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We study the properties of the strongly coupled quark-gluon plasma with a multistage model of heavy-ion
collisions that combines the TRENTo initial condition ansatz, free-streaming, viscous relativistic hydrodynam-
ics, and a relativistic hadronic transport. A model-to-data comparison with Bayesian inference is performed,
revisiting assumptions made in previous studies. The role of parameter priors is studied in light of their
importance for the interpretation of results. We emphasize the use of closure tests to perform extensive
validation of the analysis workflow before comparison with observations. Our study combines measurements
from the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC), achieving a good
simultaneous description of a wide range of hadronic observables from both colliders. The selected experimental
data provide reasonable constraints on the shear and the bulk viscosities of the quark-gluon plasma at T ≈
150–250 MeV, but their constraining power degrades at higher temperatures, T � 250 MeV. Furthermore,
these viscosity constraints are found to depend significantly on how viscous corrections are handled in the
transition from hydrodynamics to the hadronic transport. Several other model parameters, including the free-
streaming time, show similar model sensitivity, while the initial condition parameters associated with the
TRENTo ansatz are quite robust against variations of the particlization prescription. We also report on the
sensitivity of individual observables to the various model parameters. Finally, Bayesian model selection is used
to quantitatively compare the agreement with measurements for different sets of model assumptions, including
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different particlization models and different choices for which parameters are allowed to vary between RHIC
and LHC energies.

DOI: 10.1103/PhysRevC.103.054904

I. INTRODUCTION

One of the primary goals of the heavy-ion program pursued
at the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) is a quantitative understanding of
the many-body properties of nuclear matter under extreme
conditions as described by quantum chromodynamics (QCD).
Lattice QCD calculations [1,2] predict that hot and dense
nuclear matter undergoes a crossover transition near a temper-
ature of 150 MeV at vanishing net baryon density, changing
from hadronic degrees of freedom to a deconfined phase of
nuclear matter—the quark-gluon plasma (QGP). While lattice
QCD calculations now provide very precise first-principles
information on the equilibrium properties of QCD matter
across this transition from hadrons to color-deconfined QGP
[1,2], the transport properties of QCD matter, such as its shear
and bulk viscosities (which are of critical importance for its
collective dynamical behavior in heavy-ion collisions), so far
remain under the purview of phenomenology.1 Calculating the
viscosities of QCD from first principles remains challenging,
in particular in the range of temperatures reached in heavy-ion
collisions (T ≈ 150–500 MeV), where nonperturbative effects
are important.2

The distributions and correlations of hadrons produced
in heavy-ion collisions provide a complementary approach
to quantify these transport properties of a QCD medium in
the laboratory. Multistage dynamical models of heavy-ion
collisions based on relativistic viscous hydrodynamics have
been successful in describing a wide range of soft (pT �
2 GeV) hadronic observables from RHIC and LHC [12–15].
It was realized early on that hadronic observables measured
in heavy-ion collisions are sensitive to the shear [16,17]
and bulk [18,19] viscosities of QCD matter. Early works in
constraining these transport coefficients with hydrodynamic
simulations of heavy-ion collisions generally focused on the
shear viscosity (cf. the reviews in Refs. [12,13]), which was
approximated as having a constant ratio to the entropy density
η/s (i.e., a constant specific shear viscosity). Contemporary
efforts attempt to constrain the temperature and chemical po-
tential dependence of the specific shear and bulk viscosities,
namely (η/s)(T, μB) and (ζ/s)(T, μB) [20,21]. Large-scale
model-to-data comparisons are necessary to achieve this goal,
given the considerable challenge of constraining the full func-
tional form of (η/s)(T, μB) and (ζ/s)(T, μB) in the relevant
temperature and chemical potential ranges.

The primary goal of this work is to explore phenomeno-
logical constraints on the temperature dependence of both
the specific shear and bulk viscosities of the nuclear matter

1See Ref. [3] for a recent overview.
2See, for example, Ref. [4] and references therein for recent efforts

at evaluating the QGP shear viscosity on the lattice and Refs. [5–11]
for other approaches to calculating these viscosities.

produced in relativistic heavy-ion collisions at high energy,
where net baryon density is negligible at midrapidity. We use a
modern multistage model to simulate heavy-ion collisions and
perform a Bayesian parameter estimation on all the associated
model parameters, including shear and bulk viscosities. The
current analysis focuses on soft hadron measurements in the
central rapidity region, as the available data are precise and
they are arguably the observables whose theoretical uncertain-
ties are best under control.

This work builds upon recent Bayesian analyses of soft
hadronic observables [22–26], in particular Ref. [27]. One
difference of the current analysis with these previous works
is our use of a more flexible parametrization of the model;
our more general functional forms for (η/s)(T ) and (ζ/s)(T )
and the wider range of viscosity values allowed (“the priors”)
in the model-to-data comparison play important roles in this
new analysis. We note that Ref. [28] also recently explored
flexible parametrizations of the (η/s)(T ), with an additional
focus on propagating uncertainties in the construction of the
equation of state.

The role of the emulator is also discussed in great depth,
in particular the importance of closure tests as a validation
of the Bayesian approach. For the first time, we quantify
the uncertainties of (η/s)(T ) and (ζ/s)(T ) stemming from
known theoretical uncertainties in modeling viscous correc-
tions to particlization; in the accompanying paper [29], we use
Bayesian model averaging to arrive at improved estimates by
combining the constraints from different particlization mod-
els. The effects of the shear relaxation time on our constraints
on (η/s)(T ) and (ζ/s)(T ) are also quantified. We further
explore constraining (η/s)(T ) and (ζ/s)(T ) by combining
experimental measurements from both RHIC and the LHC,
and explore the subtleties of including measurements from
different experiments.

Whereas one of the features of our work is the exploration
of theoretical uncertainties associated with the viscous cor-
rections to particlization and attempts to minimize the latter
by calibrating the model with pT -integrated flow observables
[30], an orthogonal approach has been pursued in recent
works [31,32] which restrict their analysis to a single parti-
clization model and instead explore additional gains in preci-
sion by including additional pT -differential flow observables.

Our work is performed within the greater scope of the
JETSCAPE Collaboration [33]. The physics objectives for the
Collaboration are (i) to obtain a complete and reliable space-
time description of the quark-gluon plasma by performing
a state-of-the-art calibration of its key properties using the
large body of available experimental data and (ii) to use this
calibrated dynamical evolution model for performing preci-
sion studies of penetrating and hard probes of the evolving
medium. Our focus here is on the first objective.

Unless noted otherwise, all equations in this paper use
natural units (h̄ = c = kB = 1). We use the “mostly minus”
metric signature gμν = diag(1,−1,−1,−1) in Cartesian
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coordinates. In general, position and momentum four-vectors
are denoted with capital letters, and their components with
Greek indices, e.g., the space-time position four-vector X has
components X μ; three-vectors are denoted with boldface, and
their components with Latin indices, e.g., the spatial position
three-vector X has components X i. The present work fo-
cuses on midrapidity observables from high-energy heavy-ion
collisions where longitudinal boost invariance is a good ap-
proximation. Such systems are most efficiently implemented
using Milne coordinates X μ = (τ, x⊥, ηs), with τ = √

t2−z2

and ηs = 1
2 ln[(t+z)/(t−z)].

II. INFERENCE USING BAYES’ THEOREM

During the evolution of heavy-ion collisions, the systems
probe a wide range of many-body regimes of quantum chro-
modynamics. Because of the microscopic system size and its
ultrafast dynamics, this many-body physics must be inferred
from the only information experimentally accessible in heavy-
ion collisions: the energy-momentum spectra and correlations
of final-state particles that hit the detectors. These particles
include stable (under the strong interaction) hadrons such as
pions, kaons, protons, unstable hadronic resonances, and also
electroweak bosons.

Given the complicated and nonlinear correlations between
parameters of the many-body dynamics and the observables,
it is rare that a given physical effect—for example, the
quark-gluon plasma having a certain temperature-dependent
viscosity—can be associated with a single observable con-
structed from final-state particles. In general, quite different
physical scenarios for the various evolution stages of the col-
lisions may lead to quantitatively similar predictions for any
single final-state observable. Disentangling different physi-
cal scenarios requires simultaneous analysis of large sets of
complementary observables, each having been measured with
finite uncertainties. This is a formidable challenge, known as
the “inverse problem” of complex models. It makes the field
of heavy-ion collisions a natural candidate for the application
of advanced statistical methods to study many-body QCD.

From an abstract point of view, systematically performing
statistical inference with a complex model requires a formal-
ism or set of axioms that can form the basis for “plausible
reasoning.” The rules of Bayesian probability offer a natural
formalism to systematically tackle such inverse problems. A
Bayesian definition of the conditional probability of some
proposition A given known information B, denoted P (A|B),
is a quantification of our degree of belief about A or its “plau-
sibility.” A simple but powerful identity, which follows from
the product rule of probability, is Bayes’ theorem:

P (A|B) = P (B|A)P (A)

P (B)
. (1)

Here the probability P (A) represents our prior knowledge or
belief about the proposition A, P (B|A) is the likelihood for
B to be true if the proposition A holds, and the normaliza-
tion P (B) = ∫

dAP (B|A)P (A) is called the overall “Bayes
evidence” for the information B to be true. The left-hand
side of Eq. (1) is known as the posterior probability distri-
bution (“posterior” in short) for the proposition A given the

information B. Equation (1) allows us to invert the order of
conditioning when we want to perform plausible reasoning
or inference about some proposition A with knowledge B in
hand. A more thorough introduction to Bayesian inference can
be found in Ref. [34].

Broadly, we could quantify many different propositions.
For example, one may want to quantify the likely values of
transport coefficients such as shear and bulk viscosity, dis-
cussed in more detail later, given measured values for the
soft (pT � 2 GeV) hadronic observables such as multiplicities
or mean transverse momenta. Another example of immediate
interest is quantifying the likely values of transport coeffi-
cients controlling the energy-momentum exchange of hard
partons and the quark-gluon plasma, given hard (pT � 8 GeV)
observables such as the nuclear modification factor of inclu-
sive hadron production. Any proposition regarding the physics
of heavy-ion collisions can in principle be quantified using
Bayesian inference.

When performing inference for heavy-ion collisions, we
only have the experimentally measured observables, comple-
mented by first-principles physics considerations, to guide us
toward what could plausibly be the dynamics of the collision.
To make quantitative statements about the quark-gluon plasma
requires a dynamical model for the entire heavy-ion collision
evolution. Broadly, the model is the relation between quanti-
ties of interest (such as the viscosities) and the observables: a
“map” from the model parameters to the observables.

Many widely used models for heavy-ion collisions include
a stage of evolution that is described by hydrodynamics,
where dynamical properties are specified by a set of transport
coefficients, such as the shear and bulk viscosities. Thus, a
major goal of the phenomenology of heavy-ion physics has
been to infer the viscosities of the QGP given hydrodynamic
models for its expansion. Hoswever, only the embedding
of these macroscopic hydrodynamic models within a more
sophisticated class of “hybrid models” [35–43], which add
modules for describing on a more microscopic level the
early prehydrodynamic and late hadronic rescattering and
freeze-out stages, has enabled a fully quantitative modeling
of heavy-ion collisions. The quantitative predictive power and
precision of these modern dynamical approaches have now
opened the door for serious efforts to tackle the “inverse
problem”: Instead of providing a range of model predictions
based on a limited scan of the model parameter space using
subjective selection criteria, the community is now beginning
to exploit the full set of available experimental observations to
provide quantitative estimates for the model parameters, with
quantified uncertainties.

The method of inferring the likely model parameters given
the observed data with use of Bayes’ theorem is called
Bayesian parameter estimation. This is the natural tool for
estimating the likely values of the viscosities of the QGP,
given a hydrodynamic model. This will occupy the largest por-
tion of this work, beginning with a description of the hybrid
model in Sec. III and a description of parameter estimation
in Secs. IV through VIII. In Sec. X, we take a brief aside
to examine a measure of our model’s sensitivity to changes
in the parameters. This helps us understand which of the
observables carry information about parameters, thereby also
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allowing us to interpret the effects of different observables on
the posterior.

Evidently, the likely values of any parameters depend not
only on the observed data but also on the model at hand.
Some parameters that have meaning in a given model may
not be relevant for a different model. Therefore, in general, it
does not suffice to take a single model that works reasonably
well, perform parameter estimation, and conclude from the
estimations that the system is quantitatively understood. It is
likely that there exists a “superior” model. In this context,
“superiority” should not only be measured by how well a
model can fit a set of data. With sufficient complexity, any
model can begin to overfit the data from a given experiment.
Such overfitting leads to a model having a less universal
applicability: When the model is applied to make a prediction
in a previously unexplored region, it can perform very poorly.
The best model to explain a given set of data should balance
“simplicity” with accuracy in reproducing the experimental
data.

A statistical tool for judging the relative merit of two mod-
els is the Bayes factor, the ratio of their Bayesian evidences as
defined in Eq. (1), which weighs both their ability to fit mea-
surements and their simplicity. Choosing between competing
models using Bayes factors is called Bayesian model selec-
tion. We will use the Bayes factor to compare various choices
of hydrodynamic hybrid models for heavy ion collisions in
Sec. XI. It can happen that, after performing model selection
for competing models that share certain common parameters,
none of the models studied is strongly favored over all others
by the available experimental data. In this situation, one might
want to estimate the posterior for the shared parameters by
averaging over the considered models [44]. This procedure of
Bayesian model averaging is explored in Ref. [29], where it is
used to obtain estimates for the shear and bulk viscosity that
include the known theoretical model uncertainty regarding
particlization, i.e., the process of converting hydrodynamic
output into momentum spectra for finally observed particles.

III. MODEL OVERVIEW

Measurements of soft (pT � 2 GeV) particles from heavy-
ion collisions can be described well by multistage dynamical
simulations whose core is relativistic viscous hydrodynamics.
Features of many-body QCD enter hydrodynamics through
medium properties such as the equation of state and transport
coefficients (e.g., the shear and bulk viscosities). The collision
dynamics preceding the applicability of hydrodynamics are
described separately with a “prehydrodynamic stage” model.
Following the hydrodynamic evolution, the last stage of the
collision proceeds microscopically via hadronic transport.

The multistage model used in this work combines the fol-
lowing ingredients:

(a) initial energy deposition from the colliding nuclei,
given by the TRENTo ansatz [45,46], followed by free-
streaming expansion [47–49];

(b) relativistic viscous hydrodynamic evolution [50–53]
employing a lattice QCD-based equation of state
[2,54,55] and flexible temperature-dependent

parametrizations of the first-order transport
coefficients;

(c) conversion of the nuclear fluid into particles em-
ploying the Cooper-Frye approach, where several
different models are used for mapping the fluid’s
energy-momentum tensor to hadronic momentum dis-
tributions [56,57];

(d) hadronic rescatterings in the hadronic transport model
SMASH [58,59] until kinetic freeze-out.

In the following subsections, we present details on each of
these ingredients.

A. Initial-stage model

First-principles descriptions of the prehydrodynamic stage
of a heavy-ion collision remain challenging. However, many
microscopic details of this early stage of the collisions are
thought to be irrelevant [60] for the initialization of hydro-
dynamics at a time τfs of order 0.1–1 fm/c (which, in kinetic
theory language, requires only the first and second momentum
moments of the microscopic distribution function). We there-
fore parameterize the initial conditions of hydrodynamics at
τfs, assuming that the system got to this time from τ = 0+ by
free streaming. Evidence from other microscopic theories of
the early dynamics in heavy-ion collisions [61–65] suggests
that (at least for systems that are sufficiently weakly coupled
to admit a kinetic theory description of their microscopic dy-
namics [66]) coarse-grained (i.e., long-wavelength) features
of the energy-momentum tensor of a conformal system follow
a relatively simple evolution similar to the free-streaming
approach employed here. The energy deposition at τ = 0+ is
parametrized with the TRENTo ansatz. This approach should
be judged by the flexibility of the combination of TRENTo
with free streaming, rather than by each component individu-
ally. Both components are now described in more detail.

1. Energy deposition at τ = 0+: TRENTO

We use Woods-Saxon profiles to describe the distribu-
tion of nucleons in each colliding heavy nucleus.3 In the
plane transverse to the collision axis, the energy4 depo-
sition immediately following the impact between the two
nuclei is parametrized with the TRENTo ansatz. This model
parametrizes the transverse energy deposition via a reduced
thickness function TR,

ε̄(x⊥) ≡ dE

dηd2x⊥
= NTR(x⊥; p), (2)

TR(x⊥; p) =
(

T p
A (x⊥) + T p

B (x⊥)

2

)1/p

, (3)

3The Woods-Saxon parameters used for Au are radius R = 6.38 fm
and surface thickness a = 0.535 fm while those for Pb are R =
6.62 fm and a = 0.546 fm.

4While initial studies used TRENTo to parametrize entropy density
[26,45,67], we follow later works [27,68] which use an energy den-
sity parametrization before free streaming.
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where N is a normalization parameter estimated by compari-
son with data, and TA and TB represent the participant nucleon
areal densities of the two nuclei.5 In Eq. (2), we assume longi-
tudinal boost invariance for the collision system, and ε̄(x⊥) ≡
limτ→0+ τε(τ, x⊥, η=0). The continuous parameter p defines
a family of mappings from TA and TB to the energy depo-
sition. Specific values of p are known to reproduce certain
features of other initial condition models [45]. When p → 0,
TR → √

TATB and the model shares similar relations between
eccentricities (ε2, ε3) and centrality [45] as those predicted
by the IP-Glasma (impact parameter dependent) initial con-
dition model [69]. This

√
TATB scaling is also expected from

imposing the conservation of longitudinal momentum with a
flux-tube profile ansatz for energy density along space-time
rapidity [70]. For p = 1, the energy deposition is equivalent to
the wounded nucleon Glauber model [71]. Nucleon positions
are sampled from the Woods-Saxon profiles of the heavy
nuclei; a parameter dmin controls the minimum distance be-
tween any pair of nucleons to mimic the short-range repulsion
of the nucleon potential.6 Nuclear collisions are generated
by performing binary-nucleon inelastic collisions in a Monte
Carlo procedure.7 The collision probability for two nucleons
separated by an impact parameter b is

dP

d2b
= 1− exp

[
−σgg

∫
d2x⊥ρ

(
x⊥+b

2

)
ρ

(
x⊥−b

2

)]
. (4)

σgg(
√

s) is an effective nucleon opacity fixed by the proton-
proton inelastic cross section at a given beam energy,

σ in
pp(

√
s) =

∫
d2b

dP

d2b
(b, σgg), (5)

and ρ is the longitudinally integrated nucleon density per unit
area in the transverse plane,

ρ(x⊥) =
∫ ∞

−∞

dz

(2πw2)3/2 exp

(
−x2

⊥ + z2

2w2

)
, (6)

i.e., the nucleon thickness function. Here, we have modeled
the density distribution of a nucleon as a three-dimensional
Gaussian function with a width parameter w. Finally, each
participant nucleon contributes to the participant density func-
tion,

TA(x⊥) =
∑
i∈A

γiρ(x⊥−xi,⊥), (7)

and similarly for nucleus B, where xi,⊥ is the position of
participant nucleon in the transverse plane and each nucleon’s
contribution is individually modulated by a stochastic factor

5TA/B should not be confused with the similar nuclear thickness
function that often appears in the optical Glauber model.

6By default TRENTo sets a fixed value for dmin but we treat the cor-
responding volume d3

min as variable when performing our parameter
estimation. In particular, we will assign a uniform prior for d3

min.
7We define minimum bias events in TRENTo as events with at least

a single binary collision. Events that produce no particles because
they have no switching hypersurface into the hydrodynamic phase
are included with zero multiplicity in the centrality selection.

γi sampled from a � distribution with unit mean and standard
deviation parameter σk .8 This additional source of fluctuations
is introduced to model the large multiplicity fluctuations ob-
served in minimum-bias proton-proton collisions.

2. Free streaming

In this study, a nontrivial initial energy-momentum tensor
is generated via a free-streaming model. It takes the initial
energy density profile by TRENTo and dynamically gener-
ates nonzero components for the entire energy-momentum
tensor. This section provides details pertaining to how this is
achieved.

The energy density (2) generated with TRENTo at τ0 = 0
is assumed to represent massless degrees of freedom with
a locally isotropic momentum distribution f (X ; P) centered
at zero transverse momentum whose effective temperature
(or mean PT ) varies with position X . The initial phase-space
distribution is evolved by free streaming; i.e., it is assumed to
solve the collisionless Boltzmann equation

Pμ∂μ f (X ; P) = 0, (8)

which has the solution

f (t, x; P) = f (t0, x−v(t−t0); P). (9)

For massless particles, P0 = |P| and p̂μ ≡ Pμ/P0 = (1, v)
where |v| = c; i.e., all particles move with the speed of light. It
is convenient to define a moment F (X ; p) of the distribution
function by

F (X ; p) ≡ g

(2π )3

∫
P3

0 dP0 f (X ; P), (10)

where g is a degeneracy factor. Then the stress tensor at any
time t > t0 is given by

T μν (t, x) =
∫

dp p̂μ p̂ν F (t, x; p)

=
∫

dp p̂μ p̂ν F (t0, x−v(t−t0
)
; p), (11)

where p is the solid angle in momentum space. The second
equality was obtained by inserting the free-streaming solution
(9).

Since we assume that the initial distribution function is
locally isotropic in momentum space, the moment F (t0) can
be related to the initial energy density by normalization:

T tt (t0, x) = NF (t0, x). (12)

In three spatial dimensions, N = 4π . Here we assume
longitudinal boost invariance, rendering the momentum dis-
tribution essentially two dimensional, and therefore use N =
2π in the mapping (12). A more detailed description of the
boost-invariant case can be found in Refs. [47–49].

Free streaming is stopped at a longitudinal proper time
τfs, and the free-streamed energy-momentum tensor (11) is
matched to that of viscous hydrodynamics through Landau

8By default TRENTo sets a fixed value for k = 1/σ 2
k , but we treat

σk as variable when performing our parameter estimation.
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matching conditions. The energy density ε in the local rest
frame (LRF) and the flow velocity uμ are the eigenvalue and
timelike eigenvector of T μν :

uμT μ
ν = εuν . (13)

The shear stress tensor is also matched exactly and given by
the traceless and transverse projection of the stress tensor:

πμν = �
μν

αβT αβ, (14)

where the transverse-traceless projector is defined by

�
μν
αβ ≡ 1

2

(
�μ

α�ν
β + �ν

α�
μ
β

) − 1
3�μν�αβ (15)

and

�μν ≡ gμν − uμuν (16)

projects onto the spatial directions in the local rest frame. The
LRF is defined by uμ

LRF = (1, 0). Because the free-streaming
dynamics continuously drive the system out of equilibrium,
the size of the initial shear stress tensor grows with the
free-streaming time τfs. We have checked in our numerical
calculations that the second-order viscous hydrodynamics can
reliably evolve the free-streaming πμν tensor to near local
equilibrium for τfs � 1.5 fm/c.

