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We develop a quasi-normal mode theory (QNMT) to calculate a system’s scattering S matrix, simultaneously
satisfying both energy conservation and reciprocity even for a small truncated set of resonances. It is a practical
reduced-order (few-parameter) model based on the resonant frequencies and constant mode-to-port coupling
coefficients, easily computed from an eigensolver without the need for QNM normalization. Furthermore, we
show how low-Q modes can be separated into an effective slowly varying background response C, giving an
additional approximate formula for S, which is useful to describe general Fano-resonant phenomena. We demon-
strate our formulation for both normal and fixed-angle oblique plane-wave incidence on various electromagnetic
metasurfaces.

DOI: 10.1103/PhysRevResearch.3.033228

I. INTRODUCTION

Scattering phenomena in all areas of wave physics are
well described by the universal S-matrix operator. As the
resonant (quasi-normal) modes (QNMs) of a system heavily
determine its scattering response and coincide with the poles
of S, numerous works [1–5] have focused on expressing S
as an expansion over QNMs, calculated via eigensolvers. In
this paper, we present a QNM theory (QNMT) for multiport
lossless scatterers that simultaneously satisfies all fundamen-
tal physical constraints of reciprocity, energy conservation,
and time-domain realness even for the practical case of a
small truncated QNM set (in contrast to previous formulations
[3,4]) and without the need for the intricate normalization
of the divergent QNMs [4,5]. Weak absorption or gain can
then be easily incorporated as a perturbation. Furthermore, by
explicitly separating a slowly varying effective-background
response C, we provide a novel additional formula for S,
approximate but very convenient to design Fano-scattering
systems [6] such as even-order elliptic filters [7]. This C is
calculated without resorting to any type of fitting [4,8,9] and
without having to choose a specific background scattering
medium [5]: We simply use a subset of low-Q modes of the
entire system. We then build useful intuition for how vari-
ous low-Q-mode configurations shape the background C. We
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demonstrate the accuracy of our QNMT for plane-wave inci-
dence on several electromagnetic (microwave and photonic,
2-port, and 4-port) metasurfaces. In particular, we solve a
nonlinear eigenproblem with a complex Bloch wave vector to
calculate S with QNMT for a fixed angle of incidence (instead
of a fixed transverse wave vector [10,11]).

The resonant modes of open physical systems are often
called “quasi-normal modes” (QNM), as they are not square-
integrable and exponentially diverge outside the resonator.
The QNM eigenvalues correspond to the poles of physical
quantities describing the system response. Based on a pole
expansion of a desired such quantity, QNMT is usually con-
cerned with identifying the pole residues/coefficients and
any additional background terms. These expansions can al-
low a fast approximate solution for scattering and emission
problems, while providing physical understanding and good
spectral accuracy around sharp resonances, in contrast to di-
rect numerical methods using frequency/time discretization
[12–16]. A quantity often studied is the Green’s function [17],
which is an infinite-dimensional operator that can be used to
construct any solution of the system. However, for problems
with a finite number of scattering ports, the scattering S matrix
is usually the desired system descriptor, whose calculation
is the goal of this paper. It is a simpler finite-dimensional
operator, which can be computed without requiring the full
Green’s function. For lossless 1-port systems, the numerator
of the scalar S is trivial, since its zeros simply coincide with
the conjugates of the poles [18], while loss can be simply
treated either by perturbation or by directly computing the ze-
ros [1,19]. In the general multiport case, one recent approach
used the full-field equations to compute frequency-dependent
S-expansion coefficients as volume integrals involving the
QNMs and the excitation port fields to achieve good accuracy
[5]. Other QNMT formulations have shown how to project the
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Green’s function onto the scattering ports to obtain the S ex-
pansion, which is further given as a reduced-order model with
frequency-independent residues, an advantage for simplic-
ity and easier interpretation [2,4]. Most of these derivations
based only on field-equations solutions require the QNMs’
normalization, which can be accomplished only by intricate
techniques with increased computational complexity due to
the QNM far-field divergence [20]. To avoid normalization,
a new phenomenological approach was proposed in Ref. [3],
starting from the coupled mode theory (CMT) equations
[8,21] and changing basis to the QNMs (a rather confusing
approach, as the uncoupled orthonormalized modes required
by CMT are ambiguous for arbitrary scatterers). However, for
lossless reciprocal systems, these existing formulations do not
guarantee energy conservation for a small truncated expan-
sion, but presumably only in the infinite limit. While QNMTs
with frequency-dependent expansion coefficients are expected
to converge faster towards satisfying this important physical
constraint, those with constant residues exhibit large errors
for a practical small number of QNMs (Ref. [4] mentions
that they violate energy conservation visibly even with 301
modes and we show examples, where Ref. [3] violates it by
50% with few modes). In this paper, we consider an S-matrix
expansion over the QNMs and directly derive conditions for
it to satisfy the necessary physical constraints. We calculate
the QNM-to-ports coupling matrix D from simple surface
integrals of the fields without need for QNM-normalization,
and then finetune D to prioritize and impose these conditions.
In this way, rather than the expansion parameters being fixed
from the field equations (e.g., if calculated via the Green’s
function), they are adjusted as more modes are included
in order to enforce reciprocity and energy conservation for
any finite sum. The final result is a simple equation for S
[Eq. (7)] using only the eigenfrequencies and the finetuned D
[Eq. (11)] (Sec. II). We confirm the improved accuracy of our
QNMT using 2-port and 4-port electromagnetic metasurface
examples, and with excitation of both normally and obliquely
incident plane waves. For the latter, most previous approaches
[10,11] imposed a fixed incidence transverse wave vector
(k⊥ = ωsinθ/c), so that the angle θ changed with frequency
ω (given the constant wave speed c). Instead, QNMT can be
used to compute S(ω) for fixed θ by evaluating the relevant
QNMs involving eigenfrequency-dependent complex Bloch
wave vectors, formulated as a generalized linear eigenproblem
in Ref. [22], while we directly solve the nonlinear eigenprob-
lem here (Sec. III).

In addition to providing a fast computational tool, QNMT
(like CMT) has the advantage of offering a simple analyti-
cal model for gaining physical insight into resonant systems
and for designing practical resonant devices. One interesting
example is the case of Fano-resonant shapes [6] emerg-
ing from the interplay between a high-Q resonance and a
slowly varying background response, useful for sensors and
filters. This background scattering is usually described by
a separate matrix C, which previous works have almost
always estimated only by fitting it a posteriori to the to-
tal S, either with a polynomial approximation [4] or an
effective averaged structure [8,9]. Recently, an exact volume-
integral formula was alternatively derived by factoring out a
choice of physical background [5] (but may require further

development to handle certain boundary conditions, such as
perfect electric conductors in electromagnetism). While it is
understood that this background is related to the low-Q modes
of the actual structure, a detailed systematic prescription to
compute it directly from them and its relation to the final S
are lacking. In Sec. IV, we extend our QNMT to nontrivial
direct-scattering pathways, by showing that a slowly varying
C can be calculated with our general recipe using only the
system low-Q modes and by placing the high-Q modes into a
different matrix S̄, in order to then obtain a good approxima-
tion S = S̄C [Eq. (15)]. We then analyze simple low-Q pole
configurations corresponding to different physical interpreta-
tions of C, such as a desired background transmission or group
delay. Finally, we demonstrate this additional formulation for
the electromagnetic-metasurface examples mentioned above.

II. QUASI-NORMAL MODE THEORY

A. Formulation

We consider a general scattering problem of an arbitrary
linear time-independent scatterer, coupled to incoming (ex-
cited) and outgoing (scattered) radiation via several physical
linear ports (Fig. 1). At the frequency ω of excitation, the
scatterer has a total of P “coupling port modes” (CPM) of
radiation, which can be either single propagating modes of P
different physical ports or several propagating modes of fewer
ports (while all other port modes are either evanescent, or of
incompatible symmetry, or their coupling is simply too small
at ω). Let CPM p propagate with wave vector kp(ω) and field
φp(ω, r) = φ⊥

p (ω, r⊥
p )eikpr‖

p , separable in the propagation (r‖
p)

and transverse (r⊥
p ⊥ kp) coordinates. In the most common

case of reciprocal lossless physical ports, the CPMs at ω

are orthogonal under the standard (conjugated) “power” inner
product (a cross-sectional overlap surface integral) and can be
normalized to carry unit power 〈φ⊥

p |φ⊥
q 〉 = δpq [21]. Then, for

the P pairs of incident and scattered CPM waves, if the vectors
s+ and s− denote, respectively, their amplitudes at specific
reference cross sections r‖

p = zp of their physical ports, |s±p|2
equals the power carried by the ±p wave, s†

±s± is the net
incident/scattered power, and the system scattering matrix S
at these reference cross sections is defined by s− = S s+.

