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Abstract

Several dominant mechanisms which cause the bending vibration of rotating drill
strings have been identified, they are :

e Linear coupling between dynamic axial force and bending vibration
e Parametrically excited bending vibration due to dynamic axial force
e Whirling of the drill string with and without borehole contact

Mathematical models for explaining and predicting these bending behaviors have
been found and discussed. Experiments carried out in the laboratory confirmed the
existence of the linear and parametric coupling between axial force and bending vi-
bration. Data from a field test conducted in 1984 by Shell Oil Company also showed
the existence of the both types of coupling. Forward and backward whirling of the
drill string are also evident in this data set.

Because of the effect of rotation, the frequencies needed to excite the linearly
coupled bending vibrations, and the parametrically excited bending vibration, are
varying linearly with respect to the rotational speed. This phenomenon is explained
and demonstrated by the laboratory experiments. The effect of rotation plays a crucial
role in understanding the bending vibration of a rotating drill string.

Thesis Supervisor: Professor J. Kim Vandiver

Title: Professor of Ocean Engineering
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Chapter 1

Introduction

The vibration of drillstrings includes longitudinal, torsional and bending vibration.
This dissertation focuses on bending vibrations in the bottom hole assembly (BHA).
The BHA is emphasized because many of the the most severe forms of bending vi-
bration occur there, and because the most common location for drillstring failures
attributable to bending vibration is in the BHA. Bending vibration is often severe
near the bit, because bit forces drive some forms of bending vibration. Whirling is
also most common near the bit, because the large mean compressive loads on the drill
collars near the bit produce significant curvature of the drill collars.

Bending vibration generated near the bit does not usually propagate to the surface
as torsional and longitudinal vibration does. This is due to the vastly different wave
propagation velocities. The propagation speed of axial waves in steel drill pipe is
about 16,850 feet per second and of torsional waves is about 10,200 ft/sec. Even
at a depth of several thousand feet the distance to the bottom of the hole is no
more than a few wave lengths at frequencies less than 30 Hz. Thus these waves are
commonly felt at the surface. In contrast bending waves at 30 Hz have a wave speed
of approximately 600 ft/sec, and therefore must travel many wavelengths to reach the
surface. Lower frequencies travel even more slowly. Furthermore, bending vibrations
have larger damping, produced by the mud and wall contact and therefore, bending

waves, generated at the bottom do not propagate to the surface unless the hole is

very shallow.
11
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Figure 1.1: A Typical Oil Drilling Rig

In part, because bending vibration was not commonly observed at the surface, it
was not well understood or recognized as being a problem. The evidence of connection
fatigue failures in drill collars, failure of downhole MWD tools and heavy surface
abrasion of collars and stabilizers has provided evidence to the contrary. In recent
years, the availability of downhole vibration measurements has provided the necessary
insight to guide the development of bending vibration models for BHA's. The goal of
this dissertation is to identify and describe the most important bending mechanisms
in BHA’s, to develop analytical and numerical models of these phenomena and to

verify them through the use of laboratory models and downhole measurements.

1.1 Basic Drilling Equipment

Let us start by introducing the terminology for drilling frequently used in a drilling

operation. A typical land-based drilling rig is shown in figure 1.1 There are several



Chapter 1 page 13

<4—— Drill pipe

BHA : About 30 DCs

Bit —®—

Figure 1.2: Bottom Hole Assembly

terms that are used frequently in the drilling industry and in this thesis. Following is
a list of these terms.

Drill String: It consists of the kelly, drill pipe, drill collars, and a variety of
special tools. Either collar or pipe can be added to extend the drilling depth.

Drill Collar: Drill collars are designed to operate in compression without buck-
ling, so as to provide the weight and torque to the bit.

Drill Pipe: Drill pipe is used to transfer torque from the rotary table to the drill
collar and to support the weight of the drill string. Drill pipe is designed to operate
in tension, so the cross sectional area is smaller than that of the drill collars.

Bottom Hole Assembly (BHA) : It is a section of the drill string from bit to
the top of the drill collar. Its length is typically several hundred feet. Fig 1.2 shows
the BHA.

Stabilizer: It is a device that holds the driil collar in the center of the borehole.
The arrangement of the stabilizers affects the direction of the borehole and the bending

natural frequencies of the drill collars. Fig 1.3 shows a standard four-bladed stabilizer.
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Figure 1.3: A Four-Bladed Stabilizer

Weight On Bit (WOB): The compression force acting on the bit.
Torque On Bit (TOB): The torque acting on the bit.

1.2 Problems in Drilling Dynamics

The dynamics of a drill string pose a unique problem in vibration analysis. In
the upper part of the drill string, the state of the stress is tension, whereas, in the
lower part of the drill string due to the weight on the bit, the state of the stress is
compression. Figure 1.4 depicts typical stress variations along the drill string. A drill

string is also subjected to various dynamic forces, including:
1. mud pressure fluctuations
2. weight on bit and torque on bit fluctuations
3. internal and external damping forces
4. centrifugal forces.

5. interactions with the wall.
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Figure 1.4: Stress Variation Along the Drill String

Because of these forces, a number of problems may arise. For example: the bit may
bounce on the cutting surface resulting in bit damage; severe bending moments may
develop in the BHA leading to the fatigue failures; forward whirl may cause wear
against the bore hole, and backward whirl due to the friction of the wall may result

in fa.tigtie failure. These phenomena are all hazardous to drilling operations.

1.3 Outline of the Thesis

This thesis concentrates on the understanding of bending related vibrations of the
BHA. They include whirl-related motion, bending vibration due to linear coupling

with axial forces, and parametrically excited bending vibration. These studies will
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help us gain insights into the dynamic behavior of the BHAs.

In the second chapter, the motions of a typical drill collar are described in both
fixed and rotating coordinate systems. These motions include forward whirling ,
backward whirling, and whirling with bending vibration. Detail is given to reveal
how one uses measurements made in a rotating frame of reference to deduce the
collar motions. The rotating frame of reference is important to drilling engineers,
since most downhole transducers are mounted inside rotating drill collars.

In the third chapter, the equations of motion of bending vibration of the Bottom
Hole Assembly are given, and a finite difference scheme is introduced to solve the
eigenvalue problem. This model accounts for the effects of linear varying compres-
sion, mud added mass and damping forces, and dynamic variations in WOB. It also
takes into account the effect of stabilizers. The natural frequencies are expressed with
respect to a fixed coorainate system. The bifurcation of the natural frequencies re-
sulting from expressing natural frejuencies in terms of a rotating coordinate system
is also explained.

In the fourth chapter, linearized coupled equations between axial and bending
vibration are presented by assuming small curvature. This cquation represents the
linear effact of axial force on the bending vibration. Also presented are the equations of
motion showing the parametric axial force excitation of bending vibration. Examples
are given to demonstrate linear and parametric axial excitation of bending vibration.

In the fifth chapter, rubbing contact between the drill collars and the wall are
explained. Forward and backward whirl with slip are presented. Whirling can poten-
tially shorten the fatigue life of drill collars and can cause substantial surface abrasion.

Chapter six shows a series of laboratory experiments that demonstrate the be-
havior predicted by the mathematical model. The experiments included strain gage
bending measurements of whirling and bending vibration. Linear and parametric cou-
pling between axial force and bending vibiation are demonstrated in both rotating

and non-rotating cases.
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Chapter seven shows the results of a field test. This test was conducted by Shell

and NL in 1984. A total of 60 hours of downhole data were taken during that experi-
ment. Six examples are presented to demonstrate the behavior mentioned in previous
chapters, including, whirl, linear coupling, and parametrically excited bending vibra-
tion.

Chapter eight concludes the results obtained so far. Several suggestions are made

for future research.



Chapter 2

Measurement Systems on a
Rotating Shaft

In rotor vibration measurements, the motion of the shaft is usually measured by
proximity probes. This kind of measurement reveals only the motion of the center of
gravity of the shaft. The measurements are taken with respect to a fixed coordinate
system, attached to the earth. When the measurements are taken by a transducer
attached to the rotating shaft, they are more difficult to interpret, because they are
not taken with regard to a fixed coordinate system, and usually are not taken at the
center of gravity. The following gives a simple description of the motion of a drill
collar as seen from both frames of reference under various combinations of whirling
and rotation, and shows how to interpret the measurements from transducers attached

to the collar.

2.1 Motion of a Drill Collar in Pure Whirling

Figure 2.1 is the definition of the coordinate system used to describe the motion

of the drill collar, where :

Oxy = fixed reference frame centered in the borehole

Ox'y' = rotating reference frame with speed 3 and with its origin
located on the axis of the borehole

Ax"y" = rotating reference frame with speéd w and with origin

18
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xn / yu

Figure 2.1: Definition of the Coordinate System

located at the center of the drill collar

N = whirling speed of the collar with respect to Oxy (rad/sec)
w = rotation speed of the collar with respect to Oxy (rad/sec)
R, = whirling radius or displacement of the drill collar center
R, = radius of the collar (= 3.5 inches in examples)

Rg = radial location of the radial and tangential accelerometers

When the collar contacts the wall, R, equals the clearance, which in these examples

is specified as .875 inches.

2.2 Motion Seen From Coordinate Oxy

Figure 2.2 shows the linear relationship of v vs. whirl rate, {1 at a fixed rotation
rate, w, where v is the tangential contact velocity between the circumference of the
collar and the wall. The following figures represent the trajectory of a point P, fixed
to the circumference of the collar, as seen from a fixed coordinate system, Oxy, under
various slipping and whirling conditions. In all cases, the collar is in constant contact

with the wall. Figures 2.3 to 2.9 correspond to the points a through g as shown on
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Figure 2.2. Figure 2.8 represents the trajectory under synchronous whirl, in which
whirl rate is equal to rotation rate. The minus sign of the rotation rate indicates the
direction is clockwise. Figure 2.6 shows the trajectory of P with pure rotation, ie.
1 equals to zero. Figure 2.4 show the trajectory of point P under backward whirl
with no slip. The backward whirl rate under this condition is %12, and the velocity
at the contact point between the collar and the wall is always pointing toward the
center of the hole. No tangential velocity component is present in this case. Figure
2.5 shows the trajectory of P under backward whirl with slip. The backward whirl
rate is sma.ller than that in Figure 2.4, and the tangential velocity of the contacting
point is no longer zero. Figure 2.7 is the case of forward whirl with slip, but the whirl
rate is lower than the rotation rate. Figure 2.3 represents the case when the backward
whirl rate is larger than ER?Tw’ and Figure 2.9 shows the case with forward whirl rate
greater than the rotation rate. Both of these cases are not likely to happen in the

real drilling situation. In all cases mentioned above, the center of the collar, point A,

would appear to move in a circle about O with a radius R, and at frequency 0 .
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Figure 2.3: Backward Whirl with Slip, Rotation Speed -2.2 Hz, Whirling Speed 9.9
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Figure 2.4: Backward Whirl, No Slip, Rotation Speed -2.2 Hz, Whirling Speed 8.8 Hz
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Figure 2.6: No Whirl, Pure Rotation, Rotation Speed -2.2 Hz, Whirling Speed 0 Hz
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Figure 2.7: Forward Whirl With Slip, Rotation Speed -2.2 Hz, Whirling Speed -1.1
Hz
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Figure 2.8: Synchronous Whirl With Slip, Rotation Speed -2.2 Hz, Whirling Speed
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Figure 2.9: Forward Whirl With Forward Slip, Rotation Speed -2.2 Hz, Whirling
Speed -3.3 Hz

2.3 Motion Seen From the Rotating Coordinate
System Ox'y’

This coordinate system rotates at {1 about the center of the borehole, point O. In
this coordinate system, the center of the collar, point A, would be at a distance R,
from O and would not move, as depictéd in Figure 2.10. Any other fixed point, such
as B or P, on the drill collar will appear to rotate at w — 12 in the rotating frame of
reference about an apparent center displaced from O an amount equal to R;. Figure
2.10 also shows the locus of two points B and P as seen from the Ox'y' rotating frame.
P is a point on the surface of the collar, and lies on an axis x", which rotates with the
collar. This point appears to go in circles at a rate w — (1, with a radius R;. Point B
simulates the location of the accelerometess in the-collar. They are not on the outer
circumference of the collar, but are at a lesser distance from the center. That point,
B, would appear to move as shown, also a circle with radius Ry, centered at R; from

O. Point B also is also assumed to be located on the x" axis, which is fixed to the



Chapter 2 page 25

R2 X
-\
¢
"/, '
7 ARSB/F’X
R

Figure 2.10: Points on the Drill Collar

collar.

2.4 Measurements Taken in a Rotating Reference
Frame Under Pure Whirl Condition

2.4.1 Bending Moments B, and B,

Bending moments are determined by the curvature of the beam as computed with
respect to the neutral axis. In this case, the neutral axis coincides with A, the center
of the collar. The deflection of the collar center as seen in the rotating frame Ox'y' is

designated vo(2) and is assumed to be given by :
. X2z
vo(2) = Ry sm(f)- (2.1)

vo(z) defines a radial distance from the borehole center(z axis) to the center of the

collar. vo(z) is, therefore, the whirl radius. The function sin(-’-rL-z-) accounts for the
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radial deflection of the collar center as a function of the distance, z, along the axis from
the bit, as shown in Figure 2.11. Here it has been assumed that the whirl deflected
shape of the collar is half a sine wave between the bit and the first stabilizer. Figure
2.10 was drawn assuming one was at the midspan of the collar. At any other z, the
distance to the center of the circle made by B and P would be given by R, sin(lrrz) N
and the radii of the circle R; and Ry would not change. At the bit, for example, the
points B and P as seen in the rotating frame Ox'y’ would be circles centered at O and
moving at an angular rate of w — {1.
The bending moment corresponding to vy(z) is given by the moment curvature
relationship
d®vy EIx® Tz

In the examples drawn from the Shell-NL fields experiments, the bending moment
B(z) was measured by two perpendicularly mounted strain gages in the Ax"y" system,
which rotates with the collar. But note that B(z) is a two vector components in the
Ax'y' systrm, with unit vectors i’ and j', because the strain gages measure the strain

from the undeflected position, which is the center of the hole.

B(2) = B(z)[sin(w — Q)tt’ + cos(w — N)tj'] = By + By, (2.3)

In the example given, the distance, L, from the bit to the center of the stabilizer
was 59.2 feet. The collar outside diameter was 7.0 inches, in an 8.375 inches hole.
A midpoint deflection equal to a clearance of .875 inches would lead to a midpoint
bending moment of 3525 foot-pounds. In the Shell-NL tests, the strain gage location
was typically nine feet above the bit. At the measurement location nine feet above
the bit, the measured bending moment would be reduced to 1600 foot pounds. The
bending moment measurement can be used directly to interpret the whirling motions

of the collar. The magnitude of the bending moment is simply given by

B(z=9) = (B% + BY)? (2.4)
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A phase angle can be estimated from B, and B ;

B, 1 sin(w — )t

#(t) = tan™}(==) = ta P o i (w— )t (2.5)

#(t) is simply the phase angle which accumulates at the rotation speed of the collar as
measured in the Ox'y' system. Therefore, from the bending moment measurements,
the magnitude of the whirl can be estimated, and from the phase angle the difference
between whirl and rotation rate can be determined, but not unique values of w and Q.
In contrast, a magnetometer is insensitive to whirl and only sees the rotation of the
collar with respect to the fixed reference frame. Its output is sensitive to the rotation
rate w, but provides no information regarding the whirl rate Q.