The combination of thermal and bulk pressure, p + �, is
given by

p(ε) + � = ε − T μ
μ

3
. (17)

Since we assume massless degrees of freedom (i.e., conformal
symmetry) during the free-streaming stage, the energy-
momentum tensor (11) is traceless, T μ

μ = 0. The QGP
fluid described by viscous hydrodynamics, on the other hand,
is characterized by an equation of state that breaks confor-
mal symmetry by interactions and nonzero quark masses:
pQCD (ε) < ε/3. Matching of the free-streamed energy-
momentum tensor to the hydrodynamic one thus entails a
nonzero, positive initial value for the fluid’s bulk viscous
pressure at τfs:

� = ε

3
− pQCD (ε) � 0. (18)

Note that for an expanding system a negative bulk viscous
pressure is expected in the Navier-Stokes limit; the hydrody-
namic evolution therefore quickly erases the positive initial
value (18) and switches its sign. Persistence effects from the
initially positive bulk viscous pressure depend on the value
of the bulk relaxation time, which is studied in Appendix
F. Different prehydrodynamic evolution models in which in-
teraction effects break the conformal symmetry may lead to
different initial conditions for the bulk viscous pressure, even
in sign; this might be worth investigating in future studies.

In the present model, the initialization time for hydrody-
namics is the free-streaming time τfs. It is common for model
calculations to assume that this hydrodynamic initialization
time is the same for all centralities and/or for different col-
lision systems.9 There are, however, reasons to believe that

9See, e.g., Ref. [72] for examples and exceptions.

systems with higher energy densities “hydrodynamize” faster
[73]. To capture this effect, we parametrize the free-streaming
time τfs to include a dependence on the initially deposited
transverse energy density ε̄ from Eq. (2):

τfs = τR

( 〈ε̄〉
ε̄R

)α

. (19)

Here τR is a normalization factor for the duration of the free-
streaming stage, and the parameter α controls its dependence
on the magnitude of the “average” initial energy density in the
transverse plane, defined by

〈ε̄〉 ≡
∫

d2x⊥ ε̄2(x⊥)∫
d2x⊥ ε̄(x⊥)

. (20)

We choose ε̄R = 4.0 GeV/fm2 as an arbitrary reference scale;
the resulting posteriors for α and τR depend on this choice.

B. Relativistic viscous hydrodynamics

After Landau matching, the energy-momentum tensor of
the system is evolved with second-order relativistic viscous
hydrodynamics [50–52,74,75]. In this work, we use the dis-
sipative fluid dynamics code MUSIC [76] and focus on the
midrapidity region where we can approximate the dynamics
as effectively (2+1)-dimensional with longitudinal boost in-
variance. Conservation of energy and momentum

∂μT μν = 0, (21)

T μν = εuμuν − (p + �)�μν + πμν (22)

provides evolution equations for the energy density and flow
for given viscous flows. The latter [i.e., the shear stress πμν

and bulk viscous pressure � in Eq. (22)] follow their own
relaxation equations:

τ��̇ + � = −ζθ − δ���θ + λ�ππμνσμν, (23)

τπ π̇ 〈μν〉 + πμν = 2ησμν − δπππμνθ + ϕ7π
〈μ
α π ν〉α

− τπππ 〈μ
α σ ν〉α + λπ��σμν. (24)

Here �̇ = uλ∂λ�, π̇ 〈μν〉 = �
μν
αβuλ∂λπ

αβ , θ = ∂λuλ, and
σμν = �

μν

αβ∂αuβ , with �
μν

αβ from Eq. (15).
The equilibrium properties of QCD matter are encoded

in the equation of state which enters Eq. (22) through the
pressure p= p(ε). The near-equilibrium dynamics of QCD
matter is controlled by first- and second-order transport co-
efficients that enter in Eqs. (23) and (24). The first-order
transport coefficients are the shear and bulk viscosities, η

and ζ . Second-order transport coefficients entering into our
hydrodynamic equations are δ��, λ�π , δππ , ϕ7, τππ , and λπ�,
as well as the shear and bulk relaxation times τπ and τ�.

For the equilibrium properties, we use an equation of state
matched to (i) a lattice calculation [2] at high temperatures
and (ii) a hadron resonance gas at lower temperatures (see
Refs. [54,55] for details). The hadron content of the resonance
gas is chosen to be consistent with that of the hadronic after-
burner SMASH [58] used in this work. While this consistency
is important, the matching procedure does carry some uncer-
tainties (see, e.g., Ref. [28]) which are not explored in this
work. In particular, differences in the constructed equation of
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state can lead to differences in hydrodynamic expansion and
cooling rates, and thereby to changes in the produced particle
spectra.

In this work, we assume a fixed hydrodynamic equation
of state but vary the initialization of particle spectra in the
afterburner stage according to different particlization mod-
els. These two sources of model uncertainty may not be
completely independent. The sampled particle spectra should
match the total isotropic pressure p + � on the switching
surfaces. Construction of the equilibrium equation of state
p as well as different prescriptions for the microscopic dis-
tributions given a fixed bulk viscous pressure � will both
engender differences in particle spectra. However, momen-
tum anisotropies induced by shear viscous corrections cannot
be incorporated via the equation of state, and consequently
present an independent source of model uncertainty. While
in Ref. [28] the consequences of residual uncertainties in
equilibrium equation of state for the estimation of the QGP
viscosities were studied, we here instead focused on those
caused by uncertainties in the viscous corrections at particliza-
tion.

The shear and bulk viscosities, η and ζ , are parametrized
as functions of temperature, and measurements are used to
constrain them.10 They are discussed in more detail below.

With even less quantitative theoretical guidance available
than for the first-order transport coefficients, the second-order
ones should similarly be parametrized and constrained from
measurements. Some studies11 suggest, however, that the
second-order transport coefficients have a smaller effect than
first-order ones on the evolution of the plasma. In this work,
we therefore apply the same strategy as for the first-order
transport coefficients η and ζ only to the shear relaxation time
τπ , whereas all other second-order transport coefficients are
related to first-order ones by using parameter-free relations
derived in a moment expansion of the Boltzmann equation
[80].

All transport coefficients depend on the equilibrium prop-
erties of the system, which we characterize with the tempera-
ture T .10 We parametrize the ratios of shear and bulk viscosity
to entropy density—the unitless specific viscosities—instead
of parametrizing the viscosities themselves. A depiction of the
parametrizations for the specific bulk and shear viscosities is
shown in Fig. 1.

For the specific shear viscosity, η/s, we assume that it has a
single inflection point at or above the deconfinement transition
[81]. The position of this inflection point in temperature, Tη,
is a parameter, as is the value of η/s at this point, (η/s)kink.
A linear dependence of η/s on temperature is assumed, with

10In general, if conserved charges are taken into account (which is
not done here), the transport coefficients also depend on chemical
potentials.

11The effects of second-order transport coefficients on the hydro-
dynamic evolution were numerically checked in Refs. [77,78] and
found to be small. The hydrodynamic equations of motion used
here are based on the Grad approach and constructed such that the
second-order transport effects are assumed to be small compared to
the first-order ones [79].

FIG. 1. Depictions of the parametrizations of specific bulk (left)
and shear (right) viscosity as functions of temperature. The specific
bulk viscosity has the form of a skewed Cauchy distribution, while
the specific shear viscosity is piecewise linear, with in general two
different slopes. Both shear and bulk viscosities are required to be
positive definite to satisfy the second law of thermodynamics. The
example for (η/s) shown here has positive low-temperature and high-
temperature slopes (alow, ahigh>0).

slopes alow below and ahigh above the inflection point, with
both positive and negative slopes allowed. Negative values for
η/s are not allowed. The formula for this parametrization is

η

s
(T ) = max

[
η

s

∣∣∣∣
lin

(T ), 0

]
, (25)

with

η

s

∣∣∣∣
lin

(T ) = alow (T −Tη ) �(Tη−T ) + (η/s)kink

+ ahigh (T −Tη ) �(T −Tη ). (26)

Theoretically expected is a negative slope at temperatures
below Tη, i.e., alow < 0, and a positive slope at temperature
above Tη, i.e., ahigh > 0 [82]. Nevertheless, in this work, we
will allow both slopes to take negative and positive values:
The aim is to ascertain whether phenomenological constraints
are consistent with the theoretical expectations.

For the specific bulk viscosity, we assume that it peaks near
the deconfinement temperature and that this single peak can
be captured with a skewed Cauchy distribution:

ζ

s
(T ) = (ζ/s)max�

2

�2 + (T − Tζ )2 ,

� = wζ [1 + λζ sign(T −Tζ )]. (27)

Here Tζ is the position and (ζ/s)max the value of the peak; wζ

and λζ control the width and skewness of the Cauchy distri-
bution, respectively. Allowing for a nonvanishing skewness is
a generalization compared to Ref. [27].

Previous studies [7–10,83] suggest that ζ/s for QCD peaks
near the deconfinement transition. The functional form of its
temperature dependence is still not well understood. Below
the transition (T � 150 MeV), the bulk viscosity is under-
stood to be nonzero. We emphasize that we do not attempt
to describe the dependence of the bulk viscosity below the
particlization temperature of our model (discussed in the next
section), which is never smaller than 135 MeV. The fact that
our parameterization of (ζ/s)(T ) rapidly approaches zero at
low temperature should therefore not be read as a physical

054904-7



D. EVERETT et al. PHYSICAL REVIEW C 103, 054904 (2021)

feature: This low-temperature range is never described by the
hydrodynamic code, but rather microscopically by a hadronic
transport model. While we thus cannot make any statements
about the bulk viscosity of QCD matter at these low temper-
atures it has recently been estimated in the SMASH transport
model [7].

Previous theoretical work [80,84–88] suggests that, in the
absence of conserved charges, the shear relaxation time can
be well captured by following temperature dependence:

T τπ (T ) = bπ

η

s
(T ) (28)

where bπ is a constant that we consider unknown. The lin-
earized causality bound [89] requires bπ � (4/3)/(1−c2

s )� 2.
References [80,84–87] showed for a variety of weakly and
strongly coupled theories other than QCD that this causality
bound is respected, with bπ varying between ≈2 and ≈6; we
use these values to limit the prior range explored for bπ in our
parameter estimation.

Previous investigations of the effects of the shear relax-
ation time and other second-order transport coefficients on
soft hadronic observables have found them to be of modest
phenomenological importance [25,77,78,90], consistent with
general theoretical expectations (see, e.g., Ref. [91]). Never-
theless, varying the shear relaxation time in this work provides
additional quantitative insights into the typical magnitude of
effects from a second-order coefficient on the Bayesian con-
straints for the first-order transport coefficients.

C. Particlization

Particlization is not a physical process but a change of
language from a description in terms of macroscopic fluid
dynamical degrees of freedom to a microscopic kinetic de-
scription in terms of particles with positions and momenta.
We here implement it on a surface of constant “switching” or
“particlization” temperature Tsw. In principle, this translation
requires simultaneous applicability of both approaches. Since
hydrodynamics rapidly breaks down below the confinement
transition because the mean-free path increases as a conse-
quence of color neutralization, while the strongly coupled
nature of the color confinement process itself makes kinetic
theory inapplicable during the phase transition, this condition
puts rather tight theoretical constraints on the temperature
range for the particlization procedure. We here impose these
constraints through a prior range within which we sample
the particlization temperature. As we will see below, exper-
imental data on hadronic yields provide strong constraints
on Tsw, given the assumption that particlization happens at
μi = biμB + siμS + qiμQ with μB = μS = μQ = 0 [Eq. (31)].

The Cooper-Frye [92,93] prescription for particlization
[94] is used to convert all the energy and momentum of the
fluid into hadrons on the switching hypersurface �. The for-
mula for the Lorentz-invariant particle momentum spectrum
of particles of species i with degeneracy gi in terms of their
kinetic phase-space distribution fi(X ; P) is given by

P0 dNi

d3P
= gi

(2π )3

∫
�

d3σμPμ fi(X ; P). (29)

The integral goes over the switching hypersurface � with
normal vector σμ(X ). The distribution function fi(X ; P) must
be chosen such that it reproduces the hydrodynamic energy-
momentum tensor of the fluid on the particlization surface:

T μν (X ) =
∑

i

gi

∫
d3P

(2π )3P0
PμPν fi(X ; P). (30)

Without any hydrodynamic information on all the infinitely
many other momentum moments of the distributions func-
tions, and no hydrodynamic information on how to split the
fluid T μν into contributions from different hadron species i as
written in Eq. (30), this leaves infinitely many choices for the
distribution functions fi(X, P). If the QGP fluid were an ideal
fluid in perfect local kinetic and chemical equilibrium, the
choice for fi(X, P) would be unambiguous: It would be of lo-
cal equilibrium form [92,93], with the local rest frame velocity
provided by hydrodynamics and the temperature and chemical
potentials fixed by the local-rest-frame energy density and
the chemically equilibrated hadronic particle densities. In this
case, hadronic chemical potentials would be constrained by
the equilibrium relations

μi = biμB + siμS + qiμQ, (31)

where μB, μS , and μQ are the chemical potentials associated
with the conserved baryon number, strangeness and electric
charge, and (bi, si, qi ) are the baryon, strangeness, and elec-
tric charges carried by hadron species i. All these chemical
potentials are zero in this work, μB = μS = μQ = 0, reflecting
the approximately zero net baryon, strangeness, and electric
charge near midrapidity at top RHIC and LHC collision en-
ergies. As it is, the QGP is a dissipative fluid with nonzero
dissipative flows contributing to T μν on the particlization
surface, and since hydrodynamics does not provide any mi-
croscopic information on how the system evolved to this
surface we are left with a large and irreducible ambiguity as
to the choice of local momentum distributions for the different
hadron species [95–98].

Working off the hypothesis that the color-confining
hadronization process is very strongly coupled and involves a
multitude of different possible color-neutralizing microscopic
channels [99], and with strong support from experimental
observations [100,101], we will assume that the chemical
potentials for the different hadronic species satisfy the above
chemical equilibrium relations (31) at particlization as long
as we perform it soon after completion of hadronization.
However, the dissipative flows in T μν reflect deviations of
the hadrons’ momentum distributions and yields from local
thermodynamic equilibrium, arising from dissipative correc-
tions. To specify these deviations, one might want to argue
that the distribution functions fi(X ; P) should solve a set of
coupled Boltzmann equations, but this begs the question of
what should be assumed for the form of the collision terms
and the initial conditions (both of which must be expected to
be strongly affected by the proximity in space and time of
the preceding hadronization process about whose microscopic
dynamics we know very little).

In such a situation of irreducible theoretical ambiguity, it
makes sense to ask what constraints the experimental data
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may provide. To pose this question, we here consider four dif-
ferent models of viscous corrections to the local equilibrium
distribution function:

(1) Grad’s method [102] (also known as the 14-moments
method in the relativistic context [95,103–108]);

(2) the first-order Chapman-Enskog (CE) expansion in the
relaxation time approximation [109–111];

(3) the Pratt-Torrieri-Bernhard (PTB) modified equilib-
rium distribution [54,112];

(4) the Pratt-Torrieri-McNelis (PTM) modified equilib-
rium distribution [56,112].

Given the values of the 10 components of the energy-
momentum tensor, these models are used to determine
how energy and momentum are distributed among hadronic
species and across momentum. By performing Bayesian pa-
rameter estimation, combined with Bayesian model selection
techniques using these four models, we aim to estimate the
theoretical uncertainty in the extraction of the transport coef-
ficients resulting from the viscous corrections at particlization.

We briefly describe the four models individually. For a
more in-depth review and comparison of these models, we
refer the reader to Ref. [56].

1. Linear viscous corrections: Grad and Chapman-Enskog

The Grad and Chapman-Enskog methods have both been
used extensively in the literature to study particle production
in heavy-ion collisions. They give corrections which are linear
in the dissipative currents πμν and �. Both ansatzes should
only be valid when these corrections to the thermal equilib-
rium distribution are small. In practice, this approximation is
often pushed to the limit or even beyond. In the following,
we describe the Grad and Chapman-Enskog methods in turn.
We then discuss regularization that is applied similarly to both
approaches when large viscous corrections are encountered.

a. Grad (or 14-moments) approximation. What we refer
to as “Grad’s method” assumes that the correction to the local
equilibrium distribution function can be expanded in powers
of hadronic momentum. Including only the terms relevant for
a system without a conserved charge yields

δ fi = feq,i f̄eq,icμνPμPν, (32)

where f̄eq,i ≡ 1−� feq,i and � is 1 for fermions and −1 for
bosons. Assuming that the coefficients cμν are species inde-
pendent and requiring the Landau-matching conditions yield
the following expression for the viscous correction in terms of
the dissipative currents:

δ f Grad
i = feq,i f̄eq,i

[
�

(
AT m2

i +AE (u·P)2
)

+ AππμνP〈μPν〉
]
. (33)

Here AT , AE , and Aπ are combinations of thermodynamic mo-
ments of the equilibrium distribution described in Ref. [56],
mi is the mass of the hadron species i, P〈μPν〉 = �αβ

μν PαPβ ,
and �αβ

μν is defined in Eq. (15).
b. Linearized Chapman-Enskog expansion in the relaxation

time approximation (CE RTA). The Chapman-Enskog (CE)
expansion is a method to solve the Boltzmann equation by

expanding in Knudsen number, which is the dimensionless
ratio of microscopic to macroscopic length scales in the sys-
tem. Although this series can be written down for a more
general collisional kernel, we here use the relaxation-time
approximation (RTA) [110,113],

Pμ∂μ f = −u · P

τrel
( f − feq), (34)

where feq is the local equilibrium distribution function, and
the relaxation time τrel is assumed to be species and mo-
mentum independent. Expanding the distribution function in
a series around the local equilibrium distribution, called the
Chapman-Enskog series, and keeping only the first-order cor-
rection, one finds

f = feq − τrel

u · P
Pμ∂μ feq + O(∂2). (35)

Using the zeroth-order conservation laws to rewrite deriva-
tives of the temperature and flow velocity, as well as the
Navier-Stokes relations � = −ζθ and πμν = 2ησμν , we fi-
nally obtain

δ f CE RTA
i = feq,i f̄eq,i

[
�

β�

(
(u · P)F

T 2
− P · � · P

3(u · P)T

)

+ πμνP〈μPν〉

2βπ (u · P)T

]
. (36)

Again we refer to Ref. [56] for the definitions of F , βπ ,
and β�.

c. Handling large viscous corrections. The Grad and
Chapman-Enskog momentum distributions discussed above
assume |δ f | � feq. The viscous correction δ f scales linearly
with the shear stress πμν and the bulk viscous pressure �.
It also scales either quadratically or linearly with the hadron
momentum P. There are thus values of πμν and � for which
|δ f | > feq even for moderate (thermal) momenta. Moreover,
even for small values of πμν and �, |δ f | > feq at sufficiently
large momenta.

In hydrodynamic simulations of heavy-ion collisions, it
is thus not uncommon to encounter |δ f | > feq in certain
phase-space regions. Even though these regions are usually
small enough to not contribute significantly to experimental
observables, from a practical point of view one does need to
specify a hadronic momentum distribution even when |δ f | ≈
feq. This is commonly achieved by regulating the Grad or
Chapman-Enskog viscous corrections to prevent |δ f | > feq.
In this work, this is achieved locally by setting

δ f → sign(δ f ) min( feq, |δ f |) (37)

in every cell.
The need for regulation of the linearized viscous correc-

tions has motivated models that attempt to resume the viscous
corrections to all orders. We now discuss two such prescrip-
tions.

2. Exponentiated viscous corrections:
Pratt-Torrieri-McNelis and Pratt-Torrieri-Bernhard

The approaches described in this subsection rely on the
development of positive definite “modified equilibrium” dis-
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tributions [54,56,112] that include the effects of the viscous
pressures in the argument of the exponential function that
characterizes the equilibrium distribution.

a. Pratt-Torrieri-McNelis (PTM). The Pratt-Torrieri-
McNelis (PTM) distribution [56,112] is defined as follows:

fPTM = Z
[

exp

( √
|P′|2 + m2

T + β−1
� �F

)
+ �

]−1

. (38)

Here the spatial momentum components have been trans-
formed as Pi = Ai jP′

j where

Ai j ≡
(

1 + �

3β�

)
δi j + πi j

2βπ

. (39)

The PTM ansatz has the feature that expanding to first order
in the dissipative currents yields the usual linear Chapman-
Enskog viscous correction discussed above. The yield of each
hadron is corrected from its equilibrium yield by a scaling
factor Z which depends on the bulk viscous pressure as well
as the hadron mass as described in Ref. [56].

b. Pratt-Torrieri-Bernhard (PTB). The Pratt-Torrieri-
Bernhard (PTB) distribution [54,112] is defined by

fPTB = Z�

det�

[
exp

(√
|P′|2 + m2

T

)
+ �

]−1

, (40)

where Z� is a scaling factor described in Refs. [54,56], which
again depends on the bulk viscous pressure but is species in-
dependent. � is a momentum-transformation matrix operating
on the spatial momentum components as Pi = �i jP′

j with

�i j ≡ (1 + λ�)δi j + πi j

2βπ

. (41)

In particular, λ� = �/(3β�); instead, it is adjusted such that
the total pressure of the system is matched. This method
parameterizes the effect of the bulk viscous pressure on the
particle yields and momentum spectra, and it does not reduce
to the linear Chapman-Enskog correction in the limit of small
�.

The PTB distribution was used in the recent Bayesian
analysis of Ref. [27]. It should be noted that, in contrast
to the (unregulated) linearized Grad and Chapman-Enskog
distributions, for both PTB and PTM distributions the match-
ing constraint (30) is not satisfied exactly when the viscous
stresses are large [56]. The slight matching inconsistencies in-
troduced by the different regulation schemes discussed above
were quantitatively studied in Ref. [56] and found to be
acceptable in practice. For other approaches to regulate the
viscous corrections to the distribution functions during parti-
clization, we refer the interested reader to Refs. [114–122].

We remind the reader that in the presence of bulk viscous
stresses the bulk viscous corrections to the distribution func-
tion fi shift the chemical equilibrium yields of the hadron
species i [107] and thereby have the potential to affect the
particlization temperature Tsw at which the hadron yields are
consistent with the equilibrium relations (31) (see discussion
in the following subsection).

D. Hadronic transport

In our hybrid model, we transition to microscopic hadronic
Boltzmann dynamics, simulated with the kinetic evolution
code SMASH [58,59], by imposing particlization at the
switching temperature Tsw as described above. After parti-
clization of the fluid, the resulting hadrons are allowed to
scatter, form resonances, and decay. SMASH solves a tower
of coupled Boltzmann equations for a system of hadronic
resonances,

Pμ∂μ fi(x; P) = C[ fi], (42)

where fi is the distribution function for hadronic species i and
C[ fi] is the collision term describing all scattering, resonance
formation, and decays involving particle species i.