Since the scattering system is open (coupled to radiation),
its Hamiltonian H is non-Hermitian, so it supports a set of res-
onant modes [with resonant frequencies ωn and fields ψn(r)
namely H (iωn)ψn = iωnψn]. Causality and stability [23] (or
simply passivity [18]) imply that the system response is an-
alytic in the upper half of the complex-ω plane, namely ωn

must lie in the lower half plane. ψn are linearly independent
but quasi-normal and nonorthogonal under the standard (con-
jugated) “energy” inner product (a volume integral). However,
when the system is reciprocal, H is complex symmetric,
so its QNMs are orthogonal under the nonconjugated inner
product {ψn|ψl} = 0 for n �= l [13,24]. We consider N such
modes, whose normalization we leave unspecified, and denote
by the diagonal matrix � their complex frequencies and by
the vector a their amplitudes upon excitation. Moreover, it
is usually assumed there are also pathways other than the
resonant QNMs for direct scattering of input to output CPM
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FIG. 1. A 2-port scattering system with important QNMT param-
eters. At excitation frequency ω, the coupling port modes (CPMs)
with transverse fields φ⊥

p have input and output amplitudes s±p,
respectively, related by the S matrix through s− = Ss+. The open
scattering system supports quasi-normal modes (QNMs) with com-
plex frequencies ωn and fields ψn, which have amplitudes an upon
excitation. The CPM-to-QNM coupling coefficients are Dpn, with
ratios σn = D2n/D1n. Imposing realness, unitarity, and symmetry
constraints on S allows us to compute it as a function of only ωn

and σn [Eq. (7)]. Optionally, by separating low-Q modes ψC
n , we can

also construct a slowly-varying background matrix C, which can give
a physical intuition about the scattering response and help in specific
scattering designs [7].

waves, through the background medium without the scatterer,
quantified by a separate scattering matrix C [8,21].

The part of the scattered field not due to direct pathways
(sQ

− = s− − Cs+) can be written outside the scatterer as an
expansion over the complete set of port modes (propagating
CPMs and evanescent). QNMT makes the approximation that
it can be written also within the volume V of the scatterer as a
linear combination of the N QNMs (an assumption also used
in CMT [8]):

FQ
scat =

⎧⎪⎪⎨
⎪⎪⎩

P∑
p=1

sQ
−p(ω)φ⊥

p (ω, r⊥
p )eikp(r‖

p−zp)+evan.; r /∈ V

N∑
n=1

an(ω)ψn(r); r ∈ V.

(1)

By inserting the second line into the exact equation for the
field inside the scatterer and by mode matching the two lines
on the cross section z′

p where the p port meets the scatterer
boundary, one respectively gets the final two QNMT equa-
tions, which, with exp(−iωt ) notation, takes the form (for a
rigorous derivation see, e.g., Ref. [5]):

−i(ω − �)a = Kt s+
s− − Cs+ = Da,

(2)

where

Dpn(ω) = eikp(zp−z′
p)
〈
φ⊥

p (ω, r⊥
p )|ψn(r⊥

p )
〉
z′

p
(3)

and zp − z′
p is the distance of the p-port reference cross sec-

tion from the boundary of the scatterer. This z′
p cross-section

choice for the calculation of the D overlaps is further justi-
fied in Sec. IV C. The P × N matrices K and D quantify the
couplings of the QNMs to the input and output CPM waves,
respectively, and they are generally frequency dependent.
Equations (2) with � diagonal (also known as state-space
representation in diagonal canonical form in circuit theory
[25]) constitute the basis of QNMT and their solution for the
scattering matrix S is given by

S = C − D(iω − i�)−1Kt . (4)

Although a general C(ω) was included in Eqs. (2) and (4)
to align with literature, we rely on the presumed complete-
ness of the resonant QNMs to stipulate that each incident
CPM wave is scattered to other CPMs only due to reso-
nances. Therefore, for now, we take C as a diagonal phase
matrix. Later, we will show that, indeed, low-Q QNMs can
be combined to write a general effective background C(ω);
in particular, a fully-transmissive C comes from a zero-
frequency mode with an infinite radiative rate (Sec. IV B).

Shifts of ports’ reference cross sections—When S(ω) is a
meromorphic function, it is useful to employ the Weierstrass
factorization theorem and arguments from causality to write
S = eiτωS′eiτω, where τ is a constant diagonal matrix with
real positive elements and S′ is a “proper” rational function
(Appendix A). Equation (4) then implies that C(ω) = ei2τωC′,
D(ω) = eiτωD′, and K (ω) = eiτωK ′, where C′ is a diagonal
constant phase matrix that can be taken equal to −I (as we
justify later and is often used in CMT [21]) without loss of
generality, and D′, K ′ are now constant matrices.

This is the case for CPMs with fields transverse to their
direction of propagation (φp · kp = 0), such as plane waves
or dual-conductor TEM microwave modes, which will be the
focus of this article. They have kp = ω/cp (where cp the wave
velocity) and φ⊥

p (r⊥
p ) independent of ω, so Eq. (3) suggests

that Dpn(ω) = D′
pneiω(zp−z′

p)/cp with D′
pn in fact constant. Thus,

in all structures simulated in this paper, we remove this linear
phase to compute S′, referenced at the new port cross sections
z′

p on the scatterer boundary. In practice, τpp may be slightly
larger from (zp − z′

p)/cp, adding a small constant group delay
just to the phases of S, so it is of no concern for applica-
tions dependent only on their amplitudes, such as amplitude
filters [7].

Therefore, hereafter we drop the ′ and consider S to be such
a proper rational function that can be decomposed as

S = −[I + D(iω − i�)−1Kt ]

⇔ Spq = −δpq −
N∑

n=1

DpnKqn

iω − iωn
. (5)

For other types of CPMs, S(ω) may not be meromor-
phic, for example, when higher-order CPMs have a cutoff
frequency, which appears as a branch-point [and frequency
dependent D′(ω), K ′(ω)]. Similarly to previous QNMT for-
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mulations with constant coefficients, such systems are not
investigated in this paper.

Normalization independence—Recall that measurable
physical quantities (such as the S matrix) do not depend on
the choice of normalization for the QNM amplitudes a. For
example, it is easily seen from the QNMT Eqs. (2) that, for the
fixed normalization of s±, two different sets (an, Kqn, Dpn) and
(a′

n, K ′
qn, D′

pn) scale as a′
n/an = K ′

qn/Kqn = Dpn/D′
pn, hence

Spq in Eq. (5) is unchanged. Thus an overall scaling factor
can be chosen arbitrarily for each QNM.

For some physical quantities analytically computed via the
QNM fields (such as the Green’s function), this normaliza-
tion independence is typically ensured by dividing with the
volume-integral norm {ψn|ψn} of these fields. However, since
they are nonintegrable, regularizing this norm is a procedure
that adds complexity (e.g., choice of method and dependence
on outgoing boundary condition) [20] to the QNMT formu-
lations based only on calculations from the field equations
[2,4,5]. In contrast, as highlighted in Ref. [3] and we show also
later, this phenomenological (relying on physical constraints)
QNMT formulation does not require such norm evaluation, so
it is much simpler.

B. Physical constraints

We now proceed by imposing constraints on S, based on
the physical properties of the system.

Realness—For many physical systems, real input fields
lead to real output fields so that the system response S(t ) must
also be real. In frequency domain, this realness of S is stated
as S∗(iω) = S(−iω∗). For such systems, the same relation
holds for their Hamiltonian H satisfying H (iω)ψ = iωψ, so
every QNM solution (ωn, ψn) is paired with another QNM
(ωn′ , ψn′ ) = (−ω∗

n , ψ∗
n). Similarly, the CPMs satisfy φ∗

p(ω) =
φp(−ω∗) ⇒ φ⊥∗

p = φ⊥
p . Equation (3) thus shows that Dpn′ =

D∗
pn. Then, to satisfy S∗(iω) = S(−iω∗), Eq. (5) requires also

Kpn′ = K∗
pn. Note, S realness implies that not only poles but

also zeros of any Spq appear in pairs (ωo,−ω∗
o), and that Spq is

a rational function of iω with real coefficients. Note that our
QNMT is still applicable to systems that do not satisfy real-
ness (for example, [26]), where simply the QNMs included in
the S expansion do not appear in pairs.

Energy conservation—In absence of absorption or gain, en-
ergy conservation implies that the S matrix is unitary (s†

+s+ =
s†
−s− ⇔ S†S = I) [21]. In Appendix B, we prove that a nec-

essary and sufficient condition is given by

K = D∗(Mt )−1, with Mnl =
∑P

p=1 Dpl D∗
pn

iωl − iω∗
n

= M∗
ln, (6)

thus S can be written as

S = −[
I + D(iω − i�)−1M−1D†

]
. (7)

In Appendix C, we show that this Eq. (6) choice of K sat-
isfies the realness requirement, namely, for Dpn′ = D∗

pn, we
get Kpn′ = K∗

pn. In Appendix D, we rearrange Eq. (7) to show
that S is fully and uniquely determined by the resonant fre-
quencies ωn and the ratios σr,pn = Dpn/Drnn (for some chosen
port rn for each mode n). These quantities can be readily
calculated using any appropriate eigenmode solver, where Dpn

is determined by the surface integral in Eq. (3) and the ratios
σr,pn remove the ψn-normalization-dependent scaling-factor.
Therefore, as promised, S in Eq. (7) does not require comput-
ing the volume-integral norms of the QNMs. Note also that,
as more modes are included, the residue coefficients automat-
ically update themselves through M in order to satisfy energy
conservation for the entire set, in contrast to other formula-
tions based on the exact field equations, where these residues
are constant [4,5]. Finally, Eq. (6) is different from the usual
CMT expression of energy conservation D†D = 2|Im{�}|, as-
sociated with modes orthonormal under the standard “energy”
inner product, which does not hold for QNMs.

