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Abstract A key question in flow control is that of the
design of optimal controllers when the control space is
high-dimensional and the experimental or computational
budget is limited. We address this formidable challenge
using a particular flavor of machine learning and present
the first application of Bayesian optimization to the design
of open-loop controllers for fluid flows. We consider a
range of acquisition functions, including the recently
introduced output-informed criteria of Blanchard and
Sapsis (2021), and evaluate performance of the Bayesian
algorithm in two iconic configurations for active flow
control: computationally, with drag reduction in the fluidic
pinball; and experimentally, with mixing enhancement in a
turbulent jet. For these flows, we find that Bayesian
optimization identifies optimal controllers at a fraction of
the cost of other optimization strategies considered in
previous studies. Bayesian optimization also provides, as a
by-product of the optimization, a surrogate model for the
latent cost function, which can be leveraged to paint a
complete picture of the control landscape. The proposed
methodology can be used to design open-loop controllers
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for virtually any complex flow and, therefore, has
significant implications for active flow control at an
industrial scale.
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1 Introduction

Control of fluid flows, specifically turbulent flows, has been
a long-standing challenge for the engineering community,
and with the appearance of new applications in the
transportation and energy industries its importance has
never been higher [1,2]. The last century has seen
significant progress toward a better understanding of
complex fluid flows and, consequently, a number of tools
have emerged that enable flow manipulation to a degree
that is now nearly surgical [3,4,5]. The actuation policies
thus designed have been used to serve a variety of purposes,
including drag reduction for bluff-body flows [6,7], mixing
enhancement for chemical and combustion processes [8,9,
10], and transition delay in boundary-layer flows [11,12].

However, designing optimal controllers for flow control
is no easy task, primarily because fluid flows are
intrinsically high-dimensional and nonlinear. These two
features conspire to render the task of designing controllers
rather arduous, as many control strategies either do not
scale well with the dimension of the system or are not
applicable to dynamics that are strongly nonlinear [2,13].
The major bottleneck is due to the fact that in practice the
amount of resources available for solving the design
problem may be quite limited. Experts estimate a typical
optimization budget to be roughly on the order of one
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hundred water-tunnel experiments or high-fidelity flow
simulations (such as direct numerical simulations or
large-eddy simulations), and perhaps a few hundred to a
thousand wind-tunnel experiments or Reynolds-averaged
numerical simulations [14].

This conundrum has left many a practitioner scratching
their head. How should one go about optimizing an
actuation policy given the complexity of the system at hand
and the limited budget available for experimentation? Right
away these constraints severely undermine the appeal of
several classical optimization algorithms. For example, grid
search, random search, Latin hypercube sampling, and
gradient-based methods all have tremendous advantages of
their own (e.g., simple implementation, fast convergence,
or optimal space coverage) but are fairly greedy when it
comes to function queries [15,16]. Therefore, there is a
need for more efficient optimization algorithms to address
the challenge of flow control.

Part of the solution might be provided by machine
learning (ML), whose incursion in the realm of flow control
is relatively recent but has been quite noticeable [17,18,
19]. This is due to the ability of ML algorithms to forego
first-principle modeling and treat the system (i.e., the
actuation, flow, and quantity of interest) as a generic
input–output relationship that can be learned directly from
data. Using a variety of ML tools such as support vector
machines [20], neural networks [21,22,23], genetic
algorithms [14,24], genetic programming [25,26] and
reinforcement learning [27], pioneers in the field of ML
control have been able to discover optimal control laws that
have led to previously unknown physical phenomena as
well as considerable improvement of the optimized
quantities of interest.

Among the zoo of existing ML algorithms is one that
has remained inconspicuous to the flow-control community
despite the fact that it had been designed specifically to
address the problem of optimizing expensive-to-evaluate
black-box functions. This algorithm, known as Bayesian
optimization (BO) [28,29,30], is a sequential strategy in
which the decision of where to query the objective function
next (i.e., what actuation command to try next) is
determined by examining a surrogate model that has been
trained on data from previous function queries. Bayesian
optimization has earned its stripes because of its ability to
capture prior beliefs about the behavior of the function and
to compromise between exploration and exploitation before
each function evaluation [28,29,30].

In this work, we present the first application of BO to
flow control. We consider the case of open-loop actuation,
which is the first step toward understanding the capabilities
of the algorithm and its effect on the flow. We investigate
several criteria for determining the algorithm’s next move,
including the output-informed criteria of Blanchard and

Sapsis [31] which turn out to be key enablers of
optimization efficiency. We also show how the surrogate
model, a by-product of the algorithm, can be used to paint a
complete picture of the control landscape, facilitating
interpretability of the control laws. The proposed
methodology has significant implications for industrial
applications as it can be extended to any open-loop
actuation and any complex flow.