Past phenomenological studies [36–43] have found that
including a hadronic afterburner improves the ability of
a hydrodynamic model to describe the spectra of heavier
hadronic states, such as protons. This transport approach
allows different species to reach chemical and kinetic freeze-
out dynamically. This contrasts with other approaches where
chemical and kinetic freeze-out are enforced at specific tem-
peratures.12 At particlization, the momentum distributions and
particle yields already deviate from their equilibrium relations
at that temperature due to shear and bulk viscous effects.
After switching to the afterburner, they continue to evolve un-
til yields and momentum distributions cease changing. Most
hadronic yields vary by less than 20% as a consequence of
inelastic collisions in the afterburner phase, and the parti-
clization temperature Tsw is therefore sometimes associated
with a chemical freeze-out temperature [39]. However, baryon
and antibaryon yields may change more significantly, due to
the large annihilation cross section [35,124]. As a result, this
is not a precise relationship and we indeed find somewhat
lower values for Tsw than the canonical chemical freeze-out
temperatures extracted from static thermal model fits such as
those in Refs. [100,101].

We note that none of the parameters in the SMASH after-
burner are varied in this work. We did validate, however, that
the afterburner used in this work (SMASH) agrees well with
the popular UrQMD implementation that has been used for
decades. This comparison is discussed in Appendix H 2.

Treatment of the σ meson. At particlization, the hydro-
dynamic energy-momentum tensor is converted into hadrons
assuming the system has the thermodynamic properties of a
hadron resonance gas. Though the σ meson can be formed
as a resonance in the π + π scattering channel, it has been
shown in Ref. [125] that the contribution to the partition
function from σ meson exchange (an isoscalar-scalar channel)
is almost perfectly canceled by the repulsive isotensor-scalar
channel in π + π scattering. Based on this observation, it is

12For example, the partial chemical equilibrium approach [123]
enforces chemical freeze-out at a given temperature in ideal hydrody-
namics, by introducing chemical potentials to conserve all hadronic
multiplicities to chosen chemical freeze-out values. This was a popu-
lar procedure before the widespread availability of hybrid codes (see,
e.g., Refs. [39,40] for comparisons of these two approaches).
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generally agreed that the σ meson should be omitted from
isospin-averaged hadron resonance gas models [125]. This is
the approach we use in this work: The σ meson is not sam-
pled at particlization, and correspondingly it is also omitted
in the construction of the equation of state in the hadronic
phase.13 In the hadronic afterburner, we still allow SMASH to
dynamically form and decay σ resonances because they are
an essential ingredient in explaining the π + π cross section
in SMASH. We note for reference that the Bayesian analysis
in Ref. [27] did include the σ meson in both the sampling at
particlization and the construction of the hadronic equation
of state, making this one of its differences with the current
analysis.

This concludes the discussion of the dynamical evolution
model used in this work. We now proceed to a discussion of
the statistical tools used in its calibration with experimental
data.

IV. SPECIFYING PRIOR KNOWLEDGE

Before using a set of measurements to perform Bayesian
inference, one must quantify the current state of knowledge. If
we want to infer the likely values of model parameters, given
some observed data, then we must quantify our belief about
the model parameters before we see the data. If we want to
compare models, given some observed data, we must quantify
the likely values of each model’s parameters, as well as our
belief in each model, before seeing the data. Broadly, before
we use Bayesian inference to address a question in light of
some observed data, our “prior” encodes our current state of
knowledge before we have seen the self-same data.

It is essential that the construction of the prior distribution
should not be informed by the same data that will be used in
performing parameter estimation. In particular, the posterior
of earlier analyses that used the same data sets should not in
any way be used as a prior for a new analysis: It would be an
attempt to use the same measurements twice, as well as being
likely inconsistent given differences in the models.

When selecting a prior, different factors must be con-
sidered. Theoretical constraints are important, including
self-consistency concerns for the model and/or conservation
laws or symmetries that must be respected, all of which
are problem specific. Within these constraints, a range of
different priors is possible. There are methods aimed at re-
ducing subjectivity in the choice of priors; examples include
maximum-entropy priors [126]. In this work, we focus on a
careful selection of the range of the priors, rather than on
the exact form of the prior probability distribution for each
parameter. In the following two paragraphs, we illustrate this
selection process for a subset of the parameters.

Initial conditions. There are physical constraints on the
prior for the width parameter w in TRENTo: When choosing
a reasonable range of values, one must keep in mind that the

13More details about the construction of the equation of state are
provided in Appendix H 6. The physical effects on observables
from excluding the σ meson from the hadron gas are studied in
Appendix H 4.

TABLE I. A list of all priors used (see Sec. III for the definitions
of the model parameters). All prior distributions are assumed to be
uniform and nonzero within the range quoted and zero outside. The
table does not exhibit the step functions that ensure non-negativity of
the shear viscosity at all temperatures [see Eq. (25)].

Parameter name Symbol [min., max.]

Norm. Pb-Pb 2.76 TeV N[2.76 TeV] [10, 20]
Norm. Au-Au 200 GeV N[0.2 TeV] [3, 10]
Generalized mean p [–0.7, 0.7]
Nucleon width w [0.5, 1.5] fm
Min. dist. btw. nucleons d3

min [0, 1.73 ] fm3

Multiplicity fluctuation σk [0.3, 2.0]
Free-streaming timescale τR [0.3, 2.0] fm/c
Free-streaming energy dep. α [–0.3, 0.3]
Particlization temperature Tsw [0.135, 0.165] GeV
Temperature of (η/s) kink Tη [0.13, 0.3] GeV
(η/s) at kink (η/s)kink [0.01, 0.2]
Low temp. slope of (η/s) alow [–2, 1] GeV−1

High temp. slope of (η/s) ahigh [–1, 2] GeV−1

Shear relaxation time factor bπ [2, 8]
Maximum of (ζ/s) (ζ/s)max [0.01, 0.25]
Temperature of (ζ/s) peak Tζ [0.12, 0.3] GeV
Width of (ζ/s) peak wζ [0.025, 0.15] GeV
Asymmetry of (ζ/s) peak λζ [–0.8, 0.8]

electric charge radius of the proton is about 0.9 fm. The width
parameter w in TRENTo should likely not be allowed to be
much smaller or larger than this value.

Transport coefficients. The ranges of allowed shear and
bulk viscosities are important priors. First, both viscosities
should be non-negative, to ensure the second law of ther-
modynamics, i.e., a positive entropy production rate. At the
opposite end of the allowed range, the applicability of hy-
drodynamics becomes debatable when the viscous part of the
energy-momentum tensor is large compared to the ideal part.
This can happen when the shear and bulk viscosities are large.
For self-consistency, it is thus desirable that the prior ranges
of η/s and ζ/s exclude unreasonably large values. Though
exploring large values of the viscosities may be physically
interesting, it would push the hydrodynamic component of
our model outside its regime of validity. If the experimen-
tal data require larger viscosities than included in our prior,
this should be visible in our posterior distributions for these
transport coefficients, as well as in a low value for the model
evidence, i.e., a bad fit of the data for any viscosity within
the allowed prior range. The shear relaxation time also has
physical constraints. As discussed in Sec. III B, there is a
minimum value for bπ = T τπ/(η/s) set by causality of the
linearized equations, bπ � 2, and theoretical evaluations of bπ

within a number of microscopic theories ranging from weakly
to strongly coupled provide some theoretical guidance for the
most likely range of this parameter.

In the present analysis, for simplicity all of the parameters
(denoted by the vector x) are assigned a uniform prior prob-
ability density P (x) on a finite range. These ranges are listed
in Table I; as discussed above, they have been chosen with
certain theoretical biases. The priors for different parameters
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FIG. 2. Credible intervals of the prior probability density for the
specific bulk (left) and shear (right) viscosities that we use when per-
forming Bayesian parameter estimation. The 60%, 90%, and 100%
credible intervals (C.I.) are shown.

are assumed to be independent, so that the joint prior is simply
given by their product,

P (x) ∝
∏

i

�(xi − xi,min)�(xi,max − xi ), (43)

where i runs over all the model parameters in x. Note that
uniform priors are not uninformative priors. Moreover, the
choice of priors in principle affects the results of the Bayesian
parameter estimation, especially in situations where the data
do not have sufficient information to correct prior prejudice.
For instance, in this work, we require (η/s)(T ) and (ζ/s)(T )
to be given by specific parametrizations, with each of the
parameters sampled from a uniform prior. The resulting prior
for (η/s)(T ) is, however, not uniform as a function of temper-
ature; thus, our choice of parametrization informs our prior.
A plot showing credible intervals for the prior for the shear
and bulk viscosities is shown in Fig. 2. We see that this prior
encapsulates our beliefs that the bulk viscosity should have a
peak somewhere near the deconfinement transition tempera-
ture and that the specific shear viscosity reaches a minimum
in that region.

Nevertheless, we used a broad prior for η/s, allowing it to
take either a maximum or a minimum in the deconfinement
region. By doing so, we tried to limit the theoretical bias
of our prior for (η/s)(T ). When selecting the priors for the
remaining model parameters, we followed similar considera-
tions, with the goal of ensuring that our posterior parameter
constraints will be guided as much as possible by the heavy-
ion data and not by prior prejudice.

It is important, however, to understand that in practice
theoretical bias can never be fully avoided. In many cases,
it can be helpful or even needed: If highly constraining data
are lacking, exploring the reaction of the posterior distribution
to different prior theoretical assumptions can yield useful in-
sights into the variability and reliability of model predictions
and suggest strategies for decreasing this variability with tar-
geted theoretical efforts. The Bayesian methodology accepts
the reality of theoretical bias, but at the same time accounts
for it quantitatively in the posterior probability distribution for

the model parameters x. Sensitivity to our prior assumptions
is further explored in Sec. IX.

V. BAYESIAN PARAMETER ESTIMATION
WITH A STATISTICAL EMULATOR

In this section, we describe the statistical methodology
used to estimate the likely model parameters by comparison
with the experimental data. This nontrivial problem is tackled
by the application of Bayesian parameter estimation with a
physical model surrogate or “emulator.” The use of a model
emulator is necessary when the physical simulation is com-
putationally intensive. Performing a Bayesian parameter esti-
mation requires evaluating the model’s prediction on arbitrary
points in the relevant region of the parameter space. In theory,
this involves evaluating the model for millions of different val-
ues for initial conditions, viscosities, and other model param-
eters. Given a model that requires nearly O(103) CPU-hours
to run a single set of input parameters, this would quickly
become intractable as a method of exploring the posterior. The
model emulator is designed precisely to solve this problem.
The emulator can be understood as a computationally fast in-
terpolation of the physical model simulation with an estimate
of the interpolation uncertainty. The model is evaluated on a
sample set of points in the parameter space, and the model’s
predictions at these points are used to infer the predictions at
other points in parameter space through the use of an emulator.
Such an emulator dramatically reduces the numerical cost of
estimating the posterior; the trade-offs are that it assumes
a certain smoothness in the behavior of the model outputs
as well as introduces an additional source of uncertainty in
the analysis: emulator uncertainty. In addition to describing
Bayesian parameter estimation in general, we also discuss
specifically the role of the emulator. Our discussion in this
section builds upon Refs. [22–27,68], where many of these
techniques were previously applied to Bayesian parameter
estimation in relativistic heavy-ion physics. Additional infor-
mation on Bayesian inference can be found in, e.g., Ref. [34].

A. Overview of Bayesian parameter estimation

Bayesian parameter estimation is a systematic approach to
infer the probability distribution of model parameters (x) by
comparing theoretical calculations (yx) to experimental data
(yexp). The starting point is the prior distribution P (x) that
encodes the current state of knowledge regarding the model
parameters x before making comparison with data (Sec. IV).
The posterior distribution of model parameters after model-
to-data comparison, P (x|yexp), is given by Bayes’ theorem,

P (x|yexp) = P (yexp|x)P (x)

P (yexp)
, (44)

where P (yexp|x) is the “likelihood” that the model agrees with
experimental measurement, given the parameters x, and the
normalization P (yexp) is called the “Bayesian evidence.” The
exact form of the likelihood is often unknown, as it depends on
the probability distribution of the experimental and theoretical
uncertainties. In this work, we follow the common assumption
that the likelihood can be taken to be a multivariate normal
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distribution. This choice is justified when uncertainties are
normally distributed. With this choice of likelihood function,
the logarithm of P (yexp|x) contains the quadratic form of
the difference between the measurement and the prediction
�yx = yx − yexp,

ln [P (yexp|x)] = − 1
2 ln [(2π )n det �] − 1

2�yT
x �−1�yx.

Here, n is the number of observation points (i.e., the length
of the vector yexp), and � is a covariance matrix that encodes
both experimental and model uncertainties, as well as corre-
lations among uncertainties. These correlations are generally
not readily available experimentally. As such, the treatment
of uncertainties can become a relatively complex question.
We discuss the treatment of uncertainties and the covariance
matrix separately in Sec. V C below.

In principle, in order to calculate the posterior, one is
faced with the task of calculating the evidence P (yexp). For
many problems of interest, the required high-dimensional in-
tegration can be numerically challenging or even intractable.
Fortunately, when performing Bayesian parameter estimation,
knowledge of the relative probability of different points in
parameter space is sufficiently interesting in itself. That is, as
the evidence P (yexp) does not depend on the parameters x, it
is sufficient to consider the proportionality

P (x|yexp) ∝ P (yexp|x)P (x).

Methods for estimating the posterior which take advantage of
this include Markov chain Monte Carlo. Therefore, when we
discuss or plot the posterior of parameter estimates throughout
this section, we implicitly mean the unnormalized posterior.
Hence, we are interested in the relative probability density of
each parameter set and not the absolute probability.

Because the plotted posterior for the model parameters in
general does not contain information about this normalization,
it is imperative to check the level of agreement between the
posterior prediction of observables to assess quantitatively
how well the model can describe the experimental data. As
was explained in Sec. II, it is meaningless to ponder on the
posterior estimates of parameters for a model which poorly
explains the observed data. Thus, in Sec. VII C, we will also
explore how well the model observables sampled from the
posterior fit the experimental data. An estimation of the ev-
idence P (yexp) becomes necessary if we want to compare
models in a Bayesian framework and this will be discussed
in Sec. XI.

1. Simultaneous constraints from multiple collision systems

When combining constraints from different experiments,
RHIC and LHC, for example, the joint likelihood function is
assumed to be the product of the individual likelihoods for
each system:

P(
yLHC

exp , yRHIC
exp

∣∣x) = P(
yLHC

exp

∣∣x)P(
yRHIC

exp

∣∣x)
. (45)

The parameter values that maximize the joint likelihood strike
a compromise between maximizing the individual likelihoods.

Importantly, one must decide which parameters are shared
for the different collision systems. Naively, one could expect

that all parameters should be shared; in reality, this depends
partly on how the model parameters were defined.

We highlight that comparisons with measurements can al-
ways help determine if model assumptions need to be relaxed.
If RHIC and LHC measurements could be described inde-
pendently by the model but not simultaneously, it could be
an indication that the

√
sNN dependence of certain parameters

needs to be revisited, i.e., that it may not be correct to enforce
the same value of certain parameters at RHIC and the LHC.
We will compare more complex models which relax some of
these assumptions by estimating Bayes factors in Sec. XI D.

Inclusion of data at two very different collision energies
raises the question where and how we make allowance for√

sNN dependence of the model parameters for which we
interrogate the data for constraints. Answers are provided in
the following paragraphs:

2. Initial stage model

Because TRENTo is a parametric initial condition model,
not a dynamical one, many of its parameters should, in prin-
ciple, be beam-energy dependent.14 Generically, we assume
that at high collision energies the parameters that we try to
extract from experiment evolve sufficiently slowly with

√
sNN

that their change from RHIC to LHC can be ignored. As an
exception, we retain the

√
sNN dependence of the normaliza-

tion N of the energy density in TRENTo, because it is directly
responsible in our model for the large increase of midrapidity
particle and energy production from RHIC to LHC. Rather
than parametrizing its

√
sNN dependence, we simply use two

independent normalizations at
√

sNN = 200 and 2760 GeV,
labeled by N[0.2 TeV] and N[2.76 TeV], respectively. We
also point out that in Sec. XI D we use Bayesian model se-
lection to explore whether experimental data would prefer a
dependence of the nucleon width w in TRENTo on

√
sNN.

The free-streaming time (19) is allowed to depend on
√

sNN

implicitly, through the deposited energy density.
a. Transport coefficients. The specific shear and bulk vis-

cosities, as well as the second-order transport coefficients in
our hydrodynamic approach, are medium properties that (for
systems without conserved charges) depend only on the tem-
perature of the plasma. Their parametrizations as functions of
temperature, (η/s)(T ) and (ζ/s)(T ), are therefore indepen-
dent of

√
sNN.

3. Particlization

We use the same particlization temperature Tsw at RHIC
and at the LHC. As discussed in Secs. III C and III D, parti-
clization is assumed to happen at Tsw with chemical potentials
(31) that, in a static environment, reflect chemical equilibrium
relations between the hadronic yields at Tsw. It is known

14For example, in the color glass condensate effective theory for
QCD at very high energies, the only relevant scale is the saturation
scale Qs, which controls correlations in the transverse direction and
which runs with the energy of the collision system [127]. This
suggests that the nucleon width in TRENTo should perhaps have a
similar

√
sNN dependence.
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that, when initialized in this way at Tsw, hadronic trans-
port changes these yield ratios much more slowly than they
would in a chemically equilibrated fluid [35,39,43,99,128].
The finally observed hadronic chemical composition is there-
fore largely set at particlization [128], linking the switching
temperature Tsw to the chemical decoupling temperature.15

At both collision energies, matter with approximately zero
baryon chemical potential is produced which passes through
the hadronization phase transition at the same tempera-
ture. Based on strong experimental and theoretical evidence
[99–101,128], we expect the chemical equilibrium relations
(31) between the chemical potentials of the different hadronic
species to be broken soon after hadronization is complete,
which should occur at the same value for Tsw at both colli-
sion energies. We consider this a combined theoretical and
empirical prior for Tsw.

B. Physical model emulator

Throughout this study, we define an emulator as a map
from a point in the multidimensional parameter space to
the mean vector and covariance matrix of the distribution
of all the predicted model observables of interest. This map
provides a nonparametric estimation of the physical model
calculations at arbitrary points in the region of the parameter
space of interest. It is “nonparametric” because predictions at
novel parameter points are not made by constructing explicit
functional relations between model predictions and parameter
inputs but rather are obtained by modeling the way that pre-
dictions at any point are correlated with known calculations
at other parameter points. This sample of points in parameter
space where we know the physical model calculations are
called the design points (xi; i = 1, . . . , m).

The parameter design samples are chosen carefully using
the Latin hypercube sampling technique, which randomly fills
the volume of parameter space, yielding a uniform distribution
for each parameter while maximizing the distance between
adjacent points. For models with sufficient smoothness, the
number of design points necessary to achieve a certain level
of prediction accuracy scales linearly with the dimension of
the parameter space16 [129]. In this work, we have taken a
Latin hypercube design of 500 points. At each design point,
the full model is run 2500 times for each collision system
(Au+Au at RHIC or Pb+Pb at LHC), each time with a ran-
domly fluctuating initial condition. The 2500 events are then
ordered according to the yield of charged hadrons in each
event dNch/dη to define centrality classes, and observables are

15Let us emphasize again that, for the same values of Tsw and μi

(31), bulk viscous pressure corrections (which are different at RHIC
and LHC, due to different expansion rates) will lead to different
hadron yields dNi/dy in collisions at RHIC and LHC energies. To
the best of our knowledge, this dissipative correction to thermal
equilibrium model fits of hadron yield ratios has not been previously
studied, but it is automatically taken into account in our Bayesian
inference analysis.

16This scaling of interpolation uncertainty with design size is ex-
plored in Ref. [32] for a different set of observables.

averaged over the fluctuating events in centrality bins which
match those given by the experimental measurements.

With the training data available, the following steps define
the construction and training of the emulator.

1. Dimensionality reduction via principal component analysis

When comparing the model output with experimental data,
we are faced with the large dimensionality of the output.
Many of the model observables carry correlated information.
As a simple example, an increased normalization of initial
energy density increases pion multiplicity in all centrality
bins. Therefore, the predicted value of multiplicity at differ-
ent centralities effectively equals a single degree of freedom
in response to the change of the normalization parameter.
To put it another way, a small subspace of the full model
output carries nearly all of the information about the model
parameters. Therefore, we apply principal component analysis
as a dimensionality reduction method. Suppose an array of
observations yi (i = 1, . . . , n) are calculated at each of the
m = 500 design points j. They are organized as an n × m
matrix Y with elements yi j . First, for each of the observables
yi, we compute its mean μi and standard deviation σi over the
sample of m design points. Then, each of the n observables
is standardized by subtracting the mean and dividing by the
standard deviation, yielding an n × m matrix Ỹ with elements
ỹi j = (yi j−μ j )/σ j for j = 1, . . . , m. Second, we define a new
set of “observables” zi which are linear combinations of the
standardized observables: zi = Oikỹk . One seeks an optimized
set of zi such that the linear correlations between different z
observables vanish:

〈δziδz j〉 = 1

m

m∑
k=1

(OỸ )ik (OỸ ) jk = 1

m
(O(Ỹ Ỹ T )OT )i j

= λiδi j ≡ diag{λ1, · · · , λn}, (46)

where δzi denotes the deviation of the zi from their mean.
Therefore, the coefficients Oi j that define zi are simply the
elements of the orthogonal matrix that diagonalizes the co-
variance matrix of ỹi. This optimized set of zi are the so-called
principal components. The rows of O are organized such that
the eigenvalues λi, which are the variances of the zi, have
a descending order. In this way, each successive principal
component explains less variance in the standardized observ-
ables. This allows us to reduce the standardized observable
space to a much smaller subspace, which captures most of
the information about the parameters. One should remember
that the principal component analysis can only remove linear
correlations among observables, so it is important to check
that there are no significant non-linear correlations. This is
demonstrated in Appendix C.

In our experience, a very small fraction of the total number
of principal components is generally sufficient to capture most
of the model observables’ dependence on the parameters. This
follows from the strong linear correlations present in many
pairs of observables. Pairs of observables with stronger linear
correlations carry less mutual information about the parame-
ters; Knowledge of one observable is nearly sufficient to know
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the value of the other. Gaussian processes are only trained on
this subset of dominant principal components.

From a practical point of view, we also observed that it is
important not to include too many principal components: This
limits the risk that the emulator overfits the noise present in
the simulation data.

2. Interpolating each principal component by a Gaussian process

Each dominant principal component is interpolated with
a unique Gaussian process. The spirit of a Gaussian process
regressor is to infer the outputs of the target (scalar) function
y = M(x)17 by a distribution of functions denoted by GP:
f (x) ∼ GP (mean(x), cov(x, x′)). This distribution is a mul-
tivariate normal distribution specified by a mean μ(x) and
a covariance cov(x, x′), so that the expectation value of the
output at a given x is

〈 f (x)〉 = mean(x), (47)

and the correlation of the output between two independent
inputs x, x′ is

〈δ f (x)δ f (x′)〉 = cov(x, x′), (48)

where δ f (x) = f (x) − mean(x).
To find the desired distribution of functions that emulates

M(x), one starts with a distribution that is completely agnostic
to the target function M(x). In this study, this distribution,
referred to as the unconditioned Gaussian process, is assumed
to have mean μ(x) = 018 and a covariance function k(x, x′)
(the so-called kernel function). A Gaussian process makes a
prediction at m� novel inputs X� according to the correlations
with known values that have been calculated at the m training
inputs X . Consistency requires that the joint distribution of
outputs at both training and novel inputs is also multivariate
normal with zero mean,[

f (X )

f (X�)

]
∼ N

(
0,

[
K (X, X ) K (X, X�)

K (X�, X ) K (X�, X�)

])
, (49)

where K (X, X�) is the m × m� matrix whose elements are
composed of the pointwise covariances k(xp, xq ) between
pairs of training points xp and prediction points xq. Then,
one conditions the random vector f (X ) on the training outputs
M(X ) to obtain the probability distribution of f (X∗) given
training data. The mean and covariance can be obtained by
the properties of the multivariate normal distribution,

f (X∗) ∼ GP (mean(X∗), cov(X∗, X∗)), (50)

mean(X∗) = K (X∗, X )[K (X, X )]−1M(X ), (51)

cov(X∗, X∗) = K (X∗, X∗)

− K (X∗, X )[K (X, X )]−1K (X, X∗). (52)

17In this context, the output of the target function is one of the
dominant principal components.

