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Abstract  

The urgent need for environmental sustainability has increasingly prompted policy makers to 

emphasize resource recovery from desalination brine streams. Recent research on resource 

recovery from waste stream has shown rising momentum with near term viability for several new 

technologies. In this article, we focus on new opportunities for metal resource recovery from 

seawater desalination brine, while outlining associated sustainability challenges and opportunities. 

The potential of metals recovery is discussed.  
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Introduction 

Seawater desalination, a major source of water production, utilizes seawater to produce freshwater. 

Desalinated water is expected to play a key role in narrowing the water demand-supply gap by 

extending water supplies beyond what is available from the hydrological cycle. Based on global 

data,  there are approximately 15,906 operational desalination plants producing around 95 million 

m3/day of desalinated water 1. Of the desalination technologies, reverse osmosis (RO) is by far the 

dominant process, accounting for 84% of the total number of operational desalination plants. The 

recovery rate of seawater RO (SWRO) can span from 30% by up to 55% (for a two-pass system). 

Typical SWRO plants operate at recovery ratios of about 45% 2. As a result of this, the process 

generates large volumes of concentrated brine. Globally, seawater desalination plants are estimated 

to generate 124.5 million m3/day brine, which are treated as waste and often disposed into the 

coastal ocean 3–6.  

 

Concentrated seawater brine contains various resources (ions and salts) that can be recovered, 

potentially leading to economic benefits and reduced waste disposal. Almost every element in the 

periodic table can be found in seawater and likewise in desalination brines, including valuable 

elements such as lithium (Li), uranium (U), rubidium (Rb), and strontium (Sr), among others 

(Figure 1). These elements are present in seawater brine at low concentrations (0.19 to 0.30 mg/L) 

along with other dominant ions, such as potassium (K), calcium (Ca), and magnesium (Mg) at 

higher concentrations. Recovery of these valuable elements is challenging: firstly, their selective 

separation from other dominant ions is difficult; and secondly, they are not easy to precipitate and 

crystallize using a single recovery operation. In this perspective article, we focus on recovery of 

metals from seawater brine (noting that useful non-metal elements, such as bromine (Br) and boron 

(B), are also present), and we discuss associated sustainability challenges and opportunities.  

 

Presently, land-based mining of resources faces sustainability challenges given that high grade 

mineral ore deposits are declining. Mining processes can be very energy and water intensive; and 

mining wastes may create lasting environmental damage. Although the concentrations of valuable 

elements in brines such as seawater are very low in comparison to land-based mineral ores, the 

amounts available in the oceans are huge. The mass ratio of ocean abundance to land reserves 3 for 

Li, Sr, U, and Rb is 103 to 106. Globally, the total amount of Li in seawater is estimated to be 

around 230 Gt 7. Further, extraction of Li from concentrated brine is estimated to cost 30% to 50% 

less than that from mined ores 8. If metals are economically recovered from the brine concentrate, 

not only can the water production cost be reduced by the revenue from the minerals recovered, but 

also the environmental problems associated with brine disposal can be reduced. It is safe to say 

that extraction of elements from brine would support a more sustainable economy. 
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Figure 1. Element concentration and price 3 (element concentration in seawater brine is estimated 

based on average 40% recovery rate of desalination plant). Market prices of elements are based on 

2018 USGS metal commodities summaries 9, Sodaya et al. 10, and Kramer 11. Economic feasibility 

of extracting an element from seawater brine is considered based on the element market price, 

concentration in brine as well as the extraction cost 12. For simplicity, extraction cost ratio is 

assumed to be 1 for all elements. Economic feasibility means that the product of (market price of 

element × element concentration in brine) is greater than the extraction cost. The elements on the 

right-hand side of the dotted line are potentially economical to be extracted from seawater brine 

based on the concentration and market price ratio greater than one. The economics is expected to 

be more favorable with increasing distance to the right from the dotted line and further away from 

the horizontal axis towards the top. Figure 1 is reproduced from authors’ previous work.3 The 

authors acknowledge permission to re-use from Royal Society of Chemistry.  

