
MIT Open Access Articles

GPU-Accelerated Machine Learning Inference as
a Service for Computing in Neutrino Experiments

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wang, Michael, Yang, Tingjun, Flechas, Maria Acosta, Harris, Philip, Hawks, Benjamin
et al. 2021. "GPU-Accelerated Machine Learning Inference as a Service for Computing in
Neutrino Experiments." Frontiers in Big Data, 3.

As Published: 10.3389/FDATA.2020.604083

Publisher: Frontiers Media SA

Persistent URL: https://hdl.handle.net/1721.1/142103

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/142103
https://creativecommons.org/licenses/by/4.0/

GPU-Accelerated Machine Learning
Inference as a Service for Computing
in Neutrino Experiments
Michael Wang1*, Tingjun Yang1, Maria Acosta Flechas1, Philip Harris2, Benjamin Hawks1,
Burt Holzman1, Kyle Knoepfel 1, Jeffrey Krupa2, Kevin Pedro1 and Nhan Tran1,3

1Fermi National Accelerator Laboratory, Batavia, IL, United States, 2Massachusetts Institute of Technology, Cambridge, MA,
United States, 3Northwestern University, Evanston, IL, United States

Machine learning algorithms are becoming increasingly prevalent and performant in the
reconstruction of events in accelerator-based neutrino experiments. These sophisticated
algorithms can be computationally expensive. At the same time, the data volumes of such
experiments are rapidly increasing. The demand to process billions of neutrino events with
many machine learning algorithm inferences creates a computing challenge. We explore a
computing model in which heterogeneous computing with GPU coprocessors is made
available as a web service. The coprocessors can be efficiently and elastically deployed to
provide the right amount of computing for a given processing task. With our approach,
Services for Optimized Network Inference on Coprocessors (SONIC), we integrate GPU
acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the
native computing workflow. With our integrated framework, we accelerate the most time-
consuming task, track and particle shower hit identification, by a factor of 17. This results in
a factor of 2.7 reduction in the total processing time when compared with CPU-only
production. For this particular task, only 1 GPU is required for every 68 CPU threads,
providing a cost-effective solution.

Keywords: machine learning, heterogeneous (CPU+GPU) computing, GPU (graphics processing unit), particle
physics, cloud computing (SaaS)

INTRODUCTION

Fundamental particle physics has pushed the boundaries of computing for decades. As detectors have
become more sophisticated and granular, particle beams more intense, and data sets larger, the
biggest fundamental physics experiments in the world have been confronted withmassive computing
challenges.

The Deep Underground Neutrino Experiment (DUNE) (Abi et al., 2020), the future flagship
neutrino experiment based at Fermi National Accelerator Laboratory (Fermilab), will conduct a rich
program in neutrino and underground physics, including determination of the neutrino mass
hierarchy (Qian and Vogel, 2015) and measurements of CP violation (Nunokawa et al., 2008) in
neutrino mixing using a long baseline accelerator-based neutrino beam, detection andmeasurements
of atmospheric and solar neutrinos (Capozzi et al., 2019), searches for supernova neutrino bursts
(Scholberg, 2012) and neutrinos from other astronomical sources, and searches for physics at the
grand unification scale via proton decay (DUNE collaboration and Kudryavtsev, 2016).

The detectors will consist of four modules, of which at least three are planned to be 10 kton Liquid
Argon Time Projection Chambers (LArTPCs). Charged particles produced from neutrino or other

Edited by:
Daniele D’Agostino,

National Research Council (CNR), Italy

Reviewed by:
Alexander Radovic,
Borealis AI, Canada

Anushree Ghosh,
University of Padua, Italy

*Correspondence:
Michael Wang

mwang@fnal.gov

Specialty section:
This article was submitted to

Big Data and AI in High
Energy Physics,

a section of the journal
Frontiers in Big Data

Received: 08 September 2020
Accepted: 06 November 2020
Published: 14 January 2021

Citation:
Wang M, Yang T, Flechas MA,
Harris P, Hawks B, Holzman B,

Knoepfel K, Krupa J, Pedro K and
Tran N (2021) GPU-Accelerated
Machine Learning Inference as a

Service for Computing in
Neutrino Experiments.

Front. Big Data 3:604083.
doi: 10.3389/fdata.2020.604083

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6040831

ORIGINAL RESEARCH
published: 14 January 2021

doi: 10.3389/fdata.2020.604083

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.604083&domain=pdf&date_stamp=2021-01-14
https://www.frontiersin.org/articles/10.3389/fdata.2020.604083/full
https://www.frontiersin.org/articles/10.3389/fdata.2020.604083/full
https://www.frontiersin.org/articles/10.3389/fdata.2020.604083/full
http://creativecommons.org/licenses/by/4.0/
mailto:mwang@fnal.gov
https://doi.org/10.3389/fdata.2020.604083
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.604083

particle interactions will travel through and ionize the argon, with
ionization electrons drifted over many meters in a strong electric
field and detected on planes of sensing wires or printed-circuit-
board charge collectors. The result is essentially a high-definition
image of a neutrino interaction, which naturally lends itself to
applications of machine learning (ML) techniques designed for
image classification, object detection, and semantic segmentation.
ML can also aid in other important applications, like noise
reduction and anomaly or region-of-interest detection.

Due to the number of channels and long readout times of the
detectors, the data volume produced by the detectors will be very
large: uncompressed continuous readout of a single module will
be nearly 1.5 TB per second. Because that amount of data is
impossible to collect and store, let alone process, and because
most of that data will not contain interactions of interest, a real-
time data selection scheme must be employed to identify data
containing neutrino interactions. With a limit on total bandwidth
of 30 PB of data per year for all DUNE modules, that data
selection scheme, with accompanying compression, must
effectively reduce the data rate by a factor of 103.

In addition to applications in real-time data selection,
accelerated ML inference that can scale to process large data
volumes will be important for offline reconstruction and selection
of neutrino interactions. The individual events are expected to
have a size on the order of a few gigabytes, and extended readout
events (associated, for example, with supernova burst events) may
be significantly larger, up to 120 TB per module. It will be a
challenge to efficiently analyze that data without an evolution of
the computing models and technology that can handle data
retrieval, transport, parallel processing, and storage in a
cohesive manner. Moreover, similar computing challenges
exist for a wide range of existing neutrino experiments such as
MicroBooNE (MicroBooNE collaboration et al., 2017) andNOνA
(Ayres et al., 2007).

In this paper, we focus on the acceleration of the inference of deep
ML models as a solution for processing large amounts of data in the
ProtoDUNE single-phase apparatus (ProtoDUNE-SP) (DUNE
Collaboration et al., 2020) reconstruction workflow. For
ProtoDUNE-SP, ML inference is the most computationally
intensive part of the full event processing chain and is run
repeatedly on hundreds of millions of events. A growing trend to
improve computing power has been the development of hardware
that is dedicated to accelerating certain kinds of computations.
Pairing a specialized coprocessor with a traditional CPU, referred
to as heterogeneous computing, greatly improves performance. These
specialized coprocessors utilize natural parallelization and provide
higher data throughput. In this study, the coprocessors employed are
graphics processing units (GPUs); however, the approach can
accommodate multiple types of coprocessors in the same
workflow. ML algorithms, and in particular deep neural networks,
are a driver of this computing architecture revolution.