18It can happen that near the boundaries of parameter space the
model prediction for some principal component is nonzero. In this
case, it may be beneficial to include a nonzero mean function in the
Gaussian process. We do not explore this in this work.

Focusing on a single novel input, the prediction with un-
certainty quantification of the target function is M(x∗) ≈
mean(x∗) ± √

cov(x∗, x∗). Equations (51) and (52) imply that
if x∗ coincides with one of the training inputs then the mean
agrees with the training output with vanishing uncertainty.

In addition to the training data, choosing the kernel
function k(x, x′) is another key step in Gaussian process re-
gression. An independent kernel function k(xp, xq ) is assigned
to each dominant principal component and is given by the sum
of a squared-exponential kernel kexp(xp, xq ) and white-noise
kernel knoise(xp, xq ),

k(xp, xq ) = kexp(xp, xq ) + knoise(xp, xq ). (53)

The squared-exponential kernel is given by

kexp(xp, xq ) = C2 exp

(
−1

2

s∑
i=1

|xp,i − xq,i|2
l2
i

)
, (54)

where C2 is the unknown autocorrelation hyperparameter. The
index i runs over all s parameters, and each parameter is
assigned an uncertain hyperparameter li. This length scale
li controls the smoothness of the response of the principal
component output to a change in the ith parameter. The white-
noise kernel is given by

knoise(xp, xq ) = σ 2
noiseδp,q, (55)

where δp,q is the Kronecker delta, while σnoise is an uncertain
hyperparameter controlling the amount of statistical spread
present in the principal component. The σnoise is present be-
cause our model calculations average over a finite number of
initial conditions and a finite number of particles.

All of the hyperparameters C, li, and σnoise are assigned
a possible window and then simultaneously optimized inside
this window such that they maximize the likelihood of fit of
the Gaussian process to the training calculations. This like-
lihood includes a complexity penalty to reduce the potential
for overfitting. This procedure is automated, and performing
emulator validation is necessary to check that each kernel
function has hyperparameters which are not underfit or overfit
[130].

3. Reconstructing the observables

The predictions for principal components are then grouped
and transformed back into the observables via the inverse
PCA transformation. Variances of those nondominant princi-
pal components on which we did not train Gaussian processes
are included as prediction uncertainty. These neglected princi-
pal components in fact behave similarly to noise terms. We use
this feature to actually replace them by white noise (variance
which is uncorrelated point to point in parameter space) terms
as an estimation of their contributed uncertainty.

A more detailed description of the above procedure
can be found in Ref. [54]. We note that our use of
transverse-momentum-integrated observables, principal com-
ponent analysis, and Gaussian process model emulator for
performing Bayesian parameter estimation for heavy-ion col-
lisions is very similar to those put forward in the seminal study
[23].
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C. Treatment of uncertainties

We divide our uncertainties into three different sources:
experimental uncertainties, interpolation and statistical model
uncertainties, and systematic model discrepancies.

1. Experimental uncertainties

In general, experimental collaborations do not report the
error covariance matrix between different observables or for
different momentum bins of the same observable. As such,
we only have access to the systematic uncertainties of in-
dividual observables or bins, with limited or no information
on possible correlations. Assuming no correlations among the
errors associated with the n observables results in a diagonal
covariance matrix for the experimental systematic covariance:

�sys = diag
(
σ 2

sys,1, · · · , σ 2
sys,n

)
. (56)

In principle, the systematic uncertainties have nonzero cor-
relations. Although it is possible to use our model to estimate
correlations between the mean values of different observables,
we do not have information about other sources of system-
atic uncertainties. Without knowledge of the experimental
covariance matrix, we can only make assumptions regarding
the form and magnitude of the correlations. We have tested
the effect of this approach on the parameter posteriors in
Appendix D. However, we did not use this approach in general
in the body of this work.

2. Interpolation and statistical model uncertainties

The statistical uncertainty which is present in our model
calculations results primarily from averaging over a finite
number of fluctuating initial conditions and to a lesser extent
sampling a finite number of particles during particlization.
These result in a statistical spread in each of the principal
components (recall from Sec. V B that it is the principal com-
ponents that are interpolated, not the individual observables).

The total interpolation uncertainty is

�interp = �trunc. + �GP. (57)

The covariance �GP contains the total covariance of all
the Gaussian processes (one for each dominant principal
component), including both interpolation and statistical un-
certainties. The covariance �trunc. contains the total covariance
of all the remaining principal components to which Gaussian
processes were not fit and which were replaced by noise terms.

3. Additional systematic model discrepancy

Our model of heavy ion collisions is unavoidably imper-
fect. Therefore, there exist additional sources of systematic
discrepancy in our model when we use it to describe physi-
cal observations. Quantifying and interpreting the associated
uncertainties presents a challenging problem [131].

Some of these uncertainties could in principle be quanti-
fied, although for practical reasons we will not attempt to do
so in this work. For example, it would be meaningful to vary
all second-order transport coefficients of the hydrodynamic
model. In this work, we took only a small step in this direction
by varying the shear relaxation time.

Other model uncertainties and biases are more difficult
to study. For example, our ansatz of initial conditions for
hydrodynamics may not be sufficiently flexible to capture all
relevant features of the early prehydrodynamic evolution in
heavy-ion collisions. Accounting for these model limitations
systematically is still challenging.

In Ref. [27], a parametrized systematic model discrepancy
was included; this single percentage uncertain parameter was
meant as a proxy for all systematic model discrepancies. This
parameter was added in quadrature to the covariance matrix
of the Gaussian process for each principal component, in the
form of a diagonal matrix parametrized by the single param-
eter σm. That is, to every principal component was added
the same systematic uncertainty in percentage. This results in
a complicated distribution of the uncertainty across observ-
ables, depending on the linear transformation from principal
components to observables.

While the above approach may be a step in the right
direction, we worry about the crudeness of this distribution
of systematic uncertainty across the observables. In conse-
quence, we did not include this type of uncertainty in our
current analysis.

D. Sampling of the posterior

In our case, the posterior is a 18-dimensional probability
distribution.19 Estimation of the posterior is accomplished via
Markov chain Monte Carlo algorithms [132]. Typical algo-
rithms, including the Metropolis-Hastings algorithm, are able
to estimate the shape of the posterior without knowledge of its
normalization.

Efficient and accurate Markov chain Monte Carlo algo-
rithms are now readily available, thanks to their widespread
use in other fields (e.g., in cosmology). This includes
nested sampling, Hamiltonian methods, and parallel temper-
ing [133]. In this work, we used an implementation of parallel
tempering [134]; the algorithm showed good convergence in
sampling our posterior and at the same time made it possible
to estimate the Bayesian evidence. The latter is discussed in
Sec. XI. While this algorithm does provide an estimate for the
evidence, we will use this information only for performing
model selection; for parameter estimation, the unnormalized
posteriors were used and plotted.

E. Maximizing the posterior

Although the primary result of parameter estimation is the
posterior distribution, it is also useful to calculate the point
in parameter space which maximizes the posterior. This is
referred to as the maximum a posteriori (MAP) set of param-
eters. Because throughout this work we use priors which are
uniform distributions, the MAP parameters are those which
maximize the likelihood function, that is, the parameters
which optimize the fit to the experimental data.

19There are 16 shared parameters and one additional parameter per
collision system (the TRENTo normalization).
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VI. CLOSURE TESTS

Closure tests are required to ensure that, in a situation with
known model parameters, the Bayesian inference framework
correctly reproduces them from a set of “mock data.” These
data are obtained by running the model to generate predictions
instead of real data for the observables which one intends to
use for the model calibration. Ideally, the posterior of a closure
test should approach a δ function around the true value of
the model parameters, P (x|yx̂) → δ(x−x̂). In practice, this δ

function is always smeared by the uncertainties present in the
Bayesian parameter estimation.

A first source of uncertainties is in the model calculations
used instead of experimental data: Since for heavy-ion colli-
sions the initial conditions fluctuate stochastically and running
the model is expensive, statistical uncertainties of the “mock
data” are often larger than those from real experiments, and
these will propagate nontrivially and contribute to the width
for the parameter posterior. Additional uncertainties are con-
tributed by the emulator: (i) statistical uncertainties from the
calculations used to train the emulator; (ii) interpolation un-
certainty from the limited number of parameter samples used
to train the emulator; and (iii) the limited number of principal
components that are interpolated via Gaussian processes. Fi-
nally, there might be partial degeneracies in the model which
makes it difficult to match a unique set of observables to a
unique set of model parameters. Even if a sufficiently large
set of observables is used to avoid exact degeneracies, ap-
proximate degeneracies can persist until all the uncertainties
decrease below a certain threshold.

Closure tests provide a way to identify such potential issues
and, for a chosen set of observables, quantify the effect of
these types of uncertainties on the parameter estimation before
any comparison with measurements is performed. Closure
tests can also help clarify the level of constraint on the model
parameters that can be expected given the emulator uncertain-
ties. These two aspects of closure tests are not independent;
however, they are sufficiently different objectives that they
benefit being discussed separately.

A. Validating Bayesian inference with closure tests

In what follows, we show a sample set of closure tests.
They employ the same emulator as will later be used for
comparison with experimental data.

We proceed as follows:

(1) We generate a set of design points (xi; i = 1, . . . , mv)
for training the model emulator and a separate set of
design points for validation (x̂i; i = 1, . . . , m̂v).

(2) We perform full model calculations at both the training
and validation design points and compute final-state
observables.

(3) We perform principal component analysis on the train-
ing calculations and fit a Gaussian process to each
retained principal component.

(4) For each point i in the validation set, we use the trained
emulator to perform parameter estimation using the
calculated model observables at validation point x̂i as
the “data.”

(5) We compare the posterior P (x|yx̂i ) to the known true
values x̂i.

Our emulator uses 500 design points. At each design point,
we use the full model to compute predicted values for all
observables that will also be used in the calibration with
real data (see Sec. VII). As discussed previously, our model
includes statistical fluctuations, which arise from averaging
over a finite number of initial conditions (2500 hydrodynamic
events per design point), as well as Cooper-Frye sampling
each particlization hypersurface a finite number of times (at
least 105 particles sampled per hydrodynamic event). We use
10 principal components, which explain approximately 98%
of the model variance for Pb-Pb data at

√
sNN = 2.76 TeV.

These uncertainties, combined with the emulator uncertainty
discussed above, lead to a finite spread of our posterior
P (x|yx̂i ). What we can verify is how often the true parameters
lie within given regions of credibility.

Figure 3 shows the result of our closure tests for nine
sets of validation points. We focus on the specific shear and
bulk viscosities of the QGP, η/s and ζ/s. The parametrization
of these physical quantities involves nonlinearly correlated
parameters. These parameters are no more than a few
degrees of freedom we put into the functional form of
(η/s)(T ), (ζ/s)(T ); therefore, it is of less physical importance
to focus on the posterior of these parameters individually.
Instead, what we show in Fig. 3 are their resultant posterior
for η/s and ζ/s as functions of T , compared to the assumed
“true values” (shown as dashed black lines). Red and blue
bands show the 60% and 90% credible intervals of the esti-
mation; at different temperatures these credible intervals are
determined independently. The results demonstrate that the
functional shapes of the “true” viscosity-to-entropy ratios are
well enclosed by the inferred 60% and 90% credible regions.

B. Guiding analyses with closure tests

Figure 3 provides convincing evidence that the emulators
and the Bayesian analysis are performing well. Importantly, it
also provides a wealth of information on the eventual results
of the Bayesian parameter estimation when performed with
real data.

Recall that the result of the Bayesian analysis depends
on a variety of factors, including (i) the choice of observ-
ables, (ii) the uncertainty on these observables, and (iii) the
uncertainty of the emulator. In an ideal world, the emulator
uncertainty would be much smaller than the uncertainties on
the observables; in such a scenario, the result of the Bayesian
analysis would be essentially independent of the emulator.
This is always the goal one should strive for; however, in prac-
tice this is difficult to achieve, and most Bayesian parameter
estimations are performed under much less ideal conditions.

For the case shown in Fig. 3, emulator uncertainties are
not negligible. However, given the emulator we use in this
work, a comparison of the closure test in Fig. 3 with the prior
from Fig. 2 demonstrates that the current Bayesian parameter
estimation method, as well as the selection of observables,
have the best constraining power for η/s and ζ/s at low tem-
peratures. This is expected since these temperatures are closer
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FIG. 3. Closure tests of the specific shear (left) and bulk (right) viscosities using nine sets of validation points in the parameter space.
Performed with the emulator for Pb-Pb

√
sNN = 2.76 TeV collisions. Shown in blue are the 90% credible intervals and in red the 60% credible

intervals.

to the switching temperature between hydrodynamics and the
hadronic transport model, and much of the space-time volume
explored by the expanding medium is characterized by such
moderate temperatures [135]. The closure tests also indicate
that the uncertainty on the viscosities is large at higher temper-
atures. We believe this could be a consequence of the smaller
amount of time spent by the systems at high temperatures
[135], decreasing the sensitivity of the observables’ response
to the transport parameters in this temperature region.

Additional observables or collision energies may help
improve these constraints on the viscosities of QCD. For ex-
ample, emission of electromagnetic radiation puts somewhat
stronger weight on the earlier and shorter lived hot fireball
regions than hadrons do [135]. On the other hand, electro-
magnetic observables are plagued by larger statistical and
systematic uncertainties. Closure tests can be used exactly for
the purpose of assessing the value of adding such additional
measurements even before such data are available: They al-
low for quantifying the contribution of different observables
toward constraining the properties of the quark-gluon plasma.
In the future, this could be an important tool to guide the
priorities of experimental campaigns. Observables contribute
differently to constraining different model parameters: By
quantifying the effect of adding a new observable, or re-
ducing the uncertainty on an existing one, one can provide
meaningful feedback on which measurements should be pri-
oritized. These methods are closely related to those employed
in ”Bayesian experimental design” [136].

One caveat to be kept in mind in this context is that clo-
sure tests evidently rely on the correctness of the underlying
physics model. When we compare to actually experimentally
observed data, we cannot assume that our model provides an
exact description of the observables even when given the right

choice of parameters [131]. The systematic model discrep-
ancy must not be forgotten. Hence, the result of a closure
test should not be taken as the final word: The importance
of a given observable in constraining model parameters may
need to be revisited when physics tested by this observable is
modified in the model.

In spite of these unavoidable limitations, closure tests can
provide important guidance to experimental collaborations to
help determine which observables can best constrain physical
parameters.

VII. BAYESIAN PARAMETER ESTIMATION USING RHIC
AND LHC MEASUREMENTS

In this section, we perform a Bayesian parameter esti-
mation with RHIC and LHC measurements. We focus on
constraints for the shear and bulk viscosities provided by
transverse-momentum-integrated data from LHC and RHIC.
We perform these first analyses for a specific model of
viscous corrections at particlization, the Grad model (see Sec-
tion III C). The effect of using different viscous corrections
as well as other systematic uncertainties of the model are
quantified in the next section.

A. Constraints on η/s and ζ/s from Pb-Pb
measurements at

√
sNN = 2.76 TeV

We first study the parameter estimates including only the
data from Pb-Pb collisions at

√
sNN = 2.76 TeV. We use the

following measurements from the ALICE Collaboration:

(a) the charged particle multiplicity dNch/dη [137] for
bins in 0–70% centrality;
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(b) the transverse energy dET /dη [138] for bins in 0–70%
centrality;

(c) the multiplicity dN/dy and mean transverse momenta
〈pT 〉 of pions, kaons, and protons [139] for bins in
0–70% centrality;

(d) the two-particle cumulant harmonic flows vn{2} for
n = 2, 3, 4, for bins in 0–70% centrality for n = 2 and
for bins in 0–50% centrality for n = 3 and 4 [140]; and

(e) the fluctuation in the mean transverse momentum
δpT /pT [141] for bins 0–70% centrality.

Before being reduced by principal component analysis, this
data set represents 123 independent observables, given that
measurements at different centralities are treated as separate
observables. We found that 10 principal components (linear
combinations of observables) are sufficient to capture most
of the sensitivity of these observables to the full set of pa-
rameters: They capture more than 98% of the variance. This
number of dominant principal components represents 8% of
the total number of observables. Thus, there is a significant
amount of redundant information in the observables with re-
spect to our model parameters. We highlight that we tested
the effect on our analysis of reducing the number of principal
components: We determined that our results are robust with
respect to the number of principal components used. The
results of this test are presented in Appendix C.

We note that all observables used in this analysis are
pT integrated. Observables which are differential in trans-
verse momentum undeniably carry additional information
about the medium [31,32]. There is reasonable evidence that
low-pT (pT � 1.5 GeV) information is generally included in
pT -integrated observables [23]. The higher pT range (pT �
1.5 GeV) tends to have larger modeling uncertainties, if only
from viscous corrections at particlization which can be very
significant at higher transverse momenta. At sufficiently high
pT , hadron production is beyond the realm of hydrodynamics
altogether; this threshold is not known precisely, but even a
breakdown at pT � 2–3 GeV would not be wholly surprising.
Because of these limitations, there is a risk that inferences
using observables in the higher pT range (pT � 1.5 GeV)
lead to more precise but unreliable constraints on the parame-
ters. While both avenues are worth exploring, in the present
analysis we opt for the more conservative approach of us-
ing pT -integrated observables that introduce less model bias,
while also studying in greater detail model uncertainties.

The posteriors for the shear and bulk viscosities are shown
in Fig. 4. Recall that this result is for a single viscous correc-
tion model, the Grad viscous correction.

We first note a general feature which will remain when we
examine other viscous corrections and include more systems:
The constraint on the shear and bulk viscosities is best near the
switching temperature Tsw. This was already observed in the
closure tests performed in Sec. VI. The viscous corrections in
the particlization procedure depend on the magnitude of shear
stress πμν and bulk pressure � on the switching surface, mak-
ing the model predictions sensitive to the viscosities near these
temperatures. As we have discussed in the closure test, the
uncertainties in ζ/s and η/s are larger in the high-temperature
region. We see that for the bulk viscosity in particular, our

FIG. 4. The posterior for specific bulk (left) and shear (right)
viscosities resulting from a Grad viscous correction model param-
eter estimation using ALICE data for Pb-Pb collisions at

√
sNN =

2.76 TeV.

90% posterior credible interval is only slightly smaller than
our prior above 250 MeV.

B. Constraints on η/s and ζ/s from Au-Au
measurements at

√
sNN = 0.2 TeV

We also examine the constraints on the viscosities provided
by the existing data for Au-Au collisions at

√
sNN = 200 GeV.

Heavy-ion collisions at RHIC provide complementary infor-
mation, having smaller temperatures and a shorter lifetime
than collisions at the LHC. We use the following experimental
measurements from the STAR Collaboration:

(a) the yields dN/dy and mean transverse momenta 〈pT 〉
of pions and kaons for bins in 0–50% centrality [142],
and

(b) the two-particle cumulant harmonic flows vn{2} for
n = 2, 3 for bins in 0–50% centrality [143,144].

We remark that because of the tension between STAR and
PHENIX measured proton yields at midrapidity in Au-Au col-
lisions at

√
sNN = 200 GeV [142,145], we have deliberately

left the proton yield and mean transverse momentum out of
the current comparison.20

The above includes 29 observables, again counting cen-
tralities as separate observables. After performing principal
component analysis, we kept six principal components (equiv-
alent to 21% of the total number of observables), which
explain more than 98% of the variance of the observables
across the parameter space.

The estimated viscosities using only these measurements
from RHIC, again for the Grad viscous correction, are shown
in Fig. 5. The posteriors for specific bulk and shear viscosity

20Moreover, both measurements [142,145] show notable excess of
proton production over antiproton production, suggesting the im-
portance of including a nonzero baryon chemical potential (μB) in
our calculation. The current study assumes μB = 0 in both initial
condition and dynamical evolution, and improvement should be con-
sidered in future studies.
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FIG. 5. The posterior for specific bulk (left) and shear (right)
viscosities resulting from a model parameter estimation using STAR
data for Au-Au collisions at

√
sNN = 200 GeV.

when calibrating against only RHIC data have in general dif-
ferent features than those given by the LHC data. For instance,
we see that a large specific bulk viscosity is allowed near the
switching temperature. Also, the 90% credible interval for the
specific shear viscosity extends to lower values for these data
than the LHC data; only using these RHIC observables, a
specific shear viscosity which is nearly zero (η/s < 0.03) is
consistent with the data.

It is important to note that not only the specific bulk and
shear viscosity parameters have different posteriors, but in
general the entire parameter posterior will be different when
we use RHIC observables rather than LHC observables. The
two are compared for a different subset of model parameters
in Appendix B.

C. Viscosity estimation and model accuracy
for combined RHIC and LHC data

Reviewing Figs. 4 and 5, we find that the observables at
the LHC give stronger constraints on the slope of the spe-
cific shear viscosity at large temperature. It is the general
expectation that higher

√
sNN collisions at the LHC are more

sensitive to the transport coefficient at high temperature. This
conclusion was verified quantitatively in previous Bayesian
parameter estimation [24,146]. For the present analysis, we
do caution that we currently use a different number of ob-
servables at RHIC and the LHC; consequently, we are not in
a position to compare systematically the constraining power
of the two collision energies at the moment. We do expect
RHIC and LHC data to be complementary, and we proceed
to a combined Bayesian parameter estimation for Pb-Pb at√

sNN = 2.76 TeV and Au-Au at
√

sNN = 200 GeV collisions.
For this combined analysis, the viscosity posterior for the
Grad viscous correction is shown in Fig. 6.

As discussed in Sec. V A, all parameters are held the same
for the two systems except for their overall normalizations of
the initial conditions: N[2.76 TeV] and N[0.2 TeV]. Recall
that model parameters being kept constant does not imply that
the effective physical quantities are the same at RHIC and the
LHC. For example, the transport coefficients are temperature

FIG. 6. The posterior for specific bulk (left) and shear (right) vis-
cosities resulting from a model parameter estimation using combined
data for Au-Au collisions at

√
sNN = 200 GeV and Pb-Pb collisions

at
√

sNN = 2.76 TeV.

dependent, and the free-streaming time depends on
√

sNN and
centrality through the total energy of the event.

