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ABSTRACT

HYPERFINE STRUCTURE AND HIGHER

NUCLEAR MOMENTS

CHARLES LEON SCHWARTZ

Submitted to the Department of Physics on August 23, 1954,
in partial fulfillment of the requirements for the degree
of Docter of Fhilosovphy.

Considering the classical electric and magnetic interw
actions between atomic electrons and the nucleus, we arrive
at a representation or the hyperfine interactions in terms
of a multipovle expansion of the field potentials. Treating
these non-central interactions in first order perturbation
theory we can give the form of the general interval structure
and analyze for the multipole interaction constants using
Racah coefficients. Pertinent matrix elements for a single
valence electron are calculated relativistically. Some
seccend order terms of the dipole and quadrupole interactions
are calculated as they affect the interpretation of the first
order octupole interaction. In this work we also take into
account quantitatively the effect of some electrcnic configu~
ration interaction. Tinally the values cf nuclear magnetic
cctupole moments expected according to different models are
calculated and compared with the experimental data thus far
collected. Generally the measured octupole moments are in
as good agreement with the values predicted by the single
particle shell model as are the corresponding dipcle morents,
In the appendices are given respectively a sample calculation
of the octupocle interaction in a complex electronic state,
a nen-relativistic analysis of the hyperfine interactions,
and a discussion of the various approximations made in this
studye.

Thesis Supervisor: V.F. Welsskopf

Title: Professor of Physics
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INTRODUCTION

The recent verv accurate measurements by Jaccarino

et a1(1) on the hyperfine structure of the ground state of

1127 showed that the theory of dipole and quadrupole inter-

actions as previously developed was insufficient to describe

the level structure toc this new high precision. In order to

learn how finer detalls of the level structure cculd be

interpreted in terms of higher nuclear moments, it was

decided to review the entire theory of hyperfine structure.

First, treating the nucleus as a stationary non-

relativistic quantum mechanical system, we derive a multi-

pole expansion for the electric and magnetic fields produced

by the nuclear charge and current distributions. In this

development the electromagnetic potentials are expressed in

terms of scalar and vector spherical harmonics. "When these

potentials are put into the Dirac hamiltonian for the electrons

the terms of different orders of symmetry can be identified

as tensor operators, so that one can write down the form of

the generalized "interval rule" in terms of Racah coefficients

This analysis proves to have not only formal, but also

practical computational advantages over tlie formulations

given in the prior literature.

The interaction constant A, for each multipole order  Kr

is the product of the nuclear moment of that order and an

electronic matrix element. The general electronic matrix

elements are evaluated for the case of a single valence



electron using the techniques of Racan'?) for the spin-

angular integrals, and following the method of Casimip(3’

Racah™), and preit(?) for the radial integrals.

The maghitude of the hyperfine interaction energies

decreases rapidly with order: The magnetic cctupocle inter-

action 1s weaker than the magnetic dipole by about 1077.

Thus in the perturbation theory second crder terms (mixing

in excited electron states) in the dipole and quadrupole

interactions give contributions which may appear as first

order magnetic octupole (and electric oH pole) interactions,

This effect 1s calculated using so far only the perturbation

of the nearby doublet level. In this work the dipole con-

tribution cof s~electrons in mixed configurations is allowed

for by quantitative analysis depending con the measured dipcle

interaction constants in tvoth states of the aoublet.

Lfter all the electronica contrivutions have teen

extracted from ‘7 + ohgerved retinal © “emrgctlon constant,

the value cf "1

revealed. We have calculated the values ©f these moments

to be expected according to the individual particle shell

model for the nucleus. The results. for various single

wuclear magnet’ ~~” moment 1s finally

particle orbits, are represented cn a diagram similar to the

Schmidt plot for dipole moments and the octupcle moments of

the few nuclei already investigated take apnroximately the

same positions on this new diagram as they do on the Schmidt

plot,



The measurement of higher nuclear moments may also

prove to be a valuable test of the Bohr-Mottelson collec

tive nuclear model. In thelr "strong-coupling" scheme the

observable magnitude of an octupole moment is decreased

from the single particle value of the simpler thecry by a

factor as small as 1,25.



The Hyperfine Structure

‘hesence of external fields an atom may be

11

In +h

described ver

nucleus and en electron system rrranged in the central

Coulomb field produced by the nucleus. If, however, the

electrons have some rencnltant angular momentum J &gt; 0 and

rv? TS (, there will be further

accurately in terms ~f a compact charged

the nucleus also has

interactions between the two systems, described as magnetic

dipcle, electric quadrupole, etc. We then dencte by hyver-

fine structure (h.f.s.) the different energy eigenvalues

associated with the various total angular momentum states

of the combined svstems characterized by the quantum number
—

=

(1 - Jer &lt; I+ J

The major part of the electron-nuclear (non-central)

interaction is the magnetic dipole term which is character~-

istically of the order of magnitude

of T 4)AN {&gt;= £ ae (3
‘eclron mass- ol the proton mass, and Tr, the

radial cocrdinate of the electron from the nucleus. This

may be compared with the fine-structure (f.s.) spacing of

the electronic energy levels, which is of the order

4 2 _ 2 +

(575) Ze &lt;_

vhere Z is the atomic number.



The ratio of these two

rg " mn Lz

is then =~ measure of the approximation to which we may use

the various orders of perturbation theory to calculate the

h.fes. levels. We want to compare with this number the

ratio of the energies associated with successive multipole

orders. The ratio cf octupole to dipole 1s roughly

(2) reed
vhere r. is the nuclear coordinate and ro the electronic

coordinate. (re &gt; is approximately RZ, where R_ is the
nuclear radiusj and the ratio (2? &gt; / (33&gt; is approxi

mately (Z/a_)° (a = Bohr radius) because the interactions

involved take nlace near the nucleus where the scale of the

electronic wave function is a_/2, not just a_. The octupoley

dipole ratioc is then

(zR /a }%me 107" = 3

comparable to the ratic of h.f.s./f.s. We shall start by

considering the h.f.s. interactions in first order and later

turn our attention to the effect of second order terms con

the higher moments.

first, the non-central interactions between electrons

and the nuclear particles, whatever these interactions may be,

villi be expanded in a series of tensor operators. The

serturbation hamiltonian H, is written



\
\
}  3

H. =, Sle —\
\

r

\ oeJ

1.

pl is a tensor operator of rank k which operates in the
&lt;

space of the electronic coordinates only; its rank is

defined by the fact that 1t commutes with the total angular
—

momentum operatcr of the same space, J, just as do the
. . K

spherical harmonics of order ko rt ) operates on the

coordinates of the nucleons in the same manner and the

terms in the series (1) are the scalar products of these

two tensors, thus are invariants in the combined space T

Ne now wizh to calculate the first order energy expectation

values cf Hq in states described as having J of the electron

and I of the nucleus coupled to the resultant F.

(2)

These matrix elements are independent of the magnetic quantum

number Vg» so it will be ignored. According to a well-known

theorem of Racah‘?) the dependence on F of each of the matrix

elements in (2) can be separated out as follows

Tone heavy dot @ wlll be used to denote the scalar product

of two tensor operators

(kK)g (kK) _ Z,%‘af
2 rd 123 .