We demonstrate the power of BO for flow control
computationally by reducing drag in the fluidic pinball, and
experimentally by enhancing mixing in a turbulent jet. The
fluidic pinball, that is, flow past three circular cylinders
arranged in an equilateral triangle, has recently established
itself as a reference benchmark for flow control, owing to
rich and surprising dynamics as well as countless actuation
opportunities [32,33,34]. The turbulent jet, on the other
hand, is a widely studied shear flow critical to many civil
and military applications and for which the key challenge is
to properly manipulate coherent structures in the flow in
order to control entrainment and enhance mixing [35,26].
Any gain made for these two flows might have colossal
implications for the industrial sector at large [2].

The remainder to the paper is structured as follows. We
describe the optimization problem and Bayesian algorithm
in Sect. 2, apply the algorithm to the fluidic pinball in Sect.
3 and the turbulent jet experiment in Sect. 4, and provide
some conclusions in Sect. 5.

2 Bayesian optimization for flow control

2.1 Formulation of the problem

We consider the problem of minimizing a cost function
J : Rd −→ R over a compact set B ⊂ Rd of actuation
parameters:

min
b∈B

J(b). (1)

For example, J can be the average drag over a bluff body
with b parametrizing blowing-and-suction actuators. In
practical applications, evaluating the cost function J for a
given actuation vector b often requires running a
large-scale computer simulation or conducting a field
experiment, which can be quite expensive. A high
evaluation cost adds to the issue of opacity since in general
the dependence of the cost function on the actuation
parameters has no simple closed form, precluding the use
of gradient-based optimization algorithms. In a field
experiment, these difficulties are exacerbated by the
presence of measurement noise, typically modeled as
additive Gaussian noise:

q = J(b)+ ε, ε ∼N (0,σ2
n ). (2)
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These three constraints—expensiveness, opacity,
noisiness—makes the problem in (1) a suitable candidate
for BO [28,29]. A sketch of the algorithm is shown in Fig.
1. As is commonplace in optimization, BO first needs to be
bootstrapped by evaluating the cost function for a small
number (ninit) of randomly selected actuation vectors. This
requires the practitioner to perform ninit experiments or
computations and record the observed cost for each. The
resulting actuation–cost pairs {bi,qi}ninit

i=1 make up the initial
dataset D0 (red dots in Fig. 1). A surrogate model J̄ (solid
blue line in Fig. 1), whose mathematical form is at the
discretion of the user, is then trained on the available data,
providing a proxy for the unknown latent cost function J
(dotted black line in Fig. 1).

With the initialization step complete, BO begins to
explore the control space sequentially, one step at a time.
At each iteration, BO determines the best controller to test
out by minimizing an acquisition function a : Rd −→ R,
shown in solid green in Fig. 1. The acquisition function
leverages the surrogate model J̄ and available data Dn−1 to
guide the algorithm as it combs through the control space.
The controller recommended by the acquisition function
(orange diamond in Fig. 1) can then be implemented in the
laboratory by the practitioner. The newly collected
actuation–cost pair {bn,qn} is then appended to the existing
dataset, which is used to refine the surrogate model J̄.

This process is repeated until the allocated budget for
function queries (whether experimental or computational)
is exhausted, at which point the BO algorithm is terminated
and the surrogate model is used to make a final
recommendation for the optimal controller. The final
recommendation may be the global minimizer of the
surrogate model itself,

b∗ = argmin
b∈B

J̄(b), (3)

or the controller that produced the smallest cost recorded
during optimization,

b∗ = argmin
qi∈Dn

qi. (4)

It is thus clear that the two critical ingredients in BO are
the surrogate model on the one hand, and the acquisition
function on the other. We review each in the next two
sections. The surrogate model is important because it is
used as a proxy for the latent cost function during the
optimization and in subsequent analyses. The acquisition
function is important because it is responsible for deciding
which points or regions of the input space should be
explored.

Initial dataset
D0 = {bi, qi}

ninit
i=1

Initialize surrogate model
J̄ trained on D0

Select best next point
bn = argmin

b∈ℬ
a(b; J̄ ,Dn−1)

Perform experiment
with control policy bnand measure cost qn

Augment dataset
Dn = Dn−1 ∪ {bn, qn}

Update surrogate model
J̄ trained on Dn

while budget permits

Fig. 1: Sketch of the Bayesian optimization algorithm for
design of open-loop controllers for fluid flows.

2.2 Model selection

For the surrogate model, a number of approaches have been
proposed in the past, with various levels of success [29].
The most popular among them is arguably Gaussian
process (GP) regression as it offers a flexible
non-parametric framework for modeling nonlinear
black-box functions [36]. GP regression is particularly
appropriate for BO because Gaussian processes are
agnostic to the internal workings of the latent function, and
they allow for quantification of uncertainty due to
measurement noise [36,37,38].