For optimal integration of GPUs into the neutrino event
processing workflow, we deploy them “as a service.” The
specific approach is called Services for Optimized Network
Inference on Coprocessors (SONIC) (Krupa et al., 2020;
Duarte et al., 2019; Pedro, 2019), which employs a client-
server model. The primary processing job, including the

clients, runs on the CPU, as is typically done in particle
physics, and the ML model inference is performed on a GPU
server. This can be contrasted with a more traditional model with
a GPU directly connected to each CPU node. The SONIC
approach allows a more flexible computing architecture for
accelerating particle physics computing workflows, providing
the optimal number of heterogeneous computing resources for
a given task.

The rest of this paper is organized as follows. We first discuss
the related works that motivated and informed this study. In
Setup and Methodology, we describe the tasks for ProtoDUNE-SP
event processing and the specific reconstruction task for which an
ML algorithm has been developed. We detail how the GPU
coprocessors are integrated into the neutrino software
framework as a service on the client side and how we set up
and scale out GPU resources in the cloud. In Results, we present
the results, which include single job and batch job multi-CPU/
GPU latency and throughput measurements. Finally, in Summary
and Outlook, we summarize the study and discuss further
applications and future work.

Related Work
Inference as a service was first employed for particle physics in
Ref. (Duarte et al., 2019). This initial study utilized custom field
programmable gate arrays (FPGAs) manufactured by Intel Altera
and provided through the Microsoft Brainwave platform
(Caulfield et al., 2016). These FPGAs achieved low-latency,
high-throughput inference for large convolutional neural
networks such as ResNet-50 (He et al., 2016) using single-
image batches. This acceleration of event processing was
demonstrated for the Compact Muon Solenoid (CMS)
experiment at the Large Hadron Collider (LHC), using a
simplified workflow focused on inference with small batch
sizes. Our study with GPUs for neutrino experiments focuses
on large batch size inferences. GPUs are used in elements of the
simulation of events in the IceCube Neutrino Observatory
(Halzen and Klein, 2010); recently, a burst for the elements
that run on GPUs was deployed at large scale (Sfiligoi et al.,
2020). The ALICE experiment at the LHC is planning to use
GPUs for real-time processing and data compression of their
Time Project Chamber subdetectors (ALICE Collaboration and
Rohr, 2020). The LHCb experiment at the LHC is considering
using GPUs for the first level of their trigger system (Aaij et al.,
2020).

Modern deep ML algorithms have been embraced by the
neutrino reconstruction community because popular computer
vision and image processing techniques are highly compatible
with the neutrino reconstruction task and the detectors that
collect the data. NOνA has applied a custom convolutional
neural network (CNN), inspired by GoogLeNet (Szegedy et al.,
2015), to the classification of neutrino interactions for their
segmented liquid scintillator-based detector (Aurisano et al.,
2016). MicroBooNE, which uses a LArTPC detector, has
conducted an extensive study of various CNN architectures
and demonstrated their effectiveness in classifying and
localizing single particles in a single wire plane, classifying
neutrino events and localizing neutrino interactions in a single

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6040832

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

plane, and classifying neutrino events using all three planes
(MicroBooNE collaboration et al., 2017). In addition,
MicroBooNE has applied a class of CNNs, known as semantic
segmentation networks, to 2D images formed from real data
acquired from the LArTPC collection plane, in order to classify
each pixel as being associated with an EM particle, other type of
particle, or background (MicroBooNE et al., 2019). DUNE, which
will also use LArTPC detectors, has implemented a CNN based
on the SE-ResNet (Hu et al., 2018) architecture to classify
neutrino interactions in simulated DUNE far detector events
(DUNE Collaboration et al., 2006). Lastly, a recent effort has
successfully demonstrated an extension of the 2D pixel-level
semantic segmentation network from MicroBooNE to three
dimensions, using submanifold sparse convolutional networks
(Graham and van der Maaten, 2017; Dominé and Terao, 2020).

SETUP AND METHODOLOGY

In this study, we focus on a specific computing workflow, the
ProtoDUNE-SP reconstruction chain, to demonstrate the power
and flexibility of the SONIC approach. ProtoDUNE-SP, assembled
and tested at the CERNNeutrino Platform (the NP04 experiment at
CERN) (Pietropaolo, 2017), is designed to act as a test bed and full-
scale prototype for the elements of the first far detector module of
DUNE. It is currently the largest LArTPC ever constructed and is
vital to develop the technology required for DUNE. This includes the
reconstruction algorithms that will extract physics objects from the
data obtained using LArTPC detectors, as well as the associated
computing workflows.

In this section, we will first describe the ProtoDUNE-SP
reconstruction workflow and the ML model that is the current
computing bottleneck. We will then describe the SONIC approach
and how it was integrated into the LArTPC reconstruction software
framework. Finally, we will describe how this approach can be scaled
up to handle even larger workflows with heterogeneous computing.

ProtoDUNE-SP Reconstruction
The workflow used in this paper is the full offline reconstruction
chain for the ProtoDUNE-SP detector, which is a good

representative of event reconstruction in present and future
accelerator-based neutrino experiments. In each event, ionizing
particles pass through the liquid argon, emitting scintillation light
that is recorded by photodetectors. The corresponding pulses are
reconstructed as optical hits. These hits are grouped into flashes from
which various parameters are determined, including time of arrival,
spatial characteristics, and number of photoelectrons detected.

After the optical reconstruction stage, the workflow proceeds
to the reconstruction of LArTPC wire hits. Figure 1 shows a 6
GeV/c electron event in the ProtoDUNE detector.

Reconstruction begins by applying a deconvolution procedure
to recover the original waveforms by disentangling the effects of
electronics and field responses after noise mitigation. The
deconvolved waveforms are then used to find and reconstruct
wire hits, providing information such as time and collected
charge. Once the wire hits have been reconstructed, the 2D
information provided by the hits in each plane is combined
with that from the other planes in order to reconstruct 3D
space points. This information is primarily used to resolve
ambiguities caused by the induction wires in one plane
wrapping around into another plane.

The disambiguated collection of reconstructed 2D hits is then
fed into the next stage, which consists of a modular set of
algorithms provided by the Pandora software development kit
(Marshall and Thomson, 2013). This stage finds the high-level
objects associated with particles, like tracks, showers, and vertices,
and assembles them into a hierarchy of parent-daughter nodes
that ultimately point back to the candidate neutrino interaction.