C3
while the light dot + will denote the scalar product of two

cartesian vectors

-o &gt;
T = VW_ - . :

-

7
v W

 Zz Z



{Lr r{k), ri) 10F&gt; = (-1)IFw(rsirsm) Cilio I&gt;

 NGSCapri Ty

vhere W, the Racah coefficient. + known algebraic func

&amp;)

tion of its six arguments; and the double-barred matrix

elements, called the reduced matrix elements, are inde

pendent of any magnetic quantum numbers which may be assigned

to the states indicated.

7e shall write the h.f.s. erm

Wy = SA N(ITiFk)

ener: ais

{3a)

vith the normalization

M(IJ;I+J3k) = 1 (2b)

vhich gives directly

A,
_ nk)&lt;r, ? Jd (rip II (Lg)

vith the relation

23)! (k) .CX) &gt; =rte Ss (29 53&gt; (up)J rn (rr) ©

Our A': are =—elatcéd to the usua1d) hefos. intercction con-

stants as follows:

!

4

-— Tox

* Yh
wf

i
-

h

(Le)

The coefficient M is given by the formula



2I-k)1 (2J-k)1 (I+J-F)1(J-I+F)1(I-J+F)1 1°U(IT3F3K) = “oT (GN! u (I+J+F+1)! [x:

7+ 1+J =F
’

,
 rr
}

S (-1) — {21+2J+1-2)§
Zz t 1 t [/ r ¢ ]221(21-k=2)1(2Jwkez)} [(1+T-Fugl (k4F-I-J+2)} |

where the sum extends over all integral values of z for

vhich no factorial has a negative argument.

It has been customary to express M in terms of the

~o0sine factor

K = P("+2YI(I+2).3077)cnt

formulas for the first four orders of M in terms

of K are the following

M(IT;F;31) = 733 K (6a]

: : k

HIT3E32) = En(aT-D(20)(20-1)fromapemeany]

20 3 LK2U(IT3F33) = Iyer (oo) (BT (37-1) (37-3) [ +

(6c)

2K {3 DIF I(T )+3(541)43) LI(I+1)T(T+1)]
M(IT;F3h) = —-c—— eatheet2peegprs

wo (21) (2I-1)(2I-2)(2I-3)(20)(2T=-1)(2TJ=2)(2T&lt;3)

[ Kt + 10K] + x2 f-6T(I 1) I (341451141) +57(3+1)+39)

3x {-3HIIDI (G+ 14121141) +120 (541) 418)

S1(1+1)3(3+1) [1G asa]|

(643)



It should be pointed out that formulas (éc,d) are quite

unwieldy for numerical evaluation and it 1s frequently

easier to work directly from (5). For example, if 2J

we have

VM(IJsF32F) - (= wo JF (27) 1(2I+2T+1) 1(I-J+F)¢ (7a)
| (2D) 1 (I+J+F+1)1(I+J-F)I(J=I4F)!

or if k = 2J-1

] I+J-F P2J=1)1 (2142) (I=J+F)!i(IJ3F32J-1) = (-1) ERE WW

2 [F(Fe1)-1(T41)+3° | [ry 1)

The follcwing sum rule 1s also of help in checking

~umerical work

Agi

(P+) w(IJT3F3k) = © (k &gt;0)

~-pr “Me phvsical content of the nperators (1)

this analw~’

(3a) terminat

smaller. One then has J (cv

to be solved Tor from the 2J (cr _Z

vals. Due to an orthogonality sum of the Racah coefficients

one can solve (3a) analytically for the A,.

2
(2D) 1 (20)!

(Okt LoTR ToT rir 1) 1 (20K) T( 20+) } 2. p(2re1) C03)

M(IT;F3k)W,



III. Electromagnetic Potentials

Ne shall now describe the electric and magnetic statie

interactions between the nuclear and electronic systems in

5 multipole expansion.

The electrostatic potential set up in space by a dis=

tributicn of charges in the nucleus is

vhere p

— plr') 1
V = dv1 2%JE(r)\

s | 0. is the densitSilly of cirectric cherre

4

of all the nucleons; gp is +1 for protons and zero for

neutrons. Now expanding the Green's function in terms of

spherical harmonics

Teer] © z T¢ r reed Cts) (0k &gt; oy )®C &amp;, p’57) (¢) ’) (10)

vhere

~( _ J .vod (© 50) = FrY Yy, (© /

we have the desired multipole orerators of the electric

interaction, The functions c (0) are tensor operators of

rank k with parity (-1)%,

The vector votential for the magnetic field set up by

the nuclear currents and spins is not quite so simple; it

will be expressed in terms of vector spherical harmonics ‘©’

Ne choose the form



=e Zu pry (Oo Oh (2) (21)

yp - ‘ nd
where L = 7 3d. which assures the gauge divA = 0. The

~ommutes with eny function of r and alsc with the

. o&gt; Ly=
Laplacian so that the equation WV". —J becomes

i
Cow

~ 14° k(k+l 7 .(r) Lr =D
At (8.0] T Ar? r 2 | yy =. - J (12)

Now using the orthogonality of the vector spherical

harmonics over the unit srhere

7, [oe = k(ke1) (13)

ve cet

2 1 +*
Li _d - k(k+1) 1 _2k+1 2 (kx) =[4 Tp r 2 J nyo = eres [eS (@,0)] °ja LL.

The Greents function for the left-hand side 1s

1 k ~k-1
k+l T¢ T'S

so finally we have the solution

(r) 1 1 = ¥ : rth = = ~k-1.02) JAS

-—3 .
The nuclear currents j consist of two parts: hie convection

current
- »

iP eY = egvi ¥

and the spin current
-

- ~~ h-?
Jog = curl / &lt;&lt; gq, 5; = 5s



The convection current should be a symmetrized combinaticn,

but it is easily shown that the two terms give just the same

contributions under the integral (1k).

For the convection current term in (1%) we can write

Lo &gt; ®
[TC] T= xP eT,=a?0(F-7)

and get its contribution to (14%) in the

-1 =&gt; x
(K+1 Vr r k-lgl(k+ 1) ¢ Cu

a1
7

7

convenient form

¢ ey AL Vv (1%)
vith the shorthand notation

-» eh edly
2g gyML = Z ef. mc Ly

For the spin current term we use the identity

 LP 3, 1)¥ - curl = grad Te-(r

and ny

(1k
i»

partial integrations we have the spin contribution to

i} = 3 k k-1.0 ,*

iin [|e 5p + Dr oT, lr (&amp; 0)] Fe uid Fav
(16)

vhere again

-“ Bd
Es UNS = £ es, 2m, C 54

Finally we can write che solu.lon for the vector potential

tT There are surface terms left over from these partial

integrations but they exactly eancel each other.



J

— -i A -? : x

A = Zz, 4] 29 (oro [=] ¥ (Vrtkc®) (o yao!)

wv. ¥y

(2g, i + (x+1)g SI) av’ + pf [FPP orien.

(2g, L - kg 30) ov |9 5

In what follows we shall

yd 7)

consider the nucleus as a point

source and use only that part of the potentials corres-

ponding to an observation point outside the nuclear matter.

The error made this way affects only the magnitude of inter-

action observed, not its multipolarity. This error, involved

in the h.f.s. snaalyt?? is appreciable only for oK_pole

magnetic interaction with an electron in a state j = k/2,

and then for various orders the effect varies as 1/k+1; for

the dipcle (k=1) this effect is only a few per cent in the

heaviest atoms.