 

 

 

Economic Implications of Resource Recovery from Seawater and Energy Industry 

Research in resource recovery has shown potential for producing valuable elements from waste 

brines. We focus on seawater brine, as it contributes the largest volume of waste brine in 

comparison to all others 1,5. In contrast to the mining industry, which usually requires a large water 

input for production, the extraction of valuable resources from seawater brine can result in greater 

profitability for water desalination and oil and gas operations 3,13,14. However, whether these 

technologies can be implemented for large-scale use is dependent the net value of recovered 

resources, which is a function of the market price of recovered elements, the concentration in the 

brine, and the extraction cost of any particular element 12. Since consistent and updated data on 

global volume and rejection capacity of SWRO brine is widely available 1,4,5,15, we utilize that data 

as a model input to evaluate the economic potential of extracting resources from SWRO brine. 

Figure 1 presents a rough estimate of the economic feasibility of recovering various elements from 

the brine based on their market prices and available concentrations in the brine. It should also be 
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noted that, from a practical point of view, the cost of direct brine disposal strongly affects the 

economic feasibility 12.  

 

In addition to factors related to costs and revenues, the market consumption/demand of certain 

elements available from the waste brine must also be considered while determining the economic 

potential of resource recovery. For instance, although Rb stands out due to its high market price, 

its application demand is rather low (based on the world production and consumption factor). 

Contrarily, resources such as Li have high market demand and therefore are more viable for 

extraction.  

 

 

 
Figure 2. Element consumption, price, and concentration. Element extraction feasibility ranking 

based on element economic value (price in USD) as a function of: (a) production /world demand; 

and (b) consumption in US. Varied bubble size represents element concentration in seawater brine 

(logarithmic scale). Values are based on 2018 USGS metal commodities summaries (2018) 9. 
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Sustainable Resource Recovery 
The sustainability of element recovery from brines must be considered based on the concentration 

of the elements (Figure 2). For instance, sodium chloride, magnesium hydroxide, and potash are 

economically and technically viable for production from seawater brine, given that these elements 

are present in high concentrations and do possess economic demand/consumption (as shown in 

Figure 2) 12. Hence, in practice, Na, Mg, Ca, and K have been extracted from seawater, 

predominantly as hydroxide/carbonate salts. Extraction of Na+, Ca2+, Mg2+ and K+ from 

desalination plants in Saudi Arabia is estimated to have a potential revenue of US$ 18 billion/yr 
16. The sale of sodium chloride has the potential to decrease the cost of produced water treatment 

by 1.31-1.37 $/m3 17, and salt production for human consumption or chlor-alkali purposes from 

seawater desalination brines can be implemented profitably in several regions of the world 18. K is 

extracted from seawater as a byproduct of solar salting 12. Mg is extracted commercially from 

seawater as magnesium hydroxide and oxides, predominantly by precipitating with lime and 

dolomite 3,19. In 2017, approximately 70% of US Mg supply in the form of magnesium oxide came 

from seawater and natural brines 9. In contrast, extraction of Ca from seawater and its related brine 

has not been widely developed due to its low economic value. One desalination facility, in 

Southern California in the US, reportedly produces calcium carbonate on a commercial basis 20. 

 

Ongoing research has focused on the recovery of Cs+, Rb+, Li+, Sr2+ and U(VI) from seawater and 

its brine. With regard to potential extraction methods, we emphasize adsorption and 

electrochemical separation methods (Table 1) due to: their capacity for selective resource recovery 

in complex mixtures such as seawater brine; their low energy requirement; and their flexibility of 

chemical modification and operation, including potential use in an integrated system with 

membrane processes 21–23. The integration of adsorbent and membrane processes 21,22 is highly 

favorable for simultaneous water and resource recovery.  

 

Li is a valuable resource for energy storage, as it possesses beneficial characteristics such as high 

storage density. The demand for Li is projected to increase from 237,000 metric tons of lithium 

carbonate equivalent (LCE) in 2018 to 4.4–7.5 million metric tons of LCE by 2100,24 owing to its 

increasing usage in rechargeable lithium ion batteries 7. In addition to lithium ion batteries, Li has 

uses in various other industries, such as glass and ceramics, greases, and metallurgical applications 
25,26. Figure 3 shows a typical Li production process from brines. The second step in the process, 

concentration, is the most important part and new technologies are still being studied by many 

researchers 27. Figure 3 shows a typical lithium production process from brines. The second step 

in the process, concentration, is the most important part and new technologies are still being 

studied by many researchers. For Li extraction from seawater, research has focused on finding the 

best adsorbents with high Li uptake, chemical stability and selectivity 28-29; developing novel 

electrochemical methods such as electrodialysis 30 and electrolysis with specific electrodes 31; as 

well as coupling the Li extraction with membrane and ion-exchange processes 29,30. 
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Figure 3. Li production process from brine sources. In the pre-treatment, divalent ions are removed 

from brine as precipitates. Li is concentrated in the next step by rejecting other monovalent ions 

such as Na+ and K+ ions. Some impurities such as B in the Li-concentrated solution are removed 
32, and lithium carbonate or lithium hydroxide is produced as a pure Li compound. 