The information gained by fitting both systems slightly
reduces the width of the credible intervals for the specific
shear and bulk viscosities at temperatures above 250 MeV;
the 90% credible band in the posterior for specific shear and
bulk viscosity is slightly smaller than the credible intervals
given by calibrating against either one of these two systems
alone. This illustrates the added constraining power accessed
by combining the two data sets.

The simultaneous fit to experimental observables is shown
in Fig. 7, where we have plotted the emulator prediction for
the observables at 100 parameter samples drawn randomly
from the posterior. Note that in spite of some undeniable
tension in the simultaneous fit of ALICE and STAR data
(for example in the mean transverse momenta of kaons), our
hybrid model can describe simultaneously all of the observ-
ables we considered for the two systems to within 20% of the
experimental results. As discussed earlier, this is important:
Our confidence in the significance of this section’s parameter
estimates rests on a good description of the experimental data
when sampling model parameters according to their posterior
probability distribution.

As a final emulator validation, we have calculated the
maximum a posteriori (MAP) parameters of the Grad viscous
correction model. Using these parameters, we simulated 5000
fluctuating events and performed centrality averaging. The
comparison between the hybrid model prediction at the MAP
parameters and the experimental data are shown in Fig. 8,
and MAP parameters for the Grad, Chapman-Enskog, and
Pratt-Torrieri-Bernhard models are listed in Table II.21

Because our prior for each of these parameters was uniform
on a finite range, the parameters which maximize the posterior
also maximize the likelihood function; this means that they
also optimize the fit to the experimental data (i.e., minimize
χ2).

21For reasons explained in Sec. VIII A, the Pratt-Torrieri-McNelis
model (PTM) is left out from Table II.
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FIG. 7. The observables predicted by the Grad viscous correction
emulator, drawn from the posterior resulting from the combined fit
of ALICE data (left) for Pb-Pb collisions at

√
sNN = 2.76 TeV and

STAR data (right) for Au-Au collisions at
√

sNN = 200 GeV. The
simultaneous fit yields model observables which agree within ≈20%
of experimental measurements.

VIII. PARAMETER ESTIMATION AND SYSTEMATIC
MODEL UNCERTAINTIES

In this section, we continue our exploration of the es-
timated parameter posterior for the combined LHC Pb-Pb√

sNN = 2.76 TeV and RHIC Au-Au
√

sNN = 0.2 TeV data.
We identify and discuss some of the largest sources of theo-
retical uncertainty in the physical model and the effect these
uncertainties have on constraining the viscosities of QCD.

The first source of uncertainty that we investigate in
Sec. VIII A originates from mapping the hydrodynamic fields
to hadronic momentum distributions, the “viscous correc-
tions” at particlization, discussed in Sec. III C. Recall that the

FIG. 8. The observables resulting from averaging over 5000 fluc-
tuating events for each system, run with the MAP parameters of
the combined calibration of ALICE data for Pb-Pb collisions at√

sNN = 2.76 TeV and STAR data for Au-Au collisions at
√

sNN =
200 GeV. Results are shown for the Grad viscous correction. Shaded
bands around model predictions reflect the variance arising from
initial-state fluctuations combined with statistical fluctuations from
the particlization sampler. Pb-Pb

√
sNN = 2.76 TeV events are shown

at left and Au-Au
√

sNN = 0.2 TeV events at right.

results from the previous section were for a specific choice of
viscous corrections, the Grad model.

The viscous corrections correspond to one source of un-
certainty in the transition from hydrodynamics to particles. A
second source is the determination of the particlization hy-
persurface, which in this work is defined at a fixed switching
temperature Tsw. We discuss the dependence of our results on
this switching temperature in Sec. VIII B. We discuss at the
same time the transition between the early stage of the model
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TABLE II. Table of MAP parameters of the Grad, Chapman-
Enskog (CE), and Pratt-Torrieri-Bernhard (PTB) viscous correction
models, from combined RHIC and LHC data.

Parameter Grad CE PTB

N[2.76 TeV] 14.2 15.6 13.2
N[0.2 TeV] 5.73 6.24 5.31
p 0.063 0.063 0.139
σk 1.05 1.00 0.98
w [fm] 1.12 1.19 0.81
d3

min [fm3] 2.97 2.60 3.11
τR [fm/c] 1.46 1.04 1.46
α 0.031 0.024 0.017
Tη [GeV] 0.223 0.268 0.194
alow [GeV−1] −0.776 −0.729 −0.467
ahigh [GeV−1] 0.37 0.38 1.62
(η/s)kink 0.096 0.042 0.105
(ζ/s)max 0.133 0.127 0.165
Tζ [GeV] 0.12 0.12 0.194
wζ [GeV] 0.072 0.025 0.026
λζ −0.122 0.095 −0.072
bπ 4.65 5.62 5.54
Tsw [GeV] 0.136 0.146 0.147

and hydrodynamics, which we find exhibits clear correlation
with the switching temperature.

Finally, we discuss the effect of second-order transport
coefficients, as quantified with the shear relaxation time in
Sec. VIII C.

A. Mapping hydrodynamic fields to hadronic
momentum distributions

As discussed in Sec. III C, there are still significant un-
certainties in matching the energy-momentum tensor from
hydrodynamics to a unique hadronic momentum distribution.
Inevitably this affects the results of the phenomenological
constraints we obtain on the shear and bulk viscosity of QCD:
The posterior for every model parameter depends on the
choice of viscous correction at particlization. Recall that in
this work, we chose to study four different models of viscous
corrections (see Sec. III C): (i) Grad (“14-moments”), (ii)
Chapman-Enskog in relaxation time approximation, (iii) an
exponentiated version of the Chapman-Enskog model referred
to as “Pratt-Torrieri-McNelis” (PTM), and (iv) an additional
exponentiated model of viscous corrections referred to as
“Pratt-Torrieri-Bernhard.” In our tests, we found that the pos-
teriors for the exponentiated Chapman-Enskog ansatz called
Pratt-Torrieri-McNelis were always very similar to the results
for the linearized Chapman-Enskog ansatz. To avoid clutter,
we therefore decided not to show the posteriors for the Pratt-
Torrieri-McNelis model, either in this section or anywhere
else in this work. We begin with the marginalized posteriors
for the QGP viscosities, shown in Fig. 9. The figure exhibits
clear differences in the experimentally preferred shear and
bulk viscosities for the different viscous correction models.
Remember that it is important to read Fig. 9 with respect to
the parameter prior whose 90% credibility region is indicated
by the gray shaded area. A posterior that covers the same area

FIG. 9. The 90% credibility intervals for the prior (gray shaded
area) and for the posteriors (colored outlines) of the specific bulk
(left) and shear (right) viscosities, for three viscous correction
models: Grad (blue), Chapman-Enskog (CE, red), and Pratt-Torrieri-
Bernhard (PTB, green). The Pratt-Torrieri-McNelis (PTM) posterior
is not shown but is nearly identical with the Chapman-Enskog result.

as the prior should be interpreted as indication for weak or
even absence of experimental constraints. On the other hand,
a posterior that systematically excludes certain regions of the
prior provides good evidence that parameter values in these
excluded regions are disfavored by data.

For the bulk viscosity (left), we can see in Fig. 9 that
each of the different viscous correction models excludes only
relatively small regions of the prior. For all four particlization
models, the constraints on ζ/s are tighter at lower tempera-
tures than at higher ones. However, the ζ/s regions favored
by each model at low temperature differ from each other:
The Grad viscous correction model favors a larger ζ/s where
the Chapman-Enskog model favors lower values, with the
Pratt-Torrieri-Bernhard model lying in between. We note in
particular that the Pratt-Torrieri-Bernhard posterior is very
narrow at low temperature. We understand this to be a con-
sequence of mean transverse momenta and harmonic flows
being very sensitive to the specific bulk viscosity near the
switching temperature for the Pratt-Torrieri-Bernhard viscous
correction model. We quantify and revisit this difference in
sensitivity of the viscous correction models in Sec. X.

Overall, only large values of ζ/s at low temperature are
excluded by all three viscous correction models. As such,
our constraints on the bulk viscosity are limited, especially
after accounting for the model uncertainty introduced by the
viscous corrections.

For the shear viscosity shown in the right panel of Fig. 9,
we encounter a similar situation: Limited constraints on η/s
at higher temperatures, and exclusion of large values of η/s
at low temperature by all viscous correction models. Overall,
shear viscosity is best constrained at temperatures around
200 MeV.

From the results of this section, we see that viscous cor-
rections represent a considerable uncertainty in constraining
the QGP shear and bulk viscosities. It is important to remem-
ber that all viscous correction models studied in this work
are based on relatively simple assumptions. The capacity of
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any of these models to describe correctly the momenta and
chemistry of a realistic out-of-equilibrium system of hadrons
is still under investigation (see Refs. [97,98] and references
therein for a recent overview). For instance, all of these par-
ticlization models assume that the hydrodynamic shear stress
is shared “democratically” among the hadronic species. This
approximation greatly simplifies the models, but microscopic
transport theory suggests that it may not be suitable for
heavier hadrons such as protons [96]. Additional theoretical
efforts (see, e.g., Refs. [95–98,147]) may be able to shed
more light on this question and provide additional insights
that can be used for tightening our prior assumptions in fu-
ture Bayesian analyses. Until this happens, the particlization
model uncertainty must be considered as “irreducible” and is
best accounted for by Bayesian model averaging as reported
in Ref. [29].

B. Transition to and from hydrodynamics:
Initial state and switching temperature

The previous section focused on the uncertainty originating
from transitioning from hydrodynamics to a particle descrip-
tion of the system. This transition occurs on a hypersurface
defined by a temperature Tsw. Recall that this switching tem-
perature is also a model parameter, allowed to vary between
135 and 165 MeV.

The other transition point to hydrodynamics is the time
at which hydrodynamics is initialized with the energy-
momentum tensor from the preceding free-streaming evolu-
tion (Sec. III A). This hypersurface is defined at a constant
proper time τfs, the value of which depends on two parameters
as defined in Eq. (19). The hydrodynamic initial conditions
on this hypersurface further depend on the initial condition
parameters of the TRENTo ansatz. In this section, we discuss
the posterior of Tsw, τfs, and the TRENTo parameters, how
they are correlated, and how they are affected by the viscous
correction models discussed in the previous section.

Figure 10 provides a dimensionally reduced representation
of the joint posterior probability distribution for all model pa-
rameters, except those related to shear and bulk stress, for two
viscous correction models, Grad (blue) and Chapman-Enskog
(red). Histograms on the diagonals are the marginalized one-
dimensional posteriors for each parameter. The off-diagonal
histograms are the joint posteriors for each pair of parameters,
marginalized over all others.

One observes that, within the chosen prior range, the nor-
malizations of the initial energy density for the two systems
N[2.76 TeV] and N[0.2 TeV] are well constrained by the
observables, for both viscous correction models, but with
slightly shifted peak values. Note that since the final multi-
plicities are fixed by experiments, lower normalization factors
for the initial energy (and hence entropy) density reflect larger
viscous heating effects during the subsequent dynamical evo-
lution. The amount of viscous heating is also affected by
the particlization temperature Tsw, with lower values of Tsw

corresponding to longer lifetimes of the hydrodynamic stage.
We further find that the estimation of the generalized mean

parameter p is the same for the two viscous correction models,
close to p = 0. We verified that p is also close to zero (p ≈

0.1) with the Pratt-Torrieri-Bernhard viscous model. These p
values are consistent with previous studies which also used the
Pratt-Torrieri-Bernhard viscous correction model but differed
in some other model details [54]. The result p ≈ 0 seems to be
remarkably robust across all existing Bayesian inference anal-
yses of high-energy heavy-ion collision data [26,27,54,68].
We note that TRENTo with p = 0 shares important aspects of
fluctuating collision geometry with phenomenologically suc-
cessful initial condition models based on saturation physics.
For example, p = 0 predicts that the energy deposition is
proportional to

√
TATB as discussed in Sec. III A. This unique

feature of the initial local energy density being solely a func-
tion of the product TA(x⊥)TB(x⊥) is also found in the pQCD
+ saturation based EKRT initial condition model [81],22 and
in models with approximate longitudinal boost invariance
the

√
TATB dependence can be motivated by simple argu-

ments based on conservation of energy and momentum during
the initial energy deposition process [70]. Earlier studies
[26,45] further noted that for p ≈ 0 TRENTo can reproduce
the centrality-dependent two-particle cumulant eccentricity ε2

and triangularity ε3 of the IP-Glasma initial condition model
[69]. However, one should keep in mind that the two models
have very different participant scaling of local energy depo-
sition. According to Eqs. (2) and (3), TRENTo for p = 0 sets
the initial local energy density proportional to

√
TATB, but the

IP-Glasma model predicts a TATB scaling immediately after
the collision [148]. The two models also have different levels
of granularity and fluctuation in the energy deposition [69].
Moreover, studies [149,150] that used the IP-Glasma model
to initialize the hydrodynamics defined centrality differently
from the present and earlier studies using the TRENTo model
[26,68]. All these differences convoluted into the comparison
of centrality-dependent ε2 and ε3 between the two models.
Therefore, TRENTo (p = 0) should not be considered a sub-
stitute for these theories based on saturation physics but rather
taken as an efficient parametrization of general geometric
features shared by these initial-state models that happen to be
preferred by the experimental data.

The nucleon width w, which controls the transverse length
scale of energy fluctuations in the initial state, is also well
constrained by the data and found to be about 1.1 fm, nearly
independent of the two viscous correction models. A smaller
value for this nucleon width (w ≈ 0.9 fm) was found, how-
ever, with the Pratt-Torrieri-Bernhard viscous correction.

In general, our conclusion for the TRENTo parameters is
that they do not appear to be highly sensitive to the choice
of viscous correction model at particlization. However, the
particlization uncertainty should not be entirely ignored as it
can be larger than the width of the posteriors for each of these
parameters.

The posteriors for the free-streaming timescale τR and the
associated energy dependence parameter α are not easily in-
terpreted; they are correlated by our parametrization [Eq. (19)]

22Though the EKRT model used a different parametrization for
the relation between energy density and TATB, its functional form
agrees very well with the

√
TATB relation for typical nuclear thickness

functions obtained for lead nuclei.
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FIG. 10. The posterior for Grad (blue) and Chapman-Enskog (red) viscous corrections for select parameters related to the initial state,
prehydrodynamic evolution, and switching temperature. The histograms on the diagonal are the marginal distributions for each parameter,
with appended numbers denoting the median and the left and right limits of the 90% credible interval. Off-diagonal histograms display the
joint posterior of each pair of parameters, marginalized over all others.

of the effective free-streaming time τfs. We can point out, how-
ever, that the posteriors for the Grad and Chapman-Enskog
models are quite different for these two parameters; in the
case of the Chapman-Enskog model, the posterior for α is
bimodal. It is not clear whether the peak in α near −0.3 is
a local maximum or if there exists a global maximum in the
posterior for values of α less than −0.3. We cannot currently
differentiate between these two scenarios.

We can take a closer look at the posterior of the free-
streaming time by plotting it as a function of the physical
scale e0, which is the magnitude of the average initial energy
density in the transverse plane. This is shown in Fig. 11. We
see that the 90% credible interval for the energy dependence
of the free-streaming time is not well constrained and that
it is consistent with having no energy dependence. What is
constrained is the overall magnitude of the free-streaming
time. The Chapman-Enskog model has a posterior which

054904-24



MULTISYSTEM BAYESIAN CONSTRAINTS ON THE … PHYSICAL REVIEW C 103, 054904 (2021)

FIG. 11. The 90% posterior credible intervals for the free-
streaming time, as a function of the initial average transverse energy
density defined in Eq. (20), resulting from parameter estimation
using combined data for Au-Au collisions at

√
sNN = 200 GeV and

Pb-Pb collisions at
√

sNN = 2.76 TeV. The Grad model is shown with
solid blue, Chapman-Enskog with dashed red, and Pratt-Torrieri-
Bernhard with dotted green lines.

prefers smaller free-streaming times, while the Pratt-Torrieri-
Bernhard model prefers the largest free-streaming time of all
particlization models studied.

It is generally expected that collisions with higher en-
ergy density will hydrodynamize more rapidly [73]. In our
model, this would correspond to α < 0. The peak at α > 0
in the posterior for α is at variance with this expectation.
One should remember, however, that our prehydrodynamic
model does not naturally lead to hydrodynamization, which
is instead enforced by hand at τfs. As such, it is conceptually
problematic to associate our free-streaming time τfs with a
hydrodynamization time. As discussed in connection with
Eq. (18), hard matching an energy-momentum tensor from
a conformally invariant prehydrodynamic evolution model
without thermalization to dissipative hydrodynamics with a
nonconformal EoS leads to a (possibly large) positive (i.e.,
unphysical) initial value for the bulk viscous pressure whose
subsequent decay can have counterintuitive effects on the
subsequent hydrodynamic flow and its dependence on τfs.
Recent studies demonstrate that this problem persists when
the free-streaming module is replaced by a thermalizing but
conformal effective kinetic theory and that the magnitude
of the mismatch depends on centrality [151]. Although we
have not been able to fully dissect the mechanisms leading
to positive preferred values for α in our analysis, we strongly
suspect that these issues play a role.

Turning to the later stages of the collision, we now look
at the posterior for the switching temperature in Fig. 10. Its
marginalized posterior turns out to be quite different for the

two particlization models. We find that for the selected exper-
imental observables the effects of increasing the magnitude of
the bulk viscous pressure or increasing Tsw are qualitatively
similar. We verified that if we hold all other parameters fixed
while increasing the switching temperature from 135 to 165
MeV, the mean transverse momenta of pions and protons is
reduced and the number of protons is increased. On the other
hand, holding Tsw fixed and increasing (ζ/s)max has the same
effect. Because the Grad model prefers a large specific bulk
viscosity near switching, it also prefers a lower switching
temperature.

Although some of the parameters which define the
TRENTo model are well constrained, their interpretation is not
always straightforward. To what extent p ≈ 0 in the TRENTo
model provides support for saturation physics or is mostly
a consequence of energy-momentum conservation combined
with approximate boost invariance at high collision energies
deserves further study. Similarly, we found our posterior for
the energy density dependence of the free-streaming time
difficult to understand. Further theoretical understanding of
these issues is likely to find its way into improved mod-
els. For example, there is considerable room for improving
the description of the prehydrodynamic evolution stage. It
is encouraging that, using the likely values for the TRENTo
model parameters, we are able to describe our experimental
observables with good accuracy. Still, there is obvious value
in seeking models which cannot only fit the experimental
data but at the same time offer a coherently and consistently
interpretable physical picture.

C. Second-order transport coefficients: Shear relaxation time

As discussed in Sec. III B, second-order transport coef-
ficients are treated differently in this work than first-order
ones: The shear and bulk viscosities are parametrized, while
the second-order transport coefficients are related to the first-
order ones through relations derived in kinetic theory. The one
exception is the shear relaxation time τπ , whose normalization
is allowed to vary in a wide range. This allows for a precise
quantification of the effect of a second-order transport coeffi-
cient on phenomenological constraints on η/s and ζ/s.

Figure 12 examines the extent to which the shear relaxation
time normalization factor bπ affects the posterior of first-order
transport coefficients. When trying to fit the experimental
data, we see that in general smaller values of the shear re-
laxation time lead to larger shear viscosities, and vice versa.
This is because increasing either bπ or η/s tends to reduce the
harmonic flows, for instance.

Some sensitivity to the shear relaxation time factor bπ may
be caused by the use of free streaming as a prehydrodynamic
model. Indeed, free streaming can generate large values of
πμν . The subsequent size of πμν in hydrodynamics, follow-
ing free streaming, is governed by the overall size of τπ

which controls the relaxation toward the Navier-Stokes limit
π

μν
NS = 2ησμν . Previous viscous hydrodynamics studies, us-

ing different initial conditions (not including free streaming),
found a smaller sensitivity to bπ [152,153]. Note, however,
that these studies did not include higher harmonic flows (v3,
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FIG. 12. The posterior of specific bulk (left) and shear (right)
viscosities, depending on whether one marginalizes over the shear
relaxation time factor bπ (solid blue) or fixes it (dashed or dotted
blue). The shear relaxation time and magnitude of η/s are seen to be
inversely related when fitting the LHC and RHIC data.

v4,...), which we find to have a stronger sensitivity to bπ than
v2. This will be discussed in Sec. X.

Since there is significant uncertainty induced by the shear-
relaxation time on η/s (and to a lesser extent on ζ/s), future
efforts should consider varying other second-order transport
coefficients. Among those, the most important is likely the
bulk relaxation time. Performing a systematic analysis of all
second-order transport coefficients would be a significant fu-
ture undertaking, in part because their parametric dependence
must be specified and a prior needs to be fixed before perform-
ing parameter estimation.23 Nonconformal hydrodynamic has
a large number of second-order transport coefficients [108];
relatively little is known for many of them. There is value
in simultaneously studying these transport coefficients theo-
retically and phenomenologically. Even if these coefficients
cannot be constrained from measurements, their influence on
other model parameters should be studied.

IX. SENSITIVITY TO PRIOR KNOWLEDGE
AND ASSUMPTIONS

Each model parameter in this study is assumed to have
a uniform prior probability density over a finite range. This
range represents crucial prior knowledge or assumptions. Our
wider, less subjective prior (Table III, middle column) almost
completely24 encloses as a subspace the narrower, more sub-
jective prior range postulated in Ref. [27] (Table III, right
column).

23Existing microscopic calculations such as Ref. [80] can help
constrain the parametric dependence and the priors. For example,
Ref. [80] finds δππ = 4

3 τπ + O((m/T )2). One could assume δππ ∝
τπ with a parameter being a proportionality factor of order 1.

24We do not include a curvature parameter for the shear viscosity at
high temperatures as was done in Ref. [27] since there it was found,
within the given prior limits, to be rather poorly constrained.

TABLE III. Table of full (left) and restricted (right) parame-
ter ranges. The restricted prior is similar to the prior employed in
Ref. [27].

Restricted prior
Parameter Full prior range range or value

α [−0.3, 0.3] 0.0
Tη [GeV] [0.13, 0.3] 0.154
alow [GeV−1] [−2, 1] 0.0
λζ [−0.8, 0.8] 0
bπ [2, 8] 5
p [−0.7, 0.7] [−0.5, 0.5]
w [fm] [0.5, 1.5] [0.5, 1.0]
τR [fm/c] [0.3, 2] [0.3, 1.5]
(ζ/s)max [0, 0.25] [0.01, 0.1]
Tζ [GeV] [0.12, 0.3] [0.15, 0.2]
wζ [GeV] [0.025, 0.15] [0.025, 0.1]

By comparing the posteriors for these different prior pa-
rameter ranges, we assess the sensitivity of our inference to
prior knowledge. This is illustrated in Fig. 13 for one of the
particlization models studied in this work (the Pratt-Torrieri-
Bernhard model [54,112]). We compare the posteriors for the
specific shear and bulk viscosities using either the more or
less subjective priors described above. These posteriors were
obtained via Bayesian parameter estimation using only the
ALICE Pb-Pb measurements at

√
sNN = 2.76 TeV.