In this work, we model the cost function J as a
Gaussian process with constant mean m0 and covariance
k(b,b′;Θ), where Θ is a vector of hyper-parameters that
can be varied. For a dataset of actuation–cost pairs
D = {B,q} (with the columns of B ∈ Rd×n containing the
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actuation vectors, and the entries of q ∈ Rn the
corresponding cost values), the hyper-parameters {Θ,σ2

n }
are optimized by maximum likelihood estimation [36].
Conditioned on D , the trained model J̄(b) follows a normal
distribution with posterior mean and variance

µ(b) = m0 + k(b,B)K−1(q−m0), (5a)

σ
2(b) = k(b,b)− k(b,B)K−1k(B,b), (5b)

respectively, where K = k(B,B) + σ2
n I. Equation (5a) can

be used to predict the value of the latent cost function J for
any actuation vector b, and (5b) to quantify uncertainty in
prediction at that point [36].

The covariance function k(b,b′;Θ) plays a key role in
GP regression as it encodes prior belief or domain expertise
one may have about the optimization landscape (e.g.,
symmetry, invariance, or periodicity). In the absence of any
domain-specific knowledge, it has become customary to
assume Lipschitz-continuity of the objective function and,
consequently, to rely on a generic squared-exponential
kernel with automatic relevance determination,

k(b,b′;σ
2
f ,Λ) = σ

2
f exp[−(b−b′)TΛ−1(b−b′)/2], (6)

where σ f is a scaling parameter and Λ is a diagonal matrix
containing the lengthscales for each input variable [36,28].
(Together, σ f and Λ make up the hyper-parameters Θ of the
covariance function.)

2.3 Acquisition functions

The other fundamental component in BO is the acquisition
function. Its role is to encourage sampling of those regions
in the input space that are thought to harbor the global
minimizer(s) of the latent function. The key issue is for the
acquisition function to strike a balance between exploration
(i.e., visiting regions that have not been explored before)
and exploitation (i.e., focusing on regions where the
surrogate model predicts small values).

Common choices for the acquisition function include the
probability of improvement (PI) [15],

aPI(b) = Φ(λ (b)), λ (b) = [y∗−µ(b)−κ]/σ(b), (7)

the expected improvement (EI) [15],

aEI(b) = σ(b) [λ (b)Φ(λ (b))+φ(λ (b))] , (8)

and the lower confidence bound (LCB) [39],

aLCB(b) = µ(b)−κσ(b). (9)

In the above formulas, Φ and φ are the cumulative and
probability density functions of the standard normal
distribution, y∗ denotes the current best observation, and
κ ≥ 0 is a user-specified parameter that balances

exploration (large κ) and exploitation (small κ). These
acquisition functions have become popular because their
implementation is straightforward, evaluation is
inexpensive, and their gradients can be computed in closed
form for use in gradient-based optimizers.

In this work, we also consider the integrated variance
reduction for BO (IVR-BO) [31],

aIVR-BO(b) = µ(b)− κ

σ2(b)

∫
cov2(b,b′)db′, (10)

which repurposes the purely explorative IVR criterion of
Sacks et al. [40] into one that is more aggressive towards
minima. The integral appearing in (10) and its gradients can
be computed analytically for the RBF kernel [31], allowing
IVR-BO to retain the three important features discussed
earlier for PI, EI and LCB.

Recently, Blanchard and Sapsis [31] introduced a new
class of acquisition functions that accelerate convergence of
the BO algorithm in situations where certain regions of the
input space have a much larger impact on the output of the
latent function than others. Key to this approach is the
likelihood ratio, a quantity that can be seamlessly
incorporated as a sampling weight into several of the
acquisition functions commonly used in practice and which
encourages exploration of regions associated with extreme
output values. Defined as

w(b) =
pb(b)

pµ(µ(b))
, (11)

the likelihood ratio assigns to each point in the input space
a measure of relevance by weighting how likely that point is
to be observed “in the wild” (through the input density pb)
against its expected impact on the magnitude of the output
(through the output density pµ ). As such, the likelihood ratio
serves as an attention mechanism which steers the algorithm
toward the extremes [31,41].