Reciprocity—Reciprocity implies that the S matrix is sym-
metric (S = St ) [21]. From Eq. (5), we can see that this is
equivalent to having

Kpn

Dpn
= Kqn

Dqn
⇔ K = D
 (8)

and therefore

S = −[I + D(iω − i�)−1
Dt ] (9)

for some arbitrary diagonal matrix 
 with entries λn [with
the only restriction that λn′ = λ∗

n �= 0, so that Eq. (8) is com-
patible with realness], where a specific choice of λn fixes
the ψn-normalization-dependent scaling-factor. For any such
choice, as mentioned earlier, the numerator of pole n for
Spq in Eq. (9) stays the same, however, its calculation re-
quires evaluation/regularization of divergent volume integrals
involving the QNM fields (including their norm {ψn|ψn}),
which we try to avoid here. Note also that, since 
 can be
arbitrary, the usually assumed condition of reciprocity K = D
(corresponding to the specific normalization choice 
 = I) is
not necessarily true.

D optimization—In order to satisfy both energy conserva-
tion and reciprocity (unitarity and symmetry of S), the input
coupling coefficients K must satisfy both Eqs. (6) and (8)
simultaneously, namely the output coupling coefficients D
must satisfy

Dqn

∑
l

M−1
nl D∗

pl = Dpn

∑
l

M−1
nl D∗

ql ⇔ D∗ = D
Mt . (10)

Here again, for each resonance n, either Drnn (for one port
rn) or λn can be chosen arbitrarily. In practice, this reciprocity
condition Eq. (10) is a set of PN equations. Let Dc be the
coupling coefficients computed from the eigenmode solver. In
most cases, as we see in numerical examples, it turns out that
Dc are very close to satisfying this required condition, but they
do not satisfy it perfectly, since the finite set of chosen reso-
nances is not truly complete. This is why in Ref. [3], Eq. (10)
was not enforced exactly, rather the N coefficients of 
 were
chosen as λ j = [X †X ] j j/[X †D] j j with X = D∗(Mt )−1 as one
way to minimize its error (note [27]), and their final S matrix,
which was formulated as in Eq. (9), was reciprocal but not
necessarily unitary. Instead, here, we give priority to exactly
satisfying these physical properties of the actual system, if we
want our model to be a physically realistic and thus, as we will
show, a more accurate description. Therefore, we finetune the
PN coefficients D by using a constrained optimization proce-
dure, with the goal of exactly satisfying Eq. (10) while staying
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as close as possible to the computed system performance:

D = arg min
D∗=D
Mt

f (D, Dc), (11)

where f (D, Dc) is some penalty function to ensure that
D stays close to Dc (note [28]). An obvious choice
is f (D, Dc) = ‖D − Dc‖2. Another option is f (D, Dc) =∑

{p,q} ‖Rpq(D) − Rpq(Dc)‖2, where R(D) represents the
residues of the scattering matrix expansion given in Eq. (7)
and {p, q} is a chosen subset of indices. When summing
over p �= q, the global optimum is reached for D satisfying
Rpq(D) = Rqp(D) = [Rpq(Dc) + Rqp(Dc)]/2, but such a set of
D is not guaranteed to exist. When it does exist, directly
solving this system of equations has given the best results in
our experience with actual 2-port systems.

C. Properties of 2-port systems

Since many common applications of scattering theory in-
volve lossless reciprocal 2-port systems, we discuss some
properties of their S matrix.

Energy conservation leads to the unitary S matrix of
Eq. (7), which is recast in normalization-independent form
for a 2-port in Eq. (D3). Realness requires that, for each
mode (ωn, σn), where σn = D2n/D1n, the mode (−ω∗

n, σ
∗
n ) is

also included. Then, the dependence of S on σn can be easily
checked to satisfy, for γ = ±1,

S11{ωn,γ σn} = S11{ωn,σn}, S12{ωn,γ σn} = γ ∗S12{ωn,σn}
S21{ωn,γ σn} = γ S21{ωn,σn}, S22{ωn,γ σn} = S22{ωn,σn}.

(12)

[If only positive-frequency modes are considered and thus
the realness requirement is relaxed—commonly known as
a rotating-wave approximation (RWA)—Eq. (12) holds for
any phase factor γ = eiϕ .] Moreover, swapping ports 1 ↔ 2
corresponds simply to replacing σn ↔ 1/σn:

S11{ωn,σn} = S22{ωn,1/σn}, S21{ωn,σn} = S12{ωn,1/σn}. (13)

As a consequence, when all σn are ±1 (as for a symmetric
structure, whose modes must be even or odd [29]), S11 = S22

and S21 = S12, so the 2-port system is immediately reciprocal.
[Obviously, σn = ±1 is not necessary for the reciprocity con-
dition Eq. (10) to hold.] Note that energy conservation alone
implies that |S12| = |S21|, so reciprocity in lossless 2-ports is
mostly a statement on the transmission phase responses.

Finally, in Appendix E, it is shown for a real lossless
reciprocal 2-port system that (i) the zeros of S21 can only
appear as complex quadruplets (ωo, ω

∗
o,−ωo,−ω∗

o), real or
imaginary pairs (ωo,−ωo), or at ωo = 0 and (ii) for each
zero pair (ωo,−ω∗

o) of S11, (−ωo, ω
∗
o) is a zero pair of S22.

The restrictions (i) on the S21 zeros imply that its numerator
is a polynomial of ω2 with real coefficients, optionally with
multiplicative iω factors. We emphasize that, for any lossless
system with more than one port, the zeros of the S coefficients
are different from the “S-matrix zeros”, where det(S) = 0 and
which always coincide with the conjugates of the poles [19].

D. Absorption and gain

In the presence of small absorption loss, S is no longer
unitary, but it can be calculated perturbatively when all rel-
evant modes have high Q. In particular, the denominators of

Eq. (7) must obviously use the poles �̃ of the actual absorptive
system, however, if the QNM loss rates are split into radiative
(�r) and nonradiative (�nr) parts, the numerators of Eq. (7)
scale as DM−1D ∼ �r (1 + const · �nr ) [no scattering when
�r → 0]. We then see that, for high-Q modes (where both
�r and �nr are much smaller than the frequencies), these
numerators are equal to those of the lossless case to first
order in �r, �nr, namely absorption only affects the poles. (A
similar argument is often implicitly used in CMT, where it is
typically assumed that � = D†D + �nr with D not changing in
the presence of �nr because � itself is small [3], or is explicitly
used to argue that the coupling coefficients to different CMT
channels can be determined independently [29].) Therefore, in
practice, to compute S for absorptive or active scatterers, we
first calculate the QNMs (ωn, Dpn) of the lossless (radiative
only) structure and use them to evaluate the numerators of
Eq. (7). Then, we turn on absorption or gain mechanisms
(adiabatically if needed for QNM-tracking purposes) to get
the exact denominator poles (ω̃n). Since the lossless-case D
was finetuned for reciprocity, the nonunitary S will still be
symmetric. The perturbation argument assumes high-Q modes
but does not restrict the relative strength between radiation
and absorption/gain rates. Indeed, as we see in the next ex-
amples, our QNMT gives quite accurate predictions even in
the presence of modes with �nr � �r and, in fact, even when
relatively low-Q modes are present.

III. EXAMPLES IN ELECTROMAGNETISM

Our QNMT for the S matrix is applicable to all kinds of
wave physics, such as acoustics [30–32], electromagnetics
[3–5,7], and quantum mechanics [2,33]. Therefore, in our
derivation, we used general physics-agnostic notation to ren-
der our results usable for any wave-scattering problem. In
this section, to examine the accuracy of our QNMT, we study
multiple examples in electromagnetism.

A. Normal incidence on microwave metasurface

We now study scattering of an electromagnetic plane wave
with frequency f = ω/2π normally incident on the metasur-
face depicted in the inset of Fig. 2(a). It consists of alternating
dielectric (green) and metallic (grey) layers, where the latter
have been etched out to form two-dimensional square pe-
riodic lattices (of period a) of thin metallic crosses, whose
centers are the same for all patterned layers. A square air-
hole has also been etched throughout the entire thickness d
of the metasurface in the region between the crosses. The
metal thickness is 18 μm (corresponding to 0.5 oz copper).
We study for frequencies below the first diffraction cutoff
( fcut = c/a at normal incidence), so only transmission and
reflection need to be considered. Moreover, there is C2v sym-
metry, so the response for normal incidence is independent
of the polarization ê and only 2 ports are needed. Numerical
computation of the “exact” frequency response (S matrix) for
plane-wave excitation as well as of the eigenmodes for use
in our QNMT is carried out using COMSOL Multiphysics
[34]. Complex eigenfrequencies ωn are immediately obtained
from the eigensolver, while the coupling coefficients D1n, D2n

are computed from Eq. (3) as “power” inner-product surface
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FIG. 2. QNMT modeling scattering of a plane wave normally
incident from the left on the microwave metasurface depicted in
the inset of (a). Parameters are: a = 15 mm, h/a = 0.64, w j/a
= (0.05, 0.2, 0.1), l j/a = (0.62, 0.92, 0.82), metal (grey) layers’
thickness dμ = 18μm, dielectric (green) layers’ permittivities εi =
(4, 6, 3, 10), and thicknesses di/a = (0.1, 0.2, 0.3, 0.2). In the
lossy simulation, we used copper and added loss tan δ = 0.01 to all
dielectric layers [for simplicity, − tan δ is assumed for Re( f ) < 0
to maintain realness of ε( f )]. Curves: (a) magnitude and (b) group
delay of the transmission coefficient (where a constant delay of
0.24 × d/c was added to QNMT to match the exact simulation at low
frequencies). (c) Lossless-system poles used in the QNM expansion
(with their negative-frequency pairs used but not shown) and zeros of
the resulting S coefficients, confirming unitarity and symmetry of S.
The dotted arrows point at the 4 modes used to compute the slowly
varying background C in the S = S̄C approximation. (d) Errors of
asymmetric [Eq. (7) without Eq. (11), and approximate Eq. (15)] or
nonunitary (Ref. [3]) QNMT formulations.