The final module in the chain, EmTrackMichelId, is an ML
algorithm that classifies reconstructed wire hits as being track-
like, shower-like, or Michel electron-like (Michel, 1950). This
algorithm begins by constructing 48 × 48 pixel images whose two
dimensions are the time t and the wire number w in the plane.
These images, called patches, are centered on the peak time and
wire number of the reconstructed hit being classified. The value of
each pixel corresponds to the measured charge deposition in the
deconvolved waveforms for the wire number and time interval
associated with the row and column, respectively, of the pixel.
Inference is performed on these patches using a convolutional
neural network. Importantly, over the entire ProtoDUNE-SP
detector, there are many 48 × 48 patches to be classified, such
that a typical event may have ∼ 55, 000 patches to process.
Because of the way the data is processed per wire plane, those
∼ 55, 000 patches are processed in batches with average sizes of
either 235 or 1693. We will explore the performance implications
of this choice in the next section.

CNN Model for Track Identification
The neural network (Figure 2) employed by the
EmTrackMichelId module of the ProtoDUNE-SP
reconstruction chain consists of a 2D convolutional layer
followed by two fully connected (FC) layers. The
convolutional layer takes each of the 48 × 48 pixel patches
described in ProtoDUNE-SP Reconstruction and applies 48
separate 5 × 5 convolutions to it, using stride lengths of 1, to
produce 48 corresponding 44 × 44 pixel feature maps. These
feature maps are then fed into the first fully connected (FC)

FIGURE 1 | A 6 GeV/c electron event in the ProtoDUNE detector. The x
axis shows the wire number. The y axis shows the time tick in the unit of
0.5 μs. The color scale represents the charge deposition. DUNE Collaboration
et al. (2020a)

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6040833

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

layer consisting of 128 neurons, which is, in turn, connected to
the second FC layer of 32 neurons. Rectified linear unit (ReLU)
activation functions are applied after the convolutional layer
and each of the two FC layers. Dropout layers are implemented
between the convolutional layer and the first FC layer and
between the two FC layers to help prevent overfitting. The
second FC layer splits into two separate branches. The first
branch terminates in three outputs that are constrained to a
sum of one by a softmax activation function, and the second
branch terminates in a single output with a sigmoid activation
function that limits its value within a range of 0–1. The output
of the network is split in this way due to the overlap of the
shower and Michel electron classes. The second branch helps
improve the efficiency of tagging hits produced by the Michel
electrons, which are due to low energy shower activity. The
total number of trainable parameters in this model is
11,900,420.

GPU Inference as a Service With LArSoft
ProtoDUNE-SP reconstruction code is based on the LArSoft C++
software framework (Snider and Petrillo, 2017), which provides a
common set of tools shared by many LArTPC-based neutrino
experiments. Within this framework, EmTrackMichelId, which is
described in ProtoDUNE-SP Reconstruction, is a LArSoft
“module” that makes use of the PointIdAlg “algorithm.”
EmTrackMichelId passes the wire number and peak time
associated with a hit to PointIdAlg, which constructs the patch
and performs the inference task to classify it.

In this study, we follow the SONIC approach that is also in
development for other particle physics applications. It is a client-
server model, in which the coprocessor hardware used to
accelerate the neural network inference is separate from the
CPU client and accessed as a (web) service. The neural

network inputs are sent via TCP/IP network communication
to the GPU. In this case, a synchronous, blocking call is used. This
means that the thread makes the web service request and then
waits for the response from the server side, only proceeding once
the server sends back the network output. In ProtoDUNE-SP, the
CPU usage of the workflow, described in ProtoDUNE-SP
Reconstruction, is dominated by the neural network inference.
Therefore, a significant increase in throughput can still be
achieved despite including the latency from the remote call
while the CPU waits for the remote inference. An
asynchronous, non-blocking call would be slightly more
efficient, as it would allow the CPU to continue with other
work while the remote call was ongoing. However, this would
require significant development in LArSoft for applications of
task-based multithreading, as described in Ref. (Bocci et al.,
2020).

The ModelInterface class in LArSoft is used by PointIdAlg to
access the underlying ML model that performs the inference.
Previously, this inference was performed locally on a CPU using
the TfModelInterface subclass ofModelInterface. In this work, the
functionality to access the GPU as a service was realized by
implementing the C++ client interface, provided by the Nvidia
Triton inference server (Nvidia, 2019), in a new ModelInterface
subclass called tRTisModelInterface. In this new subclass, the
patches constructed by PointIdAlg are put into the proper format
and transmitted to the GPU server for processing, while a
blocking operation ensues until inference results are received
from the server. Communication between the client and server is
achieved through remote procedure calls based on gRPC (Google,
2018). The desired model interface subclass to use is selected and
its parameters specified at run time by the user through a FHiCL
(The Fermilab Hierarchical Configuration Language)
configuration file. The code is found in the LArSoft/larrecodnn

FIGURE 2 | Architecture of the neural network used by the EmTrackMichelIdmodule in the ProtoDUNE-SP reconstruction chain, a convolutional (2DConv) layer is
flattened to two fully connected layers.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6040834

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

package (Garren et al., 2020). On the server side, we deploy
NVidia T4 GPUs targeting data center acceleration. Figure 3
illustrates how EmTrackMichelId, PointIdAlg, andModelInterface
interact with each other. It also shows how each of the two
available subclasses, TfModelInterface and tRTisModelInterface,
access the underlying model.

This flexible approach has several advantages:

• Rather than requiring one coprocessor per CPU with a direct
connection over PCIe, many worker nodes can send requests
to a single GPU, as depicted in Figure 4. This allows
heterogeneous resources to be allocated and re-allocated
based on demand and task, providing significant flexibility
and potential cost reduction. The CPU-GPU system can be
“right-sized” to the task at hand, and with modern server
orchestration tools, described in the next section, it can
elastically deploy coprocessors.

• There is a reduced dependency on open-source ML
frameworks in the experimental code base. Otherwise, the
experiment would be required to integrate and support
separate C++ APIs for every framework in use.

• In addition to coprocessor resource scaling flexibility, this
approach allows the event processing to use multiple types of
heterogeneous computing hardware in the same job, making it
possible tomatch the computing hardware to theML algorithm.
The system could, for example, use both FPGAs and GPUs
servers to accelerate different tasks in the same workflow.

There are also challenges to implementing a computing model
that accesses coprocessors as a service. Orchestration of the
client-server model can be more complicated, though we find
that this is facilitated with modern tools like the Triton inference
server and Kubernetes. In Summary and Outlook, we will discuss
future plans to demonstrate production at full scale. Networking

FIGURE 3 | The interaction between EmTrackMichelId, PointIdAlg, andModelInterface, described in the text, is depicted in the figure above. CPU-only inference is
provided by TfModelInterface, while GPU-accelerated inference, via the GPUaaS approach, is provided by tRTisModelInterface.

FIGURE 4 | Depiction of the client-server model using Triton where multiple CPU processes on the client side are accessing the AI model on the server side.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6040835

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

from client to server incurs additional latency, which may lead to
bottlenecks from limited bandwidth. For this particular
application, we account for and measure the additional latency
from network bandwidth, and it is a small, though non-negligible,
contribution to the overall processing.