Consider the different whirling conditions described in Figure 2.2 The values of w,
N, and w — 1 are summarized in the following table for all cases a through g. Note

for this particular table the relative contact velocity with the wall is also presented.
v = Rl + Raw (2.6)

where R;= 0.875 inches , R,=3.5 inches.
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Table 2.1: Rotation Rate, Whirl Rate, and Slip Velocity

Case w/er f2r (w-0Q)/2r |v]|
a Backward whirl with slip -2.2 9.9 -12.1 .50
b Backward whirl, no slip -2.2 8.8 -11 0

c Backward whirl, forward slip -2.2 2.2 4.4 3.02
d No whirl, pure rotation -2.2 0 -2.2 4.03
e Forward whirl with slip -2.2 -1.1 -1.1 4.53
f Synchronous whirl with slip 2.2 -2.2 0 5.04
g Forward whirl with forward slip -2.2 -3.3 1.1 5.54

where vis expressed in ft/sec. Note that in all cases 2—“;—:-2.2 Hz ., where the minus sign
indicates clockwise rotation looking down the hole(turning to the right). This would
be the frequency of the peak one would observe in a spectrum of a magnetometer
output. If one were to compute a spectrum of the time history of either B, or B,
the peak would occur at the frequency |w — 02 | . The total magnitude B does not
vary with time. A polar plot of B and ¢(t) would produce a circle with a radius B,
an angular velocity of w — 1, and rotation angle ¢(t) equal to (w — )t.

The phase rates w — {1 has a physical significance. It represents the frequency
of bending stress cycles experienced by the collar. For example, synchronous whirl,
case f in table 2.1, results in no bending fatigue. However, it has a relatively high
tangential velocity and, therefore, would tend to abrasively wear out the cuiiar. On
the other hand, case b, backward whirl with no slip, has zero tangential veiocity and
hence no wear. However, for this particular case the bending cycles would occur at

approximately five times the rotation rate.
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2.4.2 Acceleration Measurements with Radial and Tangen-
tially Mounted Accelerometers Fixed to the Collar at
a Radius R3

Accelerometers measure absolute acceleration regardless of reference frame. There-
fore, a radially oriented accelerometer mounted at a radius Rs from the collar center
would respond to the radial acceleration, Rsw?, with respect to the center of the collar,
as well as the component of the whirl acceleration of the collar center in the direction
of the radially mounted accelerometer. This component is given by R;01? cos(w — 0)t.
A tangential accelerometer would not feel any centripetal acceleration due to the col-
lar rotation, but would respond to the tangentially oriented component of the whirl

acceleration of the collar center. Therefore, we may write

a, = RiNcos(w— N)t+ Ryw? (2.7a)

a = RN*sin(w-Q)t (2.7b)

where a, is the radial acceleration, and a, is the tangential acceleration. If the ac-
celerometers are of the piezoelectric type, they can not measure constant acceleration
componénts. Thus, the Ryw? term of the radial acceleration would not be measured,
and the acceleration magnitude as measured would be

1
2

a = (a? +d})* = R\? (2.8)

and the phase angle
é(t) = tan"(%) = (w-)t (2.9)

In the case of synchronous whirl, w — 2 = 0 and both a,(t) and a;(t) would not vary
with time. In that case, the output of thc accelerometers would be zero, due to the
low frequency limitations of piezoelectric accelerometers. In reality, the drill collar
may exhibit dynamic behavior other than pure whirling motion as described thus
far. For example, torsional vibration will lead to non-zero tangential acceleration. In

the previous discussion of acceleration and bending measurements, the phase angle
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#(t)=(w—0N)t and ¢ =0. Torsional vibration would introduce a tangential acceleration
component Rs¢. Similarly, transient impacts with the wall would cause tangential and
radial accelerations which are not as simple as cases of pure whirl. Bending data are
in practice very difficult to interpret when non-whirling caused vibration occurs. An

example is discussed in the next section.

2.5 Measurements Taken on a Rotating Frame With
Simultaneous Whirling and Bending Vibration

Rotation and mass eccentricity cause a shaft to whirl. The amplii-'de o* v
whirling depends on the eccentricity, and on the closeness of the rotation spec ana
the bending natural frequencies of the shaft. The whirling amplitude grows larger as
the rotation speed approaches one of the natural frequencies. But as the collar whirls,
bending vibrations can also be excited, for example, by lateral or axial dynamic forces.
Depending on the reference frame, these motions may seem simple or very complex.

An observer in the fixed coordinate system describes synchronous whirl as a cir-
cular motion of the shaft. But to an observer staying in the center of the coordinate
system OX'Y', rotating at 1, whirl is just a constant deflection. Assume that in addi-
tion to this constant deflection, the rotating observer also witnesses a simple circular
motion of the center of the shaft about the constant deflection center. The equations

describing the motion of the shaft center as seen by this person are:
z'(t) = Ry coswyt (2.10a)
y'(t) = Rysinwpt (2.10b)
where R, and R, are the amplitude of the bending vibration and wy, is the bending
vibration frequency relative to the rotating coordinate system. The trajectory seen
from a non-rotating reference frame is given by:
z(t) = Rycos(wt)+ Ry cos(wat)cos(t) — Ry sin(wnt) sin(flt)  (2.11a)

y(t) = Rysin(wt) + R cos(wat)sin(Qt) + Ry sin(wat) cos(t)  (2.11b)
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Figures 2.12 and 2.13 give examples of the trajectories of the shaft center as seen
from both rotating and non-rotating frame of references, assuming two dimensional
bending motion as mentioned above. These figures are plotted with the following
parameter values. The hole clearance is assumed to be large enough that no wall

contact occurs.

R, = 0.875 inches

R. = 1.0 inches

R, = 1.0 inches

N = -2.2 Hz = w, forward synchronous whirl

wn, = -3.0 Hz

The motion is circular with respect to the rotating coordinate system, but the ob-
servers in the fixed coordinate system will see much more complicated motions. This
example not only illustrates the differences in the appearance of the motion as seen in
the fixed and moving frames, but also has a useful physical interpretation which will
be illustrated in the experimental results. A whirling shaft excited by axial forces will

respond with orbital motion superposed on the whirl motions just as in this example.
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Figure 2.12: Motion Seen From the Fixed Coordinate System

ROTATION SPEED -2.2 Hz, VIBRATING FREQ. -3 Hz

T 1 T T T
4 -
2 |- -
INCHES

0 P —
2k _
4 BOREHOLE

5 ) ] | l ]
5 4 2 0 2 4 5

INCHES
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Chapter 3

The Bending Natural Frequencies
of Rotating Drill Collars

The bending vibration of the BHA is less well understood than torsional or axial
vibration. Relatively, few papers have been devoted to the study of this phenomenon.
The lack of research is partly due to the fact that bending vibrations downhole seldom
propagate to the top, and to the lack of downhole measurements. Therefore, we begin

with the discussion of the bending vibration of the drill collars.

3.1 Basic Configurations of the BHA

The arrangement of the stabilizers in the BHA affects the direction of the borehole.
Depending on the location of the stabilizers, BHAs can be categorized as building,
holding, or dropping assemblies. Figure 3.1 shows five configurations of the BHA.
According to drilling practice, BHA no.1 is rated as a dropping assembly; BHA no.2
is found to be a very strong dropping assembly; BHA no.3 is rated as a very strong
building assembly; BHA no.4 is found to act as a good holding assembly; BHA no.5 can
be used as a weak building or a weak dropping assembly, depending on hole geometry
and the interaction between the stabilizer and the formation. The placement of the
stabilizers also affects the bending natural frequencies of the BHA. The simpliest
approach, and the one taken here, is to model the effect of the bit and stabilizers

with equivalent boundary conditions. Thus, a BHA is modelled as an axisymmetric,

33
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Figure 3.1: Several Configurations of the BHA

rotating, :nultispan beam. The spans are determined by the placement of the bit
and stabilizers. With this approach, BHA number 2 in Figure 3.1 might be modelled
as a two span beam that is hinged at the bit, restrained in displacement at the
first stabilizer. and given a displacement and moment spring restraint at the second
stabilizer. Such a model, then, approximates the effect of the BHA above the second
stabilizer by a simple spring. Depending on the value of the spring constant, this
restraint can be varied from a simple hinged to a built-in (fixed) condition. This
simple approach will provide estimates of the natural frequencies and mode shapes

for bending vibration between the bit and the second stabilizer only.
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3.2 Theoretical Background

Figure 3.2 shows a section of BHA near the bit. The coordinate systems for the
drill collars are shown in Figure 3.3. The homogeneous governing equation for bending

vibration for a rotating beam in the z direction is [42]:

o* i
ApCpuI = —Ef'é'z—f + QE:; —(Ce + C1)x + Crwy

2 8
—Apgh cos ¢[(l — z)a':- - -5] + ApCppaw? cos wt (3.1)
the y direction is:
. 'y d% :
ApCpyy = _EIF -Q@-—=-(Ce+C1)y-Cwz
2z oz
32.!/ dy 2._: .
—Apgh cos ¢|(l — z)‘—a-? - 5] + ApCpbw® sin wt — Apgh sin ¢ (3.2)

if complex notation s' = z + 1y and ¢ = a + tb are used, and dividing through by

ApCypy, then
., Cg+Cy. EI 8% . Q 8%
! !
St ApCr ° T ApCr 87 T “ApCry 95
ghcos ¢ %' 9s'. . Cw 2 1 .ghsin ¢
|l — e — ! twt
+ O [( 2)3?- Bz] ryrviaiadl o (3.3)
- The definition of each symbol is

A = cross sectional area of collar
p,Pm = density of steel and mud
Cg,C; = external and internal damping
EI = flexural rigidity
g = gravity constant
¢ = slant angle of drill collar
Cm = mass coefficient of collar = 1+(added mass of mud per unit length +

" mud mass per unit length trapped inside the collar)/collar mass

per unit length



Chapter 3 page 36

Stabilizer

Lb,0D2.1D2

Stabilizer

Slant Angle

La,0D1,1ID!

Mud
Collar .
' Bit
L
Q
W€B
TOB
Figure 3.2: BHA Near the Bit
h = 1.m
p
l = weight on bit/Apgh cos ¢
Q = torque
w = rotation speed of the drill collar

! = mass eccentricity of the collar

©

The undamped natural frequencies and mode sh#pes for the non-rotating drill collars
may be sought by first setting the damping and rotating speed, w, to zero, and
assuming static side force does not affect the nat.ura.l frequency. The equations of
motion can be expressed in a dimensionless form as follows. Let L, = length of drill
collar form the bit to the first stabilizer

El
ApC ML:
¥4

'L—a ’ (3.4b)

wi = (3.4a)

w
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Cross Section of a Drill Collar

Y l
4
G : gravity center
C : geometric center
y+b (a,b) : eccentricity of the collar
y
C ® : rotation speed of the collar
xl
ot
— X
0 X x+a

OXY : fixed reference frame

OX'Y' : rotating reference frame

Figure 3.3: Coordinate System

T = wpt (3.4¢)
sl
s = fa‘ (3.4d)
I = l
1 = L—a (3.48)
then
9*s 0*'s QL,0% ghcos¢ 9*s 9s
ar? M ow* T EI 3v® + L‘,Cng[(ll - "’)5.7 - %] =0 (35)

By separating the time and spatial variables and using the central difference method
to replace the spatial derivatives, the differential equation can be transformed into a

system of algebraic equations. For details see Appendix A.
Dllsj=0 - (3.6)
where

[D] is a nxn finite difference matrix
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w=1+Lb/La =N Stabilizer
w=1 —  j=M Stabilizer
— J=1
w=0 J:O Bit

Figure 3.4: Discretization of the Drill Collar
[s] is @ nx1 vector representing the non-dimensionalized displacements

The discretization of the collar is shown in Figure 3.4. The eigenvalues and eigenvec-
tors of the matrix [D] are the natural frequencies and mode shapes of the non-rotating
drill collar. The eigenvalue problem as described above for a two span beam has been

| implemented in a program known as BEND2PC.

3.3 Added Mass Coefficient of a Rod in a Confined
Hole -

The added mass coefficient of mud is a function of wall clearance and the vis-

cosity of the mud [11]. Table 3.1 shows the added mass coefficient under various
combinations of S and R/r, where

S =wrtfv

v = kinematic viscosity of the mud



The coefficients in Table 3.1 can also be obtained through following formula,

Cm = Re(

Chapter 3

Table 3.1: Added Mass Coefficient of a Vibrating Rod in a Confined hole

500 1000} 2000| 3000 5000

R/r

1.2 688 683] 654| 6.38 6.21
1.3 486 463| 443 434 | 4.4
14 375 3.57) 343 3.37 3.31
1.5 3.11 2971 2.86| 281 2.76
1.6 2.70 2.57 249 245 242
1.7 241 2.31 223 2.20 2.17
1.8 2.19] 211 2.05] 2.02 1.99
1.9 2.04 1.96 1.90 1.88 1.85
2.0 1.92 1.84 1.79 1.77 1.74
2.2 1.74 1.67 1.63 1.61 159
24 1.62 1.56 1.52 1.50 1.48
2.6 1.53 1.47 144 142 1.41
2.8 1.46 141 1.38 1.36 1.35
3.0 142 1.36 1.33 1.31 1.30
35 1.33 1.28 1.25 1.24 1.23
4.0 1.27 1.23 1.21 1.19 1.18
5.0 1.22 1.18 1.15 1.13 1.12
6.0 1.19 1.15 1.12 1.11 1.10
8.0 1.16 1.12 1.10 1.08 1.07
10.0 1.14 1.11 1.08 1.07 1.06

R = radius of the hole
r = outer radius of the collar

w = vibration frequency in radians per second

[@?(1 + +?) — 8+]sinh(B — @) + 2a(2 — v + 7*) cosh(B — 7) — 2'12\/‘05 - 20| =

(24

L

a?(1 — 4*)sinh(8 — a) — 2ay(1 + 4) cosh(8 — a) + 2'1’\/5 + 20‘\]%

(3.7)

page 39
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Figure 3.5: Viscosity of Drilling Muds
where Re indicates the real part of a complex quantity, « = kr, f = kR, v = %,
and k = ‘/ i%. Equation 3.7 is valid if both a and § are greater than 10. Figure 3.5
shows the viscosity for various drilling muds. To convert viscosity from centipoises to

kinematic viscosity in ft?/sec, the following formula are needed.

poises= centipoises/100
p = mass density of the mud (slug/ft%)

v = kinematic viscosity (ft?/sec) = poises/497p
3.4 Effects of WOB and TOB on the Bending Vi-

bration

A numerical example is given to show the effects of the WOB and TOB on

the bending natural frequencies. The numbers used as the inputs to the program
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BEND2PC are shown in the Table 3.2. The first two modes are shown in Figure
3.6. Figure 3.7 shows the effect of the WOB and Figure 3.8 shows the effect of the
TOB on the natural frequency of these modes. During drilling operations, the WOB
may reach 50K lbs, but the TOB seldom exceeds 10,000 ft-lbs. So, from Figures 3.7
and 3.8, we can conclude that the effect of TOB on bending natural frequencies can

usually be neglected. This assumption is made in chapter 4.

Table 3.2: BEND2PC Sample Input Data

59.8,35.23 (l1:bit to 1st stab. 12: 1st stab. to 2nd stab.,ft)
20,12 (no. of segments of 11 and 12)

6.83,2.93 (od and id of 11,inches)

6.25,2.81 (od and id of 12,inches)

0 (tob, ft-ibs)

30000 (wob, Ibs)

8.8 (mud density, lbs/gal)

5 (added mass coeff. of the mud)

1 (boundary condition at 2nd stabilizer.1=fixed 0=depending on spring const.)
0. (slant angle of the borehole, degrees)

4.28209,15.2(Young’s Modulus and density of the collar,lbs/ft**2,slug/ft**3)
0. (boundary condition at bit,1=fixed 0=depending on spring const.)
0.,0. (moment spring constant at bit and stabilizer, ft-1bs/rad)

The simplified formula shown below gives a rough estimate of the first bending
natural frequency with WOB and TOB effects. This equation was obtained assuming

constant axial force, T, and constant torque, Q,

Q2
VI
wwoB,ToB = W\|1 — Tow (3.8)
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Figure 3.6: First Two Bending Modes
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Figure 3.7: The Effect of WOB on Natural Frequency
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Figure 3.8: The Effect of TOB on Natural Frequency

where wwoprop, w are the natural frequencies with and without WOB and TOB

effects. T, is the first critical buckling load of a pin-pin beam of length L, and Q
2

is the torque. In actual drilling, Q seldom exceeds 10K ft-ib, so the quantity %_I is

small compared to T; therefore, the effect of the torque can usually be neglected.

