FIG. S9. Resistivity, inverse compressibility, and diffusivity at other filling factors. (a)-(c) Near MATBG

CNP, ρ ∝ T 2. χ−1 shows noticeable temperature dependence for ν nearer to CNP, and minimal dependence

when it is away from it. (d)-(f) For ν across the region where χ−1 becomes negative near ν = 2, linear ρ−T
is still observed. However, since χ−1 is linearly increasing from negative values to an asymptotic positive

value at high temperatures, the resulting D∗−1 shows a diverging behaviour when χ−1 crosses zero.

resistivity) in this region.

Secondly, we look at the region of densities where the compressibility goes negative at low

temperatures. Specifically, we study the filling factors near ν = 2 where χ−1 < 0 but ρ still

shows linear dependence in T , as shown in Fig. S9d. Since χ−1 crosses zero when going from

negative values at low T to positive values at high T (Fig. S9e), the inverse effective diffusivity

D∗−1 shows a diverging behavior near the zero-crossing temperature, as shown in Fig. S9f. D∗−1

violates the diffusivity bound Dbound = ~v2F /(kBT ) during this divergence, but falls within the

bound above around 30 K to 40 K. These observations raise an interesting question of how to

theoretically interpret the Nernst-Einstein relation when χ−1 is negative, since it implies that

the diffusivity is also negative. In fact, the presence of a negative diffusivity does not violate

any fundamental thermodynamic law, as at large enough length scales the dynamics of density
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FIG. S10. Monolayer graphene resistance peak at charge neutrality point (CNP) splits in the presence of

closeby MATBG. (a)-(c) Resistance of MLG CNP peak at temperatures T = 1 ,4 ,20 K, respectively. x-axis is

V S
tg = Vtg +0.03Vbg +0.1 and y-axis is V S

bg = Vbg. Blue dash lines denote the superlattice density ±ns and the

charge neutrality point of MATBG, and white dash lines indicate the filling factors νMATBG = ±1,±2,±3.

Green lines show the constant nMATBG lines where scans (d)-(g) are taken. (d)-(g) Temperature dependence

of the MLG CNP peak taken as a function of nMLG at constant nMATBG.

fluctuation is always dominated by long-range Coulomb repulsions [28]. At short wavelengths,

however, negative diffusivity associated with negative compressibility would lead towards phase

separation in the charge density, possibly creating ordered phases like a Wigner crystal or a striped

phase [29]. In such a regime, it is quite possible that the existing predictions of the diffusivity

break down. We encourage further theoretical work to investigate the possible role of negative

compressibility in the strange metal regime.

VII. SPLITTING OF MLG DIRAC POINT IN THE MATBG FLAT BANDS

We noticed that at low temperatures, the resistance peak of MLG at charge neutrality shows a

prominent splitting in nMLG when nMATBG is within the flat bands (|nMATBG| < ns), as shown in

Fig. S10. When nMATBG is outside of ±ns, as shown in Fig. S10d and g, the resistance peak is one

sharp peak at all temperatures. However, when nMATBG is within the flat bands, the resistance

peak in MLG is clearly split into two peaks, as evident from the colour maps in Fig. S10a,b and

linecuts in S10e,f. This behaviour disappears when temperature is raised to above about 20 K. At
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FIG. S11. Extraction of the peak positions. (a) RMLG
xx peak centered at nMLG = 0 (vertical dashed line)

using the center-of-mass (COM) method, at five representative densities of nMATBG. (b) Same data centered

using the threshold method, with the threshold shown in red dashed lines. The threshold is chosen as 20 %

of the maximum resistance. (c) Comparison of µMATBG extracted using the two methods.

all nMATBG, the MLG peak resistance keeps increasing as the temperature decreases down to 1K

and reaches above h/e2, suggesting that the Dirac point might be slightly gapped.

While we do not fully understand this behaviour at this point, our observation points towards

an interaction-driven splitting of the resistance peak in MLG due to its close proximity to a

flat-band metal. Clearly, the splitting cannot be explained purely by disorder in the MLG, as

such disorder should result in a splitting regardless of the density in MATBG. Furthermore, the

temperature dependence indicates that the disappearance of the splitting seem to be not just a

thermal smearing of the two peaks, but instead a merger into a single peak around 10 K. This

suggests that the splitting is a low-temperature phenomenon, and there might be an associated

phase transition around 10 K. We hope that further experiments can clarify such puzzling features

in our data.

To obtain the peak positions of MLG charge neutrality in presence of these splittings, which is

essential for the extraction of µMATBG (step 4 in Section II B), we can use two different methods,

which give consistent results, as shown in Fig. S11. The first method uses the ‘center of mass’
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of the peak, i.e. a weighted average of nMLG using the value of RMLG
xx as the weights. In the

second method, we first find the extent of the peak by looking for intersections of the resistance

curve with a threshold, which is typically chosen as 20 % of the maximum resistance. We then

take the average of nMLG at the intersections to determine the center position. We find that the

two methods give very similar results in general. The extracted µMATBG using the two methods

(Fig. S11c) are largely the same, with small discrepancies visible only near ν = +4. For all our

extractions in the figures in the main text, we used the first method for consistency.
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