As discussed in Blanchard and Sapsis [31], the
likelihood ratio can be integrated into LCB and IVR-BO
where it acts as a sampling weight or variance regularizer.
The resulting likelihood-weighted (LW) acquisition
functions,

aLCB-LW(b) = µ(b)−κσ(b)w(b) (12)

and

aIVR-LWBO(b) = µ(b)− κ

σ2(b)

∫
cov2(b,b′)w(b)db′, (13)

specifically target extreme minima of the latent function. As
in previous work [31,41,42], we approximate the likelihood
ratio with a Gaussian mixture model in order to make the
integral in (13) analytic.
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2.4 Optimization protocol

In the following sections, we apply the BO algorithm to
two canonical configurations for active flow control:
computationally with the fluidic pinball [32] and
experimentally with a turbulent jet [26]. For each problem,
the BO algorithm is initialized with ninit = d + 1
actuation–cost pairs drawn by Latin hypercube sampling
(LHS). As for the acquisition functions, we use κ = 0.01 in
EI and PI, and κ = 1 in LCB(-LW) and IVR-(LW)BO. The
likelihood ratio is approximated with two Gaussian
components.

The metric of success is the observation regret

r(n) = min
qi∈Dn

qi, (14)

which returns the smallest cost measured in the laboratory
after n iterations. The element of randomness resulting
from the initial LHS draw is averaged out by repeating the
BO procedure ne times, each time with a different choice of
initial points, and reporting the mean observation regret.
Variability across BO rounds is quantified with the standard
deviation. Our implementation uses the gpsearch package,
which is available on GitHub1.

3 Drag reduction in the fluidic pinball

3.1 Physical model

The physical model for the fluidic pinball is identical to that
considered by Deng et al. [32] and Cornejo Maceda et al.
[34], and is shown schematically in Fig. 2. A Newtonian
fluid with constant density ρ and kinematic viscosity ν

flows with uniform velocity Uex past a cluster of three
circular cylinders with diameter D. The cylinder centers are
arranged in an equilateral triangle with sidelength 3D/2
and one of the edges perpendicular to the incoming flow.
We refer to the forwardmost cylinder as the “front”
cylinder, and the aftmost cylinders as the “bottom” (port)
and “top” (starboard) cylinders. (We will also use the
alternative numbering i ∈ {1,2,3} for the front, bottom,
and top cylinders, respectively.) Each cylinder is actuated
independently by rigid-body rotation of the outer “shell”
with constant angular velocity 2Ui/D.

The flow is governed by the incompressible
Navier–Stokes equations, written in dimensionless form as

∂v
∂τ

+v ·∇v =−∇p+
1

Re
∇

2v, (15a)

∇ ·v = 0, (15b)

1 https://github.com/ablancha/gpsearch

ex

ey

U1

U2

U3

DU

Fig. 2: Fluidic pinball in cross-flow.

subject to the boundary conditions

lim
x,y→∞

= ex (16a)

in the far field, and

v|Γi = vi eθ (16b)

on the surface of the ith cylinder Γi. Time, length, and
velocity (including cylinder circumferential velocity
Ui = viU) have been scaled with cylinder diameter D and
free-stream velocity U . The Reynolds number is based on
cylinder diameter and defined as Re = UD/ν . The lift,
drag, and torque coefficients for the ith cylinder are given
by

CL,i =
∫

Γi

(σ ·n) · ey dΓ , (17a)

CD,i =
∫

Γi

(σ ·n) · ex dΓ , (17b)

CT,i =
∫

Γi

(σ ·n)× (er/2)dΓ , (17c)

respectively, where σ is the dimensionless stress tensor and
n is the outward unit normal to the cylinder surface. We also
define a dimensionless actuation vector,

b =
[
v1 v2 v3

]T
. (18)

The uncontrolled flow (i.e., no cylinder rotation)
corresponds to b = 0. The instantaneous actuation power
imparted to the cylinders can be expressed in dimensionless
form as

JT =−2b ·T, (19)

with T =
[
CT,1 CT,2 CT,3

]T a vector of torque coefficients.
Absent any actuation, the flow past the fluidic pinball is

known to undergo two bifurcations in the range
0 < Re≤ 100 [32]. The steady symmetric solution becomes
linearly unstable at Re ≈ 18 through a Hopf bifurcation,
giving way to a globally attracting limit cycle. At Re ≈ 68,
a pitchfork bifurcation occurs and two mirrored limit cycles
emerge. They co-exist until Re ≈ 104, at which point a
Neimark–Säcker bifurcation ushers in a regime of
quasi-periodic oscillations and puts the system on a route to
chaos [32]. In what follows, we consider the cases Re = 30
and Re = 100.

https://github.com/ablancha/gpsearch
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3.2 Computational approach

The flow is computed using the open-source Navier–Stokes
solver Nek5000 [43]. The computational domain is
identical to that used by Deng et al. [32], extending 12D is
the cross-stream direction and 26D in the stream-wise
direction, with the centers of the aft cylinders lying on the
x = 0 axis and equidistantly from the sidewalls. As in Deng
et al. [32], we specify a Dirichlet boundary condition
(v = ex) at the inlet, top, and bottom boundaries of the
domain. A stress-free boundary condition (σ · n = 0) is
specified at the outlet.