We can now define the integrals occurring in (9) and

(17) as the general nuclear electric and magnetic multipole

moments

-

~~ ¥ *
. [Frcs 0) YP av

— . -&gt; &gt;

wn POL (80) ele, L vg 5) Fav

(1823)

(18b)

and write

7 pml=1g 0)
i} - c C (2 ,0)® CQ
A = zk=, Frese)vo) ® AL

(19a)

191)



We also note that the operator Q has parity (-1)K while

M, has parity (13H so that the only static electric

morents are of even order and the only static magnetic

moments are of odd order if we assure that the nuclear wave

function has a well-defined parity.



IV. Electronic Matrix Elements

We now investigate the interaction of a single clectron

(charge ~e) with the nuclear fields just described.

electron wave function ¥ obeys the Dirac equation

The

(2. (cb + on) 4 pmc? - v]Y = EY (20)

and for the zero order solutions in only the centrzl part

of the electrostatic potential, Ves we put V = () where

Wis the large compenent and @ the small component of

the four-spinor Vv . Now introducing quantum numbers we

have the separations

Coim = f(r)/r Yin

vhere Z me J:

+ 1/2=47F1,/°2

Yorn = nm C02 nllat mem c n An, |1/245m)1p® 7) Xmp 1/2m, (21)

snag X is a two-component spinor.

The interaction hamiltonian is

i, = -e(V-Vg5) + ew t (22)

and we will need the general matrix elements

Vr /J Hy V cv
For the electric 2%-pole matrix element (k&gt; 0) these are



 0) In

co Cry

oe 9.) - [re [cored sm [cl 1/2475%m")
o

ext (1/24 [9 | 1/24") |
Now the matrdx elements of ck) in the 1/20 im scheme are

independent of the quantum numbers L except for the parity

selection (f+.01 + k even). Hence for the reduced matrix

elements of electric multipoles we have

® _k-1 (k)
"e hed | rTUTT(EE + ggtar(r/2.5c I 12ers

o

(2?)

For the magnetic multipole we have tie general matrix ele-

ments

e724) {f|Z 2 (171)grjrmra
*

[¢ Lim o&gt; (Tz (0) % 3 ard? |
But we can write

&gt; 1 (x) = &gt; _k1.(%) k-1(k),2 2
(lx °C, ) = &amp;.L(r Lh Br Ce (7 LP) and
also by the hermiticity of F

y= _xo1 (kx) 2d ¥ 11 (k) ;[#52 Co @)av -[(FIH r Ce @ av
Nowothe functions Ww. é are rlgenfunctions of the

~~
operator ¢”-L belonging to the eigenvalues K -1, K-~1

respectively; where IK is the Dirac quantum number

J (+ 1/2)
+; 4 2/7)

7 + 1,2

W= or]  2

referred to the large compcnent and K = - WC



We thus get for the reduced matrix elements of the magnetic

multipoles
[v2

e/k (Hud (K+ KD ( rElirgr 4 gr ydr

(24)

“Alc 124150
which have the parity selection (4+ 0 ' + k¥ odd). The

general reduced matrix elements of the co) can be calcu-

lated best with the techniques of Racah.'?) The result is

(using a formula of Serwinger® &gt;?)

(1/283[fc1/2813151) = 1/2 _ L+d 4x(1+ (=D 4 (5316)(1)AEs]

25)

—_— (J+i'+s)i}
C+ Jim JIC J= 4-1) I(T =j4s=-1) 1!

Kk re
where s = JT TK

k+l Jj+j'+k odd

ana
: (a+b=-c)!(btec=a)!(ct+a-b)! /

4 (abe) - [Lex c)i(bte=a)l(ct+ta-b)! 12
(atbtc+l)!

For the first order hyperfine interactions only the

diagonal matrix elements are needed and we get for the

interaction constants

( (| akel,.2 2. /2 (k-1)1! 23) 1SS (£2) ar Be rH ey

k even,&gt;O (26a)

g = 1. EL pn (23)!: TE o- Ln -— zc oe &lt; 3

 = SM ERK A fgdr(-1) CER GIT HGH

odd (26Db)

"™



in terms of the specific nuclear moments

he = CQ p. M = Ci’). (27)

The preceding analysis was for a single electron bound

to the nucleus. It 1s also correct to describe the inter-

action of a single valence electron outside closed sub-shells

of other electrons. For configurations such as 0° ’ 3’ in

L-S coupling, or (3/2)3, (5/2)° in j-j coupling where there

is just one electron less than the number needed to fill a

shell, only very slight modifications are needed to give

the correct matrix elements: the even (electric multipole)

interactions are just (-1) times the values for a single

electron while the cdd (magnetic multipole) ones are the

Same »

In the case of more complex electronic configurations

one must know the coupling scheme of the several angular

momenta involved; then the techniques of Racan'?) show how

to calculate the aprropriate "orojection" factors. An

axample is worked out in Appendix 1.

tornis assumes that one can write the total wave function

for all the electrons in the form of products where the

coordinates of the valence electron are separated from those

of the core electrons.



Radial Integrals

With the separation of variables (21) the Dirac equa=

tion (20) for the radial functions f and g reads

d 1 2(&amp; - K) rs = Fo(mc“+E+eV )g

 da KK 1 2 \(4% + 4 )e = F=(me «E-eV_'f
(283)

For a manv-electron atom the best solution consistent

vith the assumption of the preceding footnote is obtained

from a Hartree-Fock treatment. However, to obtain simple

analytical results we make the assumption, following

Casimir), that the important contribution to the inte-

grals (26) comes from the region of small values of ro

This should be an excellent approximation for the cases

j =_f+1/2 = k/2 (magnetic dipole in 51/2 state, magnetic

octupole in Py /o state, etc.) where the non-relativistic

treatment gives the interaction as due entirely to the

electron density at the nucleus (r=0). For orbits of

larger A, however, the wave function is concentrated

out and is more slowly rising near the crigin so this

approximation worsens. At small value of r the major con-

tribution to the potential is from the nucleus. Setting

farther

Veo + 48 and with the approximation of zero binding energy

[ me? - El K V, we get from (28) the solutions in terms of

Bessel functions
+X - [50,000 = Gra),

&gt;

&gt; CaZd, (x)
(29)



Jig

vhere x = l/ &amp;r/a, p = I/ic&gt;- ac 72 a, = er
1 = =

“he

ith these functions the radial integrals

ateal?) to give the following results

“_.) can be evalu

=D
-

: Ca
2. 2. _ .2,22.K (2k-2)1 k(2W+k) (oK+k-1) =4a°Z%(3k-1

(f%+g")dr = C (5) KI(k-1)1 (2p+k) (2p+k=1)...(2p=K)

(30)

rd
a “fedr = C° Ah (2z)k+] (2k-1)1 (-k-2K2me ‘a TET (2p+k) (2p+K-1)o..(2p~k)

7

i

(31)

The normalirciion constant C, which gives the density at

the nucleus of the wave function of the cuter valence

electron, 1s best evaluated in terms of the fine-structure

separation (for non-s electrons) between the states J = P+ 1/¢

and j = A- 1/2, which have almost identical wave functions

for larger values of r. Here and subsequently we shall use

the notation of a single dash ' to identify a quantity as

relating to the state j =_¢+ 1/2, and a double dash '' for

the state =_Q- 1/2. The resulting identification 1503)
(4),(5)

wey cl = J__ LL) 1
2.91 HZ 3 as

where J 1s the doublet splitting in em™t, and H is a

(32)

relativistic correction factor. More accurate approxima-

tions for the ratio [ct '/C J will be termed normalization

corrections and will be of concern in the following section.

casimir(3) gives the estimate



+
—

IN

2 22tt

C 2f( f+1)n* (33)

involving the "effective quantum number” n¥

explicit calculation by Breit for the case of Thalllum

(Zz = 81) gives a value for [ct /c tf c = 1,65 compared to the

1.18 of (33). We shall use Casimir's formula (33) for

lighter nuclei (zg FO) for which these corrections are not

very large anyway. For the integrals of greatest interest

ve shall write the results in the following forms.