Clearly, the more subjective prior drastically reduces the
width of the credible intervals of the posterior for both the
shear and bulk viscosities. Table III shows that, in addition to
narrower prior ranges for the shear and bulk viscosities, the
more restrictive prior assumed additional information about
the initial conditions and the shear relaxation time (which is a
second-order transport coefficient).

Since the posterior of any Bayesian inference is propor-
tional to the product of the prior and likelihood function, a
tightening of the prior automatically also causes the posterior

FIG. 13. The 90% posterior credible intervals of the specific bulk
(left) and shear (right) viscosities for the Pratt-Torrieri-Bernhard vis-
cous correction model, including only observables from LHC Pb-Pb
collisions at

√
sNN = 2.76 TeV, depending on whether one uses a

more informed or less informed prior.
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to tighten. Thus, the results shown in Fig. 13 are in principle
expected. However, the observed large sensitivity of the poste-
rior (in particular for the bulk viscosity) to the prior suggests
that the constraining power of the experimental data is still
limited and that for a fully uninformed prior the 90% credi-
ble intervals for the specific viscosities would be even wider
than what is indicated by the solid lines in Fig. 13. Future
improvements of the precision of our knowledge of the QGP
viscosities require progress along at least one of the following
two directions: (i) theoretical work leading to more objec-
tive priors, if not for the parameters of primary interest (i.e.,
the viscosities) then at least for the “nuisance parameters”;
(ii) inclusion of additional measurements into the Bayesian
analysis that have the potential to provide tighter likelihood
functions for both the parameters of primary interest and the
nuisance parameters. In the absence of theoretical progress
toward tighter first-principles constraints on the viscosities,
less subjective priors for these parameters of primary interest
should be employed to minimize sensitivity of the posterior to
prior knowledge.

X. MODEL SENSITIVITY

To understand the posterior obtained by performing pa-
rameter estimation, it is useful to quantify which observables
carry information about which model parameters. This can be
achieved as follows:

(a) Select a set of parameter values at which the model
sensitivity is explored.

(b) Vary a single parameter at a time and quantify how
much each observable responds.

Note that the model is nonlinear and consequently this is
a local measure of observables’ sensitivity, at a given point in
the multidimensional parameter space.

Following Ref. [154], we define a local sensitivity index
as follows: Define two points in parameter space by x =
(x1, x2, ..., x j, ..., xp) and x′ = (x1, x2, ..., (1 + δ)x j, ..., xp),
where δ is a fixed percent difference. We use our emulator to
predict all of the observables at these two points in parameter
space. Suppose for some particular observable O, the emulator
predicts Ô = Ô(x). Then, defining the percent difference in
the observable by

� ≡ Ô(x′) − Ô(x)

Ô(x)
, (58)

our “sensitivity index” S[x j] for observable O under a change
in parameter x j is given by

S[x j] ≡ �/δ. (59)

We chose x to be defined as the average of the three differ-
ent maximum a posteriori (MAP) parameters (see Sec. V E)
of each three viscous correction models, listed in Table II.

These sensitivity indices S[x j] for pairs of observables and
parameters are shown in Fig. 14 for select Pb-Pb observables
at

√
sNN = 2.76 TeV and a step size δ = 0.1. We verified that

we obtain quantitatively similar results with a larger parameter
step size δ = 0.4, indicating that the parameter dependence
of the model is reasonably close to linear in the region of

parameter space studied. Note that the inclusion of emulator
uncertainties in the sensitivity analysis is left as future work.

Although a local measure of the response of the model ob-
servables to changes in parameters is a strong approximation,
it can nonetheless help guide our understanding regarding
which observables carry information about each of the pa-
rameters. First note that the scale of the sensitivity indices is
different for each parameter. Changing the shear relaxation
time normalization bπ has a very small effect on all observ-
ables investigated in this work, with a 10% change in bπ

leading to less than 1% change in observables.
On the other hand, very strong dependence on the

model parameters has been found. The proton yield shows
strong sensitivity to the switching temperature. Increasing the
switching temperature by 10% increases the proton yield by
about 20%. Consequently, most of the constraining power (or
information) about the switching temperature is carried by the
proton yield among the observables used herein.

As noted throughout this study, many of the observables
show stronger sensitivity to the maximum of the specific
bulk viscosity when the Pratt-Torrieri-Benhard distribution
was employed, compared to any other viscous corrections
used here. Looking again at Fig. 9, the strong sensitivity of
the Pratt-Torierri-Bernhard viscous correction causes the 90%
posterior credible interval for the specific bulk viscosity to be
most tightly constrained among the viscous correction models
explored here. The narrower posterior of ζ/s for this viscous
correction model is a direct consequence of these larger sen-
sitivity indices.

The parameter w in TRENTo is largely responsible for
controlling the eccentricities of the initial state. We find that
the elliptic, triangular, and quadrangular flows v2{2}, v3{2},
and v4{2} show strongest sensitivity among the observables
plotted in Fig. 14. This may be expected from hydrody-
namic response, in which v2{2} ∝ ε2, v3{2} ∝ ε3, and v4{2} ∝
v2{2}2. In addition, the initial geometry is more sensitive to
the nucleon width w for peripheral collisions: We see that
the harmonic flows for 40–50% centrality bins show close
to twice the sensitivity to the width parameter than for 0–5%
centrality.

As discussed in Sec. X, the triangular flow v3{2} and
quadrangular flow v4{2} show strongest sensitivity to bπ in
our model. This sensitivity remains small, however: A 10%
change in the shear relaxation time leads to a 1% change in
v4{2}, for example. This explains the challenge of constrain-
ing the shear relaxation time.

We highlight that in addition to guiding our understanding
of the model, sensitivity measures can also direct where fu-
ture experimental efforts can be focused [24] in order to best
constrain model parameters, which is of interest to the entire
community. We hope to expand our efforts in this direction
in future studies with global (rather than local) sensitivity
measures.

XI. BAYESIAN MODEL SELECTION

In addition to the estimation of parameters of a given
model, Bayesian inference can also be used to quantify which
model, among several competing models, is better supported
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FIG. 14. Sensitivity indices for LHC observables measured in the 0–5% (left) and 40–50% (right) centrality bin (except for the mean
pT event fluctuation δpT /pT for which the 40–45% bin is plotted on the right), as a function of all model parameters. Plotted in blue is the
Grad viscous correction model, in red is the Chapman-Enskog model, and in green is the Pratt-Torrieri-Bernhard model. The bars show the
sensitivity to a 10% change in each parameter (δ = 0.1).

by the experimental observations. There exist several metrics
for comparison; we choose to employ the Bayes factor. We
will first illustrate the application of the Bayes factor toward
three of the viscous correction models for particlization that
were used throughout this work. We then use it to compare our
hydrodynamic model with simpler models which are “nested”
inside. Finally, the Bayes factor is applied toward answering
whether a consistent model, with the same set of parameters

describing the system created in RHIC Au-Au and LHC Pb-Pb
collisions, or more complicated models, where some param-
eters are allowed to differ, is better justified in light of the
experimental data.

In the context of model selection, a “model” refers to
a specific set of parameters together with their prior and a
unique map from the parameters to a set of observables. As
an example, a polynomial of second degree is a different
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model than a third-degree polynomial. In this case, however,
the second-degree polynomial model is “nested” inside the
polynomial of third degree; when the coefficient of the cubic
term is fixed to zero, we can recover the second-order poly-
nomial model. The polynomial of third degree has additional
model complexity, given by the additional parameter and its
prior. On the other hand, we can also compare a model given
by a second-degree polynomial with, for example, a model
given by a sinusoid, with an uncertain amplitude and phase
velocity. These models give altogether different predictions,
and their coefficients have different meanings. In both cases
above, whether the models share similar features or not, we
will refer to them as different models when comparing them
with the Bayes factor (which is the standard terminology). If
one of the models happens to be nested inside the other, we
will make note.

It may be useful to provide a word of caution at this
point, as the use of the Bayes factor for comparing models
has been met with some skepticism in the past; this skep-
ticism is not necessarily undue. It is well known that the
Bayes factor becomes ill defined when one or both models
have an improper (non-normalizable) prior. In addition, the
marginal evidence of each model in principle depends on the
priors that were chosen. Neither of these potential issues is
a roadblock for our current purposes, however. The priors
for all model parameters considered are not improper and
have been purposely selected, weighing the applicability of
each theoretical model along with reasonable information
stemming from other sources of experimental data. A more
thorough elucidation of the Bayesian methodology, parameter
estimation, model selection, and examples in cosmology can
be found in Ref. [155].

A. Overview and estimation of Bayes factors

1. Bayes factor definition and interpretation

The Bayes factor is a useful measure for evaluating the
relative merit of two competing models A and B in light of
a given set of experimental data yexp. It is the ratio of the
conditional probabilities, or the odds,

BA/B ≡ P (A|yexp)

P (B|yexp)
= P (yexp|A)

P (yexp|B)

P (A)

P (B)
, (60)

where Bayes’ theorem was applied to both the numerator
and denominator. The odds depend on both the ratio of the
likelihoods, marginalized over all parameters, multiplied by
the ratio of prior beliefs about the validity of these two models.
Unless there is a strong reason to believe that one model is
much more likely than another, the ratio of priors is taken
to be unity. In this case, the odds are simply the ratio of the
Bayesian evidences of the two models:

BA/B = P (yexp|A)

P (yexp|B)
. (61)

Using the marginalization and product rules for prob-
abilities, we “integrate in” the model parameters xA for

model A,

P (yexp|A) =
∫

dxAP (yexp|xA, A)P (xA), (62)

and likewise for model B. The integrand appearing in Eq. (62)
is the product of the same likelihood and prior which have
been discussed in Sec. V A. Therefore, the Bayesian evidence
is simply the average of the likelihood with respect to the prior
probability density. We note that when using priors which are
uniform distributions on a finite domain, this expression can
be simplified, yielding

P (yexp|A) = 1

VA

∫
DA

dxAP (yexp|xA, A), (63)

where we have defined the total volume of the prior VA for
model A. This is the volume of the hypercube DA inside which
the prior for model A is nonzero.

Because all of the models for which we perform model
comparisons have uniform priors, the interpretations of our
results are more straightforward. The Bayesian evidence of
each model is the integral over the likelihood for the model
inside the prior bounds, divided by the volume of the prior.
Belief in a model is increased by ability to fit the data (larger
likelihood), averaged inside of the prior bounds, but belief
in the model is decreased by its complexity (the “Occam
penalty”), which is the volume of its prior which is excluded
by the data. In a situation where the likelihood P (yexp|xA, A)
does not actually depend on a particular model parameter xA,i,
we see from Eq. (63) that there is no Occam penalty because
the size of the prior region cancels in the numerator and
denominator. Therefore, the Bayes factor does not penalize
a model for having a parameter which is unconstrained by
the data. For a more thorough explanation with examples, see
Ref. [155].

2. Numerical methods for estimating the Bayes evidence

The integral over all the model parameters is very high
dimensional and does not lend itself to elementary methods.
Fortunately, there exist methods for estimating the evidence
that are ready to use in the existing Markov chain Monte Carlo
implementation [156] used throughout this work. A parallel-
tempered Markov chain Monte Carlo routine defines a ladder
of inverse temperatures βi and then evolves an ensemble of
walkers by sampling from distributions defined by

[P (yexp|xA, A)]βiP (xA). (64)

We see that in the limit β → 0, we recover our prior P (xA).
At regular intervals, each walker inside of each tempered dis-
tribution has the opportunity to swap positions with walkers at
adjacent temperatures. Walkers at very high temperatures are
not strongly affected by peaks in the likelihood function, while
walkers at β = 1 are sampling from the target posterior. This
gives this algorithm the advantage that it can efficiently sam-
ple multimodal distributions, which can be more difficult for
other algorithms, including the ordinary Metropolis-Hastings,
to sample accurately. Besides these advantages, the ladder of
tempered distributions also gives an estimation of the Bayes
evidence by the following trick. Defining the Bayesian evi-
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TABLE IV. A table of the logarithm of the Bayes factor ln BA/B

for each pair of viscous correction models and its integration
uncertainty for the Grad, Chapman-Enskog (CE), and Pratt-Torrieri-
Bernhard (PTB) viscous correction models.

Model A Model B ln BA/B

Grad CE 8.2 ± 2.3
Grad PTB 1.4 ± 2.5
PTB CE 6.8 ± 2.4

dence as a function of inverse temperature,

Z (β ) =
∫

dxA[P (yexp|xA, A)]βP (xA), (65)

we note that it satisfies a differential equation

d ln Z

dβ
= 1

Z (β )

∫
dxAP (xA) ln[P (yexp|xA, A)]

× [P (yexp|xA, A)]β

≡ 〈ln [P (yexp|xA, A)]〉β. (66)

Therefore, ln Z (β = 1) can be estimated by integrating by
quadrature the average at each temperature. The uncertainty
in this estimate δ ln Z is primarily from using a finite number
of points in the quadrature (finite number of temperatures).

B. Comparing viscous correction models

As a first illustration of Bayesian model selection, we
quantify if our experimental data give evidence to prefer one
viscous correction model over another. We have estimated the
logarithm of the Bayes evidence ln Z as well as the integration
uncertainty δ ln Z for three of the four models using the paral-
lel tempering described above. Their mutual Bayes factors are
shown in Table IV.

From the table we see that the Grad and Pratt-Torrieri-
Bernhard models have Bayesian evidences that are compatible
within the numerical uncertainty. The odds that the Grad
model is better than the Pratt-Torrieri-Bernhard model are
about 3:1, given our 0.6σ observation.25 Therefore, the pT -
integrated calibration observables cannot distinguish which
of these two models is more likely. However, we have mod-
erate evidence to conclude that both of these models work
better to describe the hadronic observables studied in this
work than the Chapman-Enskog model, with the Grad versus
Chapman-Enskog comparison being a 3.6σ observation (odds
about 5000:1) and Pratt-Torrieri-Bernhard comparison a 2.8σ

observation (odds about 400:1).
For the Chapman-Enskog model, we note from Fig. 10 that

the marginal posterior of the free-streaming energy depen-
dence α has a local maximum for α � −0.3. It is possible that
widening our prior to include smaller values of α would also
increase the Bayes evidence for the Chapman-Enskog model.
Unfortunately, this would require a new set of model calcula-
tions at new design points, which is beyond the scope of the

25The probability is given by the left-tailed p value.

FIG. 15. Diagonal and off-diagonal panels show one- and two-
dimensional projections of the n-dimensional posterior predictive
distributions for selected Pb-Pb observables at fixed collision cen-
trality of 0–5%. Plotted are the discrepancies between prediction and
measurements in units of the experimental standard deviation; axes
are labeled with shorthand notation y ≡ (ymodel−yexp)/σexp, where y
stands for the observable whose model discrepancy is shown. The
Grad model is shown in blue and Chapman-Enskog in red.

present work. Due to the very large odds of the Grad model
compared to the Chapman-Enskog model given by the Bayes
factor, we also considered the frequentist odds defined by the
maximum likelihood ratio. If LA is the maximum value of the
likelihood function for model A, and LB the same for model
B, this maximum likelihood ratio is simply defined by LA/LB.
These maximum-likelihood odds were found to be close to
300:1 for the ratio of Grad to Chapman-Enskog models.

The Chapman-Enskog model is not able to simultaneously
fit the proton multiplicity together with the other observ-
ables, such as the pion multiplicity. This puts the model
under tension, and reduces the likelihood (averaged across the
parameter space) of the Chapman-Enskog model. This is illus-
trated by Fig. 15, which displays the single and joint posterior
predictive distributions of select observables for the most
central bin 0–5% for Pb-Pb collisions at

√
sNN = 2.76 TeV.

For each of the Grad model (blue) and Chapman-Enskog
model (red), parameter samples are drawn from the posteriors
calibrated to all observables at both LHC and RHIC. Then,
the model prediction is calculated using the emulator for all
observables and the model-experiment discrepancy, i.e., the
difference between model prediction and experimental mean
normalized by experimental standard deviation, is plotted.
That the chemical abundances disfavor the Chapman-Enskog
model was further strengthened by recalculating the posteriors
and Bayes factor for the Grad and Chapman-Enskog models,
excluding the LHC proton multiplicity from the data. In this
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case, the odds were greatly reduced to only about 5:1 in favor
of Grad. For both the linearized Grad and Chapman-Enskog
models, it is the bulk viscous correction which changes the
chemical abundances from their equilibrium values (the shear
viscous correction does not correct the equilibrium yields).
Therefore, in light of the chemical abundances being a strong
discriminator, it is specifically the bulk viscous correction
given by the Chapman-Enskog model which is disfavored by
the particle yields.

In conclusion, the hadronic observables studied in this
work favor the Grad and Pratt-Torrieri-Bernhard models of
viscous corrections over the Chapman-Enskog model. This is
due in large part because the Chapman-Enskog model is worse
at simultaneously fitting the chemical abundances. In light of
the caveats, we do not believe this finding should be taken as
a blanket statement on the validity of the Chapman-Enskog
model in studying heavy-ion collisions. Future studies will be
necessary to clarify if viscous corrections can be systemati-
cally constrained from measurements.

Knowing the relative odds between the different parti-
clization models, a model-averaged posterior with improved
uncertainties for the inferred parameters can be derived using
Bayesian model averaging, which calculates the posterior as a
weighted average of the individual model posteriors, weighted
by the Bayes evidence for each model. We reported such a
result in Ref. [29].

C. Comparing hydrodynamic models

As another application of Bayesian model selection, we
quantify whether simpler models, which are nested within the
model described in Sec. III, are favored or disfavored by the
data. We will make comparisons with models with simplified
assumptions for the shear viscosity. As a reminder, the more
complex model will be penalized by the additional parameters
(the Occam penalty) that are constrained by the data and
will only yield a larger evidence than the simpler model if
the extra constrained parameters significantly improve the fit
to the data. An additional model parameter that is not well
constrained by the data within the range of the prior will have
an insignificant Occam penalty.

1. Temperature independent specific shear viscosity

We consider whether our full model, which includes a
temperature-dependent specific shear viscosity, is preferred by
the data to a simpler model with a temperature-independent
specific shear viscosity. In both cases, we use the Grad vis-
cous correction. We denote by model A our usual model
with temperature-dependent specific shear viscosity. We de-
note by B the model in which the low-temperature and
high-temperature slopes alow and ahigh are fixed to zero; the
temperature of the kink Tη is irrelevant in this scenario and is
also fixed to an arbitrary value. We find the logarithm of the
Bayes factor to be consistent with zero within its uncertainty,
ln BA/B = −0.2 ± 2.4. Hence, the selected experimental data
provide no evidence in favor of the common theoretical pref-
erence for a temperature-dependent specific shear viscosity of
QCD matter. As noted above, the Occam penalty for including
the additional parameters, which here are the slopes of the

specific shear viscosity and position of its inflection, is mini-
mal; this is because these parameters are not well constrained
within the range of the prior. In any case, this “null” result
suggests we should include more discriminating observables
in future studies, beyond the subset we have chosen here.

2. Zero specific shear viscosity

We also study if our data provide strong evidence for a
nonzero specific shear viscosity. This can be quantified in
the same way as above, setting the parameters for the spe-
cific shear viscosity such that (η/s)(T ) ≡ 0. We again use
the Grad viscous correction model for this comparison and
allow the specific bulk viscosity (as well as all other param-
eters) within their full prior ranges. We find the logarithm
of the Bayes factor ln BA/B = 11.7 ± 2.6 where model A is
the default model with nonzero specific shear viscosity while
model B has η/s ≡ 0. We conclude that the data provide strong
evidence that the hydrodynamic models with nonzero specific
shear viscosity are preferred.

D. Quantifying tension between LHC and RHIC

The Bayes factor is also useful for quantifying if our model
is under significant tension when trying to simultaneously
fit the data at both collision energies [157]. Throughout this
work, we have assumed that all model parameters are shared
between the two systems except for their initial energy density
normalizations. However, we can relax these assumptions and
allow parameters to be different for the two different systems.

1. No common parameters between collision systems

Suppose that we allow all of the parameters to be different
for the two systems defined by collisions at RHIC and LHC,
respectively, including the initial conditions, viscosities, and
switching temperature. In this case, our model has a total of
32 parameters. We want to compute the Bayes factor ln BA/B

where model A is the default model while model B assumes
independent sets of model parameters for describing the data
collected at different collision energies.

As usual, we take the ratio of our prior beliefs about these
two models to be unity, P (A)/P (B) = 1, such that the Bayes
factor reduces to the ratio of marginal evidence:

BA/B = P (yLHC, yRHIC|A)

P (yLHC, yRHIC|B)
. (67)

As a consequence of the assumed statistical independence of
measurements performed with different detectors at different
collision energies, we can estimate the model evidence in the
denominator as follows:

P (yLHC, yRHIC|B) = P (yLHC|B)P (yRHIC|B). (68)

Integrating over the model parameters for the LHC model
yields

P (yLHC|B) =
∫

dxLHCP (yLHC|B, xLHC)P (xLHC|B), (69)

which we have estimated using Eq. (66). A similar result holds
for the model describing the RHIC data.

In this way, we find ln BA/B = 24.1 ± 2.6. We conclude
that our data from the LHC and RHIC give very strong
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evidence that a model in which all parameters except the
initial energy density normalizations are the same is strongly
preferred by the data over a model in which all parameters
are allowed to be different. The Occam penalty for basically
doubling the number of model parameters far outweighs the
gain of precision in the data description. We take this as strong
evidence that a hybrid viscous hydrodynamic model with a
single set of parameters provides a coherent physics picture
for the experimental data measured at two collision energies
that differ by over an order of magnitude.

Admittedly, allowing all of the parameters to be different
leads to a very drastic comparison, adding far more model
complexity than perhaps reasonable, thus entailing an out-
sized Occam penalty. A more meaningful study might have
tried to identify tensions between a few specific observa-
tions and their predictions from the calibrated model, use the
sensitivity analysis to zero in on one or a small number of
model parameters to which these data are most sensitive, and
introduce a small number of extra parameters to introduce
additional collision energy dependence in that sector, with the
aim of reducing the tensions. We leave this for future work.

2. Different transverse length scales in the initial conditions

We mentioned earlier that some theoretical models of the
energy deposition in a heavy-ion collision feature transverse
length scales that depend on the collision energy. In our
TRENTo model, it is the nucleon width w which controls the
transverse length scale for fluctuations in the initial condi-
tions, and we have so far assumed that its value is independent
of the collision energy. To test this assumption, we calculate
the posterior for a model that introduces one additional param-
eter to allow the nucleon width w to change from one collision
energy to the other. The posterior for this model is shown in
Fig. 16.

We see that the most probable value for the nucleon width
w[0.2 TeV] in Au-Au collisions at RHIC is about 20% larger
than the width w[2.76 TeV] in Pb-Pb collisions at the LHC,
though both agree within uncertainty as shown in Fig. 16. We
note that the color glass condensate model predicts roughly a
factor of 2 difference between the color flux tube diameters at
RHIC and LHC energies [127]. The measured total inelastic
nucleon-nucleon cross section also increases by about a factor
two from RHIC to LHC, indicating a possible growth of w
by a factor ≈√

2. If A denotes the default model and B is the
model where the nucleon widths at the two collision energies
are allowed to differ, we find ln BA/B = 0.7 ± 2.5. Within the
uncertainty of the estimate, we can thus not distinguish which
model is preferred. The amount of tension that is caused by
ignoring energy dependence of the nucleon width is not signif-
icant, and if there is indeed a small gain in the model evidence
due to a slightly improved description of the data it is erased
by Occam’s penalty for the increase in model complexity.