The Triton software also handles load balancing for servers that
provide multiple GPUs, further increasing the flexibility of the
server. In addition, the Triton server can hostmultiplemodels from
various ML frameworks. One particularly powerful feature of the
Triton inference server is dynamic batching, which combines
multiple requests into optimally-sized batches in order to
perform inference as efficiently as possible for the task at hand.
This effectively enables simultaneous processing of multiple events
without any changes to the experiment software framework, which
assumes one event is processed at a time.

Kubernetes Scale out
We performed tests on many different combinations of
computing hardware, which provided a deeper understanding
of networking limitations within both Google Cloud and on-
premises data centers. Even though the Triton Inference Server
does not consume significant CPU power, the number of CPU
cores provisioned for the node did have an impact on the
maximum ingress bandwidth achieved in the early tests.

To scale the NVidia T4 GPU throughput flexibly, we deployed
a Google Kubernetes Engine (GKE) cluster for server-side
workloads. The cluster is deployed in the US-Central data
center, which is located in Iowa; this impacts the data travel
latency. The cluster was configured using a Deployment and
ReplicaSet. These are Kubernetes artifacts for application
deployment, management and control. They hold resource
requests, container definitions, persistent volumes, and other
information describing the desired state of the containerized
infrastructure. Additionally, a load-balancing service to

distribute incoming network traffic among the Pods was
deployed. We implemented Prometheus-based monitoring,
which provided insight into three aspects: system metrics for
the underlying virtual machine, Kubernetes metrics on the overall
health and state of the cluster, and inference-specific metrics
gathered from the Triton Inference Server via a built-in
Prometheus publisher. All metrics were visualized through a
Grafana instance, also deployed within the same cluster. The
setup is depicted in Figure 5.

A Pod is a group of one or more containers with shared storage
and network, and a specification for how to run the containers. A
Pod’s contents are always co-located and co-scheduled, and run
in a shared context within Kubernetes Nodes (Kubernetes, 2020).
We kept the Pod to Node ratio at 1:1 throughout the studies, with
each Pod running an instance of the Triton Inference Server
(v20.02-py3) from the Nvidia Docker repository. The Pod
hardware requests aim to maximize the use of allocatable
virtual CPU (vCPU) and memory and to use all GPUs
available to the container.

In this scenario, it can be naively assumed that a small instance
n1-standard-2 with 2 vCPUs, 7.5GB of memory, and different
GPU configurations (1, 2, 4, or 8) would be able to handle the
workload, which would be distributed evenly on GPUs. After
performing several tests, we found that horizontal scaling would
allow us to increase our ingress bandwidth, because Google Cloud
imposes a hard limit on network bandwidth of 2Gbps per vCPU,
up to a theoretical maximum of 16Gbps for each virtual machine
(Google, 2020).

Given these parameters, we found that the ideal setup for
optimizing ingress bandwidth was to provision multiple Pods on
16-vCPUmachines with fewer GPUs per Pod. For GPU-intensive
tests, we took advantage of having a single point of entry, with
Kubernetes balancing the load and provisioning multiple
identical Pods behind the scenes, with the total GPU

FIGURE 5 | The Google Kubernetes Engine setup which demonstrates how the Local Compute FermiGrid farm communicates with the GPU server and how the
server is orchestrated through Kubernetes.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6040836

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

requirement defined as the sum of the GPUs attached to
each Pod.

RESULTS

Using the setup described in the previous section to deploy GPUs
as a service (GPUaaS) to accelerate machine learning inference,
we measure the performance and compare against the default
CPU-only workflow in ProtoDUNE-SP.

First, we describe the baseline CPU-only performance. We
then measure the server-side performance in different testing
configurations, in both standalone and realistic conditions.
Finally, we scale up the workflow and make detailed
measurements of performance. We also derive a scaling model
for how we expect performance to scale and compare it to our
measured results.

CPU-Only Baseline
To compare against our heterogeneous computing system, we
first measure the throughput of the CPU-only process. The
workflow processes events from a Monte Carlo simulation of
cosmic ray events in ProtoDUNE-SP, produced with the Corsika
generator (Heck et al., 1998). The radiological backgrounds,
including 39Ar, 42Ar, 222Rn, and 85Kr, are also simulated
using the RadioGen module in LArSoft. Each event
corresponds to a 3ms readout window with a sampling rate of
0.5μs per time tick. The total number of electronic channels is
15,360. A white noise model with an RMS of 2.5ADC was used.
The workflows are executed on grid worker nodes running
Scientific Linux 7, with CPU types shown in Table 1. The
fraction of all clients that ran with an average client-side batch
size of 1693 for each CPU type is shown in the second column of
this table. Of these clients, 64% of them ran on nodes with
10Gbps network interface cards (NICs) and the remainder ran on
nodes with 1Gbps NICs.

We measure the time it takes for each module in the
reconstruction chain to run. We divide them into 2 basic
categories: the non-ML modules and the ML module. The
time values are given in Table 2. Of the CPU time in the ML
module, we measure that 7 s is dedicated to data preprocessing
to prepare for neural network inference, and the rest of the time,
213 s, from the module is spent in inference. This is the baseline

performance to which we will compare our results using
GPUaaS. It is important to know that further CPU
optimization could improve performance, but would require
drastic changes either to the workflows (multi-threaded ML
inference in LArSoft) or to the software integration. In this
study, we compare our approach against the “out-of-the-box”
CPU implementation where the only addition on our end is a
non-disruptive GPU service.

Server-Side Performance
To get a standardized measure of the performance, we first use
standard tools for benchmarking the GPU performance. Then we
perform a stress test on our GPUaaS instance to understand the
server-side performance under high load.

Server Standalone Performance
The baseline performance of the GPU server running the
EmTrackMichelId model is measured using the perf_client
tool included in the Nvidia Triton inference server package.
The tool emulates a simple client by generating requests over a
defined time period. It then returns the latency and
throughput, repeating the test until the results are stable.
We define the baseline performance as the throughput
obtained at the saturation point of the model on the GPU.
We attain this by increasing the client-side request
concurrency—the maximum number of unanswered
requests by the client—until the throughput saturates. We
find that the model reaches this limit quickly at a client-side
concurrency of only 2 requests. At this point, the throughput
is determined to be 20, 000 ± 2, 000 inferences per second.
This corresponds to an event processing time of 2.7 ± 0.3 s.
This is the baseline expectation of the performance of the GPU
server.

Saturated Server Stress Test
To understand the behavior of the GPU server performance in a
more realistic setup, we set up many simultaneous CPU processes
to make inference requests to the GPU. This saturates the GPUs,
keeping the pipeline of inference requests as full as possible. We
measure several quantities from the GPU server in this scenario.
To maximize throughput, we activate the dynamic batching
feature of Triton, which allows the server to combine multiple
requests together in order to take advantage of the efficient batch
processing of the GPU. This requires only one line in the server
configuration file.

In this setup, we run 400 simultaneous CPU processes that
send requests to the GPU inference server. This is the same
compute farm described in CPU-Only Baseline. The jobs are held

TABLE 1 | CPU types and distribution for the grid worker nodes used for the “big-
batch” clients (see text for more details).