Magnetic dipole: 2 2 dr = c? 4 (22y° E
gaeiic 4aipole! A gar = ame “a ’  (24+1)] ¥(24+1)-1

an = f+ 1,2
34a)

 OO I

Electric quadrupole: [Fer = ce(£4) ENE)0

1%)

Magnetic octupole:
~

~"Frodr = c? 5 2zyt 10 T
2me"a (24+3) (2r2) (24+1) (20) (2 -1)| HES |

's j= J+ 1/2  Le)
3

F and R are the same relativistic correcticn factors given

by Casimir (3) + T is the corresponding correction factor

for the octupole integral and is given by

T = orn med23i=3)! (2p+3)} (39)

All these factors, alcng with H, are plotted as functions

of Z in Fig. I for the case { = 1.



JT Second-Order Effects

So long as we consider only first order effects of the

lp
bos ".a, interactions, the multipoles can be separated from

one another unambiguously by the crthogonality of the

"interval rules!" “r= different orders (8). However in

second order we ©

matrix element. Th

matrix element from t™ stat: IJF tH the (different) state

I'J'F of the h.f + interactions © various orders, we get

5, dependence on F which goes as the Racah coefficient

(-1)F W(ItIT1I;Fk)

In the square of the matrix element there
~

oo11 be such

products as

W{(L?JTIT3FkyJW(ITTIT3Fk,)
and if we want to know what part of this looks like the first

order term of an interaction of rank k we multiply by

(-1)F W(ITIT:Fk) (2F+1)

and sum over FF. This sum is well known in the theory of

Racah coefficients and gives a result proportional to

W(Ik,Ik,31k) W(Jk.Jka3d Tk)
which is non zero only if

Ke =[k, - | £k&amp;Kk, ~
‘

Thus in second order the square of the dipole term can

influence at most the quadrupole; the cross dipole



quadrupole term can affect up to the octupoley and the

square of the guadrupole term can reach tc the ol pole,

fe shall now calculate the off-dicgonal matrix ele-

ments for the dipole and quadrupole operators from the

state in which the measurement is being made (assumed to

be J = Z + 1/2) to the near-by doublet level of the

electron (] =f - 1/2).

For the dipole term the matrix element (always diagonal

in F) is from (24)

1(1913-1FD) (DIT Cag wg ff Dee)

2. (1)
(C+ KY) [ re (etgi+et t)ar(1/af lfc 1/2 45-1)

0

and from (25)

olsff 1yog-1) =fernery) rT = 1.also K+ Kk

The form of the Racah coefficient is

: Iq. Ln THISF-l YUIAI-P) (J-T4F) (I-J+F+1)(T+J+P+]IFIT-1aF15 413 Pon

and the nuclear term 1s

, P14 (2I+1) 1 hay 94 JE
So that the entire matrix element is

“ep pm2(rrgigten)ar YI4T-F) (J-T4F) (I-J+F4+1) (T+J+F+1)
LI) (36)

0 The racial integral yields
ny 2

| 2 _ 4 27 [7 (p107:1) _Jr o(flgh+giftidr = CC 2ne ls) [1 (e=aT+2) p (pT=p™+2)/7(0 '+0"+2)

A

 _-
cron Bo (2%?2me (5%) 2 x" Lop) (2f+2)

317)



The ratio of this to the diagonal term in the state

J+1/2 is
a QO

-2 £IN Ten ~2ay r - cr 1 G_ at = (3( regrenar/ [ tretar =r Eve cg €
0J

3)

off-diagonal quadrupole matrix element 1s from (23)
oo

7(1313-1372) (DHT CT fg, [1D (me) [eer fi4glg")dr
Le

(rofl$2If1245-1)
snd from (25)

57+1) (2J=1)(1/243)c'®lf1/245-1)=Jaleril)(21-1)
The form of the Racah coefficient is

W(IJI J-1:F2)(-1)itI-F-1 _

/: (TTF) (J=T+F)  L=J4F+1) (T+ J+F+1)
LI(J+1)(J=-1)(2T-1)(2341)(2I+3)(2I+1)(2I-1)I(I+1)

2[rrr 20 a]
and the nuclear term is

_ &amp; 3) (2141) (T+1)tle lli7- : Ha == 9

So the entire matrix element is
@

-eQ [eng J+) (3-14) (1-3+F+1) (1474741) ;

2 &gt;
[reren)-1200)-3 a] BTID (Toy I(ZIoT

39)



A

y

The radial integral gives

Am 2 /’ff w=3(e t =Ct el 2/ (p'+p"-2)
Co (£114 te") dr=C cigs) 7Too" +)[1 (pT =p"+3)/7 (27 mp

) ( ! : H 1) ’ } ~~ 0+4 + + { 4 +9!

(T+ KT) (p'+0"=2) (0 a2) 3am) (5140142) (7-042)f
(LO)

27.2 S
CICS) PEED GAD

O
ly

The ratio of this to the

j= #+1/2 state is

( a-3 ten to -3 orl 12y = — cn Ss _
Tetearf)eT tear = - Gr pv 24 (41)

Collecting all the terms we can now aw. ve

order energy as follows

AC os (I+J-F)(J-I4F)(T=J4F+41, J+J+F4
HE AE a J \ a

nok

the second

(42)
rr . 2 2

so 3(FE(F+1) -I(I41)=J5+1) At J+1 Ea:| 2J(c5-1)(2J-1)I(2I-1) 7 2 cIJ(2T+1) (27-1) 1

in terms of the first order interaction constants 1n the

state J =f (we might also have referred to the state

J +1/2)s" A F is = J (the fine-structure splitting) if

the  = J+ 1/2 sta*&gt; 13 the lower state (in energy), or

dirj- NW - 1/2 is lower.



“J

VII, Effects of "erfiguration Interaction

le now go on t) consider the effect of some configuras

tion interaction of the sort discussed by Ferml and
\

Segre 10) and calculated in a particular case by Koster 11)

"or configurations sf; (or s° 015) we include the

possibility of one of the s electrons being raised to a

higher s-state s'. The wave function in L-S coupling will

be written - for both j =f+ 1/2 and § =f 1/2 levels

Y- a, (s2(8=0)°L J+ (557 (5=1)°L )+a,(s51(5=0)°L,) (43)
with normalization 0 + 0 + 0 = 1, where S is the resultant

angular momentum of the two s electrons! spins which then

couples to the spin of the 2 electron to give the doublet.

In what follows we shall approximate only that of « 1

(Koster finds af = .001 for Gallium, Z = 31).