 

 

However, these explorations have yet to achieve industrial commercialization, as some of the 

approaches did reach benchmarking stages. This indicates that the Li extraction process still 

requires further research and optimization to attain practical feasibility. Interestingly, for Li 

recovery from oil and gas produced wastewater 14, a few successful cases were achieved by two 

Canadian companies, MGX Minerals Inc.33 and Standard Lithium Ltd. 34. Specifically, for 

seawater, one of the main challenges of using an Li-ion adsorbent to selectively extract Li+ is the 

severe competition from other major ions present at high concentrations. In fact, Li selectivity over 

other monovalent cations such as Na+ and K+ still needs to be improved. A key strategy to improve 

selectivity is to make the adsorbent have the proper-sized structure with holes which can capture 

Li+ only. Successful adsorbents such as lithium manganese oxide 35 have a structure that only 

accepts Li+ and rejects Na+ and K+, while monovalent cation exchange resins with simple anion 

functional groups lack this selectivity 36. Further, Li-ion sieve adsorbents have a microcrystalline 

or fine-grained powdery nature, which limits the capacity to regenerate and reuse the adsorbent. It 

also makes it challenging to practically apply the powder form of the adsorbent in conventional 

fixed-bed columns as it may lead to clogging, large pressure loss, and slow filtration rates. To 

overcome these difficulties, the combination of adsorbents and electrochemistry is increasingly 

attracting attention. Lawagon et al. 31 used electrical power to drive Li+ into the structure of 

adsorbents and also to make the regeneration of the adsorbent easier. 

 

An integrated MD-adsorbent system 22,23 benefits both processes by providing long contact time 

for encapsulated adsorbents to selectively extract elements, enabling the usage of powdered 

adsorbents (higher adsorption capacity as a result of higher surface area) and raising the element 

concentration by MD. Likewise, embedding adsorbent with metal organic frameworks such as Cr-

MIL, UiO-66 and ZIF-8 containing selective functional groups onto polymer membranes will 

produce selective ion exchange membranes that can be incorporated to an electrochemical process. 

In this scenario, embedding metal organic framework nanomaterials into the membrane can 

favourably manipulate the membrane nanochannels to match the specific pore size of an ion such 

as Li. This in turn, will enable rapid and selective transportation of Li ions while rejection/sieving 
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out competing ions at relatively low energy requirement, especially when the process is coupled 

with renewable energy 37.  

 

U is another example of element whose extraction from seawater or its brine would be 

economically feasible (based on Figure 1). Either batch or column adsorption processes have been 

proposed, with a large variety of adsorbents being applied 38,39-40. This also applies to the extraction 

of Rb/Cs/Sr 41-42, which are among the most feasible elements. Nonetheless, it should be noted that 

the four elements have relatively low market consumption/demand (Figure 2), limiting the 

practicality of large-scale extraction operations despite the relatively high unit values. 

 

Additionally, in comparison with typical mining and recycling, we need more pilot-scale and full-

scale data on mining from seawater brines. The data must be in a form useful to companies and 

governments that make site specific decisions on resource production. 

 

Finally, the techno-economic analysis is necessary to implement these technologies in practical 

cases. For instance, selective Li recovery from seawater mining with a conventional chemical 

precipitation approach involves multiple steps that may be chemically intensive and time 

consuming43. Meanwhile membrane electrochemical driven systems such as electrodialysis (ED) 

and membrane capacitive deionization (MCDI) are promising as rapid and low-chemical recovery 

processes for Li recovery 37,44. To date no detailed techno-economic assessment of electrochemical 

processes has been carried out. ED is a similar process to CDI in its electrochemical driving force 

but distinct in its ion removal for selective resource recovery. A relatively low voltage is required 

for MCDI (< 1.8 V). However, in a stack mode, the key distinguishing feature of ED is its ability 

to incorporate many membrane pairs between a single set of electrodes while MCDI, employs a 

pair of electrodes in each cell of the stack, resulting a bulky and costly system. Even so, energy 

recovery and optimization of operating conditions of pilot-scale MCDI systems have reported the 

possibility of attaining a stand-alone operation powered by renewable (solar) energy 44. 