CPU type Fraction (%)

AMD EPYC 7502 @ 2.5 GHz 11.7
AMD Opteron 6134 @ 2.3 GHz 0.6
AMD Opteron 6376 @ 2.3 GHz 4.6
Intel Xeon E5-2650 v2 @ 2.6 GHz 30.8
Intel Xeon E5-2650 v3 @ 2.3 GHz 5.2
Intel Xeon E5-2670 v3 @ 2.3 GHz 7.3
Intel Xeon E5-2680 v4 @ 2.4 GHz 17.3
Intel Xeon Gold 6140 @ 2.3 GHz 22.6

TABLE 2 | The average CPU-only wall time per job for the different module
categories.

ML module non-ML modules Total

Wall time (s)

220 110 330

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6040837

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

in an idle state until all jobs are allocated CPU resources and all
input files are transferred to local storage on the grid worker
nodes, at which point the event processing begins simultaneously.
This ensures that the GPU server is handling inference requests
from all the CPU processes at the same time. This test uses a batch
size of 1693. We monitor the following performance metrics of
the GPU server in 10 min intervals:

• GPU server throughput: for the 4-GPU server, we measure
that the server is performing about 122,000 inferences per second
for large batch and dynamic batching; this amounts to 31,000
inferences per second per GPU. This is shown in Figure 6 (top
left). This is higher than the measurement from the standalone
performance client, by a factor of ∼ 1.5. For large batch and no
dynamic batching, we observe similar throughput, while for small
batch and no dynamic batching, we find that performance is a bit
worse, close to the standalone client performance at 22,000 inf/
s/GPU.

• GPU processing usage: we monitor how occupied the GPU
processing units are. We find that the GPU is ∼ 60%
occupied during saturated processing. This is shown in
Figure 6 (top right).

• GPU batch throughput: we measure how many batches of
inferences are processed by the server. The batch size sent by the
CPU processor is 1693 on average, but dynamic batching prefers
to run at a typical batch size of 5,358. This is shown in Figure 6
(bottom).

Scale out Modeling
In the previous section, we discussed in detail the GPU server
performance. With that information, we study in detail the
performance of the entire system and the overall improvement
expected in throughput.

To describe important elements of the as-a-service computing
model, we first define some concepts and variables. Many of these
elements have been described in previous sections, but we collect
them here to present a complete model.

• tCPU is the total time for CPU-only inference as described in
CPU-Only Baseline. This is measured to be 330 s.

• p is the fraction of tCPU which can be accelerated, and
conversely 1 − p is the fraction of the processing that is not being
accelerated. The ML inference task takes 220 s, but we subtract

FIGURE 6 | Top left: The number of inferences per second processed by the 4-GPU server, which saturates at approximately 126,000. Top right: The GPU usage,
which peaks around 60%. Bottom: The number of total batches processed by the 4-GPU server. The incoming batches are sent to the server with size 1693, but are
combined up to size 5,358 for optimal performance.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6040838

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

tpreprocess, the time required for data preprocessing, which still
occurs on the CPU even when the algorithm is offloaded to the
GPU. This results in p � 0.65.

• tGPU is the time explicitly spent doing inference on the GPU.
We measure this to be 22,000–31,000 inferences per second
depending on whether or not dynamic batching is used. For
55,000 inferences per event, this turns out to be 1.77 s (2.5 s) when
dynamic batching is enabled (disabled with small batch).

• tpreprocess is the time spent on the CPU for preprocessing to
prepare the input data to be transmitted to the server in the
correct format. This is measured to be 7 s.

• ttransmit is the latency incurred from transmitting the neural
network input data. For 55,000 inferences per event, with each
input a 48 × 48 image at 32 bits, the total amount of data
transmitted is about 4.1Gigabits per event. Kubernetes Scale
out specifies that each CPU process is allocated a 2Gbps link
on the server side while CPU-Only Baseline specifies 1Gbps or
10Gbps link speed on the client side. Therefore the
communication bottleneck varies between 1Gbps and 2Gbps
such that the total latency for transmitting data is between 2.05 s
and 4.1 s.

• ttravel is the travel latency to go from the Fermilab data center,
which hosts the CPU processes, to the GCP GPUs. This depends
on the number of requests Nrequest and the latency per request
trequest. The latter can vary based on networking conditions, but
we measure it to be roughly 12ms. The small batch size of 256
images requires Nrequest � 214 to transmit the 55,000 images,
while the large batch size of 1720 images requires Nrequest � 32.
Given these parameters, we find that the travel latency is 2.6 s
(0.38 s) for small (large) batch size.

• tlatency � tpreprocess + ttransmit + ttravel summarizes the
additional latency distinct from the actual GPU processing.

• tideal is the total processing time assuming the GPU is
always available; this is described in more detail in the next
section.

• NCPU and NGPU are the numbers of simultaneously running
CPU and GPU processors, respectively.

With each element of the system latency now defined, we can
model the performance of SONIC. Initially, we assume blocking
modules and zero communication latency. We define p as the
fraction of the event which can be accelerated, such that the total
time of a CPU-only job is trivially defined as:

tCPU � (1 − p) × tCPU + p × tCPU (1)

We replace the time for the accelerated module with the GPU
latency terms:

tideal � (1 − p) × tCPU + tGPU + tlatency. (2)

This reflects the ideal scenario when the GPU is always available
for the CPU job. We also include tlatency, which accounts for the
preprocessing, bandwidth, and travel time to the GPU. The value
of tGPU is fixed, unless the GPU is saturated with requests. We

define this condition as how many GPU requests can be made
while a single CPU is processing an event. The GPU saturation
condition is therefore defined as:

NCPU

NGPU
> tideal
tGPU

. (3)

Here, tideal is equivalent to Eq. (2), the processing time assuming
there is no saturated GPU. There are two conditions, unsaturated
and saturated GPU, which correspond to NCPU

NGPU
< tideal

tGPU
and

NCPU
NGPU

> tideal
tGPU

, respectively. We can compute the total latency
(tSONIC) to account for both cases:

tSONIC � (1 − p) × tCPU + tGPU[1 +max(0, NCPU

NGPU
− tideal
tGPU

)]
+ tlatency. (4)

Therefore, the total latency is constant when the GPUs are not
saturated and increases linearly in the saturated case proportional
to tGPU. Substituting Eq. (2) for tideal, the saturated case
simplifies to:

tSONIC � tGPU × NCPU

NGPU
. (5)

Measurements Deploying SONIC
To test the performance of the SONIC approach, we use the setup
described in the “server stress test” in Server-Side Performance.
We vary the number of simultaneous jobs from 1 to 400 CPU
processes. To test different computing model configurations, we
run the inference with two different batch sizes: 235 (small batch)
and 1693 (large batch). This size is specified at run time through a
parameter for the EmTrackMichelId module in the FHiCL (The
Fermilab Hierarchical Configuration Language) configuration file
describing the workflow. With the small batch size, inferences are
carried out in approximately 235 batches per event. Increasing the
batch size to 1693 reduces the number of inference calls sent to
the Triton server to 32 batches per event, which decreases the
travel latency. We also test the performance impact of enabling or
disabling dynamic batching on the server.