For the wave function (43) the octurole and quadrupole

matrix elements, as well as the fine-structure are essentially

the same (to order a9) as those one would get from considering

only the valence x electron alone. We are interested in

the effect of the s-electrons in the first and second order

dipole interactions as these influence the interpretation of

the purely octupole interaction from the h.f.s. data. We

shall find an explicit evaluation for a correction factor

which should be multiplied into A} in formula (42) just to

sake account of the dipole interaction of these s-electrons.

First, with the total dipole cperator written as a sum

of an operator rf (of rank 1) acting on the valence



electron and another pel) acting on the s electrons, the

general reduced matrix element becomes (to crder &amp; &lt;&lt; 1)

(1) (1) (1)fr, +o Man = lr 5 + Aggy (Lk)

vhere A; is a sum of matrix elements between various

terms of (43), all of the form

A; 12, 124, allt [se co PJ)

w(1/231/23" su) ffaT+1 Worrit (o1yf-1/2+7 ;

(s1/2, 1/2 1V [s11/2, 1/2)

That is, without actually calculating A] 57+ we have gotten
its dependence on J and J', Now putting J gy 1/2 we get

he ratios

4.5. _ [25-1
A 13 = J+1

A; J=1 _ iin
0) IJ oT J+1)(2J+1

(453)

(45D)

Also the ratio of the off-c¢iagonal to diagonal (J=_&amp;i1/2 state)

reduced dipole matrix elements of the electron is

1 (+1) (27-1,
” &amp; (2J+1)(2J-1, (44)

I'he desired correction factor f is given by

Wr 50d;
= pip ry5 Raf Tyr L 50) (47)

and from now on we will understand J =f +1/2, JT =A 1/2 = Jel



One must calculate A; by taking the discrepancy

between the observed interaction constant £3 and that amount

calculated for the valence AH-e1eciren alone. I” the h.f.s.

is measured in the J'= J '~ state as well, one can get a

better check on AN by solving the two simultaneous equa-

tions of the form (44) with the measured interacticn con-

stants A{.and AY. Using (451) and the relation

 raf tO) oy = J§2rL(20-1 (1)A = EERE AUT A sy

2E cH = 5 [4

Ne get

en 4. =
: J 11

SA] TJ+1 Ay

5)
om]
J+1

) =CLA 5ifJi, A.
T =

5]

[41 (2341)

- 1" 1

+ 54 HEREJ+1)
yl
J+1

(49a)

(49D)

and finally
J AY - BA}

£ = 1 4+ 2 TTL (2343)(27-1) (4c)
£ ano. =L oar Ci+1J

The calculations carried out here also find applica=

tion in the study of the Zeeman effect in h.f.s. as used to

measure directly the nuclear g-factor. When an atom of

spin J = 1/° (for I » 1/2) is placed in a uniform magnetic

field H, there are according to the Breit-Rabi formula

pairs of lines arising from the h.f.s. the difference cof

vhcse frequencies gives directly the quantity 2g. AH.



Foley 12) has shown that fer a Py in electron state

1 1second order contributions involving the doublet P3/o leve

can change the apparent value of gr = &amp; compared with the

value measured directly by nuclear resonance methods. His

formula 1s

=
; g- (atomic beam =

| weef eS) _ 1 _ 18 AV (50)

~. (uc lear resonance) ~ 6(2I+1)g+

*nterval In the Da /n state at

zert field and J « fine-structure separation.

Clendenin} has dons the calculation relativistically and

he £ets formula (3°) with the factor G/F" included in the

second term,

where AY is io

hat enters in (70 is just the «“ef.cdiagonal matrix

element of the h.f.s. interactions between the P1/o and

Py /o states times the matrix element of the electron's

magnetic moment operator between the same two states.

There are three effects not considered by these other

suthors which we can now include: the normalizaticn cor-

recticn factors the off-diagonal quadrupole term; the effect

of configuration interaction on the off-diagonal dipcle term.

Using (42) we get the result

—
— _ af 4y ¢f bgg | TED 8 "TI? | (51)

b is the usual quadrupole interaction constant (b=ki,)

measured in the P3/5 state and all other factors in (51)

are as earlier defined. The sign of the correction term



sbove is correct only when the Py /o state 1s lower in

energy than the P25 state.

We shall compare the calculated and measured values

of this discrepancy for the ground states @¢f Gallium and

Indium,

Gallium’ tH Z = 31 § = 24,8 10v me, sec - 1.51

&amp;°= 1.024

i a 1.02- y= 1.04
= 2.3L

3 : 1,10.
5

+27, ay= 2077 me/ sec. b~ "95 me/sec. gr = 1.34%

™ Ym JOOS

“0 be compared with the exverimental value

.CC79 + ,0023

o~ / 1
Sa »

1 8Y= 3432 mc.’seece b= 39.4 me/sec. = 1,702

0OC8kL

vith the excerimental value

L - 0077 + 0017

S = 66.5 10%me/sec.Indium 1?) Z
4
a
”

1%]

cn 2[$4 = 1.06

f= 1.84
£- Tok op = 1.1

2.719

 “- = 1.30

ni, 8V= 11.330 me/sec.  oo ug0 me,’seco g + = 1.22

ATA
FOUN

and the experimental valu«

-

-

A

=

.0062 + .0005



VIII, Nuclear Moments

The nuclear moments are defined as the following

oxpectation values (evaluated in the state m; = I),

dh, = Cegprc¥ (0 ys) &gt; TI (52a)

For electric moments (x even)

ar
v= k.(k. Cave c{ M(B)(g 2, 5 py

| | 2 KI Es I (52D)
or magnetic moments (k odd)

The magnetic multipole moments (2b) can also be

vritten in the form

i, = f eet &amp; ,0)divliidv

where I 1 ‘he magnetization density (in the state my=I)

defined as 1: Blatt and Weisskoof ©? Chapter I. These are

related to the usual’ Aefined moments as follows

p7
[a

Magnetic Dipole Moment

Electric Quadrurole Moment

and we shall define the Magnetic Octupole Moment JL as

LL=

It can be seen from the phase factors in Eqs. (26a,b)

that the moments of a given type, electric or magnetic, have

3 natural oscillation in sign as one proceeds to higher

orders. The minus sign is introduced in the definition of

SLso that a nucleus with a positive dipole moment is most

likely to have a positive octupole moment as well.



It is of interest to calculate the moments expected of

+ single odd nucleon in an orbit of spin I. From (25) and

(4b) we ov directly the electric moments

Qs 50 = = 5 Srigeg Cr &gt;

A (2I-1)(2I~ ) hy
= A SIT) eg CFQ,

(53a)

(531)

For e-nuclear configuraticn of n (odd) equivalent

aucleons in the expected ground state we have the relation

Ney _ 24+1=-2n .

&amp;, (J I=j) = 2j=-1 Q (J)

giving the mome~* «ff the several particles in terms

value for - particle.

(53¢c)

of the

The c. culation of the magnetic multipole expectation

values (52b) is slightly more involved. With extensive use

of the Racah techniques we have derived the following general

formula for matrix elements of this type in single-varticle

orbitsy g 1s any function of r.

or &lt;&gt;(41/25 [| (Peet)(g,Tre5)411/250)(1a(nyt

fog 1v: o/r(-1)3 VK [yer (Gre) 3K (gra 2)
(1/2403 rar (43/2) vg 1/20 AIS

[cartes doesn Ha A556)
&gt; 1 -

&gt; )

SURE

(54)

IGEREEIIRE
Ce “at

(i+iT=s) it (Fogrts-D)(iT-J+s-1)1!
vith s and A () defined as in (25).