integrals:

Dpn ∝
∫

z′
p

(E∗
p × Hn + En × H∗

p) · dS, (14)

at the two (left/right for p = 1, 2) external boundaries of
the metasurface between the QNM field ψn = (En, Hn) and
the coupling port-modes φ⊥

p = (Ep, Hp) [plane waves in this
case, so Dpn ∝ ∫

z′
p
(ê · En) dS], where, as emphasized earlier,

only their ratio σn is needed. In Appendix F, we provide
further details and guidelines for the numerical simulations
(mainly how to compute very-low-Q modes), and within the
Supplemental Material [35] we give tables with the calculated
QNMs (ωn, σn) for every structure presented in the paper.

For the asymmetric structure of Fig. 2, the parameters
were chosen arbitrarily to test a very general response, with
σn departing substantially from ±1. Even so, we see a very
good match between the exact numerical computation (black
lines) and the QNM expansion of Eq. (7) (red lines), for
both the amplitude of S21 = |S21|eiφ21 (a) and its time delay
τ21 = dφ21/dω × c/d (b), in both cases of lossless (solid
lines) and lossy (dashed lines) structures. In the lossless case,
we emphasize again that, due to our symmetrization procedure
of Eq. (11), the QNM expansion we obtained is both unitary
and symmetric. This is why the zeros of S21 = S12 are either
real or complex conjugate pairs, and the zeros of S11, S22 com-
plex conjugates of each other, as they should [Fig. 2(c)]. The
response with copper and dielectric losses mostly maintains
the same overall features, and merely exhibits reduced trans-
mission at high frequencies and “superluminal” (0 � τ21 < 1)
or negative group delay (τ21 < 0) around transmission zeros.
The latter does not violate causality [36], instead it has been
shown to necessarily occur at peaks of absorption [37,38],
and thus is indeed typically associated with lossy bandstop
(“notch”) transmission responses (such as zeros) [39]. Our
QNMT correctly predicts even these unusual phenomena.

To quantify the benefits of our QNMT, we calculate the
errors associated with not exactly enforcing reciprocity or
energy conservation, for the same QNMs of the lossless struc-
ture. If the D coefficients are not finetuned with Eq. (11), S
from Eq. (7) is not exactly symmetric, so Fig. 2(d) shows the
resulting error in |S21 − S12|2 (orange curve). It is relatively
small (although increasing at higher frequencies), indicating
that Eq. (7) is already a good approximation. In contrast, the
QNMT of Ref. [3] [analogous to our Eq. (9)] is reciprocal
but violates energy conservation by large amounts, leading to
nonphysical “absorption/gain”. As indeed shown in Fig. 2(d),
for this lossless 2-port, the sum of transmission and reflection
|Spp|2 + |S21|2 (p = 1, 2) deviates from 1 by almost ±0.4 at
some frequencies (blue curves)! It turns out that these large
errors exhibit themselves mostly in the reflection coefficients.
Additionally, in both cases, the violation of a physical con-
straint leads to errors also in the group-delay prediction (such
as negative group delay, which is impossible for a lossless
2-port). However, these delay errors are of less importance,
since they usually appear around transmission zeros and they
are mitigated when a finite-bandwidth pulse is considered
[40], as detailed in Appendix G.
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FIG. 3. QNMT modeling of cross-polarization transmission of
a normally incident plane wave from a metasurface with rotated
apertures. The two planar metallic sheets are periodically patterned
(period a = 15 mm) with same cross-like apertures [with widths
(0.05a, 0.1a) and lengths (0.5a, 0.3a) in two orthogonal directions],
which are rotated by angles 30◦ and 60◦ with respect to the polariza-
tion of port 1. The three uniform dielectric layers have εi = (2, 3, 5)
and thicknesses di/a = (0.1, 0.05, 0.15). (b) Errors of asymmet-
ric [Eq. (7) without Eq. (11)] or non-unitary [Ref. [3]] QNMT
formulations.

One key advantage of the QNMT method is that it resolves
spectra around very-high-Q modes with perfect detail, while a
frequency simulation requires a very dense uniform frequency
grid to resolve them, being ignorant of their location. This,
in turn, leads to a stark benefit in speed for QNMT. For this
example, on the same machine and finite-element mesh, the
QNMT calculation took an average of ∼60 secs per mode
(×10 modes in Fig. 2), while the frequency-domain calcula-
tion an average of ∼100 secs per point (×600 points in Fig. 2).

B. 4-port metasurface via coupled polarizations

We now consider the 4-port system described in Fig. 3
which consists of a microwave metasurface with three dielec-
tric layers sandwiching two metallic sheets, with patterned
arrays of rotated cross-like apertures. The ports correspond
to the two polarizations on the left (1,2) and right (3,4) sides
of the structure. This system does not have the required sym-
metry for the normally incident plane-wave polarization to be
conserved, instead the two orthogonal polarizations on each
side cross-couple in both reflection and transmission, so a
4-port system is needed.

In Fig. 3(a), we plot the cross-polarization transmission
|S41|2 and again find a good agreement with our QNMT. In the
Supplemental Material [35], we show the other components

of the S matrix. In Fig. 3(b), we again show for comparison
the errors of QNMT without symmetry or unitarity. For the
nonunitary QNMT of Ref. [3], the quantity 1 − ∑

p |Sp1|2
reaches values as low as −0.5 (blue curve), in stark con-
tradiction with energy conservation. The asymmetric QNMT
using Eq. (7) without the D correction of Eq. (11) has errors
in |Spq − Sqp|2 as large as 0.3 (orange curves). Moreover,
in this example, it also has nonzero |Spq|2 − |Sqp|2 with an
error up to ∼0.015. This happens, because, for P-port systems
with P > 2, unitarity alone does not guarantee |Spq| = |Sqp|
anymore, so our method of finetuning D to also enforce sym-
metry [Eq. (11)] corrects errors not just in the scattering phase,
but in the amplitudes too.

C. Oblique incidence on 2d photonic metasurface

When a plane wave is incident on a metasurface at an angle
θ , its transverse wave vector component at frequency ω is
k⊥ = ω sinθ/c. Phase matching then imposes that this must
also be the Bloch wave vector within the metasurface. QNMT
modeling with such excitation may seem intractable at first
glance, if one tries to obtain a full band diagram to apply
QNMT at each fixed real k⊥. However, we calculate here

FIG. 4. QNMT modeling of transmission of obliquely incident
(θ = 30◦) TE plane wave from a dielectric (ε = 11) grating with
w/a = 0.4 and di/a = (0.6, 0.4) so d = d1 + d2 = a. The lossy
structure has ε = 11 + 0.77i (loss tangent tan δ = 0.07).
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the relevant QNMs from a nonlinear eigenproblem, where the
phase matching condition is imposed at the complex eigen-
frequency by analytic continuation (thus giving a complex
Bloch wave vector k⊥

n = ωn sinθ/c). To find such unusual
resonances, we developed software for two-dimensional (2d)
dielectric structures, whose geometry can be split into uniform
layered sections: At any complex ω, these complex Bloch
modes are calculated within each section with a T -matrix
formulation, then matched at interfaces between sections, and
finally radiation conditions are applied to find the resonances
(similar to CAMFR [41] and other interface mode-matching
analyses [42,43]).

We then study scattering of a plane wave incident at a
30◦ angle on a 2d photonic grating with its E-field transverse
to the plane [inset of Fig. 4(a)]. For frequencies below the
first diffraction cutoff fcut = c/a(1 + sin θ ), the system again
has only 2 ports. In Figs. 4(a) and 4(b), we show trans-
mission, calculated both exactly (black curves) and with our
QNMT (red curves). The agreement is indeed very good all
throughout the range. The QNMTs without unitarity or sym-
metry reach errors ∼0.5 and ∼0.25, respectively [Fig. 4(c)].
We highlight that QNMTs are expected to improve as more
(higher-frequency) modes are included, however, the nonuni-
tary formulation [3] exhibits large errors even down to very
low frequencies. Transmission is also plotted in the case of
strong dielectric losses and it highlights that our perturbative
approach works very well, even though now (due to absorp-
tion) several modes have decay rates �̃n more than an order of
magnitude larger than their rates �n for the lossless structure
(see QNMs within the Supplemental Material [35]).