3.5 Natural Frequencies of a Rotating Beam Ex-
pressed in a Rotating Coordinate System

Equation 3.3 describes the bending motion of a rotating beam with respect to
a fixed reference frame. The bending vibration with respect to a reference frame

rotating at speed w can be obtained by substituting
s = r(w,r)e"r (3.92)
5 = (F+iwr)e™” (3.9b)

8 = (F+12wf —wir)er (3.9¢)
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into equation 3.3, The resulting equation is :

., Ce+Cr . ., EI 8% . Q &%
Pt ey T Y 2en 3 T ApCy 32

ghcos¢, = %' _or 4 . Cew.,, _.ghsing _., .
+——C—M—[(l z)5?- az] (w t——APCM)r =w?e -1 Cor e*“{3.10)

If w, is the bending natural frequency computed from a non-rotating drill collar,

then, there are two eigenvalue solutions for the above equation, when damping is

neglected:
Wi = wp+w (3.11a)
W, = Wp— W (3.11b)

where w! and w,; are the two natural frequencies which would be observed in the
rotating reference frame. Figure 3.9 is a graphical representation of equation 3.11a
and 3.11b. Motion at w; as observed in the rotating frame, would appear as circular
paths opposite to the direction of rotation. Motion at w, is seen as circular orbits
in the same direction as the rotation for w, positive, and in the opposite direction
when wy is negative. For example, when w = wy,, then w; = 0, this is the case known
as forward synchronous whirl. The circular motion as seen in the rotating frame
degenerates to a static displacement, with a frequency of w; = 0. To demonstrate
- the effect of rotation on the frequency observed in the rotating coordinate system,
we begin by examining the motion of a mass-spring system on a rotating disk. This
system is shown in Figure 3.10. No eccentricity is assumed in this case to simplify the
derivations. The equation of motion for this system corresponding to the stationary

coordinate system, Ozy, is

z: mi+kz=0 (3.12a)
y: my+ky=0 (3.12b)
The natural frequency corresponding to both z and y directions is w, = %

Depending on the amplitude and phase angle between the z and y motion, the mede
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Figure 3.9: Frequencies Observed in a Rotating Coordinate
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Figure 3.10: Mass-Spring System on a Rotating Table
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shape can be circular, or elliptical, and may rotate in clockwise or counterclockwise
direction. The equation of motion for this system corresponding to the rotating

coordinate system, Cz'y, is
: m(z+ 2wy —wit)+kz' =0 (3.13a)
yr: m(y —2wr —wy) +ky' =0 (3.13b)

where 7' and y' are the coordinates fixed on the disk, m and k are the mass and

stiffness respectively. The above equation can be written in operator form as,

z: Liz'+ Ly’ =0 (3.14a)
y: L'+ Ly =0 (3.14b)
where
L, = D*-uw’+u? (3.15a)
L, = 2wD (3.15b)
Ls = =2wD (3.15C)
Ly = D*~w?+uw! - (3.15d)
d
D = — .
o (3.15€)

The solutions to this system of differential equation are the roots of

_| I L2 | _
A= Ls L |= 0 (3.16)
By solving this equation, the homogeneous solutions for z' and y' can be written as
follows :
z' =Alc—i(w,.+w)t+Azci(w,.-w)t+Asc|'(w..+w)t+A4¢—t'(w,.—u)t (3.170.)
yl =B, e—c’(u,.+w)t + B, ei(w,.-w)t + Bsei(w..-l-w)t + B‘c-i(w..—w)t (3.l7b)

The clockwise direction indicates the the direction of decreasing angle, and coun- .

terclockwise direction indicates the direction of increasing angle. Therefore, if the
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direction of rotation of the drill collar is clockwise, indicating that the rotation rate
is —w, then, the coefficients As, A, Bs, and B, will vanish. On the other hand, if
the direction of rotation is counterclockwise, the coefficients A;, Az, B;, and B, will

vanish. The ratio of gﬁ indicates the mode shape of their associated eigenvalues.
n
For example, the ratio of %—:- shows the mode shape of eigenvalue —t(w + wy,). The

ratio of -g% can be obtained by substituting equation 3.17a into equation 3.13b, and
setting A,, As, A, B2, Bs, and B, equal to zero. Following this procedure, we can
find that the mode shape for eigenvalues —f(w, £+ w) is —¢, and the mode shape for
eigenvalues 1(w, + w) is 1, if w, + w remains positive. This implies that =’ and y' are
equal in.magnitude, but 90 degrees out of phase with each other, which would be seen
as circular motion in the rotating frame. The direction of rotation depends on the
sign of the eigenvalue. A positive eigenvalue indicates a counterclockwise rotation,
whereas, a negative eigenvalue indicates a clockwise rotation. If we assume that there
is an sinusoidal input force in the z' direction designated as Pe'“t! , the particular

solution can be obtained by assuming the solution in the form

' = Aetrt (3.18a)

y' = Byer! (3.18b)

Substituting this into the equation of motion and solving for A; and B,, we find

that
w? - w}, —w?
Al = B_ (3.19&)
12wwy,
B = —5 (3.19b)
where O is
0 = (w? —w? - w})? — 4w} (3.20)

If we demand that |A,| = |B,|, then, it implies that w; = w *+ w,. Physically, it

means that if the excitation frequency equals to one of the natural frequencies, then,
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the motion of the mass is a circle with respect to an observer who stays in the center

of the disk. Following a similar argument, it can be shown that if the excitation

frequency frequency is not at a natural frequency, then the ratio of %ﬂ can not be
n

1.0. The resulting motion will be elliptical in shape.

3.6 Several Interpretations of the Results

The bending natural frequencies with respect to a fixed coordinate system deter-
mine the rotation speeds at which large amplitude forward synchronous whirl occurs.
The closer the rotation speed comes to the natural frequencies as computed in a fixed
reference frame, the larger the whirling amplitude. Synchronous whirl at this rotation
speed may cause excessive wear on one side of the drill collar, or may result in back-
ward whirl if the wall friction is sufficiently high. One the other hand, the natural
frequencies with respect to a rotating coordinate system determine the frequencies of
external excitations that will cause large bending vibration. Therefore, the excitations
needed to drive the collar into large bending motion vary linearly with the rotation
speed of the drill collar. Examples of bending vibration due to external excitation
are shown in the experimental results in chapter six, which contains the predictions

given above. Examples of forward and backward whirl are given in chapter seven.
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Axial Excitation of Bending
Vibration

In actual drilling, dynamic axial forces are produced because of the interaction
between the bit and the formations. These axial forces can induce bending vibra-
tion. There are two principal types of bending vibration resulting from axial forces.
In this thesis, they are termed linear coupling and parametric coupling. These cou-
pling mechanisms between axial forces in the drill string and bending vibrations are

described in the following sections.

4.1 Linear Coupling of Axial Force and Bending

Linear coupling between the axial forces on the bit and bending vibration occurs
frequently in real drilling assemblies, often superposed on other bending vibration
phenomena. The source of linear coupling is initial curvature of the BHA, such as
is depicted in Figure 4.1. Linear coupling is easy to visualize by taking a thin ruler
or a piece of paper, giving it a slight curve, and then pressing axially on the ends.
The object responds by additional bending in the plane of the initial curvature. The
frequency of the bending and axial vibrations is t.he same. The ccupling is made
possible by the initial curvature. Linear coupling will not occur on a perfectly straight
beam excited by an axial load which is less than the critical buckling load. However,

if theze is any initial curvature, an axial load will cause a lateral deflection. For

49
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4 Axial Force

Drill Collar’

Collar with Initial Curvature

Axial Force

Figure 4.1: A Section of a Bent Collar

small amounts of curvature, the greater the initial curvature, the greater the lateral
deflection. Of course, curvature is very common in bottom hole assemblies due to the
combined effects of gravity and axial force in inclined holes. Whirling also results in
curvature of the BHA and, therefore, also leads to coupling. Dynamic variations in
the weight on bit then cause bending vibration to occur about the mean statically

deflected shape.

4.2 Linearly Coupled Equations of Motion

The equations of motion describing coupled axial and bending vibration are given

below for the non-rotating beam. Rotation will be introduced later. In the axial

direction :
d*u 9 du 2%y oz
Apb? = EEA(B; - KT+ K.Y) — EI(Ic,a—zs - :c,-a-?—) (4.1)
in the z direction, where z is measured from the initially curved position:
. 'z 9%z .
ApCpyZz = ——EI-a—Z_‘ + Q‘Ez—s - (Ce + C]).’B (4.2)

Pz or du
— Apghcosd|(l - 2)5? - E] + EAK.‘,(a — KT + K.Y)
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in the y direction, where y is measured from the initially curved position:
ApCymy = —-FEI— — — (Ce + Cy)y 4.3
pCmy 320 Qgs (Ce+Cn)y (4.3)

Ay o ou
~ Apghcos@[(l - z)a—z’:- - a—Z] + EA'C'(B—z - KyT + Kzy)

where
2zo
K = initial curvature along x direction = P
2
Ky = initial curvature along y direction = T:,Q

where z,(z) and yo(2) are the initial curved shapes

This set of equations indicates that the coupling mechanism of axial and bending
is the curvature of the drill collars. Without the curvature, the axial and bending
vibration will respond independently, according to linear beam theory. A similar
result may be found in [41]. The above equation was solved by central finite difference
scheme. Figure 4.2 depicts the BHA model that was used for the calculations. It is
a standard pendulum BHA with two stabilizers. The boundary conditions at the bit
were specified as lateral displacements and bending moments equal zero. At the first
stabilizer, the lateral deflection was zero. The boundary conditions at the second
stabilizer were specified as lateral displacements and slopes equal zero. Due to the
curvature induced by axial load, gravity , or eccentricity of the collars, the bending
natural frequencies may shift slightly with respect to an unbent configuration. Figure
4.3 shows the effect of the curvature on the first bénding natural frequency of the BHA
shown in Figure 4.2. In this example, the initial deflection shape vo(z) was assumed
to be in the first mode shape. The maximum va.lﬁe of vo occurs at the midpoint of
the longer drill coilar section. A measure of the initial curvature is given by the ratio
vi(%)-, where L, is the unsupported span length. This ratio is plotted versus the
first mode bending natural frequency in Figure 4.3 The natural frequency, due to the
coupling effect, decreases with increasing curvature. For a borehole with a radial wall

clearance of 4 inches and a span of 59 feet, this ratio is approximately 0.005 resulting
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Figure 4.2: Drill String Model for the Linear Coupled Example
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Figure 4.3: The Effect of the Curvature on the Natural Frequencies
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in a decrease of less than 5 percent in natural frequency. To further understanding
of linear coupling, one might consider the term g% in both x and y equations of
motion. Physically, this term represents the axial strain along the drill string. If the
axial strain were to vary harmonically in time due to dynamic variations in WOB, it
would assume the form -‘%(;—")-c‘“". This term may be thought of as the input forcing
function, and because the equations are linear, the solution for both x and y will be
harmonic at the same frequency.

In actual drilling practice, the borehole diameters are often only one to twon inches
larger than the drill collars. So, the curvature of the drill collars is limited by the
diameter of the hole. In a pendulum BHA, the first stabilizer is placed about 60 ft
above the bit; therefore, the curvature of the collar is very small, and the effect of
the curvature on the drill collar bending natural frequency can be neglected, as men-
tioned above. Although the changes in bending natural frequency can be neglected,
the curvature does induce bending vibration which may be problem. An example

demonstrating this phenomenon will be shown in chapter 6.

4.3 The Effect of Rotation on the Linear Coupling
Phenomena

The equation shown above is described in terms of a stationary coordinate system.
But, as was mentioned in chapter 3, the natural frequency observed in a rotating co-
ordinate system will vary with rotation rate. This also implies that the frequency of
axial excitation needed to drive the collar into large resonant bending vibrations will
change, according to the rotation speed of the drill collars. For example, if the drill
string is stationary, the axial frequency needed to drive the collar at a bending reso-
nance is equal to w,, the natural frequency of the drill collar, provided the curvature
is small. But, as the drill string starts to rotate at w, the axial frequency needed to
drive the collar into bending resonance will change from wy to |w, + w|. This concept

is not intuitively obvious, but it is essential to understanding drill collar vibration.
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The equations of motion expressed as seen in the rotating reference frame are as

follows, in the axial direction :

’u 9 du 3’y 3’z
Apz-t—z- = EEA(-EZ — KX + n.y) - EI(IC,-a:s - Icya—zs) (4.4)
in the z direction:
0! i
ApCp (3 + 20E — w?z) = --Eza—z"f + Q-a—;; —(Ce+Cn)x (4.5)
é*z 09z ou
— Apghcosd|(l - 2) 37 E] + EA”"(E — KyZ + KgY)
in the y direction:
) o o’ .
ApCog(§ + 120§ — wly) = —E15z—’j - ng—g —(Ce+C1)y (4.6)

52 o 2
— Apghcosg|(l — z)ﬁ - 6_Z] + EAfc,(a—: - Ky + K.Y)

4.4 Bending Vibration of the BHA With Paramet-
ric Excitation Without Wall Contact

The bending vibration can be excited parametrically by the dynamic axial exci-
tations. It occurs usually when the shaft is straight, and with strong dynamic axial
forces coming from the bit rock interacti;)ns as shown in Figure 4.4. This phenomenon
is most likely to occur in the section between bit and the first stabilizer in a pendulum
assembly or the section above the uppermost st;bilizer, if the BHA is vertical. The
most distinguishing feature of parametrically 'excited vibration is that the bending
responsc; frequency is one half the axial excitatioﬁ frequency. This phenomenon is

demonstrated in the laboratory experiments described in chapter 6.

4.5 Equation of Motion

The following equation includes the effect of parametric axial excitation on bending

vibration for a non-rotating beam. The definition of the symbols and the coordinate
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[ 1>~ Drill Collar

Stabilizer

Bit

Dynamic Axial Force

Figure 4.4: Drill Collar Under Axial Excitation

system are the same as in chapter 3,

a%s' as' a's' 9%
A Cg+C))— + EI )
PCM-é-Zy'l'( E+ ')Bt + Fy%. +'Qazs
9*s' ds'
+Apgh COos ¢[(l' - Z)—a7 - E =0
where l' is :
" Tt + Td
Apghcos ¢
and T, is the mean WOB, and T; is the dynamic axial force,
Ta= EA-‘22 = TyP(w, 2) coswt
oz
where

(4.7)

(4.8)

(4.9)

T, : the amplitude of the weight-on-bit dynamic fluctuation at frequency w

P(w, 2) : force transfer function between the bit and the point 2

u : axial displacement which satisfies

%u *u
Apom = EAgs

(4.10)
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If the length of the section considered is short compared to the wave length of the
axial vibration, P(w, z) can be assumed to be unity. This is a realistic approximation
near the bit in actual drilling conditions. Typical bottom hole assemblies consist
of two or three drill collars below the first stabilizer. This section of drill collars is
susceptible to parametric bending vibrations, due to large dynamic variations in the
weight on bit. Usually, each drill collar is 30 feet long, so, the total length below the
first stabilizer is less than 100 feet long. The axial wave length in steel drill collar is
about 16,000 feet at a frequency of 1 Hz. So, we can neglect the dynamic axial stress
variations along this section of the drill collar.
The equation above can be nondimensionalized using w = %, 1l = % and 7 = wit.