Our production runs use a mesh with 440 spectral
elements (Fig. 3), polynomial order N = 7, and time-step
size ∆τ = 0.01. As shown in Appendix A, this choice of
parameters ensures adequate convergence of the computed
solutions. Our computational approach is further validated
against the finite-element solver used by Deng et al. [32]
and Cornejo Maceda et al. [34]. The results in Appendix A
show excellent agreement between the two approaches.

5 0 5 10 15 20
x/D

6

0

6

y/D

Fig. 3: Spectral-element discretization for the fluidic pinball.
Each macro-element is further discretized using N + 1
Gauss–Lobatto–Legendre quadrature points, with N the
polynomial order.

3.3 Optimization results

We use BO to uncover the optimal controller that yields
maximum drag reduction in the fluid pinball. To this effect,
the objective function comprises the total drag coefficient
CD = ∑i CD,i (quantifying the parasitic towing power) and
the dimensionless actuation power JT , and is specified as

J(b) =
1
th

∫ th

0
(CD + JT )dt, (20)

where th denotes the time horizon of interest. Minimizing
(20) has the effect of maximally reducing drag while
keeping the overall actuation cost as small as possible. In
what follows, we use th = 200 to allow sufficient time for

the system to settle down. The flow is initialized on the
stable attractor of the uncontrolled configuration
(specifically, the globally attracting limit cycle for Re = 30
and the downward-deflected limit cycle for Re = 100). The
search space is specified as B = [−2,2]3, and results are
collected across ne = 5 BO rounds.

For the two Re values and the six acquisition functions
considered, Fig. 4 shows the evolution of the mean regret as
the BO algorithm samples the input space. Several remarks
are in order. First, we note that all the acquisition functions
deliver comparable performance, except for IVR-BO which
performs noticeably worse. (This is consistent with the
results in Ref. [31].) Second, the likelihood-weighted
acquisition functions provide a visible advantage over their
unweighted counterparts, evidencing the utility of the
likelihood ratio in BO. Third, Fig. 4 shows that no more
than a dozen function queries are needed for EI, PI,
LCB(-LW) and IVR-LWBO to identify a nearly optimal
controller. This is far fewer than what has been previously
reported for the explorative gradient method (EGM) for the
same flow, which required at least 30 functions evaluations
to achieve convergence [14].

Table 1 shows the best controller (4) identified by each
acquisition functions across all five BO rounds. (The
optimal controllers in Table 1 do not necessarily emanate
from the same set of initial LHS samples). The optimal
actuation policy, found by all criteria but IVR-BO,
corresponds to nearly symmetric Coanda forcing at
Re = 30 and asymmetric Coanda forcing at Re = 100.
Consistent with previous work [14,44,34], the symmetry
(or lack thereof) of the optimal actuation policy is not a
coincidence, and is indeed related to the symmetry (or lack
thereof) of the mean flow on either side of the pitchfork
bifurcation. We note in passing that due to the symmetry of
the geometry and objective function, the mirror image of
any optimal controller b∗ is also optimal provided the
initial condition for the flow is mirrored as well.

For the two Reynolds numbers investigated, the smallest
value of the objective function recorded by the algorithm
across all BO rounds is obtained with LCB-LW (Table 1).
For the optimal actuation policy thus identified, Fig. 5 shows
that the trajectory settles into a limit cycle which is markedly
different from that for the uncontrolled flow. In addition to
substantial drag reduction (about 28% at Re = 30 and 63%
at Re = 100), the optimally actuated flow is characterized by
a slight increase in Strouhal frequency (from 0.086 to about
0.090 for Re = 30, and from 0.116 to about 0.120 for Re =
100), accompanied by visible changes in the wake (Fig. 5).

Figure 6 shows the outcome of the sampling process
after 50 iterations for two of the best-performing
acquisition functions considered in this work. (The same
set of initial LHS points for both is used to allow
meaningful comparisons.) While EI and LCB-LW
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0 10 20 30 40 50
Iteration n

4.0

4.5

5.0

5.5

6.0

6.5

r(n
)

EI
PI

LCB
LCB-LW

IVR-BO
IVR-LWBO

(a) Re = 30

0 10 20 30 40 50
Iteration n

3.0

3.2

3.4

3.6

r(n
)

EI
PI

LCB
LCB-LW

IVR-BO
IVR-LWBO

(b) Re = 100

Fig. 4: For the fluidic pinball, evolution of the mean regret
as more samples are being collected.

ultimately converge to the same optimal controller, they
each have their own way of scouting the parameter space.
In particular, Fig. 6 shows that EI has a stronger propensity
for exploration, whereas LCB-LW “zeroes in” much more
aggressively on regions of the space that are thought to
harbor the global minimum. (This is precisely the purpose
of the likelihood ratio.)