For the dlagonal matrix elements in the state Mi=I,

sing (4b) and (5b) we ~-%

A==4
RY |

-

rr

 LZ

 Jy

-

2
f oryoo

the usual Schmidt valuess and for the octupole

- Lv = 3 P2T1) 2 (I+2)f= i = + My 3 myer (1)
(I-1)

[(1-3/2)g; gg] 1 -4%
[(z+5/2), gs] I=4

(56)

One can make a plot of these values of the single-

particle octupcle moments very much like the Schmidt plot

for dipoles. In Fig. II are the lines for I =4¢ + 1/2 and

al = f- 1/2 of the quantity

fe as a function of I ( 23,2)

A (r)

for an odd prcton Cp = +1, g. = 5.70) a similar plot can

9 = 0, Eq = -3.83).

For nuclear configuration of several equivalent particles

in the eround state I = j we get for the magnetic multipole

moments

1. (§MI=0) = M,(° [ E 3

I¢ (as in an odd-cdd nucleus for example) we have a CON

figuration of two particles (or two separate groups of

particles) with separate spins iy and j, coupled to a

resultant I, any multipole moment of the total system is



made up out of the moments of the two particles as follows,

CL (0) DOO cp rye (RT+1)1
(rdptapeifry en RE [(21-0) (21411) 1] V2

r [f23, x12) +r 1) 8 Op| (230° (ymp=iy fy [510-11
Jo=Jq=I+k

Wi I3, Idk)(-1)©

- ;I (23,-k) 52] 4kt1)1
25%

(58)

TERRE LISSMo=d 1s [ im=i mC

ing ts

Vo can make one “teres” ~~ and simnle remar’:  ceoncernm

tf, “*on of nus r moments in A. Bohr's

asymmetric core model. In the trong-coupling situation

where the valence nucleons are sliiened with respect to a

permanently distorted nuclear core we must reduce all the

moments by a projection factor Py which allows for the

transformation of the necessary operators into the body

frame of the ccre. This projection factor, in the nuclear

ground state where the valence nucleon is alligned with the

core axis, is given by

we = (2141 (21-k)1(2I+k+1)1} C59)

It is interesting that the higher PTs can be quite

is small (I~k,/2). For the octupole,small numbers if

for example,

Py =.
= a

s

5/42

 2

T = 5/2



while the smallest PP. 7:
y =

 ld

Po id
’  Ss T

™ -e

-

TT “tract Leatwer ay

(for I = 1,2) and the smallest

4% asymmeLric core effects in

quadrupole an. ¢~-" 7. moments

the fact that w-"&gt; °° "~ 1h numerical charge of the

core which, i. ani’ ~€ {he ~~ ‘aetion factor, creates a

larze quadrupcle moment the tctal masnetization of the

core 1s only cf the srder of that produced by a single

particle. The conclusion is that if the strong-coupling

situation e-ist: for nuclei with small spins (3/2, 5/2)

the octupole moment should be much smaller than the expected

single particle value.



£. Examples: Ps 5 Electroen-

For an electron st-*&gt; with a single valence alectron in a

D3 /5 orbit there will ™

the following M(IJ3Fk) coefficients (6). 7°

~~r I 3/2) four h.”.s. levels with

ke 3 3

F=I+3,

r=I1+1,

r=I1.1/2 =
P=

F=I~3/2 -31-3
31

(21-1) (143) -3 2I+h
I(2I-1 21

-(21+3) (1-2) ny (21+) (OT+3)
I(2I-1 (2I)(2I-1)

(2I+3)(I+1) _ Leltrtzbalaly)I(2I-1 2I)(2I-1)(2I-2)

If we let x, yo, 2 be the measured intervals between the

F=I+3/2-F=I+1/2; F=I+1/2-F=I-1/23 F=I-1/2-F=1-3/2 levels

respectively, then we get for the interacticn ccncstants (8)

V1_3/0=0% Wi_q 0723 Wiie1,/o=(v+z) $ Wiis o=(xty+z)
_ 9 I(I+2)- 3 (2I-1)(2I+3) 9 (1-1WE I0 THD (Cr X16 Onan Y +910 sD) 2 (60a)

1 I(21-1)(I+2 1 (2I-1) 1 (1-1)
b2% 3 BL D(TrD(2FY) * = 2 (EoD (ID V ~ 2 (ere) 2 (600

= L JLI-1)(2I-1) 1 (I-1)(21-1) 1 (I-1)
A= T5 Ir (rr) ¥ "10 Ger) VT 16 Gen2 (60c:

Ne should subtract from the above formula for A. the amount

due to the second order corrections (42), this comes to (using (8)

Fo find the octuvole~like part):

gris Hm wey m2 ff Lol)



vith

fori 3/5A"./ (62)

The formula fcr  La in terms of the octupole moment is

L116 12 Jd
A= My 5.5.0 T 5 2.911

MN

4 Sy })

Do. H3.36 10~%7
3T J 4%

in units of

0-nuclear magneton em?

\ mr ‘sec.

J 1

For the ground state &gt; Iodine (1). a 1.1L

127, 2 =53}, d= 7600 em~1, At, = 3100 mc/sec.,

AT 2 286.6 me/sec.

[ef ® = 1.10 £-= 1.05 y= 1.13

No measurements have been made on the p. ., state, but

it is exvected that there will be considerably less con=

figuration interaction in the halogens than in the corres-

ponding Group III elements due to the tighter binding of

the s-electrons., We will thus assume f = 1, The formula

for Aq with corrections is

yg [ x-16v+14z - ,00053 me/sec.
= (.00287+.00037-.00053)me/sec.



vhere we have taken the square rcct of the sum of the

squares of the experimental errors in x, y, 2 (weighted as

above) as the total error. Using (63) with H = 1.07,

I = 1.22 we get SX. = (0.17 + 0.03)1072% nuclear

naghneton cm.

With the value Jor the radial integral taken roughly

“ -~ to / ’ = TR, = 5(.1350%V2ep?a /

we rev the value £~ 724.0,10) on the octupole diagram (~1/k

the expected sing? particle value).

For the metastable P2/o state of Inaiumtl? Kusch (16)

has remeasured the intervals with extreme accuracy. Using

the correction factors already worked out we get for Ay

Aq= ww. [ 6x-16y+112] + .00109 me/sec.

= (.000011+.N00022+.00109)me/sec

Nith H = 1,065 and T = 1.19 the octupole moment is

“LL = (31 + .o1)10" 2" nuclear magneton om?

Approximating as above for Crd we get the value (2.1+0.1)

on the octupole plot (1/2 the single particle value).

palv(1l?) has measured the h.f.s. of the Day /5 state for

the two stable isotopes of Gallium. The several correction

factors have already been quoted; we have

6a®%: a, = phs[x-Uy+52] + .0000336 me/sec

(50.943433.6)10° me/sec.



ga’t: Ay =Er [x-ty+52] + ,0000285

(85.84+3+28.5)10mesec.
vith II = 1.02, T = 1.06. we get lhe octupole moments

° ® C e n C

SL, = (0.146 + .004)10"2" nuclear magneton em®

Estimating (rd as before we get the values (.58) for

ab? and (77) fC “+ on the octupole plot.