IV. BACKGROUND SCATTERING REPRESENTATION
BY LOW-Q MODES

In some design situations [7], one needs an effective
slowly-varying background response, which has to be de-
signed collectively and in conjunction with the high-Q modes.
This background response (responsible also for the concept
of Fano resonances [6]) is usually modeled in standard CMT
via the direct-coupling matrix C in Eq. (2). In most cases,
researchers have approximated C by simulating an effective
background structure derived by some type of topology aver-
aging, which removes the high-Q resonances, with parameters
chosen a posteriori for a best fit [4,8,9]. Here, we show how
C can be calculated using the actual structure under study
by appropriately combining its low-Q modes, providing also
intuition for this dependency and its physical interpretation.
Given the background C, we also derive how the total S can
be computed and we test it for the electromagnetic examples
of Sec. III.

A. QNMT with background C matrix

Consider a lossless system supporting some high-Q reso-
nant modes (ωn = �n − i�n, Dn), while the rest (ωC

n = �C
n −

i�C
n , DC

n ) have much smaller Q (Fig. 1). Starting from Eq. (5),
we combine these low-Q-mode terms within the sum to define
C(ω) ≡ S{ωC

n ,DC
n }(ω), so that S takes the form of Eq. (4), with

� including only the high-Q modes. In the limit �C → ∞,
C becomes a frequency-independent matrix, which is unitary,

since S(ω → ∞) = C. Therefore, we can use Eqs. (7) to
calculate C and Eq. (11) to guarantee its symmetry. In this
process, MC

nl ≈ ∑P
p=1 DC

plD
C∗
qn /(�C

l + �C
n ), so the �C

n → ∞
cancel out between MC and the C-denominator poles, leading
to a constant C not necessarily equal to −I . In the next subsec-
tion, we calculate this limiting C for some simple but useful
pole configurations. Now, for the total S matrix of Eq. (4),
following the same procedure of Appendix B but with −I
replaced by a unitary symmetric constant C, one can easily see
that S†S = I is now equivalent to Kt = −M−1D†C. Therefore,
the background C can be factored out of Eq. (4) to write

S = S̄C = [I + D(iω − i�)−1M−1D†]C

⇔ Spq = Cpq +
∑

n

Dpn
∑

l M−1
nl

∑
r D∗

rlCrq

iω − iωn
.

(15)

Here, S̄ has the form of a separate scattering matrix, which
itself also satisfies realness, unitarity, and the properties of
Eqs. (12) and (13). The condition of Eq. (10), to additionally
impose exact symmetry on S, is modified to

Dqn

∑
l

M−1
nl

∑
r

D∗
rlCr p = Dpn

∑
l

M−1
nl

∑
r

D∗
rlCrq

⇔ CD∗ = −D
Mt ,

(16)

through which a finetuned D can be evaluated by an optimiza-
tion procedure, as before, to obtain the final S.

As we discuss in Appendix F, such extremely-low-Q
modes are very difficult to locate numerically. Thankfully,
in practice, real systems usually have modes with reason-
ably low Q, which are easier to find. However, the problem
then is that their associated C(ω) is slowly varying instead
of constant and is not necessarily unitary (as it does not
describe a physical system by itself). Nevertheless, we can
still use Eq. (7) for those low-Q modes to obtain a uni-
tary (thus approximate) C, symmetrize it with Eq. (11),
and then use Eq. (15) with the high-Q modes inside S̄
to get S simply as a best-effort approximation to the ac-
tual system response. This S̄C construction still guarantees
that S will also satisfy realness [S∗(ω) = S̄∗(ω)C∗(ω) =
S̄(−ω∗)C(−ω∗) = S(−ω∗)] and unitarity (S†S = C†S̄†S̄C =
I), but does not guarantee reciprocity (St = Ct S̄t �= S̄C = S)
even though Ct = C [at least, unitarity implies |S12| = |S21|
for a 2-port]. Attempts to symmetrize S (for example, [44])
are not expected to have much success: if it were possible to
exactly satisfy also reciprocity for a varying C(ω), one would
then be able to build a unitary and symmetric S by multiply-
ing unitary and symmetric C matrices formed by individual
modes, which obviously is not possible. Regardless, as we
show later in examples, for many physical systems, S = S̄C
is a good enough approximation, which we use in separate
work [7] to design accurate metasurface standard (e.g., el-
liptic) filters with a nontrivial background. In such design
situations where a specific background is desired, C = S̄−1S
can alternatively be used to estimate and then design C(ωc)
at the target frequencies ωc without having to calculate any
low-Q modes, rather by using S(ωc) from a direct simulation
and S̄(ωc) from QNMT using only the high-Q modes.

033228-8



QUASI-NORMAL MODE THEORY OF THE SCATTERING … PHYSICAL REVIEW RESEARCH 3, 033228 (2021)

B. C matrix due to � → ∞ modes in 2-port systems

In this subsection, we study some very basic configurations
of high-� modes (ωC

n , σC
n ) in 2-port systems to build intuition

on their influence in shaping the background scattering. (For
notational simplicity, here we drop the superscript “C”.)

Single zero-frequency mode (−i�o, σo)—Consider a 2-port
system supporting a zero-frequency mode ωo = −i�o. As
explained above, when �o → ∞, this mode can be factored
out of S into a unitary symmetric background response C.
The symmetry of C dictates that the modal ports-coupling
ratio σo is real. Using Eq. (D3) for just this mode, we find
M = (1 + σ 2

o )/2�o and then

Cpq = −δpq − σpoM−1σqo

iω − �o

�o�|ω|−−−−→ −δpq + 2σpoσqo

1 + σ 2
o

⇔ C =
(

r t
t −r

)
; r = 1 − σ 2

o

1 + σ 2
o

, t = 2σo

1 + σ 2
o

,

(17)

which can give any “reflection matrix” in the orthogonal group
O(2). A given transmission t is achieved for

σo = 1

t
±

√
1

t2
− 1. (18)

In particular, we obtain r = 1 for σo = 0, while r = −1
for σo → ∞. On the other hand, σo = ±1 gives a fully-
transmissive background with t = ±1.

A concrete example which confirms this last result comes
from considering a uniform material slab with thickness d and
refractive index ñ. Its “Fabry–Perot” modes are an equispaced
spectrum given by [13]

ωn = 2c

ñd

(
nπ

2
− i · atanh

1

ñ

)
, σn = (−1)n. (19)

Consider now appropriately large ñ, so that atanh(1/ñ) �
π/2 ⇔ �o � �1. Then, at frequencies of interest 0 < ω �
�1, the modal contribution (∼�o/�n) is negligible for all
n �= 0. In the limit d → 0, indicating the absence of slab, the
only relevant n = 0 system mode has �o → ∞. Therefore,
perhaps counter-intuitively, full transmission can be seen as
equivalent to such a mode at 0 − i∞ with σ0 = 1.

This result of t = 1 for a zero-thickness slab is a conse-
quence our initial phase choice C′ = −I in Eq. (5). If we had
instead chosen C′ = +I , we would have obtained t = −1 for
zero thickness, which would be a valid but awkward phase
convention.

Conjugate-modes pair [(ωo, σo), (−ω∗
o, σ

∗
o )]—Let us now

consider a single mode ωo = �o − i�o with �o �= 0, together
with its negative (paired) mode at −ω∗

o. The symmetry of the
associated background matrix C again requires a real σo, and
Eq. (D3) gives

Cpq = −δpq − 2σpoσqo

1 + σ 2
o

i2�oω

[i(ω − �o) − �o][i(ω + �o) − �o]

⇒ Cpq(�o) = −δpq + 2σpoσqo

1 + σ 2
o

1

1 + i�o/2�o
. (20)

When |ω − �o| � �o � 2�o (so that RWA holds), C(ω ∼
�o) again takes the single-mode value of Eq. (17) independent
of �o. Instead, when �o � 2�o, the two broad resonances
effectively cancel each other and C ≈ −I .

Two uncoupled modes [(ω1, σ1), (ω2, σ2)]—Two modes
with �1,2 �= 0 and σ1σ

∗
2 = −1 do not couple [M12 = 0 in

Eq. (D3)] and their pole contributions add up independently
in C(ω). Symmetry of their C again forces σ1 = −1/σ2 to
be real. [This is the case of an even (σ1 = 1) and an odd
(σ2 = −1) mode. Another example with σ1 → 0± and σ2 →
∓∞ can occur for a strongly reflecting mirror, where each
mode is localized on one of the two asymmetric sides and
couples mainly to one port, thus defining two essentially dis-
joint 1-port systems.] Under the RWA |ω − �1,2| � �1,2 �
2�1,2, the pole contribution of each mode is like the one in
Eq. (17) and then C(ω ∼ �1,2) ≈ I . However, in the limit
�1,2 � 2�1,2, their negative poles cannot be ignored, the
contributions are as in Eq. (20), and the result is instead
C ≈ −I .

Equispaced (Fabry-Perot) modes [nωo − i�o, (−1)n]—
When the structure has localized resonant elements but does
not exhibit very strong overall reflection, the background
response is commonly assumed to arise from the averaged
geometry. When this is a simple uniform material slab, it
corresponds to a Fabry-Perot system with the infinite set of
equispaced alternating-symmetry modes given in Eq. (19) and
a “comb” transmission response (see, e.g., Fig. 5 blue circles
and dashed lines). In the limit ñ → 1, the system approaches
a slab of free space of thickness d and its array of modes
(equi-spaced by πc/d) is shifted down towards −i∞. The
corresponding limiting value of C is simply the scattering
matrix for propagation through d , namely |C21| → 1 and
dφC

21/dω → d/c.
One-sided equispaced modes [nωo − i�o, 0 or ∞]—When

instead the structure has strongly reflective components sepa-
rating the two ports, the background response will comprise
low-Q modes with fields mostly localized on either of the
two port sides, thus having |σn| � 1 or |σn| � 1, respectively,
adding up to |C11|, |C22| ≈ 1. If the average geometry on one
side is a uniform material slab of thickness d/2 on a perfect
mirror, its modes will again be Eq. (19) but for only odd or
only even n. As ñ → 1 and �o → ∞, its round-trip reflection
phase approaches dφC

11/dω → d/c.
From the last two examples, note that, although a

conjugate-mode pair gives C ≈ −I in the large-� limit, when
considering many such modes, their small pole contributions
(deviations from −I), ∝ i2ω/�o from Eq. (20), add up to give
a nontrivial phase term (in transmission or reflection).