The following equation is the nondimensionalized equation

0*s Cg+C;0s 8% .QL 3%

ar? ' ApCpsuw, 01 + ow* t EI 8w’

pghcos ¢ 9%*s Os _
+ Core? [(1 - w)aw’ - aw] =0 (4.11)

Equation 4.11 can be reduced to a system of linear equations by introducing a central

finite difference scheme,

Os N
_aw = —2—[—3j-l + sJ"f'l]
9%s
307 = Nllss1— 285+ 584
83s N3
55 = _2_[_51-_, + 28j_1 — 2841 + 842]
a‘s 4 !
E N¥[sj_2 — 48j_1 + 685 — 4841 + 8j43] (4.12)

The matrix form of equation 4.11 is

Zralel + ZEE L2 o]+ (Al + 2Bl
""‘“‘”w w)(C]ls] - [D}ls]] = 0 (4.13)

where
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[A] = 4th order difference matrix
[B] = 3rd order difference matrix
[C] = 2nd order difference matrix

[D] = 1st order difference matrix

[8] = [31, 82.000e SN]T
The elements near the bit or stabilizers, in the finite difference matrix, depend on
the boundary conditions. Therefore, these matrices aiso depend on the boundary
conditions. If the terms with same order of diffcrentiation are grouped, the above

equation can be rewritten as :

Toalel + 222 o]+ (P + [Pals] = 0 (4.14)

where the matrix P, representing the dynamic axial force at each element is

1

[Pd) = ApCMszg

T4[C] (4.15)

and the matrix P, representing the static force at each elements is

~ QL ghcos ¢ T,
[P =141+ ig7Bl+ sl ~

EI w)[C] - [D]] (4.16)

where [I] is the identity matrix. If the damping is ignored for the moment, and the
equation is normalized using the eigenvectors of the undamped system, then, equation

4.14 becomes

& 1+ (F) + Tisple) = 0 (17)
where [F] = [E|}|P,][El= -,

and wy, ....,wn are the natural frequencies of the non-rotating system, and [S] =

[E]~}[P4)| E], where [E] is the matrix of the eigenvectors. The instability condition for
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this system according to (23] is

witwj—Tin <w<w +w; +Tin (4.18)
where
: 5.5 1
n=(=1L)2 (4.19)

dwiw;
where S;; is the ij-element of matrix [S]. The parameter 7 is the slope of the boundary
of the unstable regions. An increase in the slope will increase the size of the unstable
regions. Figure 4.5 shows an example of the unstable region for a pinned-pinned
Acrylic rod with ID=0 inches , OD= 0.375 inches, and 3 feet long. The density of
the material is 2.68 i;‘tgf, and the Young’s Modulus is 5.75 x 107 psf. The figure is
plotted with axial excitation frequency w vs. amplitude of the dynamic axial force T}.
If the combination of w and T, is inside the unstable region, the amplitude of bending
vibration will grow until it is ultimately restrainted by the borehole. In the example
given above, the unstable region was found for a condition with no external damping.
With no damping, the instability may be driven by an arbitrarily small excitation, 7).
The effect of damping is to raise the threshold of excitation which can produce the
instability. The greater the damping, the higher the threshold. A plot of the unstable
region will look similar as the one shown, except that it can not extend below the

threshold value. A detailed discussion of the effect of damping on the unstable region

can be found in [24]

4.6 String under Dynamic Axial Tension

As an aid to understanding parametric excited bending vibration of drill collars,
consider the string depicted in Figure 4.6. The string is shown passing through a
pair of pinch rollers, which is the lower boundary condition, and continues on to a
tension measuring device. If the string has a static'component of tension Tp, and a
known mass per unit length, u, then the first natural frequency of the string can be

computed as,
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Figure 4.5: Region of Parametric Instability
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Figure 4.6: String under Axial dynamic Tension
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m | T
wy = Z,‘f (4.20)

The undamped response of the string to an initial deflection in its first mode is simply

y(z,t) = Asin(w,t) sin(%—?—) (4.21)

If one were to measure the dynamic fluctuations in tension, which are caused by the
vibration at w; , the tension would be observed to vary at 2 times the vibration

frequency. The tension could be expressed as
T(t) = T, + T sin(2w;t) (4.22)

The tension has a dynamic component at twice the vibration frequency. If the process
was reversed and a tension with dynamic component of 2w, were applied at the end,
then the string will respond at its natural frequency, w;. This is a simple analogy to
the mechanism of parametric excitation of the bending vibration of the drill collars.
Expressed in drilling terminology, a dynamic component of the weight on bit is capable
of exciting bending resonances of the drill string at natural frequencies which are at
one half of the excitation frequency. A mud motor rotating a bit could parametrically

excite a non-rotating BHA.

4.7 Equation of Motion in a Rotating Coordinate
System

Equation 4.7 describes a non-rotating BHA. The equation for a rotating beam

expressed in a rotating coordinate system is as follows:

*r' or' ‘' a’r'
2l +(c 22"+ E12T s
ApCum ETC + (Ce + C1 + 12w) 5t +E18z‘ +:Qa§
' or
+Apgh cos ¢[(l' — 2) Py az] wr'=0 (4.23)

where the prime in the expression r' denotes that the equation has not been put

in dimensionless form. The effect of the rotation is shown in the Figure 4.7. This
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Figure 4.7: Region of Parametric Instability With Rotation Rate 2.4 Hz

example is plotted using the same data as in the earlier non-rotating case but now with
a rotating speed w of 2.4 Hz. It shows that the unstable region splits into two regions
The unstable response associated the higher frequency region was demonstrated using

a scale model as described in chapter 6.

4.8 Parametric Excitation of Bending Vibration a
With Borehole Constraint

Equation 4.7 describes the drill collar motion without the constraint of the bore
hole. This occurs possibly when the bore hole is nearly vertical. If the hole is slanted,
and stabilizers &o not hold the collars in the center of the hole, they may lay against
the wall because of gravity. The section of the drill collars above the uppermost
stabilizer are most likely to exhibit such behavior. Figure 4.8 shows the coordinate

system used in the equation that describes the wall constraint. A detailed derivation
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Borehole

7 /
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777 7’

Figure 4.8: Coordinate System

of the equation with wall constraint is presented in Appendix B. The equation of

motion with borehole constraint for the non-rotating case is:

0%y oy o'y 9%y
APCM}'?—F + (Cg + C])-gt- + EI-E? + Qg
8*y v sin ¢
! —_—
+Apgh cos@|(I' - = 357 6z] - Apgh A= 0 (4.24)

where A is the borehole diameter minus the collar diameter, and 4 is an angle
measured with respect to the center of the hole between the static equilibrium point
of contact and the instantaneous point of contact between the drill collar and the wall.
~ is both a function of axial position 2 and time. The definitions of the other symbols
are the same as those in equation 4.7. Following the same nondimensionalization and

finite difference procedures, one can obtain the the matrix form of the equation
d? Cr+Cr d

S+ % S+ bl
ghsin ¢

LR - wCl] - DI + Soaihl =0 (429
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where [A], [B], [C], [D] are defined in equation 4.7. If similar terms are grouped, then
d? Cg + Cy i

pritiis ApCrrao 7 [ + ([P.] + [Pa])[v] =0 (4.26)
where
(P = 22 Ty (w27)
MWo
P = 141+ 57181+ 251 - wic] - D) + £52 (a29)

If the same normalizing ' rocedure is taken, then equation 4.28 can be reduced to

&+ (F1 + TisD] = 0 (4.29)
The instability condition for this system is the same as the case of no wall constraint,
which is

wi +wj — Thn < w < w; +wj +Tin (4.30)
However, the natural frequencies w; and w; are not necessarily the same as the case
without wall contact. Without wall contact, the mode shapes look sinusoidal about
the undeflected position of the straight beam. The mode shape lies entirely in a plane.
With wall contact, the mode shapes when projected on the wall still look sinusoidal.
But, as the beam deflects laterally, it must follow the curvature of the wall. In an
inclined hole this is resisted by gravity. In the same way as a frictionless mass will
oscillate in a circular shaped well due to gravity, the collar will also oscillate due only
to the restoring gravitational force. Compared to the bending stiffness of the collar,
this restoring force is negligibly small, except in the case of very low modes which
may have little restoring force due to beam stiffness. This is especially true for the
modes whose natural frequencies are reduced due to large compressive loads in the
BHA. In other words, the presence of the wall may increase the natural frequency
of the modes that are likely to be sensitive to buckling effects in the BHA.. The
unstable regions are indicated in Equation 4.30 The length cf the drill collars above

the uppermost stabilizer can be several hundred feet. Therefore, the modal density
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(the number of modes per unit increase in frequency) of the bending vibration may

get quite high, resulting in overlapping regions of instability. So, [19] introduces a

term called severity, which is the same as n in the above equation, and was defined

previously by for the case without wall contact, and is given again here.
S.-,-S,~.-)%

n = severity = (——
Wiy

(4.31)
where S;; is the ij-element of matrix [S]. But, with high modal density, it is difficult to
plot the unstable regions, which may correspond to 20 or 30 modes that fall into the
frequency range at which the collar would rotate. Instead of attempting to plot the
regions of unstable response, we can plot the parameter 5 versus the frequency, w; +w;.
This parameter gives the relative sizes of the unstable regions. So, n can be thought
of as an indication of the likelihood of operating in the unstable region. The larger
the opening of the unstable region, the more likely the drill string will encounter
it. Therefore, the peaks in the severity versus frequency plot give information on
the excitations frequencies that are likely to drive the collars above the uppermost
stabilizer into unstable responses. One example of this calculation is shown in Figure
4.10. The inputs for this calculation are given in Figure 4.9 for a BHA with no
stabilizers. The confirmation of this prediction with field or lab model has not yet
been obtained and published. But once confirmed, one engineering application of
this result is to avoid these peaks in the actual drilling conditions. For example, if
a tricone bit is used for the drilling, strong axial excitation occurs at 3 and 6 times
the rotation rate. These axial excitation frequencies should not be the same as the
frequencies of high severity peaks, in order to avoid potential high bending responses.

Equation 4.30 shows that the width of an instability region is proportional to both
the severity and the dynamic fluctuations in the weight on bit, T}. One interpretation
is that the severity is a measure of the instability risk per unit of excitation force, T}.
The severity calculation includes the longitudinal dynamic properties of the entire

drill string. The severity is likely to be worse at frequencies which correspond to
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longitudinal resonances.

All of the foregoing discussion was based on the assumption that the drill collar
was not rotating and that the bit forces were the result of operation with a mud
motor. Rotation introduces many potential complications which are not addressed
in this thesis. However, the argument has been made but not proven, that the wall
contact constraint nullifies the effects of the rotation on the natural frequencies, w;
and wj, which are to be included in the severity calculation. Therefore, the results
are the same as in the non-rotating case.

However, the examination of the Shell-NL downhole data taken in experiments
described in [52] shows that the dynamic response in bending close to the bit is usually
a very complex superposition of many simultaneous phenomena. The prediction of the
instabilities under such circumstances may be much more difficult than describe here.
In chapter 7, there is one example with evidence of parametrically excited bending
vibration, thus, verifying the existence of the phenomena for a BHA with stabilizers

in a region without wall contact.
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Chépter 5
Rubbing of the Drill Collars

The drill string is designed to rotate, from 40 to about 100 RPM for conventional
tri-cone and PDC bit drilling. As the drill collar rotates, whirling motion can be
introduced. Whirling is simply the centrifugally induced bowing of the drill collar.
Consider a @rill collar in Figure 5.1 If the center of the gravity of the drill collar
in not initially located precisely on the axis of rotation, then, as the collar rotates,
a centrifugal force acts on the center of gravity, causing the collar to bend. The
magnitude of the force is proportional to the mass of the collar, the square of the
rotation rate, and the initial eccentricity of the mass center to the axis of rotation
(usually the center of the hole). The initial eccentricity of the drill collar can result
from several causes, including an initially bent drill collar, or sag due to an inclined
borehole and gravity, or an eccentrically loaded weight on bit. This eccentricity can
result in dynamic imbalance as the collar starts to rotate.

Whirling has been long known to occur in a destructive form in rotating machin-
ery when the rotation rate of the shaft equals the natural frequency of that shaft
in bending. When this happens, the machine is known to be operating at a critical
speed. There is an enormous established literature on the subject of whirling of ma-
chines, such as turbine engines, axial flow compressors, and generators. An excellent
tutorial on the subject may be found in reference [34], which presents a mathematical
description of the simple whirling of a rotating shaft.

A great deal of effort and money is spent on balancing shafts and on developing
67
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Figure 5.1: A Whirling Drill Collar

operating guidelines for machinery, so as to prevent serious whirling. This is generally
not done with drill strings. One reason is that drill strings operate in the confinement
of the borehole. Whirling does not generally result in precipitous failures of drill
collars, because deflection amplitudes are limited by wall contact. There are, however,
undesirable consequences of drill collar whirling behavior, not necessarily recognized
in the drilling industry. One is abrasion of the surface of drill collars caused by rubbing
on the wall.

The presence of the wall imposes displacement constraints on the bending and the
whirling motion of the drill collar. Wall constraints not only limit the displacement
of the collar, but also increase the stiffness of the collar if the collar comes in contact

with the wall. There are several possible kind of rubbing behavior
e partial rub
e synchronous full annular rub

e backward full annular rub
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Partial rub is characterized by the occasional contacts between the collar and the
wall. If the collar maintains constant contact with the wall, the term “full annular
rub” is used. It can be either in a forward or a backward direction with respect to
the direction of the collar rotation. From an engineering point of view, synchronous
rub, in which the same side of the collar is in constant contact with the side of the
borehole, is the probable cause when a collar comes out of the hole worn flat in one
place. In pure backward rub, the drill collar rolls without slipping on the inside of the
hole in a direction opposite to the surface rotation rate (hence the name “backward
whirl”). Your eye, if it could follow backward whirl, would see the center of the drill
collar moving around the hole at a frequency much higher than the rotation rate of
the drill collar itself. This phenomenon does not cause substantial surface abrasion,
because there is little, if any, relative velocity between the drill collar and the wall.
High frequency stress cycles, caused by bending of the drill collar, occur at many
times the rate of rotation and may possibly lead to connection fatigue failure. These

phenomena are explained in more detail in the following sections.

5.1 Kinematics of Whirling

The relative tangential slip velocity V between the drill collar and the borehole

" wall is given in chapter 2, as reproduced here :
V=(R—R)O+ Rw (5.1)

The tangential slip velocity is a measure of the amount of abrasion experienced by
the drill collar on the wall. Thié velocity may vary from zero under conditions of
perfect backward whirl with no slip to a maximum of R,(2 under conditions of forward
synchronous whirl. For fixed drill collar rotation rate w, the tangential slip velocity
V is a linear function of whirl rate 2. Figure 2.2 in chapter 2 shows this linear
relationship, and also indicates values of {1 where forward and backward whirl occur.

Backward whirl occurs for values of 1 less than zero. Backward whirl without slip
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occurs when V is zero. By requiring the tangential slip velocity tc be zero, equation
5.1 may be used to solve for the whirl rate {1, which is defined as the condition of

backward whirl without slip:
We

Ry - R,

Backward whirl with slip occurs for values of 1 algebraically greater than 2, but

1 =~

(5.2)

less than zero. No whirl occurs if {1 = 0 (i.e., the drill collar rotates but does not whirl
around the hole center). Forward whirl with slip occurs for values of {} greater than
zero. The special case of forward synchronous whirl occurs when the whirl rate is
equal to the drill collar rotation rate, {1 = w. Drill collar whirl is considered unlikely
for 1 < 1, and N > w, since "negative” wall friction would most likely be necessary
to drive the whiﬂing motion.

The whirl ratio is defined as the ratio of the actual whirl speed to the backward

whirl speed with no slip:
N

0,

Substitution in equation 5.1 leads to the following useful variation for the expression

s= (5.3)

for tangential velocity :

V = (R — R.)sfh + Ruw | (5.4)

5.2 Partial Rubs

Partial rubbing is characterized by the occasional impact between wall and the col-
lars. The motion of the drill collars before the firs¢ impact is most likely synchronous
whirl. The normal impact force will be small in comparison with WOB because of
the the relatively small clearance between wall and the collars. After the impact, the
collar responds with lateral and torsional motion. The direction of rebound depends
on the whirling velocity of the drill collar at the instance of impact. It either follows
the original whirling direction or reverses into ba.ck\'vvard whirl. Muszynska [37] inves-

tigated the problem of partial rotor to stator rub and concluded that partial rub will
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excite bending vitration at a subharmonic of the rotational speed as observed from
a fixed reference frame. Although this mechanism has not yet been identified in field

tests, it is likely to occur frequently in BHAs.

5.3 Forward Synchronous Rub

The mechanism of synchrono. .ubbing of a horizontally mounted rotor has been
expleined by Stackley [45], and experimentally evaluated by Joglekar [27].