Additionally, MCDI requires a significantly thinner membrane, which is envisioned to accelerate 

the transfer of ions across an ion exchange membrane/electrode interface, a potentially favourable 

feature for selective Li transfer/recovery. The varying views on the performance efficiency of 

electrochemical processes are attributed to the lack of comparative study, especially in large scale-

systems (product rate of over 1 m3/day). Moreover, to date, no work has reported on the 

comparative performance in terms of specific energy consumption for Li selective efficiency. 

 

 

 

Table 1. Recovery of elements from seawater and brine using adsorption or electrochemical 

methods 

Elements Source type  Method Ref. 

Na, Cl Seawater RO 

brine  

Electrodialysis /evaporation/crystallisation 45 

 Seawater  Electrodialysis (17-25 pairs of unit cells) after sand 

filtration/evaporation 

46 

 Synthetic RO 

brine  

Electrodialysis (5 pairs of unit cells) 

/evaporation/crystallisation in vacuum evaporator 

47 
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Mg Seawater  Adsorption on carboxylic cation exchange resin. 

Desorption of Mg by eluting with Na2CO3, 

NaHCO3. MgCO3 crystals in elutrate 

48 

K Synthetic 

seawater  

Solution flow through a jacket pipe containing a K-

ionic sieve membrane reactor made-up of K-

selective synthetic zeolite. K was selectively 

adsorbed in the presence of Na, Ca, Mg. 

49,50 

 Seawater  Batch adsorption by a modified synthetic zeolite W. 

Selective rapid K adsorption. Very high K/Na 

selectivity 

51 

Br Seawater RO 

brine  

Electrodialysis concentrate was treated with 

chlorine gas to produce bromine gas. 

52 

Li Seawater  Batch adsorption data compared with literature 

values on several other adsorbents 

28 

 Seawater  Adsorption on λ-MnO2/desorption 

separation/vacuum evaporation and precipitation as 

carbonate 

35 

 Seawater and 

seawater RO 

brine 

Adsorption on mixed matrix nanofiber 

membrane/Mn oxide adsorber in batch, and 

continuous flow-through membrane permeate 

system. Regenerated using 0.5 M HCl. 

29 

 Seawater A combination of electrodialysis and ionic liquid 

membrane to enable selective Li ions to permeate 

through the membrane from anode to cathode side 

30 

 Synthetic 

seawater 

Electrochemical selective recovery using 

Li1−xNi1/3Co1/3Mn1/3O2/Ag electrodes  

31 

Rb, Cs Seawater RO 

brine  

Batch adsorption using potassium cobalt 

hexacyanoferrate ion exchange adsorbent 

41 

 Seawater RO 

brine  

Column adsorption on Cs treat (potassium cobalt 

hexacyanoferrate) 

38 

 Synthetic 

seawater brine 

Column adsorption and desorption with KCl using 

organic polymer encapsulated potassium copper 

hexacyanoferrate, followed by recovery by 

adsorption on resorcinol formaldehyde ion 

exchange resin and desorption using HCl 

22 

Sr Synthetic 

seawater 

Batch and inflow adsorption on macroporous LTA 

(synthetic zeolite) monolith. Rapid adsorption with 

very high adsorption capacity.  

53 

 Synthetic 

seawater 

Batch adsorption on titanate nanotubes upon Ca 

removal as Ca(OH)2. Sr desorbed by HCl addition 

54 

 Synthetic 

seawater 

Batch adsorption on alginate microsphere. Sr 

desorption by CaCl2 

42 

U Seawater RO 

brine 

Column adsorption on amidoxime-functionalised 

Purolite S910 resin  

38 

 Seawater  Column adsorption in series and parallel on 

amidoxime-based polymeric adsorbent. After 

39 
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adsorption for 8 weeks the adsorbent digested with 

aqua regia to measure adsorbed U. Maximum 

adsorption capacity 3.3 mg U/g adsorbent 

 Synthetic 

seawater 

Batch adsorption on polyacrylonitrile/polygorskite 

composite chemically modified with amidoxime 

groups. U desorbed by HCl. Regenerated adsorbent 

fully for 5 cycles. Maximum adsorption at pH 5. 

Ionic strength had little effect 

55 

 Seawater Batch adsorption on porous polymer with 

amidoxime pendant group. Optimum adsorption at 

pH 6. Adsorbent regenerated fully during 3 cycles. 

