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ABSTRACT

HYPERFINE STRUCTURE AND HIGHER
NUCLEAR MOMENTS

by

CHARLES LEON SCHWARTZ

Submitted to the Department of Physics on August 23, 1954,
in partial fulfillment of the requirements for the degree
of Doector of Philosophy.

Considering the classical electric and magnetic inter=-
actions between atomic electrons and the nucleus, we arrive
at a representation of the hyperfine interactions in terms
of a multipole expansion of the field potentials. Treating
these non-central interactions in first order perturbation
theory we can give the form of the general interval structure
and analyze for the multipole interaction constants using
Racah coefficients. Pertinent matrix elements for a single
valence electron are calculated relativistically. Some
second order terms of the dipole and quadrupole interactions
are calculated as they affeet the interpretation of the first
order octupole interaction. In this work we also take into
account quantitatively the effect of some electronic configu-
ration interaction. Finally the values cof nuclear magnetic
octupole moments expected according to different models are
calculated and compared with the experimental data thus far
collected. Generally the measured octupole moments are in
as good agreement with the values predicted by the single
particle shell model as are the corresponding dipcle moments.
In the appendices are given respectively a sample calculation
of the octupocle interaction in a complex electroniec state,

a non-relativistie analysis of the hyperfine interactions,
and a discussion of the various approximations made in this
StU.dy.

Thesis Supervisor: V.F. Welsskopf

Title: Professor of Physics
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I. INTRODUCTION

The recent very accurate measurements by Jaccarino
et al(l) on the hyperfine structure of the ground state of
1127 showed that the theory of dipole and guadrupole inter-
actions as previously developed was insufficient to describe
the level structure to this new high precision. In order to
learn how finer details of the level structure could be
interpreted in terms of higher nuclear moments, it was
decided to review the entire theory of hyperfine structure.

Fdirst, treating the nucleus as a stationary non-
relativistiec quantum mechanical system, we derive a multi=-
pole expansion for the electric and magnetic fields produced
by the nuclear charge and current distributions. In this
development the electromagnetic potentials are expressed in
terms of scalar and vector spherical harmonics. When these
potentials are put into the Dirac hamiltonian for the electrons,
the terms of different orders of symmetry can be identified
as tensor operators, so that one can write down the form of
the generalized "interval rule" in terms of Racah coefficients.
This analysis proves to have not only formal, but also
practical computational advantages over the formulations
given in the prior literature.

The interaction constant A, for each multipole order k

k
is the product of the nuclear moment of that order and an
electronic matrix element. The general electronie matrix

elements are evaluated for the case of a single valence
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electron using the techniques of Racah(z)

for the spin-
angular integrals, and following the method of Casimir(3),
Racah ', ana Breit‘®) Zor the radisl integrals.

The magﬁitude of the hyperfine interaction energies
decreases rapidly with order: The magnetic octupole inter-
action is weaker than the magnetic dipole by about 10'5.
Thus in the perturbation theory second crder terms (mixing
in excited electron states) in the dipole and quadrupole
interactions give contributions which may appear as first

L

order magnetic octupole (and electric 2 pole) interactions.
This effect is caleulated using so far only the perturbation
of the nearby doublet level. In this work the dipole con-
tribution of s-electrons in mixed configurations is allowed
for by quantitative analysis depending cn the measured dipole
interaction constants in both states of the doublet.

After all the electronic contributions have been
extracted from the observed octupole interaction constant,
the value of the nuclear magnetic octupole moment is finally
revealed. We have calculated the values of these moments
to be expected according to the individual particle shell
model for the nucleus. The results, for various single
particle orbits, are represented on a diagram similar to the
Schmidt plot for dipole moments; and the octupcle moments of
the few nuclei already investigated take approximately the
same positions on this new diagram as they do on the Schmidt
plot.
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The measurement of higher nuclear moments may also
prove to be a valuable test of the Bohr-Mottelson collec-
tive nuclear model. In thelir "strong-coupling" scheme the
observable magnitude of an octupole moment is decreased
from the single particle value of the simpler theory by a

factor as small as 1/35.
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II. Ihe Hyperfine Structure

In the absence of external fields an atom may be
described very accurately in terms of a compact charged
nucleus and an electron system arranged in the central
Coulomb field produced by the nucleus. If, however, the
electrons have some resultant angular momentum J >» 0 and
the nucleus also has a spin I » 0, there will be further
interactions between the two systems, described as magnetic
dipole, eléctric guadrupole, etec. We then denote by hyper-
fine structure (h.f.s.) the different energy eigenvalues
associated with the various total angular momentum states

of the combined systems characterized by the quantum number
[1-J¢Fr€e1+7

The major part of the electron-nuclear (non-central)
interaction is the magnetic dipole term which is character~

istically of the order of magnitude

/’o/”N< > ome 2Mc< >

where m is the electron mass, M the proton mass, and T the
radial cocrdinate of the electron from the nucleus. This
may be compared with the fine-structure (f.s.) spacing of

the electronic energy levels, which is of the order
2
2mc <’ a>

where Z is the atomiec number.
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The ratio of these two

hof.s. -k

-5
Tl - 10

m
f\-ME'\'lo

is then a measure of the approximation to which we may use
the various orders of perturbation theory to calculate the
h.f.s. levels. We want to compare with this number the

ratio of the energies associated with successive multipole

orders. The ratio of octupole to dipole 1s roughly
2 -5 -3
AT CDVLED

where r, is the nuclear coordinate and o the electronic
coordinate. <I'r21 > is approximately Ri, where R 1s the
nuclear radiusj; and the ratio (r;5> /(r?) is approxi=-
mately (Z/ao)2 (a0 = Bohr radius) because the interactions
involved take place near the nucleus where the scale of the
electronie wave function is ad/Z, not just a_. The octupole/
dipole ratio is then

o6

(2R /a) “~e 10 10
comparable to the ratioc of h.f.s./f.s. We shall start by
considering the h.f.s. interactions in first order and later
turn our attention to the effect of second order terms on
the higher moments.

First, the non-central interactions between electrons
and the nuclear particles, whatever these interactions may be,

will be expanded in a series of tenscr operators. The

perturbation hamiltonian H1 is written
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5, = &1 i (1)
Ték) is a tensor operator of rank k which operates in the
space of the electronic ccordinates only; its rank is
defined by the fact that it commutes with the total angular
momentum operator of the same space, 3: just as do the
spherical harmonices of order k. Tgk) operates on the
coordinates of the nucléons in the same mannerj and the
terms in the series (1) are the scalar products of these
two tensors, thus are invariants 1n the combined space.
We now wish to calculate the first order energy expectatlon
values of H1 in states deseribed as having J of the electron
and I of the nucleus coupled to the resultant F,
W= (LF|E [Py = &, (17| r{kle (B 1op
(2)
These matrix elements are independent of the magnetic quantum
number MF, so it will be ignored. According to a well-known

(2)

theorem of Racah the dependence on F of each of the matrix

elements in (2) can be separated out as follows

fThe heavy dot @ will be used to denote the scalar product

of two tensor operators

(k). (k) _ (k) (k) ; 2y
T e o = 2/”% U_y(-1)

while the light dot . will denote the scalar produet of two

cartesian vectors

V.7
e W=VW + VW + VW
rx vy A
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Curf 18 o) [ 1> = (-0 Fwsnnro (ahzW 1D

<JﬂTgk)// J> (2)

where W, the Racah coefficient, is a known algebraic funce
tion of its six arguments; and the double-barred matrix
elements, called the reduced matrix elements, are inde=~
pendent of any magnetic quantum numbers which may be assigned
to the states indicated.