Synchronous forward rub is a likely cause for the driil coliar worn on one side only,
therefore, the driller should know the likely operating range for which this phenomena
will occur. Recalling equation 3.3 and adding the centrifugal force produced by the

eccentricity of the drill collar to the right hand side of the equation yields

. Cg+Cr,, EI 8% . Q 9%s'
g §+ +1
ApCr ApCr 8z ApCp 82°
ghcos¢ s as' o
+ CM [(l - Z)Ef - 5;] = wze'(z)e ¢ (5.5)

where €'(2) is the eccentricity of the drill collar between the bit and the first stabilizer,
and is a function of z measured along the neutral axis of the drill collar.

This equation can be solved by the finite difference procedures similar to those
mentioned in chapter 3. But, instead of solving the eigenvalue and eigenvector prob-
lem, a system of simultaneous equations is solved with respect to a single rotating

frequency. It is similar to equation 3.5,
[Ds] = [F] (5.6)

except that right hand side is equal to [F], instead of a zero vector. The single column

vector [F] is

, e(1)
=5 @

2 (5.7)

e(N-1)
where ¢(1) to e(N — 1) are dimensionless eccentricities normalized with respect to the

length of the drill collar between the bit and the first stabilizer.
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Figure 5.2 shows the displacement of the collar at one quarter and one half the

length. The inputs for this example are shown in Table 5.1.

100

7.5
2.81
10000.
3. 2. 200
10

12

0.8
30000
19

1.0
0.1 0.

0.1 0.
0.10.

0.1 0.

1.
4.32E4-09

Table 5.1: Inputs for the Example

L , Ft, Total length of the collar between the bit and the first stabilizer
Ci, Lbs/(Ft/sec)/Ft of pipe, Internal damping

OD, Inches

ID, Inches

Q, Lbs.Ft, Torque

Initial, increment, and ending value of rpm

Phi, Degrees, Slant angle of the borehole
RHOMUD, Lbs/Gallon, Density of the mud

Ce, Lbs/(Ft/sec)/Ft of pipe, External damping
Lbs, Weight on Bit

N Segments (type 4M-1)

C (0=Pinned, 1=Clamped)

e’l, Eccentricity of Lower Quarter of the drill collar
Magnitude in inches, Phase in degrees

e’2 Eccentricity of 2nd Quarter

e’3 Eccentricity of 3rd Quarter

e’4 Eccentricity of the Top Quart of the drill collar
added mass coefficient of the mud

Young’s Modulus of the collar material

The displacements at quarter and half points on the collac are plotted assuming

no wall contact. Normal operating speeds for a 100 foot pendulum BHA are from 40

RPM to 200 RPM. This range includes the natural frequencies for the first two bending
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Figure 5.2: The Displacement at Quarter Length and Half Length above the Bit

modes. The first mode shape is a half sine wave, and the maximum displacement is at
the half length point. The second mode shape is a full sine wave, and the maximum
displacement is near the quarter length point. If the maximum displacement of the
collar is less than the clearance, then, no rub is initiated, and the possible whirlin‘g
motion of the drill collar is forward synchronous whirl. If the maximum displacement
equals or exceeds the clearance, the rub is initiated. The clearance limit in Figure
5.2 would be indicated as a horizontal line, whenever the predicted amplitude crosses
this limit, rub of some kind will result.

According to Stackley, the frequency range of the rubbing is likely to be wider
than the frequency range in which the collar displacement exceeds the clearance, due
to the modification of the collar stiffness as it touches the wall of the borehule. No
attempt has been made in this thesis to predict the extension of the RPM range that

the collar engages in forward synchronous rubbing. The analysis here gives only the
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Wall Constraint

Figure 5.3: A Vertically Mounted Rotor Model

information on the frequencies at which collar rub would be initiated. More detailed

analysis is recommended in future research.

5.4 Backward Whirl with Wall Contact

The following is a very simple attempt to model the onset of backward whirl.
Much more work is yet to be done to refine and verify this initial attempt.

Backward whirl occurs if the direction of the motion of the center of gravity of
the collar is opposite to the direction of rotation as described in chapter 2. Backward
whirl with full annular rub is initiated if the friction force between the collar and
the wall exceeds the structural and hydrodynamic damping forces, and drives the
collar into backward whirl. During a full cycle of revolution, the collar keeps in close
contact with the wall and may or may not slip. This phenomenon not only induces
high amplitude bending stress cycles, but also may wear the collars if slippage occurs.
Beginning with a simple model, a vertically mounted rotor, as shown in Figure 5.3,

an explanation of the mechanism of backward rubbing is presented.
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Borehole

7 Centripetral + Stiffness Force

Damping + Inertia force

Figure 5.4: Force Diagram of Backward Rubbing

The model shown in Figure 5.3 has a disk of mass M, and a massless shaft with
lateral stiffness K. This model is enclosed by an infinite rigid casing with fluid in it.
Figure 5.4 shows the forces involved in the backward whirl. The equation of motion

describing this mechanism in the tangential direction is
Mr 1= —Dr.0 — uN (5.8)

" and the force equilibrium in the radial direction is

R+ Mr (0 -wl)=N (5.9)
where
M : mass of the rotor
re : radial clearance
N : whirling speed of the rotor
D : damping forces

7 : friction coefficient between wall and the collar
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N : normal force acting on the wall by the collar

=)

: portion of the normal force acting on the wall due to
the coupling between the axial force and the curvature
of the BHA

Wn the first natural frequency of the system

If we assume that the damping is caused mainly by hydrodynamic mechanisms, D

can be expressed as

1
D= -2—me9 (2r)rin? (5.10)

where p,, is the density of the surrounding fluid, and Cp is the hydrodynamic drag
coefficient, and r is the radius of the disk. Note that the hydrodynamic drag coefficient
ranges from 0.2 to 2.0 for cylinders in an unbounded fluid. The correct values for these

condition is not known. Substituting the expression for N into the radial direction,

we have
0=-p'0%+ ¢ (5.11)
where
Mr, Cprr?
pr = M L”r"‘ IAE (5.12)
—uR + qu‘,wfl
¢ = Mo (5.13)

If equation 5.3 is substituted into equation 5.11, and taking the whirl ratio, ‘%, as

the dependent variable, then
1
8 = —(—p*0% + ¢%) (5.14)
0, .

This equation can be numerically integrated in the time domain to show the behavior
of this equation. Following is an example with a hole diameter of 8.75 inches, a collar
diameter of 7 inches, and a ratio of rotation rate to natural frequency of 1.0. The

damping ratio and friction coefficient are assumed to be 0.05 and 0.3, respectively.



Chapter 5 page T7

1 l | —I I
Initial Whirl Ratio 0.25
05 Initial Whirl Ratio -0.25 |
O
5 ......................
‘z o R ’
2 T
= 2 T
= U U RPPR TRk
3 e
0.5 _
-1 | | I
0 0.2 04 0.6 0.8 l
SECONDS

Figure 5.5: Time Domain Integration, With Initial Whirl Ratio -0.25, and 0.25

Under forward whirl conditions, the whirl rate and rotation are the same, which in this
case would yield a whirl ratio of 0.25. Under perfect backward whirl conditions with
no slip, the slip ratio as defined in equation 5.3 would be -1.0. Figure 5.5 shows the
result of time domain integration which converged to a condition of synchronous whirl.
In this case, R, the wall reaction due to static WOB, is assumed to be zero, and the
initial condition of so= -0.25 was selected. Similar integration with initial so= 0.25 is
shown in Figure 5;5, which shows the same convergence to forward synchronous whirl. -
Figure 5.6 shows a case of introducing R=20 pounds, which is assumed to be induced |
by the WOB, in the integration scheme. In this case, the result does not converge
when starting from a initial condition of 0.25, but decreases to minus values, which
indicates backward rubbing, then diverges. The divergence indicates the inadequacies
of the mathematical model, which needs to be reﬁn'ed in further research.

Zhang [53] performed a similar analysis on the full annular rub of a horizontally
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Figure 5.6: Time Domain Integration, With Initial Whirl Ratio 0.25, and Additional
Wall Reaction

mounted flexible rotor system, and concluded that the conditions when the backward
rub occurs are dependent on the initial contact velocity between the collar and the
wall. Detailed experimental work is needed to verify this result.

The discussion presented above describes the collar motion by assuming the collar
is in constant contact with the wall, and the equation of motion describing the forces
in radial and tangential directions is derived under this assumption. This analysis
gives only a preliminary mathematical model for the prediction of whirl conditions.
Further refinements in prediction techniques and experimental work are left as future

research topics.
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Laboratory Experiments

To demonstrate the validity of the theories detailed in previous chapters, experi-
ments were carried out on a scale model in the laboratory. These experiments were
conducted also with the purpose of better understanding the phenomena of whirling
and coupling mechanisms. From these experiments, we also learned to recognize what
these phenomena look like when observed in a rotating coordinate system, such as

with a downhole tool.

6.1 Dimensional Analysis

Before proceeding with the scaled model experiments, a dimensional analysis was
performed to estimate a suitable model.

In dimensional analysis, a group of parameters that reflect the dynamics of the
system are selected to be modeled. For bending vibration of Bottom Hole Assem-
blies, the following 10 parameters were chosen and their relationship is stated By the

following equation :

s = f(l,d,D,E,p,pm,T,g,¢, n) (61)
where

s : lateral displacement of the drill collar
1 : characteristics length of the drill collar

d : drill collar outside diameter

79
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D : diameter of the bore hole
"E : Young’s Modulus of the collar material
P, Pm : density of the collar and mud
T : weight on bit
g : gravity
¢ : slant angle of the bore hole

0 : rotation speed of the collar

If the independent parameters |, p — pn, and E were selected, they can be arranged
into 7 independent dimensionless groups. Let’s denote length by L, mass by M, and

time by S, then |, p, and E will have the following units:

l:

GERRE -

b~

p:
E:S

Using Buckingham 7 method, a nondimensional relationship can be found for equation

6.1:
7= 1°(61,0,,05,0,,05) (6.2)
where
d
b = T (6.3a)
D
6, = T (6.3b)
T :
bs = CE (673c)
E
b6 = ——— 6.3d
YT gl - pm) (6.54)
1
05 = ’n("%)2 (6.3e)

05 = ¢ (6.3f)
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If the following notations are used

Im
No=
N = (p— Pm)M
, = L FfmiM
(p—Pm)P
Epm
As = —E;

(6.4a)
(6.4b)

(6.4¢)

where subscript M denotes the model , subscript P denotes prototype, then

4 - (6.52)
D
-’f = A (6.5b)
T, (2E)
T = (le)f=,\g,\,, (6:5¢)
(P—Pm)M _ EMIP_AS
(p—pm)p  Eplm X\ (6.5d)
%";‘ =1 (6.5€)
1
Qs t=F)%)e As |3
o - : =(,\2,\§) (6.5f)

((E=Em)2),,

E

The same results can also be found by examining the nondimensionalized equation

of motion for bending vibration.

The equations above show the relationships which should be satisfied in order to

achieve dynamic similitude in bending vibration for both the prototype and the model.

In reality, it is difficult to satisfy all of these equations, nonetheless, they are useful

in selecting model properties that are compatible with the experimental equipment

available. For example, the compression force needed to excite an instability must be

within the output limit of the shaker.
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6.2 Model Selection

From preliminary analysis, the plastic material, acrylic, was selected. The density
of this material is about 2.48 slugs per cubic foot, and the Young’s modulus is about
380,000 psi. The sample chosen for the experiment was a rod, 3.25 feet long and 0.25
inches in diameter. It was used to approximately model a 60 foot drill collar with
mass density of 15.2 slugs per cubic foot, Young’s modulus of 30,000,000 psi, and
with drilling mud of 8.8 pounds per gallon. The value for A; is 0.054, A, is 0.188,
and Ag is 0.0126. With these numbers, we can calculate the ratio of weight-on-bit,
which is 0.0000367, between model and prototype. So, if we are simulating a dynamic
WOB of 10,000 pounds, the dynamic force needed for the experiment is only about
0.3 pounds, which is within a output range of a relatively small shaker. The model
to prototype ratio of rotational speeds is 4.8, as determined using the same values of
A1, A2, and Az. If the operating speed of the actual drill string is 60 to 200 RPM; then,
the corresponding speed in the model would be 288 to 960 RPM (4.8 to 16 RPS). This
range of speed can be achieved by using a very simple variable speed electric motor.
Note that because of the material chosen for the experiment and the limitations of
the experimental equipment, the relation in equation 6.5 did not hold exactly for the
this experiment. Nonetheless, we were able to make, for example, the rotational speed
close to the modelling criteria. In the experiment, a rotational speed of 2.5 Hz was
used. Also the shaker used in the experiment can put out a few pounds of force, and

was capable of 0.3 pounds required by the modelling.

6.3 Setup of the EXperiment

Figure 6.1 is the layout of the experiment. A supporting frame 5 feet long was used
so that experiments could be performed at any angle of inclination. An electric motor
was placed near the top of the supporting frame. This motor could be operated from

1.5 to 25 revolutions per second. A slip ring was attached to the motor’s shaft, and
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Figure 6.1: Layout of the Experiment

a universal joint was connected to the other end of the slip ring. Then, ihe universal
joint was connected to the testing rod. The universal joint was used here to provide
a pinned-like boundary condition for the bending vibration at the top of the testing
rod. A pinned boundary condition was accomplished at the bottom and by running
a metal point in a small hole. The purpose of the slip ring was to provide for the
connection between the strain gages on the shaft and the strain gage amplifier. The -
slip ring created about 50 micro-ohms of noise; well below the problem level. A B&K
mini-shaker simulating the forces of bit-rock interaction was placed at the bottom.
It was driven by a power amplifier and a function generator. Two strain gages were
installed 90 degrees apart to measure two axes of bending as shown in figure 6.2. The
slip ring was used to carry the gage signals from the rotating shaft to a strain gage

amplifier. A WR impedance head was placed between the shaft and the shaker to



Chapter 6 page 84

Slrlain gages

view A-A

Figure 6.2: The Location of the Strain Gages

measure the axial forces. It was fixed to the top of the shaker, so it did not rotate
during the experiment. A small pin of 0.5 inches long protruded from one end of
the rod. The pin was inserted in a small hole on top of the impedance head. This
provided rotational freedom for the shaft as well as a pinned-like condition for the
bending vibration.

One strain gage was used to measured bending strain for each bending plane. A
two gage bridge was not used to cancel out the unwanted axial strain in the bending
strain measurements. The ratio of axial strain to bending strain caused by line: -

coupling can be shown to be given approximately by

€ d
Py (6.6)

where d is the diameter and A is the amount of displacement caused by the initial
shaft curvature. For these experiments, the initial shaft displacement at the strain
gage location was always greater than two diameters. Therefore, the dynamic axial
strain was always less than 6% of the dynamic bending strain, and usually much less.

For parametric excitation, which happens with no initial curvature, the ratio of
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dynamic axial strain to dynamic bending strain is given by
€a 8PL?

e nEdA

(6.7)

where

P = dynamic axial force
L = length

E = Young’s Modulus

d = diameter

A = midspan bending deflection in the first mode

For a bending vibration amplitude of one diameter and an axial load of 0.3 pounds,
this ratio for the experiment was less than 8%. At resonance, the response amplitude
was much larger, and this ratio was proportionately smaller. The contamination of
the bending strain measurements by the axial strain was not a significant factor in

the conclusions of the tests.

6.4 Data Acquisition

An IBM AT compatible machine with a MetraByte Das-16 A/D Board was used
to sample the signals. The A/D software used was capable of writing digitized data
directly onto the hard disk. Each data point is written in two byte integer format. The
maximum sampling rate of this system is around 5K Hz. Two stain gages signals and
the signals from the impedance head, which are force and acceleration, were taken
during the experiments. The sampling frequency was fixed at 200 Hz per channel
throughout the experiments.

Figure 6.3 shows the connections between the transducers and the computer.

6.5 .Experimental Procedures

The first natural frequency of the non-rotating shaft varied from 3.5 to 3.9 Hz

depending on the amount cf mean (constant) component of compressive axial force,
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Figure 6.3: Signal Path of the Experiment

and upon the mean curvature. A constant axial force was required to support the
weight of the shaft as well as to prevent any bouncing of the lower bearing point
in the retaining hole. Increase in either axial force or curvature ( such as due to
whirling) reduced the natural frequency. Of course, the same is also true in a real
drill collar. During the rotating experiments, the mean curvature changed in an
uncontrollable way due to the combined effects of whirling and mean axial force, thus
causing the equivalent non-rotating natural frequency to vary from 3.5 to 3.9 Hz. For
the prediction calculations shown here, an average value of 3.7 Hz is used. Resonance
frequencies under actual conditions varied by a small amount due to changes in mean
curvature and mean axial force.