Regenerated adsorbent with Na2CO3 

56 

 Seawater  Batch adsorption on high affinity ligands 

(diphophonic acid, phosphonic acid, 

hydroxypyridinone) installed on high surface area 

nanostructured materials. Adsorbent fully 

regenerated in 4 cycles using Na2CO3 

57 

 Seawater  Batch (laboratory) and column (56 days, field) 

adsorption on high surface area polyethylene fibre 

adsorbent grafted with amidoxime groups 

58 

 Seawater Adsorption on electrospun nanofibrous amidoxime-

based adsorbent. Desorption with 0.5 M HCl. 

59 

 Synthetic 

seawater 

Adsorbent with Zr metal-organic framework 

containing orthogonal phosphorylurea groups had 

adsorption capacity saturation at pH 2.5 of 188 mg 

U/g in batch adsorption study 

40 

B Seawater Adsorption on a B selective resin CRB05 

containing N-methyl glucamine functional group 

and desorption using HCl or H2SO4 

60 

 Seawater Adsorption on a chitosan/ferric hydroxide 

composite adsorbent. Continuous column 

experiment with 5 cycles of adsorption/desorption 

(using 0.01 M NaOH) removed 10.7 mmol B/mol 

Fe(OH)3 

61 

 

 

To support wider commercialization and industrialization of brine resource recovery processes, 

the authors believe that future research should be directed towards the following objectives:  

 

• Further improvement of adsorbents, for instance grafting adsorbents with metal organic 

frameworks containing specific functional groups to enhance selectivity and rapid uptake 

towards the desired ion, preferably Li+, also other economically favourable metals, such as 

Mg2+, Rb+, Cs+ and U.   

• Development of novel electrochemical methods for capture a desired metal, such as has 

been done for Li 31.  
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• Engineering of adsorbent configurations to maximize adsorption efficiency (as close to 

equilibrium as possible during the constrained contact time) from seawater and to facilitate 

the regeneration process.  
• Integration of adsorbent and membrane processes, for instance using membrane distillation 

(MD) with absorbents in the feed tank, eliminating an additional fixed-bed column process 

for resource recovery while simultaneously recovering water for reuse. 
• Scaling-up of existing processes in the literature such as in the Sea4Value project in Europe 

62. This also includes the application of novel materials (e.g., adsorbents) on a larger scale 

while solving some related issues such as the difficulty in applying raw powders from the 

laboratory within industrial reactors. 
• Detailed techno-economic assessment of potential recovery process (especially for Li and 

Mg, which have the highest economic potentials), with consideration of extraction costs 

and generated revenues, particularly in comparison to the present decoupled business-cases 

for existing brine disposal techniques and land-mining to extract these resources. 
 

 

 

Summary and Future Outlook 

Currently, the industry faces increasing pressure to embody principles of sustainability as a result 

of more stringent environmental regulations, depletion of natural resources, and increasing demand 

driven by population growth and rising living standards. This trend has resulted in a paradigm shift 

towards resource recovery from waste streams. Seawater and its desalination brine have recently 

been attracting academic and industrial attention for their abundant resources. Although various 

technologies have been studied for resource recovery from seawater brine, challenges remain in 

both science and application, the primary one being the complex composition of the solutions and 

the extremely low concentrations of most of these valuable resources. These knowledge gaps 

should be bridged to make the best use of resources in seawater brines.  

 

To narrow the gaps, adsorption is superior to other techniques in view of its comparatively low 

cost, wide range of applications, simplicity of design, ease of operation, and most importantly, its 

capacity for selective resource recovery. In fact, current research has led to novel configurations 

of adsorption systems, more selective and productive adsorbents, and electrochemical means to 

mediate the adsorption and release of elements. The combination of electrochemical and 

adsorption methods can be both economical and environmentally friendly.  

 

Nevertheless, we lack a detailed economic assessment with which to establish the feasibility of 

these new technologies for valuable resource recovery from seawater brine. A comparison to 

extracting resources from land mining, for example, would justify the economic profitability of 

the recovery process. From a practical point of view, a focus on scaling up these novel technologies 

and evaluating their performance under practical conditions is of vital importance, in cases such 

as embedding recovery in a working desalination plant. Despite the present challenges, we posit 

that resource recovery from seawater has strong potential to become a highly sustainable, 

innovative and profitable industry. 

 

Notes 

The authors declare no competing financial interest. 
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