C. Choice of boundary for D calculation and C-matrix
description of a port shift

In our QNMT formulation, we suggest calculating the cou-
pling coefficient Dpn as an overlap between the QNM n and
the CPM p at the latter’s cross section z′

p, which first touches
the scatterer boundary [Eq. (3)]. A reasonable question is
whether such a choice is always appropriate, especially in
unusual geometries where a thin “needle” sticks out from
the scatterer or when very-low-index materials surround the
scatterer. In such scenarios, the QNMs are expected to be
localized close to the center of the scatterer and likely are al-
ready exponentially increasing inside the suggested outermost
boundary. Here, we study a simple such photonic structure to
explain the physics that come into play to render our boundary
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FIG. 5. Normally incident plane-wave transmission through
slabs with indices ñs = 3, ñ = 1.05, and thickness d (black for exact
result and red for QNMT prediction), and comparison to the limit-
ing case of ñ = 1 (blue for exact result). (a) Geometry and poles,
(b) amplitude and (c) group delay: the small shift is due to the extra
propagation through the A–A′ slab, predicted by QNMT primarily
via the contribution of the low-Q modes, as can be seen also from
the S̄C approximation (green) where S21 ≈ S̄21C11 gives the correct
delay τ21 ≈ τ21[S̄] + τ11[C].

choice indeed suitable and we show how the S = S̄C formu-
lation can give an interesting physical interpretation.

A plane wave at frequency f = ω/2π is normally incident
on a uniform material slab of refractive index ñs = 3 and
thickness d that is attached to another slab of the same thick-
ness but with ñ = 1.05 (Fig. 5 inset). As a reference, the limit-
ing symmetric system with ñ = 1 and ports’ cross sections A′,
B on the boundaries of the ñs slab has the response shown in
Fig. 5 for (a) the poles (blue circles) with σn = ±1, (b) trans-
mission amplitude, and (c) phase delay (blue dashed lines).
The response of the actual test system (shown with black “x”
and lines) obviously approaches that of the limiting case in
amplitude and has an additional phase delay due to the propa-
gation through the ñ slab A–A′ [Figs. 5(b) and 5(c)]. It may be
tempting to think that the two systems should have the same
QNMT parameters (ωn, σn). However, its high-Q modes now
have σn different from ±1 (e.g., ωnd/2πc = 0.165 − 0.039i
has σn = −0.45 + 0.68i), exactly because they are calculated
on our suggested boundary z′

p = A and the structure between
A–B is asymmetric. How can we then expect QNMT to give
an accurate prediction? The key lies in a set of very-low-Q
modes ωC

n that are supported mainly by the weakly scattering
ñ slab [Fig. 5(a) below the inset] and have highly asymmetric
|σC

n | � 1 [e.g., ωC
n d/2πc = 0.24 − 0.23i has σC

n ∼ 10−3(1 +
1i)]. As ñ → 1, their �C

n → ∞ and, when taken into account,

the QNMT prediction of S gives the correct result with the
additional expected group delay through A–A′.

To clearly understand the effect of the low-Q modes, we
separate them into a background response C, shown in green
lines in Fig. 5. We see that C is almost a diagonal matrix
[|C11|2 ≈ 1 in Fig. 5(b)] and that C11 represents a group
delay equal to 2d/c [Fig. 5(c)]. Indeed, this spectrum of
low-Q-modes matches the “one-sided equispaced modes” of
the previous subsection: due to ns � n, A′ acts as a highly
reflective boundary, so τC

11 models the roundtrip phase propa-
gation through A → A′ → A. The group delay of S̄21 through
A–B is surprisingly reduced (and not increased!) by d/c com-
pared to the A′–B S21, and that is because the high-Q modes
have modified σn values. In this way, S21 ≈ S̄21C11 works out
correctly to give the required additional group delay d/c. It
is worth reminding that S̄ does not have to be symmetric. In
fact, oppositely to S̄21, the A–B S̄12 has group delay increased
by d/c compared to the A′–B transmission, so that, combined
with C22 ≈ −1 �= −eiω2d/c ≈ C11, we get the correct S̄12C22 ≈
S12 = S21 ≈ S̄21C11.

We conclude that all structural features contribute to scat-
tering, which may be expressed via low-Q modes that need to
be included in the QNM expansion. This justifies our choice
of surface for the calculation of D in Eq. (3) to be the closest
port cross section that encloses the entire scatterer z′

p. For a
different port choice zp, additional (practically impossible to
locate) infinite-� modes would need to be accounted for to
express the extra phase shift through zp − z′

p.

D. Examples of Sec. III

We finally test this formulation on the 2-port electromag-
netic structures of Figs. 2 and 4 by using the modes with
lowest Qs (much lower than the other modes) to construct the
C matrix (see modes in Fig. 2(c) and the Supplemental Ma-
terial [35]). C21 indeed yields a slowly-varying transmission
background, as shown in Figs. 2(a) and 4(a) (green dash-
dotted lines). Sharp features in S21 are then obtained by the
high-Q modes within the S̄C formulation (green solid lines),
which actually gives a very good approximation of the over-
all transmission amplitude spectrum. Due to the remaining
asymmetry of S̄C, we find that there are some errors in the
group-delay prediction close to transmission zeros, but these
errors are reduced when considering realistic finite-bandwidth
pulses, as shown in Appendix G.

The 4-port structure of Fig. 3 has large connected metallic
sheets, so it exhibits some very-low-Q “one-sided equispaced
modes” (Sec. IV B) due to the outermost dielectric layers that
only couple ports on the same side (namely they have σr,pq →
0 or ∞ for p, q in opposite sides, so that |Cpq| → 0). This
explains the sharp features observed in S41, as only high-Q
modes contribute to it. Moreover, the layers in this example
are very thin, so these low-Q modes are located very far from
the frequencies of interest anyway.

V. CONCLUSIONS

We have presented an expansion of the system scattering
matrix S over non-normalized QNMs, formulated to sat-
isfy the fundamental physical conditions of realness, energy
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conservation and reciprocity even for a small truncated
number of terms. Resonant QNMs with frequencies ωn

are computed with a numerical eigensolver. Coupling co-
efficients Dpn are evaluated as surface overlap integrals
between normalized-CPM and non-normalized-QNM fields
(as only ratios σr,pn = Dpn/Drn are needed). Negative-
frequency modes (−ω∗

n, D∗
pn) are included. The D matrix

is then adjusted through Eq. (11) and S is finally calcu-
lated via Eq. (7). For applications where it is convenient
to separate an effective background response from the
high-Q resonances, C can be determined by the same pro-
cedure using only the low-Q resonances, with S̄ from the
high-Q modes, and then S ≈ S̄C. In Sec. IV B, we dis-
cussed several limiting cases, and showed that a nearly
frequency-independent C with nonzero transmission can be
produced by a very-low-Q mode on the imaginary-frequency
axis, while a propagation phase is modeled by a set of sev-
eral low-Q modes. The agreement of our QNMT with exact
simulations gives us confidence that it can be successfully
employed for rapid device design. In a separate paper [7],
we indeed use this formulation to design precise standard
(especially elliptic) high-order filters.

Our QNMT was mainly developed for linear ports with
frequency-independent transverse mode profiles, such as
plane waves. However, it could also be extended to finite
arbitrary-shape scatterers using a spherical CPM basis. (Note
that systems with spherical symmetry studied in previous
QNMT formulations [3,5] can be modeled merely as multiple
1-ports, so QNMT was not really needed, as explained in
the introduction.) Difficulties arise with other types of ports,
such as when QNM-to-CPM coupling coefficients D(ω) are
frequency dependent, and specifically when the S matrix has
branch points due to CPM cutoff frequencies. While a rig-
orous extension of the theory to such systems may require a
different approach, our model may still provide good approx-
imate results for slowly varying coupling coefficients (such as
for dielectric waveguides with low waveguide dispersion).
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APPENDIX A: WEIERSTRASS FACTORIZATION
OF S MATRIX

The Weierstrass factorization theorem [45] states that a
“meromorphic” function (analytic except for poles) can be
factorized into a nonzero analytic function (an exponential)
and a rational function (zeros and poles). If S(ω) is mero-
morphic, an exponential phase factor can then be factored out
of each term as Spq(ω) = eiϕpq (ω)S′

pq(ω), with S′
pq a “proper”

rational function (degree of numerator polynomial not larger
than degree of denominator, so finite as ω → ∞) and ϕpq

an analytic function that we assume corresponds to a real

phase shift for real frequencies. Similarly to the approach
in Ref. [18], the combination of Phragmn-Lindelf theorem
(giving |eiϕpq (ω)| � 1 in the upper-half complex plane) and
Čebotarev theorem shows that ϕpq has to be a linear (= τpqω

with τpq � 0, since the constant term can be added to S′
pq).