The experiments were carried out by holding the rotation speed constant at 2.5
Hz, and varying the shaker frequency from 1 to 15 Hz in increments of about 1 Hz.

This sweep test allowed the estimation of the correlation between the input force and
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the bending response.

6.6 Discussion of the Results

The specific purpose of the experiments was to observe and describe beth linear
coupling between axial force and bending vibration and parametrically excited bend-
ing vibration. Before conducting the experiments, we understood in a mathematical
sense that vibration could result, but we would have been hard pressed to clearly
describe it. The experiment had a significant self education component.

In chapter three, it was predicted that resonances at natural frequencies when
experienced on a rotating beam would occur at frequencies which are different than
that predicted for a non-rotating beam. The predicted natural frequencies as observed

on the rotating beam are given by the following equation in (rad/sec)

W, = Wp — W (6.8a)
Wl =wptw (6.8b)
or expressed in Hz as
- w
fn = fﬂ - ﬂ (693')
w
fi=fat (6.90)

wheré ;—W is the rotation rate in Hz and f, = %"? is a bending natural frequency for
a non-rotating beam. These equations indicate that as the beam begins to rotate, the
natural frequencies bifurcate in frequency. Resonant conditions no longer correspond
to excitation at the non-rotating natural frequency f, but occur when the excitation
corresponds to either of the two bifurcated frequencies given above.
The bifurcated natural frequencies correspond to mode shapes which are seen as

orbits in the rotating frame. In other words, the beam not only bends into the mode

shape as expected in the non-rotating case but also makes elliptical orbits about
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its mean radial position. At any section of the beam, the center of gravity of the
section will appear to move in an elliptical or circular path. The direction of the
orbit is different for the two bifurcated modes. The f; mode represents orbits in the
direction of the rotation and the f; mode represents motion opposite to the rotation
direction when f,; is positive, and in the direction of rotation when it is negative.
An objective of the experiment was to visualize these motions, as well as test out the
predictions of linear coupling and parametric excitation.

As discussed earlier, the natural frequency of first bending mode was approxi-
mately 3.7 Hz. The rotation speed of the model was 2.5 Hz. So the bifurcated

natural frequencies with respect to the rotating reference frame were expected at:
fi=387-25=12Hz

fI=37+25=62Hz

Under synchronous whirl conditions at the natural frequency, the shaft bows out to a
deflected position and stays there. Any point on the shaft stays at the same distance
relative to the center of the hole, and in the moving reference frame, does not appear
to move. In the fixed reference frame, a proximity probe would see large vibration
at the shaft rotating speed. Depending on the reference frame of the observer, the
vibration frequency takes on different values. The one most important to drilling
is the one seen in the rotating reference frame because this is the frame in which
measurements are made on. Figure 6.4 shows the force spectra as measured by the
impedance head for the control case that the shaft was not rotating. Each spectrum in
the stack was generated with the control signal to the shaker at different frequencies
beginnilig at 3 Hertz, then, progressing up to 9 Hertz in steps of 1 Hertz. The shaker
frequency is indicated on the right hand side of the plot. Each spectrum shown in
the plot in the force spectrum was observed by the impedance head, when the control
signal to the shaker was at a single frequency. For each spectrum the major peak,

measured on the horizontal axis, should correspond to the frequency indicated on the
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Figure 6.4: Force Spectra, Non-Rotating

right hand side. Since the spectra are stacked in ascending order, the major peaks
fall on the line labelled f,.. There is also a second line of peaks labelled 2f,,. These
exist because the motion of the shaker is not perfectly sinusoidal, even though the
input signal may be. The motion is periodic, and has higher Fourier components of
the basic periodic signal, f,.. In this case, the second harmonic is reasonably strong
and may also excite some bending response of the shaft.

Figure 6.5 is an example of the bending response from one of the strain gages,
revealing the bending moment in one of two orthogonal measurement planes. Again
each spectrum in this stack corresponds to the ascending frequencies in axial force,
from 3 to 9 Hz. In the first spectrum with three Hertz excitation there is a small
linear coupled response peak at 3.0 Hz. The response is small because the excitation
and the natural frequency did not quite coincide. The largest response peak on the

figure occurs at 3.5 Hz. with an excitation frequency of 7.0 Hz. This is an example
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Figure 6.5: Bending y’ Spectra, Non-Rotating, Parametric Resonance

of a parametric excitation of the first mode of the non-rotating shaft which has an
approximate natural frequency of 3.7 Hz in response to an axial excitation at twice
the response frequency. Recall that from Figure 4.5 the uiistable region is a band of
excitation frequencies centered on 2f;.

Moving on, a rotating example is shown in Figure 6.6. This figure is again a
cascade sequence of the spectra of the force signal. But, in this case the motor was
running and the rotation rate was at 2.5 Hertz. Each successive plot in this cascade
was taken when the axial force signal was set at successively higher frequencies from 1
to 15 Hertz. L' here is a small straight line of peaks at 2.5 Hertz. This is at the rotation
rate and is likely caused by irregularities in the thrust bearing or the universal joint,
causing a once per revolution perturbation, which can be seen in the force signal. It is
helpful because it shows that the beam was indeed rotating and reveals the rotation

frequency. There are many other peaks in this spectral plot, but the most important
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one is the line of peaks at the excitation frequency, latelled f,.. In the figure, second
and third harmonics of exciting force are also evident.

Figure 6.7 is the response spectra that result from these input spectra. Several
different phenomena occur, including linear and nonlinear coupling. The first natural
frequency in a nonrotating reference frame is approximately 3.7 Hertz. The natural
frequency may decrease a little once the shaft starts to rotate, due to the curvature
induced by whirling. In a rotating frame of reference, one would expect to observe
resonances occurring at the bifurcated natural frequencies, which are 6‘.2 Hz. and
1.2 Hz. These are then the approximate first natural frequencies of this beam in the
rotating reference frame.

Beginning at the bottom of this stack plot, the axial excitation is at 1.2 Hertz,
which is resonant with the lowest natural frequency. An amplified response due to
linear coupling is seen at 1.2 Hz. As the axial excitation is increased to 2.1 Hertz
in the second spectrum, the linearly coupled response decreases, because there is
no close relationship between the axial excitation and any resonance. At 3, 4.2,
and 5 Hertz the response drops even further for~fhe seme reason. Observed in the
rota*ing frame the non-rotating resonance at 3.7 Hz. does not exist. As the excitation
reaches 6 Hertz a very high response peak is evident. This is linearly coupled resonant
response of the mode expected at 6.2 Hz, resulted from curvature of the shaft. In the
experiment, the shaft had substantial initial curvature, which was caused in part by
forward synchronous whirl and the mean axial force.

Moving on, the next highest response peak occurs on the spectrum for which the
axial excitation was at 7.1 Hz. The excitation was at 7.1 Hertz, but the response is
observed at two peaks, one at approximately 6.2 Hertz and a smaller one down at 0.9
Hz. It happens that the sum of the two natural frequencies in the rovating frame is
close to 7.1 Hz. as shown below.

The excitation at 7.1 Hertz is close enough to cause a small combined response

in both modes; the one nominally at 1.2 Hz. and the one at 6.2 Hertz. This is an
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example of parametric excitation at a sum frequency of the natural frequencies as
observed in the rotating reference frame.

Moving on to the next highest peak for which the axial excitation was at 12.6 Hz.
The peak is at 6.3 Hz, and there is no visible peak at 12.6 Hz. This is an example of
parametric excited bending vibration of a rotating shaft at twice f,}.

Another interesting way to evaluate the motion under these complicated whirling
and coupled vibration conditions is to plot the outputs of the two strain gages simul-
taneously so one may visualize the bending x’ versus bending y’ time history.

Figures 6.8, 6.9 ,and 6.10 are for the case when the axial excitation was at 1.2
Hz. A time history of the x’ and y’ strain gages plotted against one another reveals
essentially circular orbits. The plot you see in Figure 6.8 is for one second of data and
shows that in one second the bending cycles went through approximately one orbit.
The direction of the orbit is clockwise.

Figure 6.9 shows the individual time histories of B,: and B, the outputs of the x’
and y’ strain gages. What is not known in this particular case is the actual orientation
of x’ and y’ with respect to the tangential or radial directions as seen from a fixed
reference frame. What is clear is that they are both at the same frequency, but with a
90 degree phase shift with respect to each other, thus resulting in the circular orbits.

Figure 6.10 is a plot of the magnitude of the bending strain versus the phase angle of
-1 Bz

By’
The phase between Bx’ and By’ is useful in revealing the motion of the drill collar.

tan

It will be used frequently later on. The technique used in presenting phase a.ngle is

called phase unwrapping. Consider the function arctangent
¢(t) = tan™'(g(t))

where g(t) is any given time function. The principal values of the arctangent range
from -180 to 180 degrees. Therefore, if ¢(t) is plotted, discontinuities may occur.

Phase unwrapping is a method to make ¢(t) continuous. One way to achieve phase
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unwrapping is the following, assuming that ¢,;;; and ¢; are two adjacent points in

time,

1. Determine the absolute value of ¢;,1-¢;, if this value is greater than 180 degrees,

then do the phase unwrapping, otherwise proceed to next point

2. Determine the sign of ¢;;1-¢;, if phase unwrapping is needed

3. If the sign is plus, subtract 360 degrees from every point after ¢,; if the sign is

minus, add 360 degrees to every point after ¢;

By performing the above procedure for every data point, one can obtain the un-
wrapped phase plot of the function, arctangent.

Figures 6.11, 6.12 ,and 6.13 are for the case when the axial excitation was at 6
Hertz, which coincided with a natural frequency and resulted in linear coupling. A
time history of the x’ and y’ strain gages plotted in Figure 6.11 is for one second of
data and shows that in one second the bending cycles went through six orbits. The
trajectory of the orbit is in the counterclockwise direction.

Figure 6.12 shows the individual time histories of B, and B, the outputs of the
x’ and y’ strain gages. Figure 6.13 is a plot of the magnitude of the bending strain
- versus the phase angle.

Fig'ures 6.14, 6.15 and 6.16 are for the case that the excitation was at 7.1 Hertz.
This was an example of parametric excitation at the sum of the resonances at 0.9 Hz.
and 6.2 -Hz. Figure 6.14 shows B, versus B, time history for 1.0 second of data.
This time, a precession of loops occurs. The direction of precession is clockwise,
with precession frequency of 0.9 Hz. On top of the precession motion is the 6.2
Hz component, with a counterclockwise direction. Figure 6.15 shows the independent
time histories of B, and B,. In both of these time histories, a slow 0.9 Hz. modulation
of the 6.2 Hz vibration is evident. Figure 6.16 is a plot of the magnitude and phase

for that case.
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Figures 6.17, 6.18, and 6.19 are for the case when the axial exciting force was at
12.6 Hertz. The shaker was tuned to give a maximum in the parametric resonance at
a driving frequency which was approximately at twice the natural frequency of 6.3 Hz.
In this case, it was possible to determine that the x’ oriented strain gage was in fact
sensitive to bending in the radial direction and the y’ one was sensitive to bending in
the tangential direction. In this case of parametric resonance, it was determined that
the principal vibration of the shaft was essentially along a tangent with respect to
the whirling orbit of the shaft. B;» and B, time histories are plotted in x’ versus y’
form in Figure 6.17. The tangential component is by far the larger. The independent
time histories of B, and B, are shown in Figure 6.18, and the magnitude and phase
are shown in Figure 6.19. The zero offset in the By’ time series ia an instrumentation
error and is not real.

The experiment verified the prediction of linearly and parametrically excited bend-
ing vibration of rotating and non-rotating shafts at natural frequencies which bifur-
cate and vary linearly with rotation speed. The two bifurcated modes exhibit orbital
motions of opposite sign.

In closing the discussion on the results of the experiment, it must be emphasized
that the parametric excited vibration is the least well understood as a potential source
of failures in real bottom hole assemblies. The effect of the contact with the wall is not
at all well understood. Realistic amounts of damping are not yet known. Whether or
not significant levels of this form of vibration actﬁally occur under realistic conditions

has yet to be verified.
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Chapter 7
Field Tests

A series of downhole vibration tests were conducted in Quitman, Texas, in Au-
gust of 1984. This experiment was a joint effort of Shell Development Co. and NL
Industries. The purpose of the test was to record the BHA vibration near the bit.

The data from this experiment were made available to this research project.

7.1 Background

The downhole sensors package of this experiment included the transducers for
WOB, TOB, two perpendicular bending measurements, and three axes of acceleration
measurements. The sensor package has been described in [52]. A sketch of the sensor
package is shown in Figure 7.1 . The signals from the sensors were first sampled by an
A/D system, then, the data were transmitted to the surface by a hardwired telemetry
system. For the results presented here five sensors were sampled in a given test at 130
Hz per channel. The channels to be sampled were selected by the control system at
the surface. A total of 60 hours of data were taken during this experiment. Following

is a summary of the experiment
e Bit type used : Tri-cone and PDC bits

e Footage drilled : 4000’ to 7000’ in a vertical well through shale, limestone, and

sandstone

103
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Sensor package (top view)
axial acc.
By ¢ .
y O Bx
tangential acc. 1.645"
radial acc. 1.659

Figure 7.1: Top View of the Sensor Package

e RPM : 50 to 200

This set of data is unique because of the high data rate provided by the hardwired

telemetry system.

7.2 Data Processing

The accelerometers used were not suitable for making low frequency measurement,
such as experienced in forward synchronous whirl. Furthermore, the accelerometers
are much more sensitive to wall impact than strain gages. For these reasons, the
bending moment data are emphasized in the results shown below which specifically
emphasize whirling behavior.

From the raw time histories, we have learned that the measurements are often
very random in nature, seldom remaining stationary for a long period of time. In

order to resolve the spectral peaks, the Maximum Entropy Method (MEM) was used
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exclusively to estimate the spectral results. This method is known for its ability to
give high resolution estimates of the spectrum from relatively short records, making

it suitable for processing these data.

7.3 Case Studies cf the Bending Vibration and
Whirling Motion

Due to a lack of adequate downhole vibration data, very little has been known
about the actual bending dynamics experienced by the drill string while rotary drilling,
and about the contributions of bending vibration to drill string deterioration and
failure. Recently, downhole vibration recorders and systems with hardwires to the
surface have provided much needed data and insight into events downhole. At first
glance, the data appears, even to the experienced vibration analyst, extremely com-
plex. Many different vibration phenomena occur simultaneously, making it difficult
to isolate, evaluate, and explain any one of them. To varying degrees, axial, torsional
and bending vibration are all present and at times intimately coupled. Bit bounce,
stick slip, forward and backward whirl, and linear and parametric coupling between
axial and bending vibration all occur.

Several authors have made recent contributions to the measurement of bending
vibration of BHA’s. Wolf et al, [52], present samples of downhole vibration data
acquired in the same well as the data presented here. Included in the paper are
several suspected cases of whirling. The paper by Besaisow et al, [6], also shows
suspected examples of bending vibration and whirling. Burgess, et al, [9], specifically
conclude that transverse vibration is a source of downhole MWD tool failure, and
cite a method for reducing downhole failures. Close et al, [13], present downhole

recordings of large amplitude bending vibration.
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7.3.1 Bending Moment Measurements

Bending moments are determined by the curvature of the drill collar. Referring to
Figure 7.2, let the deflection of the collar center as a function of z, the axial coordinate,
be designated by v,(z,t). As an approximation to the actual deflection assume that

the whirl deflected shape of the drill collar is the half sine wave given by:

vo(2,t) = (Ry — R;)stn(mz/L)F(t) (7.1)
where L is the length of the drill collar section from the bit to the stabilizer and F(t)
is an arbitrary function of time. Thus, in this instance, Figure 7.3 depicts a croes

section at the midspan of the drill collar. The bending moment corresponding to

v,(2,t) is given by the moment-curvature relationship

B(z,t) = EI% = —(Ry - R.)(EI%*/L%)sin(rz/ L) F(t) (7.2)



Chapter 7 page 107

Cofer
Conver

\v - Tengentlsl
shp
Vetocity

w - Coler
Rotation
Rote

Borehole

.0.)
wal Ovin CoRar (O

Figure 7.3: Cross Section of Borehole and Whirling Drill Collar

where E is the modulus of elasticity and I is the moment of inertia of the collar.