We shall write the h.f.s. term energy as

W = ikAkM(IJ;F;k) (3a)
with the normalization
M(IJ3I+d3k) = 1 (3b)

which gives directly

(k) (k)
b =STe72 53 (102 1 )
with the relation
(k)> (2T )1 (k)
T b U 5> (up)
< WG D (i D T ( / 7
Our A's are related to the usual(l) h.f.s. interaction con-

stants as follows:

Al = IJg
Ay = 1M (ke)
A3 = ¢

The coefficient M is given by the formula
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oy (2TK) T (23-K) 1 (I4+J-F)1(J-I+F)1(I-J+F)1 #
M(1T5F3k) = 5T ~ (o] (T+J+F+1) 1 [kz]

z+1+J=F

S, -1 (21+2741-2)1
" 21(21-k=2)1(27-k=2) 1 [(1+T-Fugll (k4F-I-T+2)1 | 2

(5)

where the sum extends over all integral values of z for

which no factorial has a negative argument.

It has been customary to express M in terms of the

cosine factor
K = F(F+1)=I(I+1)-J(J+1)

The formulas for the first four orders of M in terms

of K are the following

M(IT;F;l) = 5%3 K (6a)

6 L |
(2I) (21-1)(27) (27-1) [K(K+1)-§I(I+1)J(J+1)]

(éb)

M(IJ3F32) =

A 20 S
M(IT3F33) = oy (aT-D)(21-2) (2 (37-17(27-2) {K i

(6e)
p %K {-3I(I+1)J(J+l)+I(I+l)+J(J+1)+33 T(T+1)J(T+1)

M(IT;F3h) = i °
AT eI AT - I M 20-2) (2L 1) (28) €201} (20eD) (Bw})

{ Kl'L 4 10K3 + %Kz {-6I(I+l)J(J+l)+SI(I+1)+5J(J+1)+3?)

+ %K {_3u1(1+1)J(J+1)+121(1+1)+12J(J+1)+159 (64)

- %I(I+1)J(J+1) [-2I(I+1)J(J+1)+hl(I+1)+4J(J+1)+27?)



13

It should be pointed out that formulas (6éc,d) are quite
unwieldy for numerical evaluation and it is frequently
easier to work directly from (5). For example, if 2J = k,

we have

I+J=-F (27)1(2TI+2T+1) I (I-J+F)}
(2I) I (I4T+F+1) I (I4J=-F) I (J=I+F)!

M(iJ;F;zJ) i fel) (7a)

or if k = 2J-1

)I+J—F (2J=1)1(2I+2J) I (I=J+F)}

M(IJ3;F327-1) = (-1 (2D T(I4J+F+ 1) I(I4J-F) I (J=14F) 3 °

. 2 [F(F+1)-I(I+1)+J2] (7b)

The following sum rule is also of help in checking

numerical work
21&* (2F+1)M(IT3F3k) = O (k >0)

Aside from the physical content of the operators (1)
this analysis gives us the selection rule that the series
(3a) terminétes at the term k = 2J or 2I, whichever is
smaller. One then has 2J (or 2I) interaction constants A
to be solved for from the 2J (or 2I) measured energy inter-
vals. Due to an orthogonality sum of the Racah coefficlents

one can solve (3a) analytically for the Ak

2
b Cenien:d
Ay = k)T T T D 1 (20 -0 T35+ k1) 1 ZF(2F+1)° (8)

M(IJ;F;k)WF
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III. Electromagnetic Potentials

We shall now describe the electric and magnetic static
interactions between the nuclear and electronie systems in
a multipole expansion.

The electrostatic potential set up in space by a dis-

tribution of charges in the nucleus is

W(r) -_—f-‘;—l%l,— avt (9)

where p = e P :E %li’fr'is the density of electric charge
2 |

of all the nucleonss %( is +1 for protons and zero for
neutrons. Now expanding the Green's function in terms of

spherical harmonics
b . k ~k=1 %k) - (k) e/ i’
|r-rt] Ekr( > C(sg)*C (= #) (10)

where

(k)
Cﬂ (O,w) > mylyd(e’m)

we have the desired multipole operators of the electrie

(k)

interaction. The functions C are tensor operators of
rank k with parity (-1)ke
The vector potential for the magnetic field set up by
the nuclear currents and spins is not quite so simple; it
(6)

will be expressed in terms of vector spherical harmonics °

We choose the form
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a7l (k)
A= é-k’“LCA, (0,00, (r) (11)
e - ' -y
where L = -irxgrad, which assures the gauge divA = 0. The

—p
operator L commutes with any function of r and also with the

B -
Laplacian so that the equation V2R = - —“’Cﬂj becohes

2
E. Lgcuk)w,«.)[% ; —(—lk+1J he) = ST (12)
2 _

Now using the orthogonality of the vector spherical

harmonics over the unit sphere

* 1
f[fgik) ] . [f'c(/]::)] Ll - J‘ /“/u, 2;1’"1 k(k+1)  (13)

we get

2
1 d k(k+1l + 1l _2k+1 (k)
[—I:———é T = r2 ]hk, (I‘) LS c k(k+l[[ (ﬂ)m)] °Jd-a-

dr

The Green's function for the left-hand side 1is

1. & P
| 2k+1 S T2

so finally we have the solution

, ¥
h(ic‘% (k+l)f Lr( By _k'lC,Sf)(&,m)] Fav (14)

The nuclear currentsqf'consist of two parts: the convection

current

» -
i.=e¥Y's gg Vs %

and the spin current

*
-j: = c:url-_‘?h 21 gsi 5%%?.?‘ ‘

¢
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The convection ecurrent should be a symmetrized combination,
but it is easily shown that the two terms give just the same
contributions under the integral (1u).

For the convection current term in (14%) we can write

9 > * - > % -
[ ] T, = FxPC )T, = -1¥C 7 Fx 1)
and get its contribution to (14) in the convenient form
K kel () b NP o
k+1f[l7r( ry Co (&,m)]-‘fzgr,qNL dv . (15)

with the shorthand notation

> o
gg.(/”NL E Ei g_?i m, e Li

For the spin current term we use the identity

o)

¥ x curl grad-?;-(r - iad 1)

and by partial integrations we have the spin contribution to

(lh)*.

o ol * ¥
E(T{%TT [ﬁ(r -695 + l)rl'<c T, k lC/(,ll{() (& ,co)] '?gsﬂl\:‘?ﬁiv
(16)

where again

eh E?

s/aN 22t

Finally we can write the solution for the vector potential

TThere are surface terms left over from these partial

integrations but they exactly cancel each other.
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T
h > -
O

o ¥
(2gj L + (k+1l)g S)TdV' + P f * -k_lC(k)(G',tﬁ')o

17
(Eg’e? - kgs-g)f_dvi]_ A2

In what follows we shall consider the nucleus as a point
source and use only that part of the potentials corres-
ponding to an observation point outside the nuclear matter.
The error made this way affects only the magnitude of inter-

action observed, not its multipolarity. This error, involved

(7)

~

in the h.f.s. anomaly is appreciable only for ck-pole
magnetic interaction with an electron in a state j = k/2,
and then for various orders the effect varies as 1/k+1l; for
the dipcle (k=1) this effect is only a few per cent in the
heaviest atoms,

We can now define the integrals occurring in (9) and

(17) as the general nuclear electric and magnetic multipole

moments
Q;= ef g(rk (k)(& ,m)?dv (18a)
Mﬂ /{IJ (Vrkc(k) (&,cv) (4 +g o)%v
(18b)
and write
T r 51 (0 0) @ Q. (19a)