Compared to other classical optimization algorithms,
BO has the significant advantage that it provides, as a
by-product of the optimization, a surrogate model for the
latent cost function. With enough data to be trained on, the
surrogate model can be leveraged to paint a complete
picture of the control landscape. The bottom panel in Fig. 6
shows that the control landscape at Re = 30 is topologically
simple, with the GP model producing isosurfaces that seem
to be contained one inside the other. At Re = 100, the
control landscape obtained with EI is also topologically
simple, but the one obtained with LCB-LW is not. This is
because EI is more explorative than LCB-LW, with the

v∗1 v∗2 v∗3 J(b∗)
EI 0.0063 0.6002 -0.5813 4.2383
PI 0.0040 0.5979 -0.5931 4.2381
LCB 0.0014 0.6156 -0.6003 4.2376
LCB-LW 0.0024 0.6172 -0.6006 4.2376
IVR-BO 0.1421 0.1299 -0.1118 4.7703
IVR-LWBO 0.0154 0.6019 -0.5994 4.2380
Uncontrolled - - - 5.0313

(a) Re = 30

v∗1 v∗2 v∗3 J(b∗)
EI 0.0334 1.3732 -1.1008 2.9466
PI 0.0521 1.3237 -1.1775 2.9463
LCB 0.0594 1.3501 -1.1261 2.9417
LCB-LW -0.0026 1.5238 -1.3478 2.9328
IVR-BO 0.1863 1.4192 -0.9077 3.0038
IVR-LWBO 0.0383 1.4093 -1.1881 2.9396
Uncontrolled - - - 3.8423

(b) Re = 100

Table 1: For the fluidic pinball, optimal controller b∗ =
[v∗1 v∗2 v∗3]

T found across all five BO rounds and associated
cost J(b∗).

latter spending more resources in the vicinity of the global
minimizer than the former. As the result, the GP model for
LCB-LW is more accurate than that for EI close to the
minimizer (leading to identification of a better actuation
policy), but less accurate away from it. For a detailed
discussion of the trade-off between exploration and
exploitation in BO, we refer the reader to Refs. [28] and
[42].

4 Mixing enhancement in a turbulent jet

4.1 Experimental setup

The experimental setup is identical to that in Zhou et al.
[26], and is shown schematically in Fig. 7. The jet facility
includes an air supply system, the turbulent jet itself, and a
set of six jet actuators which are described below. The
Reynolds number is defined as Re = Ū jD/ν , where Ū j is
the time-averaged centerline velocity at the nozzle exit, D is
the nozzle diameter, and ν is the kinematic viscosity of air.
Our experiments use Re = 8000 and D = 20 mm. As shown
in Fig. 7(a,c), we define a Cartesian coordinate system
(x,y,z) with origin at the center of the jet exit and the x-axis
pointing in the direction of flow.

Actuation is performed with six independent minijets
with orifice diameter d = 1 mm located 17 mm upstream of
the nozzle exit. The position of the ith minijet is given by
xi = −0.85D, yi = (D/2)cosθi, and zi = (D/2)sinθi,
where θi = (i−1)π/3 and i ∈ {1, . . . ,6} (see Fig. 7b). Each
minijet is connected to a channel consisting of an
electromagnetic valve, a mass flow meter, and a
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Fig. 5: For the fluidic pinball, time series of the drag coefficient and vorticity distribution at τ = 200 for the optimal controller
obtained with LCB-LW (cf. Table 1) and the uncontrolled flow.
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Fig. 6: For the fluidic pinball, outcome of the BO algorithm after 50 iterations using EI and LCB-LW. Top panel shows the
sampling strategy in the control space with initial LHS samples shown with triangles and optimized samples with circles;
each marker is colored according to the value of the objective function, with lighter color indicating smaller cost. Bottom
panel shows isosurfaces produced by the GP model; level sets are shown at µ = 4.5 (black), 6.5 (blue), 10 (red) and 12.5
(green) for Re = 30, and at µ = 3 (black), 4 (blue), 5 (red) and 6 (green) for Re = 100.

flow-limiting valve. The flow-limiting valve controls the
mass flow rate of the minijet, which is measured by the
mass flow meter. The frequency and duty cycle of each
minijet is controlled by the electromagnetic valve operated
in on/off mode. The valves ensure that the frequency of the
minijet does not exceed 500 Hz, more than three times the
preferred-mode frequency of the unforced jet at Re = 8000

( f0 = 135 Hz), and more than seven times the actuation
frequency used in the present study ( fa = 67 Hz).

The jet exit velocity at (0,−D/4,0) is measured with a
tungsten wire with diameter 5 µm operated on a constant
temperature circuit (Dantec Streamline) at an overheat ratio
of 1.8. The centerline jet velocity at x/D = 5 is monitored
with a second hot-wire. Both hot-wires are calibrated at the
jet exit using a Pitot tube connected to a micromanometer
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Fig. 7: Schematic of the experimental apparatus: (a) main jet facility; (b) minijet assembly; (c) minijet arrangement.