In Figure 7 (left), we show the performance results for the
latency of the EmTrackMichelId module for small batch size vs.
large batch size, with dynamic batching turned off. The most
important performance feature is the basic trend. The processing
time is flat as a function of the number of simultaneous CPU
processes up to 190 (270) processes for small (large) batch size.
After that, the processing time begins to grow, as the GPU server
becomes saturated and additional latency is incurred while
service requests are being queued. For example, in the large
batch case, the performance of the EmTrackMichelId module
is constant whether there are 1 or 270 simultaneous CPU
processes making requests to the server. Therefore, using less
than 270 simultaneous CPU processes for the 4-GPU server is an
inefficient use of the GPU resources; and we find that the optimal
ratio of CPU processes to a single GPU is 68:1.

As described in Scale out Modeling, 7 s of the module time is
spent on the CPU for preprocessing to prepare the inputs for

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6040839

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

neural network inference. The term ttravel is computed based on a
measured round trip ping time of 12ms for a single service
request. Therefore, for small (large) batch size, the total ttravel per
event is 2.6 s (0.38 s). The difference between the corresponding
processing times for the different batch sizes roughly corresponds
to the 2.22 s difference in ttravel times. We also see that in the small
batch size configuration, the GPU server saturates earlier, at about
190 simultaneous CPU processes. In comparison, the large batch
size server saturates at about 270 simultaneous processes. This is
because the GPU is more efficient with larger batch size: at a batch
size of 235 (1693), the GPU server can process about 80,000
(125,000) images per second. The overall performance using the
SONIC approach is compared to the model from Scale out
Modeling. We see that performance matches fairly well with
our expectations.

In Figure 7 (right), we show the performance of the SONIC
approach for large batch size with dynamic batching enabled or
disabled, considering up to 400 simultaneous CPU processes. We
find that at large batch size, for our particular model, the large
batch size of 1693 is already optimal and the performance is the
same with or without dynamic batching. We also find that the
model for large batch size matches the data well.

We stress that, until the GPU server is saturated, the
EmTrackMichelId module now takes about 13 s per event in
the most optimal configuration. This should be compared
against the CPU-based inference, which takes 220 s on
average. The EmTrackMichelId module is accelerated by a
factor of 17, and the total event processing time goes from
330 s to 123 s on average, a factor of 2.7 reduction in the
overall processing time. The results are summarized in Table 3.

Server-Side Performance
Finally, it is important to note that throughout our studies using
commercially available cloud computing, we have observed that
there are variations in the GPU performance. This could result
from a number of factors beyond our control, related to how CPU
and GPU resources are allocated and configured in the cloud.
Often, these factors are not even exposed to the users and
therefore difficult to monitor. That said, the GPU
performance, i.e. the number of inferences per second, is a
non-dominant contribution to the total job latency. Volatility
in the GPU throughput primarily affects the ratio of CPU
processes to GPUs. We observe variations at the 30%–40%
level, and in this study, we generally present conservative
performance numbers.

SUMMARY AND OUTLOOK

In this study, we demonstrate for the first time the power of
accessing GPUs as a service with the Services for Optimized
Network Inference on Coprocessors (SONIC) approach to
accelerate computing for neutrino experiments. We integrate
the Nvidia Triton inference server into the LArSoft software
framework, which is used for event processing and reconstruction
in liquid argon neutrino experiments. We explore the specific
example of the ProtoDUNE-SP reconstruction workflow. The
reconstruction processing time is dominated by the
EmTrackMichelId module, which runs neural network
inference for a fairly traditional convolutional neural network
algorithm over thousands of patches of the ProtoDUNE-SP
detector. In the standard CPU-only workflow, the module
consumes 65% of the overall CPU processing time.

We explore the SONIC approach, which abstracts the neural
network inference as a web service. A 4-GPU server is deployed
using the Nvidia Triton inference server, which includes powerful
features such as load balancing and dynamic batching. The
inference server is orchestrated using Google Cloud Platform’s
Kubernetes Engine. The SONIC approach provides flexibility in
dynamically scaling the GPUaaS to match the inference requests

FIGURE 7 | Processing time for the EmTrackMichelIdmodule as a function of simultaneous CPU processes, using a Google Kubernetes 4-GPU cluster. Left: small
batch size vs. large batch size, with dynamic batching turned off. Right: large batch size performance with dynamic batching turned on and off. In both plots, the dotted
lines indicate the predictions of the latency model, specifically Eq. (4).

TABLE 3 | A comparison of results in Table 2 with results using GPUaaS.

ML module non-ML modules Total

Wall time (s)

CPU only 220 110 330
CPU + GPUaaS 13 110 123

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60408310

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

from the CPUs, right-sizing the heterogeneous resources for
optimal usage of computing. It also provides flexibility in
dealing with different machine learning (ML) software
frameworks and tool flows, which are constantly improving
and changing, as well as flexibility in the heterogeneous
computing hardware itself, such that different GPUs, FPGAs,
or other coprocessors could be deployed together to accelerate
neural network algorithms. In this setup, the EmTrackMichelId
module is accelerated by a factor of 17, and the total event
processing time goes from 330 s to 123 s on average resulting
in a factor of 2.7 reduction in the overall processing time. We find
that the optimal ratio of GPUs to simultaneous CPU processes
is 1–68.

With these promising results, there are a number of interesting
directions for further studies.

• Integration into full-scale production: A natural next step
is to deploy this workflow at full scale, moving from 400
simultaneous CPU processes up to 1000–2000. While this
should be fairly straightforward, there will be other interesting
operational challenges to be able to run multiple production
campaigns. For example, the ability to instantiate the server as
needed from the client side would be preferable. The GPU
resources should scale in an automated way when they
become saturated. There are also operational challenges to
ensure the right model is being served and server-side
metadata is preserved automatically.

• Server platforms: Related to the point above, physics
experiments would ultimately prefer to run the servers
without relying on the cloud, instead using local servers in
lab and university data centers. Preliminary tests have been
conducted with a single GPU server at the Fermilab Feynman
Computing Center. Larger-scale tests are necessary, including
the use of cluster orchestration platforms. Finally, a similar
setup should be explored at high performance computing
(HPC) centers, where a large amount of GPU resources may
be available.

• Further GPU optimization: Thus far, the studies have not
explored significant optimization of the actual GPU operations.
In this paper, a standard 32-bit floating point implementation of
the model was loaded in the Triton inference server. A simple
extension would be to try model optimization using 8-bit or 16-
bit operations. This would further improve the GPU performance
and thereby increase the optimal CPU-to-GPU ratio. More
involved training-side optimizations might yield similar
physics performance at a reduced computational cost. For
example, quantization-aware training tools such as QKeras
(Coelho et al., 2020) and Brevitas (Pappalardo et al., 2020)
could maintain performance at reduced precision better than
simple post-training quantization.