T-2 3 i s0)en, (19b)
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We also note that the operator Qk has parity (-l)k while
M, has parity (--l)k+l so that the only static electric
moments are of even order and the only static magnetie
moments are of odd order if we assume that the nuclear wave

function has a well-defined parity.
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IV. Electroniec Matrfx Elements

We now investigate the interaction of a single electron
(charge =-e) with the nuclear fields just described. The

electron wave function ]P" obeys the Dirae equation

[-c?- (c;?+ e:;) - [Smc'2 - e\i]?‘ = E‘f‘ (20)

and for the zero order solutions in only the central part

of the electrostatic potential, Vg, we put'SP— = f%j where
‘f’is the large component and ¢ the small component of

the four-spinor ']?L . Now introdueing quantum numbers we

have the separations

Cpm = £(2)/x Yo

Prim = 8D/ 1x Ly,

wherefafil
j=f+1/2=47 1/

yfjm - 2 m’(ms(l/2 msi%’.l/gjjm)y‘%gr;m) -xl/EmS (21)

and :Xj is a two~component spinor.
The interaction hamiltonian is
H

L= -e(V-Vg) + @ . X (22)

and we will need the general matrix elements

fﬁl 'T’d"

For the electriec 2k-pole matrix element (k> 0) these are



-20=
- - T ot 1
_e<Qk>0fr-kudr[ff,(l/gjjmlc(k)’1/¢j jtm?)
o]

+ ggt(1/28m [ ) [ 1/0451me )]

(k) 40 'the 1/2 £ jm scheme are

Now the matrdx elements of C
independent of the quantum numbers IF‘VCE‘},t for the parity
selection (£ +.0' + k even). Hence for the reduced matrix

elements of electric multipoles we have

o -} 1 e
P <//Qk//)f 2% L(err 4 ggtyar(1/2. 83 c U 1720050
o
(23)
For the magnetic multipole we have the general matrix ele=

ments

ezl?<Mk>'U}&§jm - (5 c)g g srnray
x
+f¢£jm rkl(k)) Jr'v]

But we can write

- ®, 1 (k) <> k.1 (k) k-1 (k) 22
aﬁ(Lr gqy )¢ = g.L(r C’“& ﬁ)ul‘ * C": (e 'u%)

-

g >
also by the hermiticity of ¢ L

- el 1 4 *_, " ’
f?r’.L(r k-l K0 g yav =f(rrvL}V) 1K) & o
Newothe functions W ¢are eigenfunctions of the

-~
operator ¢”-L belonging to the eigenvalues K -1, K-1

respectively; where I is the Dirac quantum number

L+ 1/2
o i 148

referred to the large component and I = - K-

i}

(j + 1/2) j

K=.{j+l/2) J

il
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We thus get for the reduced matrix elements of the magnetic

multipoles
P
-e/k YU K+ lf')fr"k_l(fg' + gf')dr -
(o)
(24)
e (/2830 172 151
which have the parity selection (f+_@* odd)., The

can be calcu-

+ k
general reduced matrix elements of the C(k)
(2)

lated best with the teechniques of Racah. The result is

(8))

(using a formula of Schwinger

(/281 ¢ /28751 = 172010 (-1 4 (510 (1)Ll

(25)
(j+jt+s) 1!
(J+3%as) ii(j-J +s=1)TI(jT-j+s=1) "]

k &4k even
where s =

k+1l j+j'+k odd
and

v

_ f(atb-c)i(bte=a)!(cta-b)}
4 (abe) [' (atbre+l) !

For the first order hyperfine interactions only the
diagonal matrix elements are needed and we get for the

interaction econstants

L 0% PR SR - k/2 (k-1)1} £23)8
Ay = Qe | (%4 g")dr(-1) KIT . (BIrRRi(2j-k=I) I
0
k even > O (26a)
e d’k-l‘ -l—{-',-'rl 11 (24)1¢
Ay = ‘MKE”KLP fgdr(-1) ¢ 37T Ber) LI (23-B) I

k odd (26b)



in terms of the specific nuclear moments
Q. = Q]:)II B, =(M§>H (27)

The preceding analysis was for a single electron bound
to the nucleus. It 1is also correct to deseribe the inter-
action of a single valence electron outside closed sub-shells
of other electrons?. For ceonfigurations such as ps, d9 in
L-S coupling, or (3/2)3; (5/2)5 in j-j coupling where there
is just one electron less than the number needed to fill a
shell, only very slight modifications are needed to give
the correct matrix elements: the even (electrie multipole)
interactions are just (-1) times the values for a single
electron while the odd (magnetic multipole) ones are the
same.,

In the case of more complex electronic configurations
one must know the coupling scheme of the several angular

(2)

momenta involvedjy; then the techniques of Racah show how
to calculate the appropriate "projection" factors. An

example is worked out in Appendix 1.

-rThis assumes that one can write the total wave function
for all the electrons in the form of products where the
coordinates of the valence electron are separated from those

of the core eleectrons.
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V. Radial Integrals

With the separation of variables (21) the Dirac equae
tion (20) for the radial functions f and g reads

(%; - g)f = :Hl'g(mc2+E+ch)g
(28)
(% - ‘-E)g = %(mcz-E-eVC)f

For a many-electron atom the best solution econsistent
with the assumption of the preceding footnote is obtained
from a Hartree-Fock treatment. However, to obtain simple
analytical results we make the assumption, following
Casimir(g), that the important contribution to the inte-
grals (26) comes from the region of small values of r.
This should be an excellent approximation for the cases
j =‘éh1/2 = k/2 (magnetic dipole in 51 /2 state, magnetie
octupole in p3/2 state, etec.) where the non=relativistie
treatment gives the interaction as due entirely to the
electron density at the nucleus (r=0). For orbits of
larger /(, however, the wave function is concentrated farther
out and is more slowly rising near the origin so this
approximation worsens. At small value of r the major con-
tribution to the potential is from the nucleus. Setting
Vc = %? and with the approximation of zero binding energy
,mc2 - E]({ Vc we get from (28) the solutions in terms of

Bessel functions
o
f = C[2J2p+1(x) - (ptk )Jgp(x)]

(29)
g = CaZJ2p(x)
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: > 2
where x = 1/8Zr/a_ p = /K- o“z° a, = —-‘-F-l-;.; =;g—

we

no

With these functions the radial integrals (26) can be evalue
ated(g) to give the following results

@
Kol o, Byt A22RY _(2R.2)2 BloKii) (OWrleT el e S 2(3k-1)
fr C(ETrgTdr = OT(FY  TR-DIT (500 (Sptkel) ... (2p-K)

(30)

@
5 N R I W (g_)k+1 2k-1)1 (-k-2K)
gdr a k-1)T (2p+k) (2p+k-1)...(2p=k)

(31)
The normalization constant C, which gives the density at
the nucleus of the wave funetion of the outer valence
electron, 1s best evaluated in terms of the fine-structure
separation (for non-s electrons) between the states =,j7+ 1/2
and ] = «(— 1/2, which have almost identical wave functions
for larger values of r. Here and subsequently we shall use
the notation of a singie dash ' to identify a quantity as
relating to the state j =,€4—1/2, and a double dash '!' for

the state =,(-l/2. The resulting identification is(g)’
() ,(5)

e 2 Polery i
1

where o 1is the doublet splitting in em™, and H is a
relativistic correction factor. More accurate approxima-
tions for the ratio [C?'/C'l will be termed normalization
corrections and will be of concern in the following section.