The value~ cf the quantity SL uu 12D for these six

nuclides are displayed in Fig. II, and it 1s striking to see

the similarity between the distribution of vroints on this

diagram and that on the Schmidt vlot for dipole moments.

Any strong conclusions about the quantitative aspects of this

comparison may as yet be unjustified since the rough estimate

2.2 3a er?) = 2%, BR. = 1.25 47310git t oN 5A “10 Ln.

should be revlaced by the analytical evaluations of some

reasonable shell model. However it 1s interesting to compare

the sizes ¢® the octupole moments for the isotopic rvair

5a®9971, The heavier nucleus has larger dipole and octupole

moments and smaller quadrupole moment, thus is consistently

closer to the pure single-particle picture.



ideoy

Appendix I

As an examplie in computing the multipole moment in a

complex electron configuration we shall work out the problem

of the octupole interaction in the ground state of an elew

ment of Group V, As, Sb, Bi. The electron configuration in

these is ps and the ground state is denoted “Py 7p In pure

L-S coupling such a state, because of its spatial symmetry,

could have no octupole or quadrupole moment even though the

total spin 3/2 1s large~enough. The state is actually

described in terms of an intermediate coupling scheme and

for the heavier elements comes very close to pure j-J coupling.

Following Breit?) we shall describe such a state, for

J =

made up of Py /p and P3/o states for each single electron.

The wave function is written

Vial) ve (23) +o G33) (A1)

For the first component of (Al) the state J = 3/2 is

the only allowed state for the three equivalent electrons

of spin 3/23 for the second component the two equivalent

3," electrons are coupled to a resultant spin of 2, which

then couples to the third electron of spin 1/2 to form the

resultant J = 3/2: in the third component of (Al) the two

l,2electrons must couple to spin zero.



Now to compute the octupole matrix element in the state

(&gt; - ~hsll use onlv the fact that we are working with a

tep maton of ren’ three ) Yo ~~ *he result with

“nn state. First.

tensor of rank 3

th d-  “4

not th»

cannot he oodman “nm
3

2/2 and- in _~~

3,. (Fa the TT

exactlv the s+ *

-Y ~ntrons)
~~.

-

ad*h1ird component is

“ingle pa ~ electron and the first

component gives the same matrix element since it represents

the state of one P- sa electron missing from = ~*losed shell.

Only the second component requires use of the Racah

aleebral) «. The calculation is as follows

(Ge y 1/2 3/2 N22l(2 2) 2, 1/2 zy

WT (2
5 ’  owen (312)0)13 2)

since 73 has zcro mat=1z element for the
de4 2 electron states

Next

(23 2 ff) 3 3 2) = 2.5.W(/0 2 Ch 30 3» (2)3)

where the factor ! accounts for the fact that both 2 electrons

contribute equally while the subsequent factors represent

the contribution of just one.

Putting these results together we have

(TlH Ty) = (oye=oss)[5+3
LOCEW(2 3/2 2 3/25 1/2 JIW(3/2 2 3/2 25 3/2 »)



Now evaluating the Racah coefficients and using the

normalization

£
Ca + c2 &lt;

+ C2 sn

ve have the ratio

(2 Il ¥:) Joy vl py) = 1 - 9/5 ¢
(AD)

The constants (C- - C,- Cy may be evaluated from the

observed multiplet structure and also from the atomic £7

value. For Bismuth, Breit and wi115(2) give C, = C.345 so

the factor (AZ) is 0.786.



Appendix II. Sketch of the Non-Relativistic Theory

For a non-relativistic study the hyperfine interactions

may be convenlently described directly in terms of the two

charge-current densities, without using the intermediary

fields. Thus for the electric interaction we write the

snergy (to first order)

JE
w, =|| === av,dv,

e Tio .

and with the assumption that s7stem 1 is outside system 2

se get the multipole expansion

 _— ~k-1.(k) 0 K(k)i Zz J Sct avy for Ct dv, [ A3)

Then identi” ing ov as «+ times the wave function product wk

(A™)Y can be read as the product of two matrix elements.

For the magnetic interaction between two current sys-

tems the interaction is

TP
1 Jptes

W == ———  dv,dv,m ff Tio 1772 Al)

However because of the vector nature of the currents

we cannot immediately make a multipole eryvansion of this
nip

evoression. (A4). We first express --ch current density j

in terms of a magnetization densi*-

cul.
L]



3
J

Then a series of partial integrations reduces (AL) to

div M, div M1 2

m rqo 172
(AS)

provided the two systems 1 and 2 do not overlap anywhere,

Now we can make the usual expansion to get

oo , ~k-1.(k) , k(k) (48)I, ==. [atv Myr c'™ avy ® [ase Myr Ct dv,

The analysis of the angular dependence 1 the hefos.

interactions is just as before and we get for the inter=zction

constants

A., = 2 (rl g, 3 33 (ct, D&gt; 11 7)

electric multirole, k even

_ -k=1,(k) ., K(k)(r r div uy» rye div My) 11

magnetic multivole, k odd

The magnetic terms are not yet in the desired form

4crator ¢ « Using vector identities and carrying out

some partial integrations (see ref. (6)) one can re-express

the magnetization in terms of convection and spin currents
&gt;

through the cperators L and S. The final result for the

magnetic multipoles is

a pi (7 -ic-1 (00)Tr C ) o (Tees),

(Fre) (x 7...+18 L + «3
(AB)



For single electron states 1/24J the matrix elements

occurring in (A) and (A8) can be evaluated using formulas

(25) and (54%) respectively. For the first four orders the

results are (2g = -1, g, = -2 for electron)

A

A \

J

AFd

oH Mr1 -3IJa oy, ELD (r Du, " 9)

- 4b = sald) (r ) A "A10)

_ 8ll-1) (f+1 "= - A ALLL) (r °) M4 (A11)

2 3 (23-1) (25-3) -5 A120)= -e 3 IS (ro, (

vhere we have used the nuclear mcments as defined in (18).

These fermulas are invalid for the special case of

magnetic ok pole interaction in an electron state J =_¢+1,2

= 1/2 == dipole in S, ,, state, octupole in D3 /5 state. For

these cases an alternative znalvsis is carried out as follows,

The vector potential

A(C2) = Ha
is easily evaluated for the electron in the state MM = J con-

—

sidering the spin and convection current contributions to

in the usual way. Taking just the k(=2_€+1)-pole term we

find that the magnetic field which it represents can easily

Ye written as the gradient of a scalar. That is

-3 ~»
H —- curl A = grad o

xX + ” ]

where, if f(r) is the normalized radial wavefunction,
g(r)= [r=4e(r) 2



&gt;

Now a formula for the magnetic interaction equivalent to

(AL) is
-&gt;2p

Wo m= ee HeM dv

—7
where M 1s the nuclear magnetization density. Putting in

(A13) and performing one partial integration we have the

effective evaluation of the electronic matrix element (A7)

for these special cases. Thus for an 51/5 electron

and for a p. ..
Fy

I -

- M£ Ag (0) 1
electron

A = - = ug (0)

(A1Y)

(415)

This last result ic ildentical with the evaluation given by

Casimir and Larronantt® in their original investigation

of the octuncle interaction in Iodine.