XII. PREDICTING PT -DIFFERENTIAL OBSERVABLES

From the Bayesian point of view, a model is more useful if
it is capable of making accurate predictions for observables
that were not used for its calibration. This fits the physi-
cist’s frame of mind in which belief in a model’s veracity

FIG. 16. Partial representation of the posterior for a model that
uses the Grad particlization model and allows for different nucleon
width parameters w at RHIC and LHC energies. The estimated nu-
cleon widths at the two collision energies inferred from the Bayesian
analysis are found to agree within the 90% credible limits.

is increased when the model makes an accurate prediction of
some observable (and similarly, models that make inaccurate
predictions are held in lower esteem).

We should thus check whether our calibrated model for
heavy-ion collision evolution makes accurate predictions. We
consider as a prediction any observable calculated from the
model using the maximum a posteriori (MAP) parameters
(see Sec. V E and Table II) that has not been used for the
model calibration, either through a prior or via the likelihood.
As our model is intended to describe the physics of particles
with soft momenta pT � 2 GeV, accurately predicted soft ob-
servables should increase our belief in the model, while soft
observables that are inaccurately predicted will decrease it.
As an example, in this section we use our model to predict
the shapes of the pT -differential identified hadron spectra and
charged hadron elliptic flow measured by ALICE at the LHC,
shown in Figs. 17 and 18 for the Grad and Chapman-Enskog
particlization models.26

Because the multiplicities and mean transverse momenta
are dominated by particles with typical (flow-boosted) ther-
mal momenta, the model tends to fit the slope of the pion
differential spectra better at soft momenta pT � 1.5 GeV.
The stronger boost from radial flow experienced by heavier
hadrons [158,159] extends this agreement with the model to
higher pT � 2.5 GeV for protons. This finding is consistent

26We remind the reader that the posterior of our model parameters
was estimated using only pT -integrated observables, e.g., the multi-
plicities and mean transverse momenta for pions, kaons, and protons,
the pT -integrated harmonic flows, etc.
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FIG. 17. The transverse momentum spectra for pions (left), kaons (center), and protons (right) averaged over 5000 fluctuating events
predicted by the Grad (dashed lines) and Chapman-Enskog (dotted lines) models, each run at their respective MAP parameters. Shown are the
predictions for the 0–5% (red), 10–20% (green), 20–30% (blue), and 30–40% (cyan) centralities, each having been scaled by a power of 5
for visualization. Also shown are the measurements from ALICE (open circles). The bottom panel shows the ratio of the model prediction JS
divided by the ALICE data.

with that of Ref. [23], which showed that the shape of the
pion and proton spectra could be characterized very well by
the mean transverse momenta and yields.

For the differential elliptic flow, the agreement between
model prediction and experiment is generally good for both
the Grad and Chapman-Enskog models; neither model per-
forms qualitatively better than the other. To what extent each
of these models’ predictions also agree with additional ex-
perimental results that were not used for model calibration
will be further explored in future studies. We note that the
Chapman-Enskog viscous correction model is not able to fit
the experimental multiplicities of pions and protons as well
as the Grad model, but in the pT -differential elliptic flow the
normalizations of these spectra drop out and only their shapes
as a function of pT matter.

XIII. SUMMARY

Building upon previous studies [22–27], this work presents
a comprehensive framework to perform Bayesian inference in
heavy-ion collisions. A major new addition compared to these
earlier studies is the use of closure tests (Sec. VI), which we
used to perform an extensive validation of our analysis before
comparison to data. We further discussed how closure tests
can be used to explore the constraining power of different
observables, before measurements are even performed, thus
helping prioritize which observables need better measure-
ments.

We highlighted the important role played by the parameter
“priors” in Sec. IV. The prior probability distribution encodes
how likely we believe the model parameters to take certain
values, before comparison with data. Failure to quantify the
impact of the priors on the posterior can lead to incorrect
or misleading conclusions about the constraining power of
heavy-ion measurements.

Using the above Bayesian framework, duly validated with
closure tests, a parameter estimation was performed using
RHIC and LHC data, first using measurements from these
two colliders separately and then combining them (Sec. VII).
Our analysis shows that these RHIC and LHC data can set
a strong constraint on the viscosity of hot nuclear matter in
a temperature window between 150 and 200 MeV, which is
probed by a large fraction of the space-time volume filled by
the expanding medium created in the collision. However, as
hinted by closure tests (Sec. VI), we observed that the bulk
viscosity of QCD is difficult to constrain for temperatures
above ≈ 200 MeV, at least with the hadronic observables used
in this work. The shear viscosity was also found to be difficult
to constrain for T � 250 MeV.

A good simultaneous agreement with measurements from
RHIC and the LHC was found, both when comparing with
random samples from the parameter posterior (Fig. 7) and
when comparing with the maximum a posteriori parameters
(Fig. 8). Results from simulations utilizing the maximum a
posteriori parameters furthermore agreed well with the pT -
differential spectra of identified hadrons (Fig. 17) and the
pT -differential v2 of charged hadrons (Fig. 18).

All results presented in this work were performed with
a new comprehensive simulation framework for heavy-ion
collisions, described in Sec. III, which combines TRENTo
initial conditions, free-streaming, second-order relativistic hy-
drodynamics, a flexible particlization module and the recently
developed SMASH hadronic transport as afterburner. The
diversity of physics ingredients entails a large set of model
parameters. The significance of these parameters was inves-
tigated by studying the sensitivity of predicted values for the
experimental data to changes in these parameters (Sec. X).
The maximum a posteriori (MAP) values for these parameters
are listed in Table II, for three different particlization models
that employ different parametrizations of viscous corrections
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FIG. 18. The pT -differential two-particle cumulant elliptic flow
of charged particles averaged over 5000 fluctuating events predicted
by the Grad (blue) and Chapman-Enskog (red) models, run at their
respective MAP parameters. Also shown are measurements from
ALICE taking a pseudorapidity gap �η = 0.2 (open circles) or
�η = 1.0 (filled circles).

to the momentum distributions and provide the mapping be-
tween the energy-momentum tensor of hydrodynamics and
the momentum distributions of hadrons. We emphasize that
the posterior probability distributions of the parameters, such
as those in Figs. 9 and 10, contain much more information
than just the maximum a posteriori. Nevertheless, for practical
applications, a single set of model parameters must often be
used. For such applications, we put forward the maximum a
posteriori parameters from Table II as a sensible choice.

The maximum a posteriori parameters from Table II take
somewhat different values for the three different particlization
models investigated herein. This is one of several examples of
model uncertainty that were investigated in this work. Over-
all, these studies lend a considerable amount of credence to
our constraints on the model parameters, such as the shear
and bulk viscosities, and we expect them to provide valuable
guidance for analyses that use somewhat different models of
heavy-ion collisions.

This work makes clear that constraints on the viscosities
of QCD still have substantial theoretical uncertainties from
viscous corrections to the hadronic distributions. We showed
in Fig. 9 that constraints on ζ/s and η/s can shift significantly
when different viscous corrections are used. Not all model
parameters were found to be equally sensitive to these vis-
cous corrections. For example, the initial condition parameters
from the TRENTo ansatz do not generally depend heavily on
the viscous corrections (Fig. 10). The free-streaming time,
on the other hand, was found to have a significant sensitivity
(Fig. 11). This highlights the challenge of phenomenological
constraints on properties of QCD: The details of how energy
and momentum are distributed across species at the late par-
ticlization stage can have a significant effect on other model
parameters describing much earlier evolution stages. The de-
pendence of the free-streaming time on viscous corrections is
significant. There have been associations made in the past be-
tween the free-streaming time τfs and the “hydrodynamization
time” in heavy-ion collisions. We would like to express some
wariness about this interpretation of τfs: Our difficulty in con-
straining the centrality and center-of-mass energy dependence
of the free-streaming time [Eq. (19) and Fig. 11] suggests that
there are still significant model biases in our treatment of the
initial stage of the collision.

The effect of the shear relaxation time on the inferred val-
ues for shear and bulk viscosity was quantified in Fig. 12. We
believe this inclusion of a second-order transport coefficient
in the model calibration to be a significant advance, given that
significant theoretical uncertainties remain in the treatment of
second-order transport coefficients in general (see the end of
Sec. III B).

The result of our Bayesian parameter estimation is char-
acterized by a nontrivial combination of the sensitivities of
each observable to the model parameters. In Fig. 14, we
showed explicitly the manner in which the observables react
to changes in the values of the model parameters used in this
work. As this dependence is nonlinear, the local model sensi-
tivity results are not universal. Nevertheless, Fig. 14 provides
valuable intuition on the contribution of different observables
to constraining model parameters, connecting with previous
works on the topic [24].

A further important tool explored here is Bayesian model
selection (Sec. XI). Bayes factors were used to compare
the level of tension with measurements of different vis-
cous correction models (Sec. XI B). We found that chemical
abundance measurements disfavor the Chapman-Enskog par-
ticlization model in comparison with the two other viscous
correction models studied in this work; this begs for additional
studies to more firmly assess the robustness of this conclusion.

Bayes factors reward improved model agreement with
measurements and penalize increased model complexity. We
used this feature in Sec. XI D 1 to verify that a joint description
of both RHIC and LHC data by a single dynamical model with
a common set of model parameters is favored over individual
descriptions with separate sets of model parameter values.
In Sec. XI D 2, we used the same approach to quantify the
odds in favor of, or against, a collision energy dependence
of the nucleon width parameter w in TRENTo, finding no
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statistically significant evidence against using the same value
at RHIC and LHC.

The entire model presented in this work, including the
Bayesian inference tools employed for its calibration and the
uncertainty quantification for the inferred model parameters,
will soon become publicly available as part of a new release
of the JETSCAPE framework [33]. As described in Appendix
H, we performed a careful and thorough validation of these
new numerical implementations. An important outcome of
this validation exercise was a systematic comparison of the
SMASH and UrQMD afterburners. We found that (at least for
the model parameters used here) both afterburners produce
very similar results for the hadronic observables studied in
this work (Appendix H 2). Importantly, we found that exact
consistency of the particle species included in the equation of
state and the hadron lists for the particlization and afterburner
modules is essential for this test to succeed: An inconsistency
in any of these ingredients could easily be misinterpreted as a
difference in the afterburners themselves.

We believe that there is great value in the ability to eas-
ily (i.e., at little numerical cost) visualize how observables
react to changes in individual or combinations of model
parameters—a piece of information provided by the emulator.
We have constructed a user-friendly “widget” that offers this
feature for some of the LHC data used in this work and make
it publicly available online in Ref. [160]. We believe this vi-
sualization tool can be of use to the heavy-ion community for
better understanding the relation between the QGP viscosities
and the hadronic observables measured experimentally, for
example.

The present analysis builds on pioneering work published
in several previous studies, in particular in Bernhard’s recent
Ph.D. thesis [27]. The results presented here differ from this
latest analysis in several respects and for a number of reasons
that are discussed in detail in Appendix G. We consider identi-
fying the role of the parameter prior as particularly important.
The smaller range of values for ζ/s explored in Ref. [27]
could give the impression that good constraints were possi-
ble on the bulk viscosity at high temperature; however, by
allowing ζ/s to take a wider range of values in this work, we
observed that ζ/s is poorly constrained at temperature above
200 MeV.

The work reported here presents the state of the art in
heavy-ion collision modeling using model calibration via
Bayesian inference. The posterior probability distributions
obtained here provide the most realistic and robust constraints
available on key properties of the quark-gluon plasma created
in relativistic heavy-ion collisions at RHIC and LHC. While
the uncertainties quoted by us are quantified to the extent
possible with the tools in our hands, they are still large for
several parameters of primary interest. In the following sec-
tion, we offer an outlook on future work that can perhaps help
to further improve this situation.

XIV. OUTLOOK

There are many ways to build upon the results presented
here. Within the model of heavy-ion collisions used in this
work, one can proceed to include additional observables in the

Bayesian analysis, to improve the still limited constraints on
shear and bulk viscosity. Observables that could be especially
interesting to include are the HBT radii, which are expected
to provide complementary information to the development of
radial flow and switching temperature [24,161]. The inclusion
of jet observables and electromagnetic probes in the Bayesian
analysis, while a major undertaking, would represent mile-
stones with considerable potential to constrain the viscosities
at higher temperature as well as the properties of the early
stage in heavy-ion collision [162–165]. The realization of the
present study within the JETSCAPE Collaboration, using the
JETSCAPE framework, is meant as a step in this direction.

Evidently, the Bayesian analysis framework presented in
this work can be extended to multiple collision systems with
different sizes, from the ones at intermediate size such as
LHC’s Xe-Xe collisions and RHIC’s isobar run (Ru-Ru and
Zr-Zr), to smaller and asymmetric collision systems, such as
RHIC’s p-Au, d-Au, and He-Au collisions, LHC’s p-Pb and
high-multiplicity p-p collisions, and O+O collisions at both
colliders. Performing a Bayesian analysis with small systems
has its challenges but also provides highly valuable insights of
a systematic model-to-data comparison of collision systems of
varying sizes using a single model [31,32,68].

As discussed throughout the paper, it is inevitable that the
results of a Bayesian analysis are tied to the exact details
of the model. For example, it is possible that the inferred
values of the shear and bulk viscosities of QCD would change
nontrivially if different models of prehydrodynamic physics
were used. The flexibility of our TRENTo and free-streaming
ansatz captures much of the uncertainty from the prehydrody-
namic phase and folds this uncertainty into our posteriors for
the viscosities of QCD. Nevertheless, we do believe that the
prehydrodynamic stage presents one of the major remaining
sources of uncertainty in constraining the viscosities of QCD
from heavy-ion measurements; it will be important to explore
different prehydrodynamic models in the future.27

Another important source of uncertainty is expected to be
the bulk relaxation time. The current initialization of bulk
pressure has known issues, and the bulk relaxation time will
have a direct impact on the propagation of this initialization
uncertainty onto the final hadronic observables. While we
did not find a strong dependence on the bulk relaxation time
for our hadronic observables, at least for our maximum a
posteriori parameters (Appendix F), we do believe it is impor-
tant for this second-order transport coefficients to be explored
systematically in the future.28

Finally, we note that this work includes no theoretical un-
certainty from the equation of state. Such uncertainties may be

27An example of a Bayesian study with a different prehydrody-
namic model that allows for breaking the assumption of conformal
symmetry can be found in Refs. [31,32]. In that model, the expansion
velocity is parametrized and can be used to control the sign and
magnitude of the bulk pressure. This may improve the description
of the prehydrodynamic phase.

28We note that Refs. [31,32] include a first study of the bulk relax-
ation time using Bayesian inference.
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larger than commonly expected [28] and should be explored
in the future, building on works such as Refs [24,28,166].

These and other theoretical uncertainties, such as the map-
ping between hydrodynamics and the hadronic momentum
distribution discussed in this work, currently limit our ability
to constrain the QGP viscosities from heavy-ion collision
measurements. Statistical methods for quantifying, within the
framework of Bayesian inference, these modeling uncertain-
ties are currently being developed; targeted strategies for
further reducing them require additional theoretical effort.
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APPENDIX A: FULL POSTERIOR OF MODEL
PARAMETERS

For completeness, we show in Fig. 19 the posterior of
all model parameters single- and joint-parameter marginal
distributions for the Grad (blue) and Chapman-Enskog (red)
viscous correction models, combining both RHIC and LHC
experimental results.

APPENDIX B: POSTERIOR FOR LHC AND RHIC
INDEPENDENTLY

In Fig. 20, we show the parameter estimates for select
TRENTo initial condition parameters, as well as the switching
temperature. Each posterior was estimated using only ob-
servables from a single system: LHC observables (purple) or
RHIC observables (orange).

In this study, we have included more observables for Pb-
Pb

√
sNN = 2.76 TeV collisions at LHC, so the likelihood

functions are more tightly constrained, while those for Au-Au√
sNN = 0.2 TeV collisions at RHIC are broader. In addition,

the switching temperature for RHIC posterior is poorly con-
strained because we have omitted the proton yield, which
should be among the most sensitive observables. Overall, we
see that there is good agreement in the estimates of these
parameters whether one uses Pb-Pb

√
sNN = 2.76 TeV ob-

servables or Au-Au
√

sNN = 0.2 TeV observables.

APPENDIX C: VALIDATION OF PRINCIPAL
COMPONENT ANALYSIS

Principal component analysis acts to identify the linear
correlations among pairs of observables. A figure showing the
correlations among all possible pairs of observables would be
far too large to plot, but we plot a subset of possible pairs in
Fig. 21 and make some important observations.

We see that certain pairs of observables have a strong linear
correlation: for instance, the yield dN/dy of pions in the
20–30% centrality bin and yield of charged particles dNch/dη

in the 30–40% centrality bin. For such pairs, nearly all the in-
formation about the model parameters is contained in just one
of the observables. Uncorrelated pairs contain independent
information about the model parameters. No pair of observ-
ables displays a significant nonlinear correlation except for the
elliptic flow v2{2} and quadrangular flow v4{2}, which shows
a correlation v4{2} ≈ (v2{2})2. The scarcity of strong nonlin-
ear correlations suggests that ordinary principal component
analysis is a suitable method for dimensionality reduction.
To test that our model emulator used for Bayesian inference
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FIG. 19. The posterior for Grad (blue) and Chapman-Enskog (red) viscous correction models for all model parameters, combining both
RHIC and LHC experimental results. Units for dimensionful quantities are those given in Table I.

is not overfit to features from statistical noise in the hybrid
model, we have examined the effect on the posterior when
we reduce the number of principal components by a factor
of 2 for each system. In this case, five principal components
explain about 94% of the variance of Pb-Pb collisions at√

sNN = 2.76 TeV and three principal components about 91%
of the variance of Au-Au collisions at

√
sNN = 200 GeV data.

The posteriors of the specific viscosities in these two cases are
compared in Fig. 22.

The uncertainty contributed by the principal components
that we omit contributes to the total emulator uncertainty and
the posterior of specific shear and bulk viscosities is broad-
ened in the case with fewer principal components included.
To be sure that an emulator (and the choice of the number
of principal components) is not underfit or overfit, one must
perform emulator validation (see Sec. VI). An emulator which
is overfit will fit the training points very well, but will perform
poorly in predicting the observables for a novel testing point.
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FIG. 20. The posterior of initial conditions and switching temperature for the Grad viscous correction model using only LHC data (purple)
or only RHIC data (orange).

APPENDIX D: EXPERIMENTAL COVARIANCE MATRIX

Currently, only the diagonal terms in the experimental
covariance matrix are reported by the ALICE and STAR ex-
periments. We have assumed a diagonal covariance matrix
when performing parameter estimation. However, there are
undeniably nontrivial correlations in the systematic uncer-
tainties of measured observables and centrality bins. This is
important, since systematic uncertainties are generally the
dominant source, larger than statistical uncertainties. We test
qualitatively how these correlated uncertainties may affect our
analysis. The assumed covariance matrix will affect the poste-
rior for all model parameters, but for simplicity we quantify its
effect on the posteriors of specific shear and bulk viscosities.
This is shown in Fig. 23 for the Grad viscous correction
model.

In the case of the correlated experimental covariance ma-
trix, given centrality bins ci and c j of the same observable, the
experimental covariance is assumed to be

�
exp
i, j = ρσiσ j, (D1)

where

ρ = exp(−(ci − c j )
2/l2) (D2)

and σi is the standard deviation of the observable in centrality
bin ci. Observables are organized in groups: (i) multiplicities;
(ii) mean transverse momenta; (iii) harmonic flows; and (iv)
transverse momentum fluctuations. For pairs of different ob-
servables within the same group, we take the same correlation
coefficient defined above and multiply by an overall factor
of 0.8. For pairs of different observables in different groups,
we assume zero correlation. The correlation length between
centrality bins is assumed l = 0.5 [27].

We see that an ansatz for the covariance matrix that
includes nonzero correlations has a significant effect of broad-
ening the viscous posterior, increasing the overall uncertainty.
In the absence of a reported experimental covariance matrix,
a more Bayesian approach would be to treat the correlation
length l and magnitude ρ as uncertain nuisance parameters in
the Bayesian parameter estimation, with priors guided by the
knowledge and study of the experimental collaborations, and
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FIG. 21. Scatter plots of selected pairs of observables predicted by our model for Pb-Pb collisions at
√

sNN = 2.76 TeV for the 500-point
parameter design. Some pairs in the same centrality bin are shown in blue, while all pairs of different centrality bins are shown in red. Many
pairs of observables have strong linear correlations, in which case they do not contain significant mutual information (knowing one is nearly
sufficient). Pairs of observables which do not have strong linear correlations carry independent information about the parameters.

marginalize over them. This is an important extension that we
leave for future studies.

APPENDIX E: REDUCING EXPERIMENTAL
UNCERTAINTY

We quantify the extent to which the experimental uncer-
tainty contributes to the total uncertainty in our posterior for
the specific shear and bulk viscosities. Besides experimental
uncertainty, there is always nonzero uncertainty contributed

by the use of a model emulator. We quantify this by changing
artificially the uncertainty on experimentally measured ob-
servables during the parameter estimation; the result is shown
in Fig. 24.

We see that significantly reducing the experimental error
has the potential to qualitatively move our posterior for the
specific bulk and shear viscosities. Perhaps more importantly,
even if we reduce all of the experimental uncertainty by a
factor of 2, the credible intervals for the specific bulk and
shear viscosities still remain quite large at high temperatures.
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FIG. 22. Comparing the viscosity posteriors when we perform
Bayesian parameter estimation with less principal components. The
solid blue results from estimation using 10 principal components for
the Pb-Pb

√
sNN = 2.76 TeV emulator and six principal components

for the Au-Au
√

sNN = 0.2 TeV emulator. The dotted blue results
from five principal components for Pb-Pb

√
sNN = 2.76 TeV and

three principal components for Au-Au
√

sNN = 0.2 TeV.

This hints that in the future we should include additional
observables and systems which are more sensitive to the vis-
cosities at high temperatures.

APPENDIX F: BULK RELAXATION TIME

Throughout this study, we have used a parametrization of
the specific bulk viscosity given by

τ� = b�

ζ(
1
3 − c2

s

)2
(ε + p)

, (F1)

where b� = 1/14.55 [80]. We study how a change in b�

translates into a change in our observables using the maximum
a posteriori parameters for the Grad viscous correction model.
This is shown in Fig. 25.

FIG. 23. The change in the viscous posterior resulting from as-
suming a diagonal experimental covariance matrix (solid blue band)
or correlated experimental covariance matrix (dashed blue band).
Details regarding the magnitude of correlations in text body.

FIG. 24. The posterior for specific bulk (left) and shear (right)
viscosities depending on whether includes the full experimental un-
certainties (filled blue) or divides them by a factor of 2 (dashed blue)
or 10 (dotted blue). The model emulator always contributes nonzero
uncertainty.