Casimir(3) gives the estimate
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Igé% L Y @ 3V (33)
involving the "effective quantum number" n*; However, an
explicit caleculation by Breit for the case of Thallium
(Z = 81) gives a value for /C"/Cf/z = 1,65 compared to the
'1.18 of (33). We shall use Casimir's formula (33) for
lighter nuclei (2&?50) for which these corrections are not
very large anyway. For the integrals of greatest interest
we shall write the results in the following forms.

@
d 2
Magnetic dipole: ‘}f:r 2fgdr = 02 é%; (%Z) (Zf+l)[F*(21h1)-i]
o ‘.

0

Tas j=4%1/2 il

0

Electric QUadrupole:-}P 3(f2+g )dr = C (“_) .2?2(+1)(21r2)
0

(34b)

Magnetic octupole:

a
-f-ufdgcz-ﬁzz) 10 T
r~ fgdr Bme ¢ (2£+3) (24-2) (24+1) (20) (2 -1 +(2R1) -3 ]

o
(3k4e)
~as J = _{+ 1/2 .
F and R are the same relativistiec correcticgn factors given
by Casimir(3); T is the corresponding correction factor

for the octupole integral and is given by

_ (23+4)T (2p-4)1
HhS %5%:§%T E2p+3}! (3%)
All these factors, along with H, are plotted as functions

of Z in Fig. 1 for the case,{7= l.
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VI. Second-Order Effects

So long as we consider only first order effects of the
h.f.s. interactions, the multipoles can be separated from
one another unambiguously by the orthogonality of the
"interval rules" for different orders (8). However in
second order we get the energy given by the square of a
matrix element. Thus if, in second order, we consider the
matrix element from the state IJF to the (different) state
I'J'F of the h.f.s. interactions of various orders, we get

a dependence on F which goes as the Racah coefficient
(-1)F w(ztar1srx)

In the square of the matrix element there will be such
products as

W(I‘J'IJ;Fkl)W(I'J'IJ;Fkg)
and if we want to know what part of this looks like the first

order term of an interaction of rank k we multiply by
(-1)F W(IJIJ;Fk) (2F+1)

and sum over F, This sum is well known in the theory of

Racah coefficients and gives a result proportional to

1 r
W(IklIk I'k) W(Jlikz;J k)

23
which is non zero only if
[k - ko €k & ky + Kk,

Thus in second order the square of the dipole term can

influence at most the quadrupole; the cross dipole=-



- e
quadrupole term can affect up to the octupoley and the
square of the guadrupole term can reach to the 2LF pole.

We shall now calculate the off-diagonal matrix ele-
ments for the dipole and quadrupole operators from the
state in which the measurement is being made (assumed to
be J = j + 1/2) to the near-by doublet level of the
electron (] =,€ - 1/2).

For the dipole term the matrix element (always dlagonal

in F) is from (24)

W(IITT-1;FL) D T T2 g u 1 (-e).

@

-+ KY) f r=2(ergiegtenyar(1/20 o' VYf 1/245-1)
O

and from (25)

(1/21J”C(1)”1/2JJ-1) - ﬁ2J+l%§2J_l) also K+ ' = 1.

The form of the Racah coefficient is

1) IHd-F-1, (I+J-F)(J-I+F)(I-J+F+1) (I+J+F+1)

W(IJIJ-13F1)( (I+1) (2I+1)21(2J+1)27(2J=1)

and the nuclear term 1s A
3
(1 ”Ml” I>r ___f(I+l)IL2I+l) My

So that the entire matrix element is

~ells r'g(f'gwg‘f” )ar ‘V(I+J-F) (T-I4F) (I-T4+F+1) (I+T+F+1)

e (36)
o0 The radial integral yields
. g W e L7 (o'4p"-1)
1eu = pionldi_res f
fof (£lghrgtt™)dr = C'C5g(G) ATompT+2) (pT-p"+2)f7 (5 #5742
2

E P it k) _'ﬁ___ (22) (‘37)

G
2me 5; L020+1) (24+2)
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The ratioc of this to the diagonal term in the state

j= 0+1/2 is

® ®
—2 ""24.'- C” l G l 8
f e (f‘g”+g'f”}dr f;_. J_'g'dr & 'é-':(?' ?’f = _jf (3 )
o (o]

The off-diagonal quadrupole matrix element is from (23)
@

W(1313-1;5F2) (-1) FHI-F=1 <I /e, //I) (-e) ﬁ'3(f'f”+g'g”)dr

(287l 2 [ 1/247-1)

and from (25)

(1247 ) c{2) Jf 1/243-1) = 1%?}5%:%

The form of the Racah coefficient is

WeLaT Felgpa) G-y rIEeL o

Z/ I(I+J<F)(J=I4F) (I=J+F+1) (I+T+F+1) i
LI(J+1)(J=-1)(27-1)(2J+1) (2I+3)(2I+1)(2I-1)I(I+1)

. [%(F+1)-I(I+1)-J2+{]

and the nuclear term is
2T+3) (21+1) (I+1)
<I //“‘*"//17 f I(;I 1) b

So the entire matrix element is

@
-eQ, ;Jr;-3(f‘f”+g'g")dr (I4T=F)(J=I4F) (I-J+F+1) (T+J+F+1) »

(0]

(39)

2 : 3
o [F(F+1)-I(I+l)—3 +1l 8J(J+1)(J-1)1(2I-1)
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The radial integral gives

o)
2 7
=3(prpn n)ar=C1Ch(£L) 2/ (pl+p"-2)
for (Fif¥egte" JdreC’C kao) /"(p'+p”+ﬂ/7(p’—p”+'i)/7 (p"=pT+3)

12 a222+(p1+ K') (p"+ K”)J +(p'+p"=1)(pT+2"=2) (pT=p"+2) (p"=p '+2)

_g(pt+‘<t)(pf+on_2)(Qt_pn+2)_3(Dn+’<u)(pr+ou+2)(pn_pr+2q}
(40)

_Crcu(gg)z S
. a, H(2f1)(2f2)
The ratlio of this to the diagonal integral in the
j= fr1/2 state is

) @ -
J;r'3(f"f"+g‘g”)dr [r'3(f'2¢g'2)dr = - % % E.'[ (+1)

Collecting all the terms we can now write the second
order energy as follows

(2)_ 1
F - AE

(42)
b AEE)T(T41) oI5 0 g o o JHL £ 2
23(J-1)(2J-1)I(2I-1) ? 2 TIETM M ET=1)8 1

in terms of the first order interaction constants in the

(I4J-F)(J-I+F) (I=J+FP+1) (I+J+F+1) .

state j =,éll/2 (we might also have referred to the state
i ::/J-l/2)f;’A E is - J (the fine-structure splitting) if
the j =_¢+ 1/2 state is the lower state (in energy), or

+ Jif § = € - 1/2 is lower.
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VII, Effects of Configuration Interaction

We now go on to consider the effect of some configura-
tion interaction of the sort discussed by Fermi and

> (10)

Segre (ll).

and calculated in a particular case by Koster
For configurations s%f% (or sz,f‘lj) we include the

possibility of one of the s electrons‘being ralsed to a
higher s-state s'. The wave function in L-S coupling will

be written - for both j =€+ 1/2 and j =€~ 1/2 levels

Vi (2520020 )0y (ss7 (521120 we, (a8t (8=0)2L)  (43)

with normalization ag - ai 4 a% = 1, where S is the resultant

angular momentum of the two s electrons' spins which then
couples to the spin of the,{’ electron to give the doublet,