When the system is lossless and reciprocal, unitar-
ity and symmetry of S combine to S∗(ω)S(ω) = I . The
off-diagonal pq term can be expanded as

∑
r S∗

prSrq =∑
r e−i(τpr−τrq )ωS′∗

prS′
rq = 0. Since this has to be true for all

real ω, all the phase terms in the sum must be the same,
namely τpr − τrq = θpq for each r. Specifically, for r = p and
r = q, we get τpp − τpq = τpq − τqq ⇔ τpq = (τpp + τqq)/2.
Therefore, the S matrix can be written as S = eiτωS′eiτω with
a diagonal τ matrix with real positive elements.

APPENDIX B: DERIVATION OF ENERGY CONSERVATION
CONDITION EQ. (6)

For a lossless system, S is unitary. From Eq. (5), namely
S = −I − DdKt , where d = (iω − i�)−1:

S†S = I + K∗d†D† + DdKt + K∗d†D†DdKt . (B1)

We compute the coefficient (p, q) of this matrix. The second
and third terms are equal to

∑
n

K∗
pnD∗

qn

i(ω − ω∗
n )

−
∑

n

DpnKqn

i(ω − ωn)
. (B2)

The final term, after decomposing into simple elements
through 1

i(ω−ωn )i(ω−ω∗
l ) = 1

i(ωn−ω∗
l ) [

1
i(ω−ωn ) − 1

i(ω−ω∗
l ) ] and rela-

belling indices (n and l), becomes

∑
r,n,l

K∗
plD

∗
rl DrnKqn

i(ω − ω∗
l )i(ω − ωn)

=
∑

n

Kqn

i(ω − ωn)

∑
l

K∗
pl

∑
r DrnD∗

rl

i(ωn − ω∗
l )

−
∑

n

K∗
pn

i(ω − ω∗
n )

∑
l

Kql

∑
r Drl D∗

rn

i(ωl − ω∗
n )

.

(B3)

In order to impose S†S = I for every ω, necessary and suffi-
cient conditions are given by K∗M = D and KMt = D∗, with

Mnl =
∑

p Dpl D∗
pn

i(ωl −ω∗
n ) . The two relations are actually equivalent,

since M = M†, and can be rewritten as Kt = M−1D†.

APPENDIX C: REALNESS UNDER EQ. (6)

Including negative-frequency modes with Dpn′ = D∗
pn, we

can write M = ( A B
B∗ A∗) (where A = A† and B = Bt , so that

M = M†). Now, consider matrices Ã, B̃ such that (Ã B̃)M =
(I 0); then, by directly substituting M, we can immedi-
ately show that we also have (B̃∗ Ã∗)M = (0 I), so M−1 =
( Ã B̃
B̃∗ Ã∗). Finally, from K = D∗(Mt )−1, we conclude that

Kpn′ = K∗
pn.
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APPENDIX D: NORMALIZATION INDEPENDENCE
OF EQ. (7)

Let Dr be a N × N diagonal matrix, with elements Dr,nn =
Drnn, for some chosen port rn for each resonant mode n (usu-
ally, we simply take rn = 1). Then, denote by σr = DD−1

r the
r-scaled P × N coupling matrix (naturally, σr,rnn = 1 for all
n). Now, by inserting I twice in Eq. (7), the scattering matrix
S from can be rewritten as

S = −I − D(iω − i�)−1M−1D†

= −I − D(D−1
r Dr )(iω − i�)−1M−1[D†

r (D−1
r )†]D†

= −I − σr (iω − i�)−1M−1
r σ †

r , (D1)

where

Mr = (D−1
r )†MD−1

r ⇔

Mr,nl = 1

D∗
rnn

∑
p DplD∗

pn

iωl − iω∗
n

1

Drl l
= 1 + ∑

p�=rn
σr,plσ

∗
r,pn

iωl − iω∗
n

.
(D2)

These two equations show that, for a lossless system, S in
Eq. (7) can be fully computed using only the resonant frequen-
cies � and the ratios σr of modal coupling among different
ports, independently of the overall scaling factors in D.

For 2-port systems, we simply choose rn = 1, skip the r
subscript and denote σn = D2n/D1n. The S matrix then be-
comes (p, q = 1, 2)

Spq = −δpq −
N∑

n=1

σpn
∑N

l=1 M−1
nl σ ∗

ql

iω − iωn

Mnl = 1 + σlσ
∗
n

iωl − iω∗
n

; σ1n = 1, σ2n = σn. (D3)

When the system has mirror symmetry, these ratios can only
take the values σn = ±1, so they act like eigenvalues of the
symmetry operator.

Reversely, we also show that S uniquely determines � and
σr . In particular, for two different sets {�, σr}, {�′, σ ′

r} such
that S{�,σr} = S{�′,σ ′

r }, we see from Eq. (D1) that � = �′ and

σr,pn
[
σrM−1

r

]∗
qn = σ ′

r,pn

[
σ ′

rM ′−1
r

]∗
qn. (D4)

For p = rn, we have [σrM−1
r ]qn = [σ ′

rM ′−1
r ]qn. Then, for any

p, Eq. (D4) again gives σr,pn = σ ′
r,pn.

APPENDIX E: PROPERTIES OF ZEROS OF LOSSLESS
RECIPROCAL 2-PORT SYSTEMS

Combining realness S∗(ω) = S(−ω), unitarity
S†(ω)S(ω) = I and symmetry St (ω) = S(ω) on the real-ω
axis, gives S(−ω)S(ω) = I , which can then be analytically
continued in the entire complex-ω plane. Expanding this
equation for a 2-port, we get

S11(−ω)S11(ω) + S21(−ω)S21(ω) = 1 (E1a)

S11(−ω)S11(ω) = S22(−ω)S22(ω) (E1b)

S11(−ω)S21(ω) = −S21(−ω)S22(ω). (E1c)

We can use these equations to derive some useful prop-
erties of the zeros of S coefficients. As a reminder, realness

requires all poles and zeros to be symmetric across the
imaginary-ω axis.

Let us first assume that −ωo is not a system pole [so
S(−ωo) is finite]. Eq. (E1a) then prevents S11 and S21 =
S12 from having simultaneous zeros at ωo, and using also
Eq. (E1b) the same holds for S22 and S21. Therefore, Eq. (E1c)
mandates that (i) the zeros of S21 can only appear as com-
plex quadruplets (ωo, ω

∗
o,−ωo,−ω∗

o), real or imaginary pairs
(ωo,−ωo), or at ωo = 0 and that (ii), for each zero-pair
(ωo,−ω∗

o) of S11, (−ωo, ω
∗
o) is a zero pair of S22.

If now −ωo is a system pole (so at least one S-element
diverges there), the same rules (i) and (ii) still apply, as long
as zero-pole cancellations that occur at (−ωo, ω

∗
o) are taken

into account. All possible scenarios are: (I) If S11(ωo) = 0 �=
S22(ωo), Eq. (E1b) forces S22(−ωo) to be finite, thus S22 must
exhibit a zero at −ωo that cancels the pole there (and similarly
when switching S11 and S22). Moreover, if simultaneously
S21(ωo) = 0, Eq. (E1c) mandates a pole-zero cancellation also
for S21 at −ωo. (II) If S11(ωo) = S22(ωo) = 0, Eq. (E1c) im-
plies that also S21(ωo) = 0, namely the entire matrix S(ωo) =
0. In this case, we can consider that all S coefficients also have
another zero at −ωo that cancels a degenerate pole, which
usually do appear when the physical system is perturbed.
(III) If S11(ωo) �= 0 �= S22(ωo), Eqs. (E1a) and (E1c) dictate
also that S21(ωo) �= 0. In the cases above, for any coeffi-
cient with Spq(ωo) = 0, then Spq(ω) ∝ eiϕ(ω) = (ω − ωo)(ω +
ω∗

o )/(ω + ωo)(ω − ω∗
o ), a behavior known as an “all-pass”

phase filter. Moreover, when S(ωo) is singular, ωo is called
an “S-matrix zero” (for example generalized in Ref. [19]).

The restrictions (i) on the S21 zeros imply that its numerator
is a polynomial of ω2 with real coefficients, optionally with
multiplicative iω factors.

APPENDIX F: GUIDELINES FOR NUMERICAL
CALCULATION OF EIGENMODES

Our QNMT relies on the calculation of the system reso-
nances, including low-Q modes, which may be spread across
the complex-ω plane and may include a mode with zero real
frequency (ωo = 0 − i�o)—required for nonzero background
transmission. Accurate numerical solution of the exact field
equations for such eigenmodes can be challenging due to
issues arising from spatial discretization and from truncation
of the simulation domain in open systems, usually imple-
mented with a “perfectly matched layer” (PML) [46,47]. In
particular, a PML introduces the so-called “PML modes”
[10,24], which can pollute the complex-ω plane and thus
make it difficult to find the system’s low-Q QNMs. Here, we
suggest some simulation-parameter choices that seem to help
calculate QNMs accurately, including the low-Q ones. For
subwavelength structures (like the metallic microwave meta-
surfaces considered here), where quasi-static resonances can
be sensitive to small spatial features, finite-element methods
are attractive because they enable nonuniform meshing, so we
used COMSOL Multiphysics [34].