For the ~~"e~nlatlon of second order effects between

doublet state: the forms (A7). (SY) of the dirole and quadru-

pole operators are used. Assuming that both doublet states

have identical radial wave functions the final result is

just equation (42) with

F=4=1.



Appendix III. Discussion of Approximations

In this section we shall discuss several approximations

nade in the theoretical analysi: of tliis paper in order to

arrive at an estimate of the accuracy of the terms calculated.

Te assumption that a many-electron atom can be de~-

seribed as a core of closed shells plus a few valence electrons

is the essential starting point for any study of atomic multi-

plet structure, fine structure and hyperfine structure. The

corrections to this model, termed configuration interaction,

inelude the admixture of excited states for the core electrons,

brought about through the electrostatic interactions among all

the electrons. The calculations of Sternheimer 1?) have attempter

to account for these effects in the dipole and quadrupole hyper

fire interactions, the magnitude of his correction factors

being of the order of 10 percent, Notwithstanding the diffi=

culties of the labor involved, a calculation, similar to Stern-

heimer's, for the octupole interaction would be valuable,

B: In the evaluation of the radial integrals the use of

ur:shielded coulomb wavefunctions is an excellent approximation

for the octupole integral in a P3 /2 state; but for the dipole

and quadrupole integrals of (r3&gt; there may be a sizeable

error, especially in the lighter elements. As an example,

integrating (r3) with a Hartree wavefunction for Gallium

from r=0 to r=s05a one has only 50 percent of the entire

4 Y integral while the strength of the central potential



is already shielded by 20 percent. In calculating the second

order corrections to the hyperfine structure only ratios of

these £ oN integrals are needed so the major part of this

error is eliminated. For the best evaluation of these terms

one might take values for £ and 7 somewhere between unity and

the values given in the text.

The uncertainty in the value of the normalization constant

ce is not easy to evaluate, but it must be at least of the order

[ct/c Tl 2 ~l., It would be interesting to check formulas (32)

by carrying out the numerical solution of the Dirac radial

equations with some reasonable approximation for the complex

central field in several atoms.

The discussionis A and B relate to the problem of getting

the nuclear octupole moment from the corrected interaction

constant, and as a figure of merit for the results used in

Chapter IX we suggest a value of about 15 percent.

Cs: The accuracy of the second order calculation involving

the doublet state should be very good. The error is probably

no more than a couple of percent for the terms relating to

the valence £ -electron (see B above) and very likely no

more for the s~electron correction factor, all these cuantities

being derived from other experimental numbers with only slight

theoretical corrections, The only check on these several terms

1s in the explanation of the gi~discrepancy in a P1/5 state,

where at present the large experimental uncertainties prevent

3 closer verificstion.



The biggest question in evaluating the second order

corrections is what about the contributions of other electronic

levels besides the doublet state? One would like to rely on

the larger energy denominators. An .sassociated with all other

terms of the perterbation sum to keep their contributions

smaller by a factor §/ AF,_ than the contribution of the

doublet level alore, but the total effect of the infinity of

terms is not easil* seen.

First, one can simpnl’”

following rosults: Cne can show in ~-»-ral that the octupole~

like part of thr { ~-adrupols term general %Ps /2 state

(in I,-S coupnl.’'- L, state is zero

if one adds th “ions of both doublet states J=L+1/2

and J=L=1/2. Th nly residual contribution of such terms

vould be due to the slightly different energy denominators of

the two doublet states, thus an order of magnitude smaller than

any straightforward estimate.

The (quadrupole)? term is anyway smaller than the cross

dipole~cuadrurole term and it is the latter one that we must

vorry about now. One might think that a useful estimate of

this problem could be gotten from a closure approximation.

That is, one tries to represent the seccend order sum as follows

[Clin] _ a
Z,Taf AL, z, [C1 am) * (A16)



where 1 refers to the initial state, n the intermediate states

being summed over, and AE__ is an average excitation energy

for the particular problem,

Fo» our problem, letting 0 ani

gquadrupcle PETANCPS , the second factor on the right-hand side

of (A1() become ‘ matrix element {i|DG|i) . The form of this

operator is vers muc’. like the form of the octupole operator

except that the product Dy has an extre factor e&lt;/r, which

after taking the expectation value becomes a factor ze®/a_.

in upper limit for the evaluation of (Alé) 1s gotten by setting

= = ) 2 TJ i

AE, AE _, ~ve /a_, which gives a result larger by a factor

Zz than the first order octupole matrix element.

[t must be pointed out that equating AE, _ to AE.

is an extremely bad approximation for our vroblem. The reason

for this 1s that our overators are very strongly varying

functions (p=3) so that the correct average excitation energy

AE. is some very high energy. By way of justifying this

last statement we cite the example of a delta-function pertur-

bation which requires an infinite value of AE, to make (A1l6)

meaningful. Ye thus believe that the closure approximation is

useless in our problem,

Ye will now try to carry out part of the second order sum

in an approximate manner. First, the matrix element from a

p=state to an f-state are exceedingly small compared with the

0o-p matrix elements. The octurole part of the dipole=cuadrupole



matrix product from a p- , stcte
££

-~
 I
CE Ah

too Py 5 state is from (61)

and the corresponding contribution from the P3/0=P3 /o matrix

slements turns out to be

3 I

vhere all the finer correction factors have been ignored. If

we consider the two doublet levels of any perturbing °p state

to have the same energy denominators, these two terms cancel

strongly, leaving only 1/5 of the original Py /o=P1 0 term,

We must also take into account the poorer overlap of the

radial wavefunctions as we proceed to higher perturbing levels,

For boimad ctater of a single valence electron Casimir gives

th nermalization constant c® for any level as proportional to

JX +

* the effective quantum number for that level.

Comparing the sum over all p-doublets up to zero energy with

the value found in the ground state doublet alone we have to

co

S’ ( % )a 4,
(=| nk+1

where +X here refers to the ground state. This number is

avaluate

about O.4 for n =1.5 and 0.2 for n =1. Combining these several

factors we may estimate the value of the apparent octupole

interaction due to all levels for the single electron up to

E=0 as

1/5(0.%) $/AE,;,
times the correction obtained from the ground state doublet



alone. Values of S/BE for several atoms are 1/3C0 for

51, 1/95 for Cl, 1/40 for Ga, 1/20 for Br, .. °° for In, 1/9

for I which result 71 corrections of less than one percent

for ail the ~ atoms.

furth

Eo

th

th

N oy no Tn ” ~~ —- me n carry the perturbation sum

emtS17. - + states. We will just

4 * 123itice- tf tions of exciting all

"hound states. Assumingy ©=
%  eo otheior an Coe

Taments for the: ow citations are about

«tron. we consider only

the ¢ + I= «7 them = and their

tichter binding. Counting outward “rom t'1- nucleus, the ith

electron 1s bound by scmething 1lI'k Rydberrs compared

with about one Rydberg for the valence electron. Summing then

ve have the factor

2 1

&amp; (G2 C169t=

In summary, the discussions CO and . ) relating to the accuracy

of the second order corrections to the octupole interactions

are stil} quite crude and incomplete. However, in view of the

optimistic results which these discussions do suggest, we will

gues: , an accuracv of about 7 percent for the corrections as

calculated in chapter IX.
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