In what follows we shall approximate only that ui << i |

2
1

For the wave function (43) the octupole and quadrupole

(Koster finds a5 = .001 for Gallium, Z = 31).
matrix elements, as well as the fine-structure are essentially
the same (to order ui) as those one would get from considering
only the valence 1 electron alone. We are interested in
the effect of the s-electrons in the first and second order
dipole interactions as these influence the interpretation of
tﬁe purely octupole interaction from the h.f.s. data. We
shall find an explicit evaluation for a correction factor
which should be multiplied into A} in formula (42) just to
take account of the dipole interaction of these s-electrons.
First, with the total dipole operator written as a sum

of an operator Tﬁ})(of rank 1) acting on the valence 42



w3l
(1)

electron and another TS acting on the s electrons, the

general reduced matrix element becomes (to order ai'(( 1)

(JIIT}” « B P ile T Py 4 A (k)

where £1JJW is a sum of matrix elements between various

terms of (43), all of the form

A;v (s1/2, 124, slf1lV [fsr/2, 1724, o)

= W(1/271/23" s Q1) 231 a1 (~1yT-1/2H I

« B8l 8, 1/2 [/Tgl)l/S'l/E, 1/2)

That is, without actually calculatingzjtij, we have gotten

its dependence on J and J'. Now putting J =.4’+ 1/2 we get

the ratios

45 VgJ-l‘ &
Z—J} = i 5 (45a)

4;,:. 10D (45D)
7 T Y ¥ tIx1)(2I+]) g

Also the ratio of the off-diagonal to diagonal (Jz,ﬂkl/Q state)

reduced dipole matrix elements of the,4’ electron 1is

L (J+1)(2J-1)

(2741 (27-1) (16)

The desired correction factor is given by

LT YT Ml 59, 5 i)
$ =@ |

and from now on we will understand J =,{7+1/2, J? =j- 1/2 = J=1,

L5
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One must calculate AlJJ by taking the discrepancy
between the observed interaction constant Ai and that amount
calculated for the valence -electron alone, If the h.f.s.
is measured in the J'=_47- 1/2 state as well, one can get a
better check on..Zk by solving the two simultaneous equa~-

tions of the form (44) with the measured interaction con-

stants 4] and A}. Using (45b) and the relation

P

-1l g 5-1) y%gf}%ﬁg‘};}%ﬁm//ﬂ})//!J) (48)

FH CH 2
e /c'
we get 5
" e S0 S V(J+1)(2J+1T i
1=y Fad J %a)
i
J=-1
e Al’ o A!I
sl - T iy (u9b)
e + m

and finally

J_ am 1
AT - BA
f=14% e e L lenias-l) (49¢)

€ ay+ sty

The caleculations carried out here also find applica=
tion in the study of the Zeeman effect in h.f.s. as used to
measure directly the nuclear g-factor. When an atom of
spin J = 1/2 (for I > 1/2) 1is placed in a uniform magnetic
field H, there are according to the Breit-Rabli formula
pairs of lines arising from the h.f.s. the difference of

whose frequencies gives directly the quantity 2gI/“%H.
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Foley(12) has shown that for a P1/2 electron state
second order contributions inveolving the doublet P3 /o level
can change the apparent value of gr - as compared with the
value measured directly by nuclear resonance methods. His

formula 1s
L gr(atomic beam = hif.sie) e 1837 AV i
gy(nuclear resonance) ¥ 2I+1)g;

where @AY 1s the h.f.s. interval in the P1/p state at

zero field andg J’is the fine-structure separation.
Clendenincla) has done the calculation relativistically and
he gets formula (50) with the factor G/F" included in the
second term.

What enters in (50) is just the off-diagonal matrix
elément of the h.f.s. interactions between the p1)2 and
p3/2 states times the matrix element of the electron's
magnetic moment operator between the same two states.
There are three effects not considered by these other
authors which we can now include: the normalization cor-
rection factor; the off-diagonal quadrupole term; the effect
of configuration interaction on the off-diagonal dipole term.
Using (42) we get the result

o 1837 av_ ¢ f_ _ b
=l-gg8CED ) 6 - @D ?] (51)

R

b is the usual quadrupole interaction constant (bzhAg)
measured in the P3/o state and all other factors in (51)

are as earlier defined. The sign of the correction term
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above is correct only when the pl/2 state is lower in

energy than the p3/2 state.

We shall compare the calculated and measured values

of this discrepancy for the ground states @¢f Gallium and

Indium.

(1Y)

Gallium Z =3 § - 24,8 10° me/sec.

C" 2 ]+
[C—f = 1.02, fs 1.02 K =1.0

f=1.58 Aap/Af = 2.34

69

Ga ’: &Y= 2677 me/sec. b = 62.5 me/sec.

1

R- = l - .0078

to be compared with the experimental value

1 - .0079 + .0023

Ga’l: &V-= 3402 me/sec. b = 39.4 me/sec.

-1

R™™ =1 - .0084

with the experimental value
l - 000’77 i 00017
Indium(ls) z2=4 &= 66.5 106mc/secn

cﬂ

_fz 1.8% AY/AY = 3.12

Inllsz Ay= 11,330 mc/sec. b = 450 me/sec.

-1

|

R 1 - .0060
and the experimental value is

1 - .0062 + .0005

*

n

=

15712 =1.06 f=1.04 4 =1.11

&1

1.51

= le].Or-
2

- 1,34

= 1,70

5 1.4

6 = 1.30

= 1.22
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VIII, Nuclear Moments

The nuclear moments are defined as the following

expectation values (evaluated in the state my = ).

1 (k
9 = <e§frﬂc et ¥ o (52a)

for electric moments (k even)

- —
M, = </I{\T(7rkc(k)(&,m))-(5 sl e 8) oo (52)

for magnetic moments (k odd)
The magnetic multipole moments (52b) can also be

written in the form

i, = -ﬁkc(k)( & ,0)divMdv

where M is the magnetization density (in the state mI=I)

(6)

defined as in Blatt and Weisskopf Chapter I. These are

related to the usually defined moments as follows

A= Ml Magnetic Dipole Moment
Q = 2Q2 Electric Quadrupole Moment
and we shall define the Magnetic Octupole Moment L as
. T
Ry

It can be seen from the phase factors in Egs. (26a,b)
that the moments of a given type, electric or magnetic, have
a natural oscillation in sign as one proceeds to higher
orders. The minus sign is introduced in the definition of
XL so that a nucleus with a positive dipole moment is most

likely to have a positive octupole moment as well.
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It is of interest to calculate the moments expected of
a single odd nucleon in an orbit of spin I. From (25) and

(4b) we get directly the electric moments

% = 30 = - 3 Siitey (D (53a)
21-1)(2I- L
o = 3 (BEascET ey < D o

For arnuclear configuration of n (odd) equivalent

nucleons in the expected ground state we have the relation
He _ 2j+l-2n s

giving the moment of the several particles in terms of the
value for a single particle.