In the field test, the bending moment B(z,t) was measured at a single location
by two orthogonally oriented strain gage bridges, mounted in the rotating drill collar
at a location about nine feet above the bit. These bridges yielded the two vector
components B,:(t) and B,:(t). The measured bending moment is then a vector in
an orthogonal ' — y' — z coordinate system, attached to the centerline of the hole
and rotating with the drill collar at w. z is assumed to increase with depth so that
w is clockwise positive looking down hole. The coordinate system, measured bending

moment and phase angle are defined in Figure 7.4, and in the following equation,

B(t) = Bau(t)i+ By(t); (7.3a)
B(t) = |Bl[cos(d(t))i + sin(é(1))7) (7.3b)
where ¢(t) is the angle that the bending moment vector makes with the rotating

7 — y' coordinate system and i and j are unit vectors in the 2’ and y' directions. If it

is assumed that the drill collar is rotating at w and whirling at {1, then this equation
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‘ 5 Drill Collar
Borehole

O : Center of the Borehole

Figure 7.4: Coordinate System, Bending Momert, and Phase Angle Definition
may be expressed as shown below:
B(t) = |B|[cos((w — Q)t)i + sin((w — N)t)7) (7.4)

The rotating z' — y' coordinate system representation is particularly useful, because
it represents the bending moment time history that is experienced by the collar and
is therefore a measure of the stress time history which is relevant to cyclic fatigue
damage. An important feature of this expression is that the bending moment, and
hence the bending stresses, vary as the difference between the drill collar rotation
rate, w, and the whirl rate, {}. The difference frequency is the frequency of stress
cycles which would be experienced by the drill collar under whirling conditions.
Equation 7.4 is valid for all whirling conditions, whether or not in contact with
the wall. One must only evaluate the magnitude and correct sign (plus for clockwise
rotation and minus for counter-clockwise rotation) of the drill collar rotation and

whirl rates. The unwrapped phase angle, ¢(t) can be estimated from B,:(t) and
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£2,(t), the independently measured bending moment components, as follows, where
¢, is a constant depending on initial conditions.
¢(t) = arctan(By(t)/Be(t)] + ¢, (7.5a)
= arctan(sin((w — N)t)/cos((w — NN)t)] + ¢,

= (w-Q)t+é (7.5b)
o) = L=w-n) (7.5¢)

Therefore, from two independent and orthogonal bending moment measurements
the difference between the whirl rate and drill collar rotation rate can be determined.
In the case studies, plots of ¢(t) will often be presented. The slope of these plots is
the phase rate, é, which from equation 7.5c for whirling, is the difference frequency
(w — Q). Since the rotation rate w is usually known from surface observation, then
the whirl rate Q2 can be deduced. The term 'unwrapped’ phase angle refers to the way
the arctan function is computed from real data. The arctan function used here is not
restricted to a range of -m to +7. Rather, the phase angle is meant to accumulate
linearly with time as shown in equation 7.5b.

Linear coupling between axial force and lateral deflection also produces time vary-
ing changes in bending moment. Unfortunately, because whirling produces curvature,
and curvature is needed for linear coupling to occur, then the two phenomena are likely
to occur together. As a result, bending moment measurements would contain compo-
nents due to the whirling at the difference frequency («w — 1) and also components due
to the linear coupling to the axial force at the bit, which for the purpose of discussion
is assumed to be at a frequency w,. When both sources of vibration are present to
a significant degree in the measurement, then attempts to use the unwrapped phase
#(t) from equation 7.5a may be impossible. However, computation of the autospectra
of either the x or y components of the bending moment should reveal strong peaks at
both (w — ) and w,.

As discussed above, the various bending vibration mechanisms do not generally
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occur one at a time, but in fact many phenomena may occur simultaneously. As a
consequence, the bending moment and phase angle time histories are rarely as simple
as those shown in equations 7.5b and 7.5¢c. They are usually much more complex. On
occasion, singie phenomena do dom‘nate. The case studies shown below have been

carefully selected to separately reveal dominant examples of each mechanism.

7.3.2 Drilling Case Studies

In this section, examples of drill collar whirling, linear coupling of axial and bend-
ing vibrations, and parametric excited bending vibration are presenied. All cases
described here were for pendulum BHA’s. In Cases 1, 2, 3 , and 6, the sensor pack-
age was placed just above the bit, with 59.8 fect separating the bit and the center of
the first stabilizer, and 35.2 feet between the centers of the first and second stabilizers.
The drill collar between the first and second stabilizer was 6.25 inches, outside diam-
eter. The remainder of the BHA was typically composed of 19 to 23, 6.25 inch drill
collars above the second stabilizer. In Cases 4 and 5, the sensors are placed just above
the second stabilizer. The length from the bit to the middle of the first stabilizer was
approximately 65 feet, and from the first to the second stabilizer, 35 feet.

Six case studies are presented here, carefully chosen to illustrate the variety of
phennomena described in previous chapters. Considerable use is made of the bend-
ing moment measurements, B,/(t) and By(t), and the bending moment phase angle
#(t), which is useful in determining the type of whirl and the whirl rate. For the
Quitman experiment, RPM was not electronically recorded. For some tests downhole
magnetometer data was available, from which RPM can be deduced. For the six
cases presented here, which best represent the phenomena under study, magnetome-
ter data were not available. Occasional surface logbook entries were the only record
of RPM. This handicap was overcome by extracting the infcrmation from the other

measurements, for example, dynamic WOB.
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7.3.3 Case 1: No Whirl And Simple Rotation of a Curved
Drill Collar.

Figure 7.5 shows a two second time history for the bending moment components
B, and B, and Figure 7.6 shows #(t), the unwrapped phase angle. The data was
acquired while drilling with a PDC bit through shale at an average rate of penetration
of 11 ft /hr at depth of approximately 6846 feet. There were 16 drill collars, jars, and
5 more drill collars above the second stabilizer. From only the bending moment time
series, it is impossible to deduce the behavior of the drill collar. The plot of the
time history of the phase angle ¢(t) reveals a mean phase rate or slope of about 500
degrees/sec., which is equal to approximately 1.4 Hz (84 RPM). This is confirmed by
computing the spectrum of B,(t), as shown in Figure 7.7, which has its highest peak
at 1.36 Hz. If it is assumed that there was no whirl, then from equation 7.4 with 1 set
equal to zero, we conclude that the rotary speed w was 1.36 Hz (81.6 RPM). For this
data set, there was no magnetometer recording of RPM. However, a manual record
kept in a surface logbook indicated that the surface rotation rate was approximately
80 RPM.

Tt is interpreted that the drill collar was bent, probably rubbing against the wall,
but not whirling. The strain gages were exposed to a bending moment of approxi-
mately 10000 ft-1b peak to peak. Some additional bending vibration was superimposed
on top of that due to the curvature and rotation. This vibration was probably caused

by coupling with bit forces or bumping against the wall.

7.3.4 Case 2: Forward Synchronous Whirl w =

Figure 7.8 shows the time histories for the bending moments and Figure 7.9 shows
the unwrapped phase angle. The data was acquired while drilling through shale with
a2 PDC bit at an average rate of penetration of 60 ft/hr at depth of 4366 feet. The
rotary speed, manually logged at the surface, was 116 RPM. There were 23, 6.25 inch

drill collars above the second stabilizer. The time history for the phase angle, shown
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Figure 7.7: Bending Moment Spectra for Case 1: No Whirl, Pure Rotation

in Figure 7.9, reveals that the mean phase angle remained constant. Vibration, not
whirling, is revealed as additional fluctuations in phase angle about the mean. Figure
7.10 shows the bending moment spectra, which reveal peaks at 1.85 Hz.(111 RPM),
which is close to the reported rotation rate of 116 «tPM.

The interpretation for this case is that the zero average phase rate indicates that
the drill collar was exhibiting forward synchronous whirl. The peak in the bending
moment spectra at 1.85 Hz.(111 RPM) indicates that some additional rotation rate
vibration was also occurring. This vibration was probably caused by the collar hitting
the wall once per rotation. However, any cause which would result in a once per

revolution perturbation in the circular whirl orbit would have the same result.

7.3.6 Case 3: Backward Whirl With Little Slip

Figure 7.11 shows the time history for the bending moments and Figure 7.12 shows
the phase angle. The data was acquired while drilling through limestone with a tri-

cone bit at an average rate of penetration of 18 ft/hr at depth 5259 feet. The BHA
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Figure 7.10: Bending Moment Spectra for Case 2: Forward Synchronous Whirl

was a pendulum assembly with 20 drill collars, jars and 9 heavy weight drill pipe
above the second stabilizer. The bending moment time series reveal peak to peak
amplitudes of about 25,000 ft-lbs, which is several times greater than seen in the two
previous examples. Figure 7.12 reveals an excellent example of the phase angle ¢(t)
during backward whirl. The mean phase rate or slope of the plot is a constant 1900
deg./sec., which equates to 5.28 Hz. The spectra for B,: and B, shown in Figure 7.13
also reveal strong peaks at 5.28 Hz.

If the assumption is made that this is a case of backward whirl with no slip, then
equation 5.2 would predict that (1, = -4w, and the difference frequency or phase rate
predicted by equation 7.5¢ would be at five times the rotation rate, as shown in the
following expression:

(0 — w)/27 = —5w/27 = 5.28H 2

From this, the conclusion is reached that the rotation rate w/27 was 1.06 Hz (63
RPM). For this case, the surface speed was reported in the logbook as 80 RPM.
The explanation for the discrepancy between the reported rotary speed of 80 RPM
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and the calculated drill collar rotation rate of 63 RPM is not certain. One possibility
is a reporting error, because the RPM was only occasionally written down. However,
a more likely explanation is that the collar was slipping some as it whirled. If it is
required that the rotation rate be as recorded, w/2x = 1.33 Hz (80 RPM), then it is

concluded from Equation 7.5¢ that

(w-10N)/27r =5.28H2

Q/2r = —3.95Hz

as opposed to

0,/2n = 4w/2r = -5.32H=

which would be expected under no slip conditions. From equation 5.2, the whirl
ratio, s, is concluded to be 0.74. In the absence of an accurate determination of
surface rotation rate, it is concluded that this is an example of backward whirl with
some slip, although it is possible that there was no slip. Figure 7.14 is plot of B,(t)
versus B(t) for this example. Each of the four images presents 0.5 seconds of the
total 2.0 seconds of bending moment data. In the absence of superimposed vibration,
the whirling would be expected to produce orbits in a plots such as these with a
frequency equal to the phase rate of 5.28 Hz. These plots make it clear that even
though whirling is the dominant phenomenon in this example, there is substantial

additional motion of the drill collar due to other sources of vibration.

7.3.6 Case 4: Backward Whirl With Substantial Slip

Figure 7.15 shows the time history for the bending moments and Figure 7.16 shows
the phase angle. The data was recorded while drilling with a tri-cone insert bit, in
shale, at a depth of 6897 feet. The reported rotary speed was 60 RPM (1.0 Hz). The
BHA was a pendulum assembly, as described earlier, with the NBMS, followed by
fourteen, 6.25 inches collars between the second stabilizer and the jars and five drill

collars above the jars. The reported measurements thus came from a point a few feet



Chapter 7 page 117

20000 T - T

10000
Bx(FT-LB)

20000 - T T

10000 |- -
By(FT-LB)
o

-10000 -

-20000 1 L L
0 0.5 ] 1.5 2
SECONDS

Figure 7.11: Time History of Bending Moments for Case 3: Backward Whirl with
Little Slip, s = .75

4000 T Al i
3000
DEGREES

2000
1000

0 ' . :

0 0.5 1 L5 2
SECONDS

Figure 7.12: Time History of Phase Angle for Case 3: Backward Whirl with Little
Slip, s = .75



Chapter 7 page 118

§ 3e+07 T T T T !
-
-
&
=<1
E 20+07 }— —
,,E 1e+07 |- -
(=3
3]
o L 1 1
(] 5 10 15 20 25 30
Hz
§ 3e+07 T T T T T
2.
2
E 2e+07 | 1
g le+07 — 7
‘l/,
>
&
N ————————————
0 1 + I 1
(o] 5 10 15 20 25 30

Itz

Figure 7.13: Bending Moment Spectra for Case 3: Backward Whirl with Little Slip,
s =.75

0-03 SECOND

0
Bx(FT-LB)

20000 10-15 SF.(I)ND

0
Ba(FT4.8)

Figure 7.14: Orbital Plots of Bending Moments for Case 3: Backward Whirl with
Little Slip, s = .75



Chapter 7 page 119

14000

7000
Bx{(FT-LB)
o

-7000
-14000 L . L
o 0.5 1 1.5 2
SECONDS
14000

7000
By{F1-LB)

-7000

1 1 L

-14
14000 by o3 \ 1s 2
SECONDS

Figure 7.15: Time History of Bending Moments for Case 4: Backward Whirl with
Substantial Slip, s = .58

above the second stabilizer.

Figure 7.16 shows that the mean phase rate was 1200 degrees /sec (3.33 Hz). Thus,
the difference frequency, (w — )/27, was 3.33 Hz. This is verified by the location
of the peaks of the bending moment spectra, shown in Figure 7.17. Requiring w/2n
to be 1.0 Hz. results in an estimate for /2 of -2.33 Hz. Using Equation 5.2, the
backward whirl rate without slip is predicted to be 0}, = —4w = -4.0 Hz. The actual
backward whirl rate is about half that expected with no slip, and the whirl ratio
computed from equation 5.3 is, therefore, s = 0.58. The drill collar was backward
whirling‘ and slipping at the same time.

Even with the admitted uncertainty in the recorded RPM, it is extremely unlikely
that the surface RPM was less than 60. If the surface RPM was greater than 60 RPM
reported, then calculations similar to the ones conducted above would reveal that the

drill collar was backward whirling and slipping even more.
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7.3.7 Case 5: Linear Coupling of Axial and Transverse Vi-
brations

Figure 7.18 shows the time histories of weight on bit and one component of bend-
ing, B.(t), while drilling through shale with a tri-cone bit at an average rate of
penetration of 7 ft/hr. The depth was 6899 feet, and the approximate reported rota-
tion rate was 60 RPM. The BHA the same as in case 4 above, with the measurements
originating from a point just above the second stabilizer. This is a classic case of
bit bounce, as can be seen by the large variation in WOB (45000 pounds peak to
peak) and the flat bottoms at zero weight on bit when the bit leaves the bottom. In
this figure, compression is positive. At first glance, the bending moment time series
appears to contain little useful information.

Figure 7.19 shows the autospectra of the WOB and B, time series. Both spectra
show dominant peaks at the same frequency of 2.9 Hz. In this case, 2.9 Hz is the
three times RPM cone rate which would result from a rotation rate of 0.97 Hz (58
RPM). This is consistent with the reported rotation rate of 60 RPM. In the WOB
spectrum, the 6 times RPM higher harmonic is also evident. The reason that multiples
of the 3 times RPM cone rate exist is that cone rate excitation is a periodic but not
sinusoidal process. Therefore, higher order components at 6, 9, and even 12 times
RPM frequently occur in axial and torsional vibration measurements, because they are
necessary terms in the Fourier series, which make up the periodic, but non-sinusoidal,
shape of the time series.

In this example, bit bounce occurs because of probable coincidence of strong 3
times RPM axial excitation and a longitudinal resonance of the drill string. The fact
that both the WOB and B, spectra have dominant peaks at the same frequency is a
significant initial indication of linear coupling. Further evidence can be acquired by
computing the cross spectrum and the coherence between B,: and WOB. Figure 7.20
shows the phase portion of the cross spectrum and the coherence. The coherence is a

measure of the degree to which a linear cause and effect relationship can be established
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Figure 7.18: Time Histories of Weight on Bt and Bending Moment for Case 5: Linear
Coupling Between Axial Force and Bending Vibration

between two time series. In this case, the coherence at 2.9 Hz is 0.97 with 1.0 being
perfect coherence.