(Furness Controls FCO510). The experimental uncertainty
of the hot-wire measurements is estimated to be less than
2%.

Flow visualization is performed using a planar
high-speed particle imaging velocimetry (PIV) system,
which includes a high-speed camera (PhantomV641,
double frames, with a resolution of 2560 × 1600 pixels)
and a pulsed laser source (Litron LDY304- PIV, Nd:YLF,
120 mJ/pulse). An oil droplet generator (TSI MCM-30) is
used to generate a fog for flow seeding. The seeding
particles are fed into a mixing chamber (Fig. 7a) where
they mix with air. Flow illumination is done by a
one-millimeter-thick laser sheet generated by the pulsed
laser via a cylindrical lens. Measurements are made in the
x-z and x-y planes of the main jet. Particle images are
captured at a sampling rate of 405 Hz, corresponding to 3 f0
and about 6 fa.

4.2 Optimization results

We apply the BO algorithm to find a set of actuation
parameters that maximizes mixing of the turbulent jet. The
objective function is defined as

J(b) = Ū5D/Ū j, (21)

where Ū5D denotes the time-averaged centerline velocity of
the jet at x/D = 5. As discussed in Perumal and Zhou [45]
and Zhou et al. [26], minimizing the cost function (21) is

equivalent to maximizing the decay rate K = 1− J of the
mean centerline velocity, which is a good indicator of the
jet’s mixing efficacy. Time averages are computed over 15
seconds. The open-loop control law for the ith minijet is
specified as ai + sin(2π fat + φi), with values above and
below 0.1 corresponding to the minijet being on and off,
respectively. Therefore, the actuation vector

b =
[
{ai,φi}6

i=1
]T (22)

contains no fewer than 12 actuation parameters to be
optimized. The search space B is such that ai ∈ [−1,1] and
φi ∈ [0,2π]. Results are collected across ne = 3 BO rounds.

For three of the six acquisition functions considered
earlier (EI, IVR-BO, IVR-LWBO), Figure 8 shows the
evolution of the mean regret as the BO algorithm explores
the control space. We note that IVR-LWBO is able to
identify an optimal controller more rapidly than EI, which
appears to reach a plateau after about 250 iterations, and
IVR-BO, illustrating the benefits provided by the likelihood
ratio in high-dimensional spaces. With IVR-LWBO, one
can expect the optimal controller to yield a cost value of
about 0.28, some 8% less than the best controller found by
genetic programming in Ref. [26], notwithstanding the
higher level of sophistication of the control laws in that
work. We also note that BO requires fewer function
evaluations to converge (about 200 for IVR-LWBO), as
opposed to about one thousand for genetic programming in
Ref. [26]).
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Fig. 8: For the turbulent jet, evolution of the mean regret as
more samples are being collected.

The control landscape is shown in Fig. 9 following the
approach of Duriez et al. [17]. The dataset used to construct
the control landscape consists of all actuation–cost pairs
{bn,qn} collected by EI, IVR-BO, and IVR-LWBO across
all three BO rounds, and enriched six-fold by rotational
symmetry of the actuation vectors. The original
12-dimensional control space is displayed as a
two-dimensional proximity map using classical
multi-dimensional scaling (CMDS). Every actuation vector
bn is associated with a feature coordinate γn such that the
Euclidean distance between actuation vectors is optimally
preserved in the two-dimensional feature plane (i.e.,
‖bn− bm‖ ≈ ‖γn− γm‖). The cost function is interpolated
in the feature space, with lighter color indicating enhanced
mixing and darker color corresponding to the unforced
flow. Figure 10 shows the learning curve of the algorithm in
the control landscape. The EI criterion is seen to quickly
converge to the minimum while IVR-BO and IVR-LWBO
explore a larger portion of the control landscape. Figure 10
also shows that the optimization leads to all six sectors of
rotation-symmetric control laws.

Interestingly, PIV measurements reveal that the optimal
controller found by IVR-LWBO gives rise to a flow that
resembles the “flapping” motion found by Zhou et al. [26]
with a different control law (see Fig. 11). The optimal
actuation policy deliberately breaks the symmetry of the
uncontrolled flow, thus causing column oscillations of the
jet and, consequently, enhancing mixing. A thorough
description of these effects is given in Ref. [26].

5 Conclusions

The purpose of this work was to pioneer the use of BO for
the design of optimal open-loop controllers in fluid flows.

Fig. 9: For the turbulent jet, proximity maps generated by
EI, IVR-BO, and IVR-LWBO, with white stars denoting the
optimal actuation policy.