The calculation of the magnetiec multipole expectation
values (52b) is slightly more involved. With extensive use
of the Racah techniques we have derived the following general
formula for matrix elements of this type in single-particle

orbitssy g is any funetion of r.

o 4
g Lre,S) 411/25M)= -1

{g[ /e 8/r(-1)j1'1/2+k[k<k+1)- ((:;+1/2)+(-1>3+J'*kuul/zj
((J+1/2>+(-1)3+3'*k(jf+1/2)+c-1>1+1/2+9] +g, 1/2(-1 A"+ 3+

[(-1)*"*1/2'*j %g-g/r((:}ﬂ/zn(-l)j*j'*k(j'+1/2J)]} A4
(5%)

(4 1/23 ff (Pec™) .«

i T
WY T & (q+it+s) 1l

(j4371=8)81(gogr+s=1)11( " =F+s-1)11
with s and A () defined as in (25).
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For the diagonal matrix elements in the state MI=I,

using (4b) and (54) we get

E.~Ey
g -2y (55)
e I=4-1/2

the usual Schmidt values3 and for the oetupole

2Ial 2 (I+2)
L= -u =="/‘(N2'(':2'§T7?)7'LI+—2)' (r)[

(1-1)
[(1-3/2)53 gg] I =A+1/2

. (56)
[ze5/2)e,- €] 1= -1/2

One can make a plot of these values of the single-
particle octupcle moments very much like the Schmidt plot
for dipoles. In Fig. II are the lines for I =¢ + 1/2 and
I =_f0- 1/2 of the quantity

I
A (r%)

for an odd procton (%? = +1, g4 = 5.58)3 a similar plot can

as a function of I ( 2-3/2)

be drawn for an odd neutron (%l =0y g, = -3.83).

For nuclear configuration of several equivalent particles
in the ground state I = J we get for the magnetic multipole
moment §

A i : (57)
1 (J7I=3) = & ()

If (as in an odd-odd nucleus for example) we have a con=
filguration of two particles (or two separate groups of
particles) with separate spins j; and j, coupled to a

resultant I, any multipole moment of the total system is
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made up out of the moments of the two particles as follows,

(21+1)%
[(2I-k)1(21+k+1);]1/§

el (k) (k). . n
(,]l,]zlmIsI‘Tl -i»T2 ,JlJ2ImI=I)"

ﬂﬁéjl'k)z(2j1+k+l)z1. (k) .
ERE (31‘“1’31'11 ,31’”1‘31) \
j2"j1-1+k (2j2‘k)1(2j2+k+l)!
e T B RI-2) TR g ’
i (2j,)1

(58)
°(jgm2“32’Ték)ljzmz"‘jg)W(ngJinJlk)(-l)Jl e I+k]

We can make one Ilnteresting and simple remark concern=-
ing the interpretation of nuclear moments in A. Bohr's
asymmetric core model. In the strong-coupling situation
where the valence nucleons are alligned with respect to a
permanently distorted nuclear core we must reduce all the
moments by a projection factor Pk which allows for the
transformation of the necessary operators into the bedy
frame of the core. This projection factor, in the nueclear
ground state where the valence nucleon is alligned with the

core axlis, 1s given by

{2133

= RRL+1) Tohap)iteThRe)] (59)

Py

It is interesting that the higher Pk*s can be quite

small numbers if I is small (I~k/2). For the octupole,
for example,

P3 = 1/35 I

5/42 1

3/2
5/2
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while the smallest P, is 1/3 (for I = 1/2) and the smallest

Ps L1a. 1/0 (1l Tl= 3/2),

2
The contrast between the asymmetric core effects in
guadrupole and octupole moments is further intensified by
the fact that while it is the large numerical charge of the
core which, in spite of the projection factor, creates a
large quadrupole moment, the total magnetization of the
core 1s only of the ordér of that produced by a single
particlé. The conclusion is that if the strong-coupling
situation exists for nuclei with small spins (3/2, 5/2)

the octupole moment should be much smaller than the expected

single particle value.
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IX. Examples: P3/2 Electrons

For an electron state with a single valence electron in a
Py /> orbit there will be (for I »3/2) four h.f.s. levels with
the following M(IJ;Fk) coefficients (6), (7):

F=I+3/2 3 1 1
el I (21-1) (I+ _3 2Lk
FeI4l/2 54 S i e 3551
wlwlt -(2I+3)(I-2 (2T+4) (21+3)
Fel-1/2 31 I(2I-1 & (2I)(2I1-1)
N -3I-3 (2I+3)(I+1) 2I+4) (2I+3) (2142
F=I-3/2 3T W13 ¢ c21§§g1;1§§21-2>

If we let x, y, 2 be the measured intervals between the
F=I+3/2-F=1+1/2; F=I+1/2=F=1-1/23 F=I1-1/2-F=1-3/2 levels
respectively, then we get for the interacticn concstants (8);
Wi.3/2=0% Wi 1 /5723 WI+1/2=(y+z); Wiz /0= (xty+2)

. 9 _Itli2)x 3. (2I-1)(21+3) 9 (1.
k= 16 THI¥Cer "6 (D (e+ ) 7 Y 10 & * (60a)

1 I(2I-1)(I+2 d (2Twl) 1 [
A s L2y X~ 2 (s ¥ - 3 TET?%T z (60b)

_1 I(I-1)(2I-1) 1 (Te1)(21s1) 3 €3]
Ay 15 BIRREETHTTD * - 5 GaRa) v 15 toray? (600)

We should subtract from the above formula for A% the amount
due to the second order corrections (42), this comes to (using (8)

to find the octupole-like part):

. W7 £ s,
Zﬁ%T?Ai[zI-l?Az'%f‘fAiJ L84




olide

with
f" i | 16 3/‘5A"1/A'1-9
f 3A"1/AL'I+1

(62)

The formula for KE in terms of the oectupole moment is

.36 02 g o |
A" A FTIE 5 2.911 ke
(0]

a

or

w17
H 3.36 10

in units of
Sl - nuclear magneton cm
A3 - mec./sec.
{- em™t
For the ground state of Iocdine
1127: 2 = 53, &' = 7600 em™t
At, = 286.6 me/sec.

[g_','lz s 1.10 ;s 1.05 g = 1.13

No measurements have been made on the pl/2 state, but

(l): nﬁ; 1.1%

; A'l = 3100 mec/sec.,

it is expected that there will be considerably less con=
figuration interaction in the halogens than in the corres-
ponding Group III elements due to the tighter binding of
the s-electrons. We will thus assume ‘F==l. The formula

for A3 with corrections is

A3 = 5.;;,,16['5){-163&142] - ,00053 me/sec.
= (.00287+.00037-.00053)me/sec.
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where we have taken the square roct of the sum of the
squares of the experimental errors in x, y, z (weighted as
above) as the total error. Using (63) with H = 1.07,
T = 1.22 we get _0.127 = (0.17 + 0.03)1‘2’)"2LF nuclear
magneton cm2.

With the value for the radial integral taken roughly

as

<1‘2> = 3/5 Ro'= 3/5(.135'1\1/3)210"2}"'01112

we get the value (0.62+0.10) on the octupole diagram (~1/4
the expected single particle value).

For the metastable p3/2 state of Indiumll5 Kusch(lé)
has remeasured the intervals with extreme accuracy. Using

the correction factors already worked out we get for A3

Ay= 55%6[j6x-16y+llz] + .00109 mec/sec.

= (.OOOOlli°OOOO32+oOOlO9)mc/seco
With H = 1.065 and T = 1.19 the octupole moment is
’11115 = (.31 + .01)10"2)Jr nuclear magneton cm2

Approximating as above for <r2> we get the value (2.1+0.1)

on the octupole plot (~1/2 the single particle value).
paly‘1?) has measured the h.f.s. of the py/, State for

the two stable isotopes of Gallium. The several correction

factors have already been quoted; we have

ggég: A3 = E%ﬁ[k-hy+531 + .0000336 me/sec.