• More types of heterogeneous hardware: In this study, we
have deployed GPUs as a service, while in other studies, FPGAs
and ASICs as a service were also explored. For this particular
model and use case, with large batch sizes, GPUs already perform
very well. However, the inference for other ML algorithms may be
more optimal on different types of heterogeneous computing

hardware. Therefore, it is important to study our workflow for
other platforms and types of hardware.

By capitalizing on the synergy of ML and parallel computing
technology, we have introduced SONIC, a non-disruptive
computing model that provides accelerated heterogeneous
computing with coprocessors, to neutrino physics computing.
We have demonstrated large speed improvements in the
ProtoDUNE-SP reconstruction workflow and anticipate more
applications across neutrino physics and high energy physics
more broadly.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MW, TY, BHa, KP, KK, and JK have contributed to the software
implementation and the execution and visualization of results.
MF and BHo have contributed to the cloud computing and GPU
orchestration and tools for monitoring the workflow. PH, NT and
all other authors have contributed to the conceptual direction and
coordination of the study.

FUNDING

MF, BHa, BHo, KK, KP, NT, MW, and TY are supported by
Fermi Research Alliance, LLC under Contract No. DE-AC02-
07CH11359 with the U.S. Department of Energy, Office of
Science, Office of High Energy Physics. NT and BHa are
partially supported by the U.S. Department of Energy Early
Career Award. KP is partially supported by the High Velocity
Artificial Intelligence grant as part of the Department of Energy
High Energy Physics Computational HEP sessions program. PH
is supported by NSF grants #1934700, #193146., JK is supported
by NSF grant #190444. Cloud credits for this study were provided
by Internet2 managed Exploring Cloud to accelerate Science
(NSF grant #190444).

ACKNOWLEDGMENTS

We acknowledge the Fast Machine Learning collective as an open
community of multi-domain experts and collaborators. This
community was important for the development of this project.
We acknowledge the DUNE collaboration for providing the
ProtoDUNE-SP reconstruction code and simulation samples.
We would like to thank Tom Gibbs and Geetika Gupta from
Nvidia for their support in this project. We thank Andrew
Chappell, Javier Duarte, Steven Timm for their detailed
feedback on the manuscript.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60408311

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

REFERENCES

Aaij, R., Albrecht, J., Belous, M., Billoir, P., Boettcher, T., Brea Rodríguez, A., et al.
(2020). Allen: a high level trigger on GPUs for LHCb. Comput. Softw. Big Sci. 4,
7. doi:10.1007/s41781-020-00039-7 [arXiv:1912.09161]

Abi, B., Acciarri, R., Acero, M. A., Adamov, G., Adams, D., Adinolfi, M., et al.
(2020). Deep underground neutrino experiment (DUNE), far detector technical
design report, volume I: introduction to DUNE. J. Inst. Met 15, T08008, 2020
[arXiv:2002.02967].

ALICE Collaboration, and Rohr, D. (2019). GPU-based reconstruction and data
compression at ALICE during LHC Run 3, in 24th International Conference on
Computing in High Energy and Nuclear Physics (CHEP 2019). EPJ Web Conf.
245, 10005. doi:10.1051/epjconf/202024510005 [arXiv:2006.04158]

Aurisano, A., Radovic, A., Rocco, D., Himmel, A., Messier, M., Niner, E., et al.
(2016). A convolutional neural network neutrino event classifier. J. Inst. Met.
11, P09001. doi:10.1088/1748-0221/11/09/P09001

Ayres, D., Drake, G. R., Goodman, M. C., Grudzinski, J. J., Guarino, V. J., Talaga, R.
L., et al. (2007). The NOvA technical design report. FERMILAB-DESIGN–
2007-01. doi:10.2172/935497

Bocci, A., Dagenhart, D., Innocente, V., Kortelainen, M., Pantaleo, F., and Rovere,
M., (2020). Bringing heterogeneity to the CMS software framework. 05009.
doi:10.1051/epjconf/202024505009

Capozzi, F., Li, S.W., Zhu, G., and Beacom, J. F. (2019). DUNE as the next-
generation solar neutrino experiment. Phys. Rev. Lett. 123, 131803. doi:10.1103/
PhysRevLett.123.131803 [arXiv:1808.08232]

Caulfield, A., Chung, E., Putnam, A., Angepat, H., Fowers, J., Haselman, M., et al.
(2016). “A cloud-scale acceleration architecture,” in 2016 49th Annual IEEE/
ACM International Symposium on Microarchitecture (MICRO), Taipei,
Taiwan, October 15–19, 2016 (IEEE.). Available at: https://www.microsoft.
com/en-us/research/publication/configurable-cloud-acceleration/.

Coelho, C.N., Kuusela, A., Zhuang, H., Aarrestad, T., Loncar, V., Ngadiuba, J., et al.
(2020). Ultra low-latency, low-area inference accelerators using heterogeneous
deep quantization with QKeras and hls4ml. [arXiv:2006.10159]

Dominé, L., and Terao, K. (2020). Scalable deep convolutional neural networks for
sparse, locally dense liquid argon time projection chamber data. Phys. Rev. D.
102, 012005, 2020 [arXiv:1903.05663]. doi:10.1103/PhysRevD.102.012005

Duarte, J., Harris, P., Hauck, S., Holzman, B., Hsu, S.-C., Jindariani, S., et al. (2019).
FPGA-accelerated machine learning inference as a service for particle physics
computing. Comput. Softw. Big Sci, 3, 13. doi:10.1007/s41781-019-0027-2
[arXiv:1904.08986]

DUNE Collaboration, and Kudryavtsev, V. A. (2016). Underground physics with DUNE.
J. Phys. Conf. Ser. 718, 062032. doi:10.1088/1742-6596/718/6/062032 [arXiv:1601.
03496]

DUNE collaboration, Abi, B., Abed Abud, A., Acciarri, R., Acero, M. A., Adamov,
G., et al. (2020a). First results on ProtoDUNE-SP liquid argon time projection
chamber performance from a beam test at the CERN Neutrino Platform. JINST
15 P12004 [arXiv:2007.06722].

DUNE Collaboration, Abi, B., Acciarri, R., Acero, M. A., Adamov, G., Adams, D.,
et al. (2020b). Neutrino interaction classification with a convolutional neural
network in the DUNE far detector. [arXiv:2006.15052].

Garren, L., Wang, M., and Yang, T. (2020). larrecodnn, [software] version
v08_02_00 (accessed 2020-04-07) Available at: https://github.com/LArSoft/
larrecodnn, https://github.com/LArSoft/larrecodnn.

Google (2018). gRPC, [software] version v1.19.0 (accessed 2020-02-17) Available
at: https://grpc.io/

Google (2020). Compute Engine Documentation - machine types.
Graham, B., and van der Maaten, L. (2017). Submanifold sparse convolutional

networks. [arXiv:1706.01307].
Halzen, F., and Klein, S. R. (2010). IceCube: an instrument for neutrino astronomy.