Mesh type—In the computational domain (the cladding)
around the scatterer (and in the PML when present), to min-
imize spurious reflections from changes in discretization one
should use a mesh that is periodic (or nearly so) in the di-
rection orthogonal to the boundary (where scattered waves
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should escape) [46,47]. In COMSOL, we employed a “swept”
mesh for this reason, and found it to give smoother conver-
gence of the complex eigenfrequencies with mesh density
compared to a standard tetrahedral mesh and to work better
for modes with zero real frequency.

Boundary condition, computational-cell size and mesh
density—The commonly used frequency-independent PML
of finite thickness rotates the continuous radiation spectrum
in the complex plane and discretizes it into so-called “PML
modes” [10,24]. Only QNMs above the rotated continuum can
be accurately computed. The rotation is larger for a more ab-
sorptive (stronger or thicker) PML and for a thinner cladding,
while the mesh density has little effect for fixed PML
absorption. We illustrate these points for a metasurface ex-
ample in Fig. 6(a): the exact QNMs are indicated with black
dots, while the other symbols mark all the modes obtained
numerically for different sets of computational parameters.
Note that the low-Q QNM at ≈0.27 − 0.1i cannot be calcu-
lated accurately, unless one used an even larger rotation that
could be computationally expensive. Moreover, it turns out
that the field profiles of the QNM and nearby PML modes are
quite similar, yet another obstacle to distinguishing the for-
mer. Even worse, for structures supporting a zero-frequency
QNM (−i�o), this mode cannot be found with a frequency-
independent PML, as the negative imaginary axis will always
lie below any rotated radiation spectrum [48].

Our QNMT is mostly applicable to CPMs with a
frequency-independent transverse field profile. Thus, while
computing QNMs, a “scattering boundary condition” (SBC)
matching each CPM’s profile can be used. As we show in
Fig. 6(b), using an SBC but not a PML, the discrete radiation
modes are now simply pushed down in the complex plane
(instead of rotated as with the PML, although note that a
similar push-down occurs with a frequency-dependent PML
[48]). This clears the complex plane (up to the first diffraction
branch point) and allows for an accurate computation of the
low-Q and zero-frequency QNMs. The modal push is deeper
for a thinner cladding and a denser mesh: these SBC-based
discrete radiation modes disappear in the limit of infinite
resolution, in contrast to PML modes [48].

Combining a PML and a SBC gives an even better result,
as the discrete radiation modes are pushed down and then
rotated in the complex plane [Fig. 6(c)]. In summary, when
possible, it is advisable to use SBCs matching the CPMs,
along with a densely meshed PML and a thin cladding (which
can practically be kept at a minimum for a PML mesh fine
enough to also adequately model the QNM near fields).

Initial guesses for QNMs—Even if the discrete radiation
modes have been pushed away, locating the low-Q (and zero-
frequency) QNMs initially may require good initial complex-
frequency guesses and searching for a large number of modes.
In some convenient cases, the initial guesses can be provided
by the analytically-solveable modes of an effective average
structure. We discussed such cases in paragraphs “Equispaced
(Fabry-Perot) modes” and “One-sided equispaced modes” in
Sec. IV B.

Number of QNMs needed—Regarding how many modes
one needs in QNMT for an accurate enough calculation,
one observation is that a (low-Q) mode ωn = �n − i�n will
have an effect at real frequency ω, if ω lies within a band-
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FIG. 6. Modes computed numerically for a metasurface (of pe-
riod a = 15 mm) with cross-like apertures (of slits’ width 0.02a
and length 0.245a) on a metallic sheet sandwiched between two
dielectric layers (of permittivity ε = 3 and thickness 0.5a). We only
calculate the normally radiating modes of even symmetry, using
cladding thickness tc, PML thickness tPML, mesh element size h in the
cladding/PML, and: (a) PML backed by a perfect electric conductor
(“x”: tc = tPML = 0.5a, h = a/10; “o”: tc = 0.25a; “+”: tPML = a),
(b) SBC without PML (“x”: tclad = a, h = a/6; “o”: tclad = 0.75a;
“+”: h = a/10), and (c) SBC with PML (“x”: tc = tPML = 0.5a,
h = a/6; “o”: tclad = 0.25a; “+”: h = a/10). The low-Q QNM at
0.27 − 0.1i is not computed accurately when using only a PML due
to the nearby radiation modes, while those are pushed down in the
complex plane when using a SBC.

width proportional to the resonance linewidth, namely if
|ω − �n|/�n < some number, which depends on the level
of accuracy required. Obviously, when a mode has very large
�n, it can play a role even if it is very distant and it may be
very difficult to locate. In those cases, a background response
C can still be estimated via C = S̄−1S, with S from a direct
simulation and S̄ from QNMT using only the high-Q modes.

APPENDIX G: GROUP DELAY FOR A FINITE-WIDTH
PULSE

For finite-bandwidth signal pulses, the group delay of
a system should be computed as the difference in time
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FIG. 7. Group delay of S21 and S12 for oblique incidence on
photonic grating presented in Fig. 3. The asymmetric S = S̄C ap-
proximation (green) has errors for (a) dφ/dω, but agrees much better
with the exact result (black) for (b) a more realistic Gaussian input
pulse of spectral width σω = 0.01 × 2πc/a.

expectation of flux between the input and output signals [40].
In general, for a signal f (t ) with Fourier transform F (ω) =
AF eiφF (amplitude AF and phase φF ), the flux time expectation
is given by

〈t〉 f =
∫

t | f (t )|2dt∫ | f (t )|2dt

= −i
∫

F ′(ω)F ∗(ω)dω∫ |F (ω)|2dω
=

∫
φ′

F (ω)|F (ω)|2dω∫ |F (ω)|2dω
, (G1)

where ′ denotes a frequency derivative d/dω and the in-
tegral involving A′

F (ω) cancels due to realness [AF (−ω) =
AF (ω) ⇒ A′

F (−ω) = −A′
F (ω)].

For a system with transfer function H (ω), the output signal
g(t ) has Fourier transform G(ω) = H (ω)F (ω), so φ′

G(ω) =
φ′

H (ω) + φ′
F (ω). The system group delay is then equal to

τ = 〈t〉g − 〈t〉 f and, when φ′
F (ω) is constant (e.g., unchirped

Gaussian pulse), it simplifies to

τ =
∫

φ′
H (ω)|H (ω)|2|F (ω)|2dω

|H (ω)|2|F (ω)|2dω
. (G2)

In the limit of a very narrowband (δ function) input frequency
spectrum F , this simplifies to the usual τ → φ′

H .
In all QNMT formulations which do not simultaneously

satisfy reciprocity and energy conservation (e.g., using Eq. (7)
without Eq. (11), our S = S̄C formula, or Refs. [3,4]), the
zeros of S coefficients do not abide by the required relations
in the complex plane and this leads to errors in the phase
(group-delay) response. To visualize them, in Fig. 7(a) we plot
the (δ function) group delays φ′

H of H = S21 and H = S12

for our approximate nonreciprocal formula S = S̄C for the
oblique-incidence example of Fig. 4. We see that they mostly
coincide (among them and with the exact result), except for
frequency regions where the exact S21 goes to zero, and in
which τ21, τ12 exhibit erroneous deviating spikes, often in-
dicating “superluminal” (<1) or negative delays. However,
Eq. (G2) shows that frequencies corresponding to small am-
plitude H (ω) do not contribute much to the real time delay
of a finite-bandwidth pulse. We therefore plot in Fig. 7(b)
again the exact and both S̄C delays for an input Gaussian pulse
F (ω) ∝ exp[−(ω − ω′)2/4σ 2

ω] with σω = 0.01 × 2πc/a. We
see that the erroneous spikes have now disappeared and we
get much better agreement, which improves as σω increases,
as we confirmed.

[1] V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger,
and N. Bonod, Optimization of resonant effects in nanostruc-
tures via Weierstrass factorization, Phys. Rev. A 88, 011803(R)
(2013).

[2] L. O. Krainov, P. A. Batishchev, and O. I. Tolstikhin, Siegert
pseudostate formulation of scattering theory: General three-
dimensional case, Phys. Rev. A 93, 042706 (2016).

[3] F. Alpeggiani, N. Parappurath, E. Verhagen, and L. Kuipers,
Quasinormal-Mode Expansion of the Scattering Matrix, Phys.
Rev. X 7, 021035 (2017).

[4] T. Weiss and E. A. Muljarov, How to calculate the pole expan-
sion of the optical scattering matrix from the resonant states,
Phys. Rev. B 98, 085433 (2018).

[5] H. Zhang and O. D. Miller, Quasinormal coupled mode theory,
arXiv:2010.08650 (2020).

[6] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S.
Kivshar, Fano resonances in photonics, Nat. Photonics 11, 543
(2017).

[7] M. Benzaouia, J. D. Joannopoulos, S. G. Johnson, and A.
Karalis, Analytical design criteria for realizing ideal standard

filters in strongly coupled resonant systems, with application to
microwave metasurfaces, arXiv:2103.08866 (2021).

[8] W. Suh, Z. Wang, and S. Fan, Temporal coupled-mode theory
and the presence of non-orthogonal modes in lossless multi-
mode cavities, IEEE J. Quantum Electron. 40, 1511 (2004).

[9] C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D.
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