= (50.213+33,6)10'6 me/sec.
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§§7l: A3 = E%ﬁ x-hy+5%] + 0000285

= (85.8i3+28.5)10'6mc/sec.
with H = 1.025, = 1.065 we get the octupole moments

'+ 2

'1159 = (0,107 + .004)10~2* nuclear magneton em

= (0,146 + .004)10"24 nuclear magneton cm®

X

Estimating (r2> as before we get the values (.58) for

Ga69 and (.77) for Ga’l

on the octupole plot,

The values of the quantity .ﬂ.//dN(r2> for these six
nuclides are displayed in Fig. II, and it 1s striking to see
the similarity between the distribution of points on this
diagram and that on the Schmidt plot for dipole moments.

Any strong conclusions about the quantitative aspects of this

comparison may as yet be unjustified since the rough estimate

¢r?> = 382, R, = 1.35 4310 Ben.
should be replaced by the analytical evaluations of some
reasonable shell model. However it is interesting to compare
the sizes of the octupole moments for the isotopic pair
G369’7l. The heavier nucleus has larger dipole and octupole

moments and smaller quadrupole moment, thus is consistently

closer to the pure single-~particle picture.
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Appendix 1

As an examplie in computing the multipole moment in a
complex electron configuration we shall work out the problem
of the octupole interaction in the ground state of an ele~
ment of Group V, As, Sb, Bi. The electron configuration in

these is p3

and the ground state 1s denoted MS3/2° In pure

L-8 coupling such a state, because of its spatial symmetry,

could have no octupole or quadrupole moment even though the

total spin 3/2 is largecenough. The state is actually

described in terms of an intermediate coupling scheme and

for the heavier elements comes very close to pure j-j coupling.
Following Breit(5) we shall describe such a state, for

J = 3/2, in terms of the allowed states in j=j coupling,

made up of p1/2 gnd PB/Z states for each single electron.

The wave function is written

T (3l <o p

3/2 3/2 3/2

(A1)

5] 9%
rol—
\-—
+
Q

(A
ok
o=
ol
N

For the first component of (Al) the state J = 3/2 is
the only allowed state for the three equivalent electrons
of spin 3/23 for the second component the two equivalent
3/2 electrons are coupled to a resultant spin of 2, which
then couples to the third eleetron of spin 1/2 tc form the
resultant J = 3/2; in the third component of (Al) the two

1/2 electrons must couple to spin zero.
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Now to compute the octupole matrix element in the state
(Al) we shall use only the fact that we are working with a
tensor operator of rank three, and compare the result with
that to be expected of a single p}/é electron state. First,
note that there are no cross terms since a tensor of rank 3
cannot have matrix elements between states of spin 1/2 and
3/2 (for the individual electrons). The third component is
exactly the state of a single p3/2 electron and the first
component gives the same matrix element since it represents
the state of one Py /o electron missing from a closed shell.

Only the second component requires use of the Racah

(2)

algebra . The calculation is as follows

((%%) - 3/2”T3”(% 39 2, 1/2 3/2 )

= WW(2 3/2 2 3/23 1/2 3) (%% 2f[23]) 3 4 2)

since T3 has zero matrix element for the 1/2 electron state.

Next

(_%.‘% 2//T3//% > 2) = = 2.5-W(3/2 2 3/2 25 3/2 3)(%”T3//%)

where the factor 2 accounts for the fact that both % electrons
contribute equally while the subsequent factors represent
the contribution of just one.

Putting these results together we have

(ﬁ/al/ﬁ//l@z) g (p3/2}/n:3//p3/2)[c§ i

-l+oc§_w(2 3/2 2 3/23 1/2 3)W(3/2 2 3/2 23 3/2 3)_-)
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Now evaluating the Racah coefficients and using the

normalization
2 2 2

we have the ratio

(Ta/z Il T3/2) / (o2l A py/d= 1 - 95 ¢

(A2)
The constants Cl’ C2, C3 may be evaluated from the
observed multiplet structure and also from the atomie g

value. For Bismuth, Breit and Wills(s) give C, = 0.345 so

2
the factor (A2) is 0.786.
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Appendix II. Sketch of the Non-Relativistic Theory

For a non-relativistic study the hyperfine interactions
may be conveniently described directly in terms of the two
charge-current densities, without using the intermediary
fields. Thus for the electric interaction we write the

energy (to first order)

;l” '4L—- dvldv

and with the assumption that system 1 is outside system 2

se get the multipole expansion

W, =S5 J-plr"k'lc(k)dvl 'fp2rkc(k)dv2 (A3)
K

Then identifying p as e times the wave function productf’*y’
(A3) can be read as the product of two matrix elements.
For the magnetic interaction between two current sys=-

tems the interaction is
>

o
W= == ——= dv,dv (AY)
m C217’ rl2 P

-
However because of the vector nature of the currents J

we cannot immediately make a multipole expansion of this
-
expression, (A4%). We first express each current density }J

-y
in terms of a magnetization density M

> -3
j=@ curl M
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Then a series of partial integrations reduces (A4) to

div Ml diwv M2
W= 512 = dv,dv, (A5)

provided the two systems 1 and 2 deo not overlap anywhere.

Now we can make the usual expansion to get

B ~k-1.(k) k. (k) (46)
L ék fdiv My~ e qvy 'ﬁiv Myr et dv,

The analysis of the angular dependence of the h.f.s.
interactions is just as before and we get for the interaction

constants

o kel (K) k. (k)
Ak"e(r C §(>JJ<I'C %)II (47)

electric multipole, k even

h, ~k-1.(k) (k) oy
Ak <r C div M1> g7lr C div M2>II

magnetic multipole, k odd
The magnetic terms are not yet in the desired form
?ggerator 7’ . Using vector identities and carrying out
some partial integrations (see ref. (6)) one can re-express
the magnetization in terms of convection and spin currents
through the operators??and « The final result for the
magnetic multipoles is

A, s/O/N<('%-k-1C(k)) k (;}._{gi-f&gsg) i

P S W e I (AEQ
«Vr C )‘(T“'_lgeL + gssjktl
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For single electron states IJ@b?j;the matrix elements
occurring in (A7) and (A8) can be evaluated using formulas
(25) and (5%) respectively. For the first four orders the

results are (%? = -1, = -2 for electron)

= IJa = U, b1 "D (49)

A J+1

2

p = 1/4b = %%% (r=3) 2 (410)

L 3 -1 +1 42 -5
by =€ = U I 25320+ (r >M3 (A11)

=
]

B 2 (2J-1)(2J-3) -5
Ay = dimse” § ieaTtooehy \° > Q (A12)

where we have used the nuclear moments as defined in (18).

These formulas are invalid for the speclal case of
magnetic 2k pole interaction in an electron state J =j+ 1/2
= k/2 == dipole in SL/2 state, octupole in P3 /5 state. For
these cases an alternative analysis 1s carried out as follows.
The vector potential

A it 1)
A(2) = L 18 gy

c Tq» 1

is easily evaluated for the electron in the state M = J con=-
' -
sidering the spin and convection current contributions to j
in the usual way. Taking just the k(=2_f+1)-pole term we
find that the magnetic field which it represents can easily
be written as the gradient of a scalar. That is
-3 ~>
H=curl A = grad o
F (o o)1 ;
ot (o) (-ay’ 2LDICAANAENL i () (A13)

.
where, if f(r) is the normalized radial anefunction,
g(r)=[r- -ff(r),
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Now a formula for the magnetic interaction equivalent to

(A4) is
_Q_y
Wm = = | HeM dv

-.;
where M is the nuclear magnetization density. Putting in
(A13) and performing one partial integration we have the
effective evaluation of the electronic matrix element (A7)

for these special cases. Thus for an 81/2 electron
-
and for a p:,./2 electron

Ay = = T Me(0)3 (415)

This last result is identical with the evaluation given by
(18)

Casimir and Karreman in their original investigation
of the octupole interaction in Iodine.