Rev. Sci. Instrum. 81, 081101. doi:10.1063/1.3480478 [arXiv:1007.1247]
He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in IEEE Conference on computer vision and Pattern Recognition
(CVPR), Las Vegas, NV, June 27–30, 2019 (IEEE). doi:10.1109/CVPR.2016.90
[arXiv:1512.03385]

Heck, D., Knapp, J., Capdevielle, J., Schatz, G., and Thouw, T. (1998). CORSIKA: a
Monte Carlo code to simulate extensive air showers. Tech. Rep. FZKA-6019

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in IEEE/
CVF Conference on computer vision and Pattern recognition, Salt Lake City,
UT, June 18–23, 2018 (IEEE). doi:10.1109/CVPR.2018.00745

Kubernetes (2020). The Linux Foundation, “Concepts - workloads - Pods.”
Krupa, J., Lin, K., Flechas, M.A., Dinsmore, J., Duarte, J., Harris, P., et al. (2020).

GPU coprocessors as a service for deep learning inference in high energy
physics. [arXiv:2007.10359].

Marshall, J., and Thomson, M. (2013). “Pandora particle flow algorithm,” in
International conference on calorimetry for the high energy frontier, 305. 2013
arXiv:1308.4537.

Michel, L. (1950). Interaction between four half-spin particles and the decay of the
μ-meson, Proc. Phys. Soc. 63, 514. 10.1088/0370-1298/63/5/311

MicroBooNE Collaboration, Acciarri, R., Adams, C., An, R., Asaadi, J., Auger, M.,
et al. (2017a). Convolutional neural networks applied to neutrino events in a
liquid argon time projection chamber, J. Inst. Met 12, P03011. doi:10.1088/
1748-0221/12/03/P03011 [arXiv:1611.05531]

MicroBooNE Collaboration, Acciarri, R., Adams, C., An, R., Aparicio, A.,
Aponte, S., et al. (2017b). Design and construction of the MicroBooNE
detector, J. Inst. Met. 12, P02017. doi:10.1088/1748-0221/12/02/P02017
[arXiv:1612.05824]

MicroBooNE Collaboration, Adams, C., Alrashed, M., An, R., Anthony, J., Asaadi,
J., et al. (2019). Deep neural network for pixel-level electromagnetic particle
identification in the MicroBooNE liquid argon time projection chamber, Phys.
Rev. D. 99, 092001, 2019 [arXiv:1808.07269].

Nvidia (2019). Triton inference server, [software] version v1.8.0 (accessed 2020-02-
17) Available at: https://docs.nvidia.com/deeplearning/sdk/triton-inference-
server-guide/docs/index.html.

Nunokawa, H., Parke, S. J., and Valle, J. W. (2008). CP violation and neutrino
oscillations, Prog. Part. Nucl. Phys. 60, 338. doi:10.1016/j.ppnp.2007.10.001
[arXiv:0710.0554]

Pappalardo, A., Franco, G., and Fraser, N. (2020). Xilinx/brevitas: Pretrained 4b
MobileNet V1 r2, [software] version quant_mobilenet_v1_4b-r2 10.5281/
zenodo.3979501, 10.5281/zenodo.3979501.

Pedro, K. (2019). SonicCMS, [software] version v5.0.0 (accessed 2020-02-17)
Available at: https://github.com/hls-fpga-machine-learning/SonicCMS.

Pietropaolo, F. (2017). Review of liquid-argon detectors development at the CERN
neutrino platform, J. Phys. Conf. Ser. 888, 012038. doi:10.1088/1742-6596/888/
1/012038

Qian, X., and Vogel, P. (2015). Neutrino mass hierarchy. Prog. Part. Nucl. Phys. 83,
1, 2015 [arXiv:1505.01891].

Scholberg, K. (2012). Supernova neutrino detection. Ann. Rev. Nucl. Part. Sci. 62,
81, 2012 [arXiv:1205.6003].

Sfiligoi, I., Wuerthwein, F., Riedel, B., and Schultz, D. (2020). Running a pre-
exascale, geographically distributed, multi-cloud scientific simulation, High
Performance Computing 12151, 18, 2020. [arXiv:2002.06667]. doi:10.1007/978-
3-030-50743-5_2

Snider, E., and Petrillo, G. (2017). LArSoft: toolkit for simulation, reconstruction
and analysis of liquid argon TPC neutrino detectors. J. Phys. Conf. Ser 898,
042057. doi:10.1088/1742-6596/898/4/042057

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
“Going deeper with convolutions,” in IEEE conference on computer vision and
pattern recognition (CVPR), Boston, MA, June 12–15, 2015 (IEEE). doi:10.
1109/CVPR.2015.7298594

The Fermilab Hierarchical Configuration Language, Available at: https://cdcvs.fnal.gov/
redmine/projects/fhicl/wiki, https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa,
Pedro and Tran. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60408312

Wang et al. GPUaaS ML Acceleration for Neutrinos

https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/10.1051/epjconf/202024510005
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.2172/935497
https://doi.org/10.1051/epjconf/202024505009
https://doi.org/10.1103/PhysRevLett.123.131803
https://doi.org/10.1103/PhysRevLett.123.131803
https://www.microsoft.com/en-us/research/publication/confurable-cloud-acceleration/
https://www.microsoft.com/en-us/research/publication/confurable-cloud-acceleration/
https://doi.org/10.1103/PhysRevD.102.012005
https://doi.org/10.1007/s41781-019-0027-2
https://doi.org/10.1088/1742-6596/718/6/062032
https://github.com/LArSoft/larrecodnn
https://github.com/LArSoft/larrecodnn
https://github.com/LArSoft/larrecodnn
https://grpc.io/
https://doi.org/10.1063/1.3480478
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1088/0370-1298/63/5/311
https://doi.org/10.1088/1748-0221/12/03/P03011
https://doi.org/10.1088/1748-0221/12/03/P03011
https://doi.org/10.1088/1748-0221/12/02/P02017
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html
https://doi.org/10.1016/j.ppnp.2007.10.001
https://doi.org/10.5281/zenodo.3979501
https://github.com/hls-fpga-machine-learning/SonicCMS
https://doi.org/10.1088/1742-6596/888/1/012038
https://doi.org/10.1088/1742-6596/888/1/012038
https://doi.org/10.1007/978-3-030-50743-5_2
https://doi.org/10.1007/978-3-030-50743-5_2
https://doi.org/10.1088/1742-6596/898/4/042057
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki
https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki
https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments
	Introduction
	Related Work

	Setup and Methodology
	ProtoDUNE-SP Reconstruction
	CNN Model for Track Identification
	GPU Inference as a Service With LArSoft
	Kubernetes Scale out

	Results
	CPU-Only Baseline
	Server-Side Performance
	Server Standalone Performance
	Saturated Server Stress Test
	Scale out Modeling
	Measurements Deploying SONIC
	Server-Side Performance

	Summary and Outlook
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