Our investigation reveals that, despite having received little
to no attention from the flow-control community, BO
proves to be an ideal candidate for solving the design
problem. This is because BO is agnostic to the details of the
interplay between the actuation, the flow, and the quantity
of interest and treats the control plant as a black box which
is expensive to evaluate and whose internal structure is
unknown. This framework mirrors the sort of conditions to
which the experimentalist and the numericist are routinely
confronted.

We have examined how the two pillars on which BO
rests (i.e., the surrogate model and the acquisition function)
play an important role in the context of flow control. On the
one hand, the surrogate model provides the complete
cartography of the control landscape, which can be used for
a posteriori design and analysis tasks, and offers valuable
insight into the physics of the controlled flow. On the other
hand, the acquisition function is responsible for guiding the
algorithm on its journey through the control space and, as
such, has a considerable impact on the rate of convergence
of the algorithm. Our results provide further evidence in
favor of the output-informed approach of Blanchard and
Sapsis [31] which was found to outperform the competition
in the examples considered.

The power of BO for flow control was first
demonstrated computationally with the fluidic pinball. A
geometrically simple but dynamically complex flow, the
fluidic pinball has been the subject of several attempts
aimed at reducing the total drag imparted to the array of
cylinders. In this work, we showed that BO identifies the
same optimal actuation policies as those reported
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(a) EI (b) IVR-BO (c) IVR-LWBO

Fig. 10: For the turbulent jet, optimization routes of EI, IVR-BO, and IVR-LWBO, with red dots denoting newly found
minima, and black dots connecting the next suboptimal samples.

Fig. 11: Flow visualization for the turbulent jet, with arrows indicating major directions of flow oscillation: (a) uncontrolled
flow and (b) controlled flow in the z = 0 plane; (c) uncontrolled flow and (d) controlled flow in the y = 0 plane.

previously, though at a fraction of the cost. We then
ventured in the laboratory and leveraged BO to enhance
mixing in a turbulent jet using a set of six minijet actuators.
Despite the added complexity of the apparatus and
increased dimensionality of the control space, BO was able
to identify a simple control law just as effective as that
reported in Ref. [26].

This work has laid down the groundwork for using BO
with more sophisticated control laws and more complex
flow configurations. One possible application is the
discovery of nonlinear actuation mechanisms for
multi-input, multi-output (MIMO) experiments, for which a
simple data-driven realization was proposed by Nair et al.

[46] who employed a low-dimensional cluster-based
parametrization to optimize MIMO control laws. Another
avenue is the incorporation of multi-fidelity capabilities in
which computation and experiment would operate in
tandem to achieve faster identification of optimal
controllers. For these reasons, we expect BO—and more
generally ML—to have a significant influence on the field
of flow control in the foreseeable future.
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A Validation of the computational approach for the
fluidic pinball

To determine appropriate values for the time-step size ∆τ and
polynomial order N, we consider the uncontrolled case (b = 0) at
Re = 100 with initial condition v(x,y) = [1 + 10−3 sin(y)]ex. The
slight asymmetry in the initial condition allows vortex shedding to
develop more rapidly than if one were to rely on small asymmetries in
the numerics. The flow is evolved for 2000 time units and only the last
500 time units of that interval are retained to compute the statistics.
We report the temporal mean, standard deviation (std), and
peak-to-peak amplitude (amp) of CD and CL, as well as the Strouhal
frequency St (i.e., the dominant frequency of CL). Table 2 shows that
the polynomial order has a larger effect on the statistics than the
time-step size. None of the computational parameters has a significant
effect on the Strouhal frequency. The results show that, for the present
purposes, adequate convergence is achieved by specifying ∆τ = 0.02
and N = 7. In our production runs, however, we use a smaller
time-step size (∆τ = 0.01) to alleviate the possibility of solution
blow-up when the actuation vector is non-zero.

For ∆τ = 0.01 and N = 7, we compare our computational approach
with the finite-element solver used by Deng et al. [32]. We consider
the actuation configuration described in Cornejo Maceda et al. [34] in
which the front cylinder is not allowed to rotate (v1 = 0) and the aft
cylinders rotate with equal and opposite angular velocities (v2 =−v3).
As in Cornejo Maceda et al. [34], the Reynolds number is 100 and the
flow is effected for 1000 time units starting from an initial state on the
limit cycle of the uncontrolled configuration. We report the temporal
mean for CD and JT . Figure 12 shows good agreement between our
approach and that of Cornejo Maceda et al. [34,47].

6 0 6
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6
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D

Ref. [47]
Present

6 0 6
v2

0

13

26

J T

Fig. 12: Long-time averages of CD and JT for the symmetric
actuation configuration of Cornejo Maceda et al. [34] at
Re = 100.
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