It can be concluded that the 2.9 Hz bending vibration is caused by a linear coupling
mechanism to the WOB. At many other frequencies up to 30 Hz the coherence is also
quite high. The phase at 2.9 Hz is 180 degrees, an indication that the bending
vibration response is not at a resonance, which would be indicated by a phase angle
nearer to 90 degrees. In this case, the WOB variations are so large, due to the bit
bounce and axial resonance, that strong coupling exists even in the absence of a
bending resonance.

Bit bounce is not a necessary condition for linear coupling to occur between axial
force and bending. Since bit bounce involves large variations in axial force, the linear
coupling to bending motion may become large enough to be the dominant bending

phenomenon, which in this case provided an excellent example of both phenomena.
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7.3.8 Case 6: Parametric Excited Bending Vibration

The mechanism for the parametric excited bending vibration is described in chap-
ter 4. This phenomenon involves a quadratic relationship between WOB(input) and
bending(output). To verify this phenomenon, a large number of data points are
needed for the signal processing FFT algorithm. From the experience in evaluating,
the BHA bending vibration seldom remained stationary for more than 10 seconds.
Therefore, a special signal processing technique was developed to extract parametric
excited bending vibration form a record length of only several seconds. The method
is described below. Assuming that x(t) is the input and y(t) is the output, to a
quadratic system, the input-output relationship is £ = y?, The following steps may

be used to verify the quadratic relationship between input and output:
1. square the time history of x(t)

2. compute the linear coherence between the squared time history of x(t) and the
y(t) time history using the two channel Maximum Entropy spectral analysis

method

The coherence function thus obtain is termed quadratic coherence. The quadratic
relationship between input and output js revealed as the peaks in the quadratic co-
herence. For example, if a peak of quadratic coherence is at 4 Hz, this indicates that
the 4 Hz component in y resulted from squaring the 2 Hz component in z. Now we
proceed to the example from the Shell data.

The example is drawn from data taken at 5138 feet, using a Hughes J22 tri-cone
bit. The RPM is deduced from the WOB spectrum, which is shown in Figure 7.21.
The principal peak is approximately 3 Hz. This peak usually corresponds to three
times RPM generated by the cone passage. Thus, we can infer infer that the rotation
was about 60 RPM.

Figure 7.22 shows the bending moment spectra measurements in two perpendicular

planes. They reveal principal peaks at 1.5 Hz, haﬂ’ of the peak frequency from the
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WOB spectrum.

A test for linear coupling was performed by computing the linear coherence be-
tween B, and the WOB time history. The upper trace of Figure 7.23 is the linear
coherence, which reveals a coherence of 0.65 for both peaks at 1.5 Hz and 3 Hz. This
indicates that some bending vibration was resulting from linear coupling mechanisms
with WOB dynamic fluctuations. The lower trace of Figure 7.23 is a quadratic co-
herence plot. It reveals a coherence of 0.75 at 3 Hz, which is twice the frequency of
the bending peak and corresponds to the WOB dominanc peak. This is an =xample

of parametric excited bending vibration of the BHA..
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Chapter 8

Conclusions and Suggestions

The goal of this thesis was to provide insights into the bending vibration of Bottom
Hole Assemblies. Unlike axial and torsional vibrations, bending vibrations generated
at the bottom are not transmitted to the surface through the drill string. Though, it
may be possible to see the evidence of downhole bending vibration in in the surface
axial and torsional vibration signals, the relationships are not well enough understood
to be used diagnostically.

We started out by examing the mechanisms that cause the bending vibration in
the BHA. These mechanisms are described in Chapters 3, 4, and 5. The laboratory
tests revealed the important properties of linear and parametric coupling betweeh
axial and bending vibration. The tests also showed that the excitation frequency
needed to drive the shaft at resonance for either type of coupling, varies linearly with
respect to rotational frequenay of the shaft.

Evidence of these two types of coupling were also found in the the data acquired
during a field test. This data set also provides examples of the whirling behavior.
Forward synchronous whirl and backward whirl with slip have been found in this
data set. Forward whirl can cause abrasive wear of the drill collar outside diameter,
and is a probable cause of flat spots. Backward whirl usually associated with high
bending moments and high bending cycles. Therefore, it can shorten the fatigue life
of drill collars and tool joints.

This research indicates that further work needs to be done in
127
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. predicting the onset of backward whirling

. verifying the existence of parametrically excited bending vibration in cases of
extensive wall contact as would be experienced in slick assemblies or above all

stabilizers.

. investigating the influence of bending dynamics on directional drilling
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Appendix A

Finite Difference Formulations for

Linear Bending Vibration

The homogeneous equation of motion of the bending vibration of the Bottom Hole

Assembly involving only the spatial variable is :

dts d3s l d?s ds
m+alm+02(l —w)z-u-ﬁ—azE-i-asS:O
where
a = iQL
' 7 VEI
. = ghcos ¢
* 7 CuLuw?
ag = —t il
s 7 ApCng

(A.1)

(A.2a)

(A.2b)

(A.2¢)

The ceéntral finite difference scheme is introduced to transform the differential equa-

tion into a set of simultaneous equations, which can be solved by linear algebra. The

central difference approximations to the differentials are :

ds N

(o) = ;(—85-1 + 8j41)

d®s
(d—w,):' = N*(sj_1 — 28; + 8;41)

d®s N3
(753)i = S (—8i-2+285-1— 28541 + 851a)
dis
(Z7)i = N'(sj-2—48j-1+68; — 4811 + 842)
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Figure A.1: The Fictitious Point for the Finite Difference Scheme

where 7 indicates j-th point on the collar. The condition at the bit and the two
stabilizer can be resolved by method fictitious points. In central finite difference
scheme for beam vibration, one needs one more point beyond the boundary, due to
condition on the equilibrium of moments, to construct the finite difference matrix.
This fictitious point can be represented by the points inside the boundary through
_ the boundary conditions. Figure A.1 is a figure indicating the location of the fictitious
points. The boundaries at the bit and the second stabilizer are assumed to be with

torsional spring, so at bit

s = 0 (A.4a)
. KyL N,
2 = Nao_
Ni(s-1+8) = B 2z (% + &) (A.4b)

where K, is the torsional sprig constant for the bit, and at second stabilizer same

conditions can be applied

8N = 0 (A.Sa)
K,L N,

NZ(SN-l + SN+1) El, 2

(—8n-1+8841) (A.5b)
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where K, is the torsional spring constant at the 2nd stabilizer, and N is the total
number of finite difference element from bit to the second stabilizer. From these two

equations, we have

S_1 = g8 (A.6a)
SN+1 = GpSN-1 (A.6b)
if we denote b, = !E{"Yé and b, = %{i’ then
b, — 2N,
ag b+ 2N, (A.7a)
_ b +2N,
® = b +2N, (A.7b)

The interface conditions for the first stabilizer are the continuation of the slope, and
the equilibrium of the moment. By same procedure, we can describe these interface
conditions using fictitious points. Assuming that s, is the fictitious for the section
from bit to first stabilizer, and s, is the fictitious for the section from first stabilizer

to second stabilizer, and M the number of element from bit to the first stabilizer,

then
Sp —SM-1 _ SM+1— Sa
2. = oA, (A.8a)
Sy + Sm- S + Sa
wtoun _ gomnte (A.8b)
a b
where K = —g—%, A, = % ,and Ay = Nfb M Solved for s, and s;, we have
2 1 K
A? AL, A?
83 = -l—al(—su_l + -_l_b'-*-—l{b—sMi-l (A.g)
ANy A? A, A2
K 1 2K
AJdy A2 Az

- 1 SM+1 (A.IO)
A0, T AT AL, A

a

=" 1 M1t
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For convenience, let us denote the coefficients of sy_y and sp4y as f; and f; in
equation A.9, and as fs and f, in equation A.10 respectively. By substituting the finite
difference approximation to the governing equation, and using the above boundary
conditions, a system of finite difference equations can be obtained for the bending

vibration of the BHA,
F.s=0 (A.11)

where F is shown in the following table. It is a band-limited matrix with five diagonal

columns, and the dimension of this matrix is N-2.

Table A.1: The Finite Difference Matrix for a Two Spans Drill Collar

[ u; d; e
q uz dz e
P1 g2 u3 d3 e3

D2 . . . (7

PM-4 gM-3 UMm-2 dpm_2 0
pPM-s QqM-2 Um-1 dy_, 0
0 aM-1 U diy e

( ! 1 (]
0 M YM4+1 OM41 CM4

’ 4 (4
Pu dh+1 Utz Bhs2 EM+2

(] (]
PN-6 . . . EN-«

Pn-s Q'N—c “fv—s d’N—a

PN-« 9IN-s UN-2 |
where 7/ denotes the properties pertaining to the material between first and second
stabilizer, and s is {51,832, -, 8M-1,8M+1,"* -y 8N-2,8N-1}7, Which is a column vector

of displacement of the collar, and has N-2 elements. O is a zero vector. If we use the
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following notations

a0 = M- %M’ (A.12a)
& = (N-MySN - My (A12b)
¢; = —4M*'+aM®+ahM? + %a,M (A.12¢)
¢y, = —4(N —M)*+a)(N-M)*+ayl,(N-M)>*+ %a’,(N - M) (A.12d)
cs = 6M*—2a,l;N?+ as (A.12¢)
¢y = 6(N— M) —2a5,(N-M)*+a} (A.12f)
¢ = —4M*— o M®+ o) i}M? —;-agM (A.12g)
¢, = —4(N—M)'—d\(N = M)* + ally(N — M)* — %a;uv — M) (A.12h)
s = M+ %M‘"’ (A.12i)
¢, = (N-M)'+ -‘;i(N - M)® (A.12j)

then, the elements, p,, gn, tn, dn, €,, in the matrix have the following form:

Pn

]

Pn

drv-1

cy ISnSM—3

&g ,», M<n<N-4

Cy — (n + l)azM ’

a1 fs
&a—(n+2)a;(N-M) , M<n<N-3

1<n<{M-2

¢s + 2a; M + ¢ as
cs+2na,M , 2<n<M-2
cs +2(M — 1)a;M + ¢ /i

¢y +2(M + 1)az(N — M) + ¢ fq

(A.13a)
(A.13b)

(A.13c)
(A.134)
(A.13¢)

(A.13f)
(A.13g)
(A.13h)
(A.13i)



Appendix A page 140

u, = cg+2(n+1)ay3(N-m) , M+1<n<N-3 (A.13§)
uy_s = ¢35+ 2(N —1)ay(N —m) + cyap (A.13k)
d, = ¢q—naM , 1<n<M-2 (A.131)
dy = ch (A.13m)
d, = c;—nay(N-M) , M<n<N-4 (A.13n)
e, = ¢ , 1<n<M-3 (A.130)
e, = ¢ , M<n<N-4 (A.13p)

The eigenvalues and eigen vectors of this system can be obtained through standard

eigensolvers, for example EINSPACK, IMSL or NAG.
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Equations of Bending Vibration
with Borehole Constraint

The equations of motion of bending vibration of the BHA are shown in equation

3.1 and 3.2. If the collar is forced to be in contact with the wall, then the following

relationship holds

z Asinvy (B.1a)

v A cosy (B.1b)

Recall that A is the clearance between the collar and the wall, v is the angle from
the collar to its original unbent configuration. Note that 4 is a function of the vertical
_axis 2, and time ¢. From equation B.1a, the spatial derivatives with respect to vertical

axis, z, can be written as follows :

22 = Asiny(3)) (B.2a)
22— aeosvE+env &) (B.2b)
& - A(scosw(—)g—,—sim(a—)=+sinw(-§i}-)) (B2
82 — ar-ssina(Z L +3co0n(Th +3e00n(EH 22

. ssm(g)'gum(?,})%—cosw(gg)wsim(gz%n B2)
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If similar differentiation is carried out on equation B.1b, then

% _ acosn(] . (B.3a)
Pr  A-aina(3) + conn(SD) (B.3b)
Pr _ asana@IT e (a_)s+m(gfg)) (B.3¢)
NG 3cosq(_)=L-ssm~:( = ,)’—mw(—)azs

- 3conn( D )’3;'1— 2 EH T+ aina(Z) + cosn(3) (B.30)

If the nonlinear terms involving the product of the differentials are neglected in
equation B.2d and B.3d, and substituting these expressions into the equation 3.1 and

3.2, and adding these two equations together, we find

34
ApC'MAa (cos v + siny) + EIA(cosy + sin '7)—1

83
— Q(siny — cosq)ﬁ + (Cg + Cr)A(cos~ + sin fy)a
+ Apghcos|(l — 2)A(cosy + sin '7)22—2 — A(cos+y + sin ,7)_‘?_{]
02?2 0z

+ Apghsingsiny=0 (B.4)

If we further assume that « is small, then equation B.4 can be written as follows :

0%y o'y
30 +(CE+C')_+E18 4+Qa 3

+ Apghcosg|(l - )—— ]

ApC M

=0 (B.5)

This equation is almost same as equation 3.3, except for the last term, which involving
the the clearance and the slant angle of the borehole. This term representing the effect
of the gravity on the constraint dynamics. It is similar to the effect of a spring, and

is proportional to the angle 4.
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Green Function of a Rotating
Beam with Linearly Varying
Tension

The equation of motion of bending vibration with respect to a rotating reference

frame, with rotational speed {1, is equation 3.8, as repeated here with variable sectional

properties
o? o%r'
A(Dp()Cu (@) + (Ca(z) +Cil2) + 20 A(2)p(2)Curl2))F + 5 (E()I(2) 55
a2 ar' .
+ -(,;(T(z)—a—z) — (0% — iCe(2)Q)r' = f(2,1) ' (C.1)
Boundary conditions for single span pinned-pinned beam are
a*r'(o,t)
T’(O, t) = 0, —-aT =0 (C.2a)
d%r'(L,t)
f'(L, t) =0, _822—— =0 (C.2b)
If the following notations are used:
m(z) = A(2)p(z)Cum(2) : (C.3a)
d(z) = Cg(z)+ Ci(2) +520A(2)p(z)Cm(2) (C.3b)
' a1 et N o e 12 ad caridh manmant $A £ vars e H lag. 2._E°Io
and the equation C.1 is normalized with respect to following variables: wl = moLt’
!

w= %, T = wet,and r = %, where subscript 40" denotes the values at a reference
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position on the beam, then this equation can be transformed into

M 2%+ R+ L pw) 2
' %(Q(w);;.; —(g—i%%)rﬂ(w.r) (4
where
M(w) = %:’;Ll (C.5a)
R(w) = d(wL) Eo‘;‘:mo (C.5b)
Qw) = H%E (C.5¢)
P(w) = E(wf;Zf(wa) (C.5d)
Pl = Lobrfedl (C.5¢)
C.1 Green’s Function
If we assume the input is of the form
F(w,7) = 6(w - n)e=" (C6)

which is a delta function in space but sinusoidal in time, then assume the solution for
this equation is

r(w,r) = pe™r (c.7)

Then, the solution for the equation, which is the Green’s function of the rotating

tensioned beam, according to Kim [31] is

_ M [/ Hde]sm[/ Hadg]

sinh] /o H,d¢] sinh] /" Hdf] 0<w<n (C8)

Y(w,n)

T 1(W)T1(n)
B;
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and
wtw,n) = IO oy " ey in [ )
- Z‘—(%?Msmh[/(; H,df]smh[A Hdf] n<w<1 (C.9)
where
T(w) = VJ(‘*)’ 2T + 23+ (C.108)
Ty(w) = \,—l— ( ( SO (( )’+4 )"l% (C.10b)
Hy(w) = \E(F)+§\/(—g)’+4% (C.10¢)
Hw) = -3+ 3@+ (c10)
B, = sin( /0 Hade) (C.10e)
B, = sink( /o ' Hyde) (C.10f)
N2 Cen

U = M(w)w?—-iR(w)w - — ti (C.10g)
0

mowg
This Green’s function is the first order approximation to the exact solution obtained

using perturbation techniques.