For the calculatlion of second order effects between
doublet states the forms (A7), (A8) of the dipole and quadru~
pole operators are used. Assuming that both doublet states

have identical radial wave functions the final result is

just equation (42) with

i it
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Appendix III. Discussion of Approximations

In this section we shall discuss several approximations
made in the theoretical analysis of this paper in order to
arrive at an estimate of the accuracy of the terms calculated.

At The assumption that a many~electron atom can be de=
seribed as a core of closed shells plus a few valence electrons
is the essential starting point for any study of atomie multi-
plet structure, fine structure and hyperfine structure. The
corrections to this model, termed configuration interaction,
inelude the admixture of excited states for the core electrons,
brought about through the electrostatic interactions among all
the electrons. The ealculations of Sternheimer(lg) have attempted
to account for these effects in the dipole and quadrupole hyperx
fine interactions, the magnitude of his eorrection factors
being of the order of 10 percent. Notwithstanding the diffi-
eulties of the labor involved, a calculation, similar to Stern=-
heimer's, for the octupole interaction would be valuable.

B: In the evaluation of the radial integrals the use of
unshielded eoulomb wavefunctions is an excellent approximation
for the octupole integral in a p3/2 state; but for the dipole
and quadrupole integrals of <r"3> there may be a sizeable
error, especially in the lighter elements. As an example,
integrating (r"3> with a Hartree wavefunction for Gallium
from r=0 to r=;05ao one has only 50 percent of the entire

<&“3;> integral while the strength of the central potential
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is already shielded by 20 percent. In calculating the second
order corrections to the hyperfine structure only ratios of
these <r'3> integrals are needed so the major part of this
error is eliminated. For the best evaluation of these terms
one might take values for ‘; and q somewhere between unity and
the values given in the text.

The uncertainty in the value of the normalization constant
02 is not easy to evaluate, but it must be at least of the order
’C"/C'[2 «l, It would be interesting to check formulas (32)
by carrying'out the numerical solution of the Diraec radial
equations with some reasonable approximation for the complex
central field in several atoms.

The discussions A and B relate to the problem of getting
the nuclear octupole moment from the corrected interaction
constant, and as a figure of merit for the results used in
Chapter IX we suggest a value of about 15 percent.

C: The accuracy of the second order calculation involving
the doublet state should be very good. The error is probably
no more than a couple of percent for the terms relating to
the valence-( ~electron (see B above) and very likely no
more for the s~electron correction factor, all these gquantities
being derived from other experimental numbers with only slight
theoretical corrections. The only check on these several terms
is in the explanation of the gr-diserepancy in a P1/2 state,
where at present the large experimental uncertainties prevent

a closer verification.
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D: The biggest question in evaluating the second order
ecorrections is what about the contributions of other electronic
levels besides the doublet state? One would like to rely on
the larger energy denominators, AEﬁ,associated with all other
terms of the perterbation sum to keep their contributions
smaller by a factor &/ AE_ than the contribution of the
doublet level albne, but the total effect of the infinity of
terms is not easily seen.

First, one can simplify the problem just a little with the
following results. One can show in general that the octupole~
like part of the (quadrupole)2 term from a general 2P3/2 state
(in L-S coupling) to any other perturbing 2LJ state is zero
if one adds the contributions of both doublet states J=L+1/42
and J=L-1/2. The only residual contribution of such terms
would be due to the slightly different energy denominators of
the two doublet states, thus an order of magnitude smaller than
any straightforward estimate.

The (quadrupole)® term is anyway smaller than the cross
dipole~quadrupole term and 1t is the latter one that we must
worry about now. One might think that a useful estimate of
this problem could be gotten from a closure approximation.

That is, one tries to represent the second order sum as follows

Kolvgmpl®* L ; 2
2" A E, Alave T ‘(L{H'“O} (416)




sEt.

where i1 refers to the initial state, n the intermediate states

being summed over, and ZLEaV is an average excitation energy

e

for the particular problem.
For our problem, letting D and Q@ stand for the dipole and

quadrupcle operators, the second factor on the right-hand side

of (416) becomes the matrix element {1|DQfi)» . The form of this

operator is very much like the form of the octupole operator

except that the product DY has an extra factor ez/r, which

after taking the expectation value becomes a factor Zez/a'o°

An upper limit for the evaluation of (Alé) 1s gotten by setting

AE, .= AEmin'\aez/ao, which gives a result larger by a factor

Z than the first order octupole matrix element.

It must be pointed out that equatingl&Eav to ‘xEmin

e
is an extremely bad approximation for our problem. The reason
for this is that our operators are very strongly vearying

functions (r-3) so that the correct average excitation energy

AE

last statement we cite the example of a delta~function pertur-

e is some very high energy. By way of justifying this

bation which requires an infinite value of tlEave to make (Al6)
meaningful. We thus believe that the closure approximation is
useless in our problem.

We will now try to carry out part of the second order sum
in an approximate manner. First, the matrix element from a

p=state to an f-state are exceedingly small compared with the

p-p matrix elements. The octupole part of the dlpole=cuadrupole
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matrix product from a P3/2 state to a P1/2 state is from (61)

w A LA
Fil i

and the corresponding eontribution from the p3/2-p3/2 matrix

elements turns out to be
LI~/

Aohq
£

where all the finer correction factors have been ignored. If

a8
+<f

we consider the two doublet levels of any perturbing 2P state
to have the same energy denominators, these two terms cancel
strongly, leaving only 1/5 of the original p3/2-p1/2 term.

We must also take into account the poorer overlap of the
radial wavefunetions as we proeceed to higher perturbing levels.
For bound states of a single valence electron Casimir gives
the normalization constant C2 for any level as proportional to
n* o where n*:is the effective gquantum number for that level.,

Comparing the sum over all p-doublets up to zero energy with

the value found in the ground state doublet alone we have to

ad
Z, (s
(=) |\ ¥R

where n® here refers to the ground state. This number is

evaluate

about O.4 for n =1.5 and 0.2 for n =1. Combining these several
factors we may estimate the value of the apparent oetupole
interaction due to all levels for the single electron up teo
E=0 as

1/5(0.4) §/4E_, _

times the correction obtained from the ground state doublet
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alone. Values of cr/bEmin for several atoms are 1/300 for
Al, 1/95 for Cc1, 1/40 for Ga, 1/20 for Br, 1/13 for In, 1/9
for I, which result in corrections of less than one percent
for all these atoms.
No attempt has been made to carry the perturbation sum

further to cover the positive energy states. We will just
try to guess at the additional contributions of exciting all
the core electrons to théir spectrum of bound states. Assuming
that the matrix elements for these core excitations are about
the same as those for the valence électron, we consider only
the effeet of their number - there are Z-1 of them - and their
tighter binding. Counting outward from the nucleus, the ith
electron is bound by something like (Z-—i+1)2 Rydbergs compared
with about one Rydberg for the valence electron. Summing then
we have the factor

Z

Z (27%3)2 <{1.65

e

In summary, the discussions C and D relating to the accuracy

of the second order eorrections to the octupole interactions
are still quite erude and incomplete. However, in view of the
optimistic results which these discussions do suggest, we will
guess an accuracy of about 5 percent for the corrections as

calculated in chapter IX.
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