Because our prehydrodynamic model is free streaming and
conformal, the resulting bulk pressure at Landau matching
is large and positive. The bulk pressure will relax to its
Navier-Stokes value �NS = −ζθ on a timescale given by τ�.
Increasing τ�, we find that the bulk pressure stays positive for
a longer time. Therefore, comparing the two sets of events, the
calculations with the larger bulk relaxation time have larger
mean transverse momenta and transverse energy. In future
studies, it will be important to study to what extent the bulk
relaxation time affects the posterior for the specific bulk and
shear viscosities.

As the bulk relaxation time is further increased, our model
also has the feature that the bulk pressure may not have time
to relax to its Navier-Stokes value �NS = −ζθ during the
lifetime of the hydrodynamic phase. In this case, the evolution
of the bulk pressure becomes less sensitive to the value of the
specific bulk viscosity and is dominated by its initial condi-
tions. Inferring the likely values of the specific bulk viscosity
then becomes more challenging.

APPENDIX G: COMPARISON TO PREVIOUS STUDIES

In this section, we enumerate the largest differences be-
tween the parameter estimation presented in this analysis and
the analysis found in Ref. [27].

1. Physics models

a. Prehydrodynamic free streaming

Both Ref. [27] and our own used free streaming as a
prehydrodynamic expansion model. Different numerical im-
plementations were used, but they were validated against each
other and found to be in excellent numerical agreement. How-
ever, in this work we have allowed the free-streaming time to
be dependent on the energy of each collision. This additional
feature is manifest in the parameter α; when α is fixed to zero,
both studies have the same physics for the prehydrodynamic
free streaming.

054904-40



MULTISYSTEM BAYESIAN CONSTRAINTS ON THE … PHYSICAL REVIEW C 103, 054904 (2021)

FIG. 25. The solid lines are averages over 5000 Pb-Pb
√

sNN =
2.76 TeV events generated with the MAP parameters for the Grad
model and the default bulk relaxation time factor b� = 1/14.55. The
circles are generated with the same set of parameters except b� =
2/14.55.

b. Hydrodynamics: Equation of state and viscosities

The largest differences in the hydrodynamic models in-
clude the equation of state and the parametrization of specific
shear and bulk viscosities.

The equation of state used in Ref. [27] was given by the
HotQCD lattice result at high temperatures matched to the
2017 PDG table of hadronic resonances at low temperatures.

In particular, this included a very light σ meson with a mass
of about 500 MeV. Our study has matched the same HotQCD
lattice equation of state at high temperatures to a table of
hadronic resonances entering in the SMASH afterburner. In
particular, we excluded the σ meson entirely in the construc-
tion of the equation of state.

Besides the list of resonances which compose the hadron
resonance gas component, Ref. [27] also computed the
hadronic equation of state assuming relativistic Breit-Wigner
resonances with nonzero width, while this study assumed all
resonances on mass shell in constructing the equation of state.

In the parametrization of the specific shear viscosity,
Ref. [27] included a curvature parameter for the specific shear
viscosity at high temperatures, which was not included in this
work. On the other hand, we varied the slope of the low-
temperature specific shear viscosity, as well as the position
of the “kink” in this work, while both of these were fixed in
Bernhard’s study. For the specific bulk viscosity, we allowed
the parametrization to have a nonzero skewness, which was
not present in Bernhard’s study.

c. Particlization, resonance width, and σ resonance

Reference [27] fixed the particlization model to be what we
have referred to as the Pratt-Torrieri-Bernhard viscous correc-
tion model (Sec. III C), while in this work we also investigated
other models.

For all viscous correction models in this work, the parti-
cles were sampled on their mass shell, while particlization
in Ref. [27] sampled the particles mass from a relativistic
Breit-Wigner function.

In addition, as already mentioned, Ref. [27] sampled un-
stable σ resonances with a mass of about 500 MeV, which
significantly increased the number of pions at low momenta
once they decayed. This study excluded the σ resonance from
sampling during particlization.

d. Hadronic afterburner

Finally, the hadronic afterburner used in Ref. [27] was
UrQMD, while we use SMASH. Although these two mod-
els include somewhat different lists of resonances as well
as slightly different hadronic cross sections, we checked in
Appendix H 2 that UrQMD and SMASH have excellent agree-
ment when used with the model parameters that agree well
with data. For that reason, we believe at this time that the
difference in hadronic afterburners is negligible in comparison
to the other differences listed above.

2. Prior distributions

The prior used in Ref. [27] is nearly a subspace of the prior
used in this study, with the exception of the high-temperature
behavior of the specific shear viscosity. Reference [27] al-
lowed the specific shear viscosity to have a nonzero curvature,
i.e., quadratic temperature dependence at high temperatures.
In this study, we have not allowed such a quadratic tem-
perature dependence in the specific shear viscosity at high
temperature.
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FIG. 26. The results of the hydrodynamic evolution of the shear stress for a smooth initial condition, just before freeze-out, for η/s = 0.08
(left) and η/s = 0.3 (right). The MUSIC regulation scheme allows larger inverse Reynolds numbers inside of the switching surface than the
VISHNew scheme.

3. Experimental data

Both Ref. [27] and this study have included the ALICE pT -
integrated, centrality-dependent data for Pb-Pb collisions at√

sNN = 2.76 TeV. However, Ref. [27] additionally included
data for Pb-Pb collisions at

√
sNN = 5.02 TeV, which are not

included in this work. Instead, we have included STAR data
for Au-Au collisions at

√
sNN = 200 GeV, which were not

included in Ref. [27].

APPENDIX H: MULTISTAGE MODEL VALIDATION

Several of the numerical implementations of models used
in this work are used for the first time; other required
modifications and expansions. For this reason, we include
validations of these codes against counterparts which have
been used extensively in previous studies.

1. Validation of second-order viscous hydrodynamics
implementation

In this section, we compare two different numerical imple-
mentations of the same underlying second-order relativistic

hydrodynamics equations [74]. The first implementation is
the one used throughout this work is MUSIC [50–52]. The
second implementation is a slightly modified version of the
VISHNew 2+1D hydrodynamics code [75,153], osu-hydro
[169], used in previous studies [26,54,170]. Both MUSIC
and VISHNew solve the same hydrodynamic equations of
motion [74] but with two different numerical schemes:
VISHNew uses SHASTA [171] while MUSIC uses the
Kurganov-Tadmor algorithm [53]. Despite differences in the
numerical algorithms—amounting to approximations of spa-
tial derivatives—for sufficiently smooth hydrodynamic fields
the two codes should agree well.

Besides the different numerical schemes, VISHNew and
MUSIC have different viscous current regulation schemes.
The regulation scheme used in VISHNew is described in
Ref. [75] while that used in MUSIC can be found in
Ref. [15,172]. For small to moderate values of η/s and ζ/s,
neither of these schemes should regulate the viscous currents
close to or inside the constant energy density (or temperature)
switching hypersurface. Because our hydrodynamic model
will explore moderate and large values of η/s and ζ/s, it is
important to compare the hydrodynamic fields. For a fixed

FIG. 27. The initial bulk pressure (left) and bulk pressure just before freeze-out (right), resulting from hydrodynamic evolution of a smooth
initial condition. The specific shear viscosity was fixed η/s = 0.08, and specific bulk viscosity (ζ/s)(T ) was given by Ref. [54] for this test.
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FIG. 28. The energy density (left) and flow (right) after hydrodynamic evolution of a smooth initial condition. The specific shear viscosity
was fixed η/s = 0.08, and specific bulk viscosity (ζ/s)(T ) was given by Ref. [54] for this test.

η/s = 0.08, we run the same smooth initial conditions used
for the ideal hydrodynamic comparison through free stream-
ing and either MUSIC or VISHNew with zero bulk viscosity
and the conformal equation of state ε = 3p. These are shown
in Fig. 26.

At late times, there are differences in the shear stress
π xy near the dilute regions of the grid. These differences do
not propagate into the region inside the particlization surface
(ε � 0.2 GeV/fm3). We have also run the exact same event
through viscous hydro with a fixed η/s = 0.3. The larger
specific shear viscosity will incur stronger regulation. We find
that the MUSIC scheme, while aggressive in low-temperature
regions, allows larger values of shear pressure inside the re-
gion ε > 0.2 GeV/fm3.

As additional validation, we repeated the previous test with
a QCD equation of state (as described in Sec. III B), again
with a fixed specific shear viscosity η/s = 0.08 but this time
with a temperature-dependent specific bulk viscosity (ζ/s)(T )
from Ref. [54]. The bulk pressure, energy density, and flow are
shown in Figs. 27 and 28. Good agreement is found between
the two codes.

In order to quantify the effects of any small differences that
the hydrodynamics may have on our hadronic observables,
we have evaluated the smooth Cooper-Frye integral over the
switching surface generated by each hydrodynamics code.
The hydrodynamic event used was the same event with bulk
and shear pressures for which the hydrodynamic evolution
was compared above. We used iS3D to perform the smooth
Cooper-Frye integral over each surface, including bulk and
shear Grad viscous corrections, and plotted the comparisons
for pions, kaons, and protons. In general, the agreement in the
spectra is very good. These are shown in Fig. 29. These differ-
ences of about 1% or less in the differential observables yield
differences �1% in the pT and φp integrated observables.

a. Validation against cylindrically symmetric external solution

In this section, we compare the ideal hydrodynamic nu-
merical solution obtained with MUSIC and VISHNew with
a solution obtained with Mathematica [173]. Cylindrically
symmetric initial conditions simplify considerably the equa-

tions of hydrodynamics [174], making them solvable in
Mathematica [175]. Since the differential equation solver in
Mathematica is adaptive and completely different from that of
MUSIC and VISHNew, it provides complementary validation
of their numerical solutions. We focus on a scenario where
large gradients develop, to challenge the numerical algorithms
of MUSIC and VISHNew. We use the initial temperature pro-
file T (τ0, r) = T0 exp(−r2/σ 2) with τ0 = 0.4 fm/c, T0 = 600
MeV, and σ = 1 fm. We use a conformal equation of state.
The result is shown in Fig. 30 for the temperature profile
[Fig. 30(a)] and the flow rapidity ux [Fig. 30(a)].

Overall, all three solutions agree well in regions of larger
temperatures, which are the physically relevant regions of
spacetime. Near the edge of the fireball, in regions of very
low temperatures (small τ and large x), neither MUSIC and
VISHNew can reconstruct the flow velocity well. This is a
well-known challenge of many numerical solution of rela-
tivistic hydrodynamic equation used in heavy-ion physics:
Regions of very low temperatures are difficult to solve ac-
curately and are susceptible to numerical instabilities. These
issues at very low temperatures typically do not propagate to
the higher temperature regions and, as such, are not serious in
practice.

2. SMASH

The use of SMASH as an afterburner for event-by-
event studies of heavy-ion collisions is still fairly new. For
this reason, we have made a comparison between UrQMD
and SMASH as they relate to our transverse-momentum-
integrated observables. We generated 5000 fluctuating initial
conditions for Au-Au

√
sNN = 0.2 TeV collisions with param-

eters fixed by the maximum a posteriori parameters found in
Ref. [54] except for the initial energy density normalization,
which was scaled to fit the multiplicities.

We allowed each initial condition to free stream for the
same time and then used these initial conditions for hydro-
dynamics in two different models:

(1) SMASH: We matched the HotQCD lattice equation
of state to the SMASH list of resonances (excluding
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FIG. 29. Comparison of the transverse momentum pT spectra (left) and azimuthal φp spectra (right) generated from the MUSIC and
VISHNew freeze-out surfaces. The freeze-out surface was generated using the events compared above, with fixed η/s = 0.08, and specific
bulk viscosity (ζ/s)(T ) was given by Ref. [54].

the σ meson). Each initial condition was propagated
through viscous hydrodynamics with this equation
of state, followed by particlization using the Pratt-
Torrieri-Bernhard viscous correction ansatz, followed
by dynamics in SMASH.

(2) UrQMD: We matched the HotQCD lattice equation of
state to the list of resonances which can be propagated
in UrQMD. Each initial condition was propagated
through viscous hydrodynamics with this equation
of state, followed by particlization using the Pratt-
Torrieri-Bernhard viscous correction ansatz, followed
by dynamics in UrQMD.

Finally we compared the observables predicted by the two
models, shown in Fig. 31. For the observables we consid-
ered, we found very good agreement. In particular, heavier
resonances have spectra that are more strongly influenced
by the hadronic afterburner than lighter resonances and the
agreement in the multiplicity and transverse momenta of the
proton and � is strong.

We also ran hydrodynamics with a fixed equation of state
matched to the SMASH hadron resonance gas particle con-
tent and then switched at the same temperature to UrQMD
or SMASH. Because of the mismatch between the equation
of state generated with the SMASH and the UrQMD res-

FIG. 30. Temperature (left) and ux profiles (right) for ideal hydrodynamics initialized with T (τ0, r) = T0 exp(−r2/σ 2) with τ0 = 0.4 fm/c,
T0 = 600 MeV, and σ = 1 fm. Conformal equation of state. Result from new version of MUSIC and from VISHNew, compared with a solution
obtained from Mathematica. The temperature contours in the left panel are (from left to right) for 10, 25, 50, 75, 100, 200, and 400 MeV, while
the flow rapidity contours are (from top to bottom) for rapidities ranging from −4 to 4 by step of 1.
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FIG. 31. Comparison of soft hadronic observables for Au-Au
√

sNN = 0.2 TeV collisions using the SMASH (solid lines) or UrQMD (dots)
afterburner.

onance gases, there is a discrepancy at particlization in all
of the thermodynamic variables. For example, at the same
temperature, the energy densities of the SMASH resonance
gas and UrQMD’s are different. This leads to a disagree-
ment in observables. In particular, observables sensitive to
the normalization of energy density, such as multiplicities and
the transverse energy, showed a discrepancy at the level of
approximately 5%. It is easy to understand that the energy
density of the UrQMD resonance gas is a few percent smaller
than SMASH’s at the same temperature because of the differ-
ent species and masses of hadrons. More details can be found
in Appendix H 6.

Given the novelty of using SMASH as an afterburner, we
share for completeness the numerical parameters that we used
with SMASH. These parameters, shown in Table V, gave
sufficient accuracy without unreasonable loss of speed.

3. Comparison of JETSCAPE with hic-eventgen

In addition to validating of all the separate model com-
ponents, we also have checked that the centrality-averaged
observables predicted by our JETSCAPE model agree very
well with a version of hic-eventgen, the event generator

TABLE V. SMASH parameters used event by
event throughout this study.

Modus Afterburner

Time_Step_Mode Fixed
Delta_Time 1.0
End_Time 1000.0

used in Ref. [54]. This was performed by restricting our
parametrizations to be the same as the maximum a posteriori
parameters found in that study. The results of this comparison
are shown in Fig. 32, in which we have averaged over 5000
fluctuating Pb-Pb

√
sNN = 2.76 TeV collision events.

In general, we find excellent agreement between the two
hybrid models. For this level of agreement, the σ meson had
to be excluded from the hic-eventgen model; all resonances
were also sampled on their mass shell in frzout [176] and
the particle sampler in hic-eventgen. The equation of state
used during the hydrodynamic evolution was constructed to
match the hadron resonance gas used in frzout (excluding the
σ meson).

4. The σ meson

The effects of including a σ -meson resonance in our
hadron resonance gas are studied using the frzout module
[176], which is designed with the option to sample the σ

resonance as a thermal resonance and perform its decay to
pions. In particular, we compare three scenarios:

(1) Excluding the σ meson from sampling (labeled by
m → ∞).

(2) Sampling the σ meson with the PDG pole mass (≈500
MeV) [177].

(3) Sampling the σ meson with the mass used in SMASH
(≈800 MeV).

The frzout module was used to sample particles from a
hypersurface generated by the MUSIC simulation of a mid-
central Pb-Pb event. The initial condition, free streaming, and
hydrodynamic transport parameters were set by the maximum
a posteriori parameters given in Ref. [54]. The switching
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FIG. 32. Comparison of soft hadronic observables depending on whether one uses the JETSCAPE event generator (solid lines) or hic-
eventgen (dots), averaged over 5000 Pb-Pb

√
sNN = 2.76 TeV events.

temperature was 151 MeV. Sampled particles are then propa-
gated to UrQMD to perform hadronic rescatterings. Note that
UrQMD does not have a σ meson: The effect of the σ meson
is purely being tested at the level of the particlization, not
in the afterburner. A total number of 100 oversamples were
generated to increase the statistics. The results of charged-
particle multiplicity, transverse energy, pion multiplicity, and
mean transverse momentum are shown in Table VI.

Because the σ meson decays into pions, we see that the
pion yield can differ by 7% for the lightest σ resonance. For
the higher mass σ , the results are close to not sampling a σ

meson. Additional differences would manifest if we included
the effect of varying the σ mass in constructing the hadron
gas equation of state, as this would also have an effect on the
hydrodynamic evolution. As has been explained in the main
text, we chose to omit the σ from the equation of state and
particlization, following Ref. [125].

5. Sampling particles on mass shell

In general, resonances occupying the hadron resonance
gas should be described by spectral functions with a nonzero

TABLE VI. Sensitivity of observables to inclusion of the σ me-
son. The observables computed using the same cuts as the ALICE
experiment.

σ dNch/dη dET /dη [GeV] dNπ/dy 〈pπ
T 〉 [GeV]

m = 475 MeV 615 777 569 0.54
m = 800 MeV 583 754 534 0.55
m → ∞ 579 743 531 0.54

width. Previous Bayesian analyses have employed the sam-
pling of thermal resonances off shell [54,170] in their
extraction of medium properties. In this work, we chose to
sample resonances on their pole mass, neglecting this ef-
fect for now. In what follows, we perform a simple test to
quantify the effect of off-shell sampling of resonance masses
for hadronic observables used in this work.29 The results are
shown in Fig. 33. The particles sampled off shell are put on
shell after one collision in UrQMD. All particles occupying
the hadron resonance gas are assigned Breit-Wigner spectral
functions. The sampling was performed in both cases using
the frzout module [176]; details about the hadron resonance
gas pole masses and widths can be found in Ref. [54].

We find an ≈5% effect from the off-shell sampling in the
hadronic observables shown in Fig. 33. We believe this effect
is larger because of the σ meson present in this test: a light σ

meson with pole mass m ≈ 475 MeV and a very broad width
� ≈ 500 MeV, as used in Ref. [54]. As we saw in the previous
section, the presence of the σ meson (sampled on the pole
mass) contributes significantly to the pion yield.

6. QCD equations of state with different hadron
resonance gases

The QCD equation of state used in hydrodynamic simu-
lations of heavy-ion collision matches a lattice calculation at
high temperature (T � 120 MeV) with a hadron resonance
gas calculation at low temperature. In this work, we use the
lattice calculations from Ref. [2]. As explained in Ref. [2], the

29This test used 4000 Pb-Pb collisions at
√

sNN = 5.02 TeV events
within a narrow impact parameter range 9.88 fm < b < 11.02 fm.
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FIG. 33. Ratio of observables between sampling resonances with a nonzero width and sampling on the pole mass. We find that the
differences of less than 5% for the observables used in this study justify neglecting the nonzero width of resonances when performing parameter
estimation.

trace anomaly evaluated from lattice is used to compute the
pressure by integration of

p(T )

T 4
= p0(T )

T 4
0

+
∫ T

T0

dT ′

T ′
�μμ(T ′)

T ′4 . (H1)

Energy density and entropy density then follow. The inte-
gration constant for the pressure is obtained from a hadron
resonance gas calculation at T = 130 MeV.

Reference [54] followed a related but different approach:
To ensure energy-momentum conservation at particlization,
the lattice QCD trace anomaly is matched to a hadron reso-
nance gas in a [Ta, Tb] temperature range. The trace anomaly
below Ta is that of the hadron resonance gas; the trace
anomaly between Ta and Tb is an interpolation between the
resonance gas and the lattice QCD trace anomaly. Above Tb,
the trace anomaly is that of the lattice QCD. Using this new
trace anomaly, which differs from that of the lattice below
Tb, the pressure is computed by integration using p0 (T0 =
50 MeV) as reference; energy density and entropy density are
then calculated.

FIG. 34. The equation of state used throughout this work for
parameter estimation HotQCD + SMASH is shown as well as a dif-
ferent equation of state that has been matched to the list of resonances
propagated in UrQMD. The conformal equation of state is included
as a visual reference.

We illustrate first the differences between the lattice pres-
sure and the pressure obtained with the above matching. If the
temperature is below the matching point Ta, the pressure from
the lattice case is given by

pL(T )

T 4
= pL,0

T 4
0

+
∫ T

T0

dT ′

T ′
�

μμ
L (T ′)
T ′4 , (H2)

where the integration constant pL,0 is the only input from
the hadron resonance gas that enters in the definition of the
pressure.

In the matched equation of state, however, the entire ther-
modynamics is determined by the hadron resonance gas below
the lower matching temperature Ta:

pM (T )

T 4
= pM,0

T 4
0

+
∫ T

T0

dT ′

T ′
�

μμ
HRG(T ′)

T ′4 . (H3)

There is no information from the lattice calculations entering
in Eq. (H3) if T < Ta. This example makes clear that any
mismatch between the trace anomaly of lattice calculations

FIG. 35. Ratio of SMASH / UrQMD at the same temperature for
three thermodynamic quantities: energy density (red), equilibrium
pressure (green), and entropy density (blue). Each equation of state
is constructed by matching the lQCD equation of state to a hadron
resonance gas matching the list and masses of particles for each
code. We see that the disagreement is largest near the region of the
switching temperature.
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and that of the hadron resonance gas results in a difference in
the equation of state. This is, of course, the case even if the
exact same hadron resonance gas are used to fix pL,0—pL,0 =
pM,0—which is arguably never the case. These uncertainties
are difficult to eliminate: Any mismatch between the hadron
resonance gas and the lattice calculation would result in a
discontinuity at particlization.

Evidently, even with the same matching procedure between
the hadron resonance gas and the lattice calculation, the ex-
act content of the hadron resonance gas is important. In the
present case, we are interested in two configurations: One
used the particle content from SMASH, while the other uses
UrQMD’s. Both are matched to HotQCD’s lattice calculation
as described above. The equation of state with the SMASH
hadron resonance gas is the one that has been used to perform
parameter estimation in this study. We compare the two equa-

tions of state in Figs. 34 and 35. The differences between the
two equations of state amount to up to 8%.

In Appendix H 2, we compared the predictions of two
hybrid models, one model using SMASH as afterburner and
the other using UrQMD. To obtain such a level of agreement
in the observables, it was necessary to use, in the hydrodynam-
ics, equations of state that matched consistently the chosen
hadronic transport afterburner. This is consistent with what
we see in Fig. 34: Inside the window of particlization tem-
perature, the differences between the equations of state can
be larger than ≈5% and can undeniably produce noticeably
different hadronic observables.

We note that this work uses a fixed equation of state which
does not parametrize any potential theoretical uncertainties.
See Ref. [28] for a recent study which includes uncertainty in
the lattice-matched equation of state.
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