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ABSTRACT

The goal of this investigation was to usc the information available frc 1 a binary
metallic diffusion couple to compute the solution thermodynamics (activity composition
relationship) for isomorphous binary mectallic systems,

Using a linearly constrained, non linear least squares based algorithm that was developed
during this investigation, it is now possible to compute the entire activity - composition curve
Jor isomorphous binary metallic systems given only the interdiffusion coefficient as a
Junction of composition (B -c data), and one additional piece of information such as the
measured activity at ONE particular composition or the slope of the Henry's law line at
infinite dilution.

The inherent non uniqueness of the problem leads to multiple solutions on an
activity-composition diagram, The single additional picce of information (the measured
activity at one composition or the Henry's law line) is used in selecting the correct
solution from the sct of possible solutions,

The algorithm was applied to ten isomorphous binary metallic systems for which
dataon the chemical interdiffusion coefficient asa function of composition was obtained
from the literature, For cight out of the ten systems the algorithm located a solution
that either matched the experimental data reported in the literature or exhibited a
trend very similar to it, There is no experimental data for one additional system and
for another system the predicted activities did not match the measured activitices,

The algorithm may be easily extended to systems containing a miscibility gap.

The algorithm represents a new technique for obtaining thermodynamic data from
a source that has previously never been used to generate thermodynamic information,
namely a diffusion couple, It should be particularly useful for rcactive and refractory
metal systems for which there is currently a gauclty of thermodynamic data causced by
cxperimental difficulties, It will also check the consistency between the available data
on interdiffusion coefficients and the activity data,

Thesis Supervisor : Dr. Thomas W. Eagar
Title : Leaders for Manufacturing Professor of Materials Engincering
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Introduction

The science of thermodynamics and an understanding of the diffusion process
together provide much of the basis for the current understanding of matcrials, Hence
there is a large demand for basic data in both ficlds, This is particularly true for the
newer classes of materials which are alrecady in use but for 'vhich basic data is still
lacking. For some of these materials it is difficult to conduct conventional experiments
duc to the high temperatures involved or the extreme reactivity of the materials, Novel
techniques must therefore be developed that will permit estimation of basic
thermodynamic parameters by cxploiting available data on other physical quantitics,
Such techniques, if developed, would provide new sources for thermodynamic data, In
addition they would check the consistency of currently available data on the physical

quantity with the available thermodynamic data.

The main premisc of this investigation was that information on the free cnergics
of mixing must be implicitly contained in a diffusion couple since diffusion occurs
under the influence of a chemical potential gradient. The thermodynamicist who
cxperimentally obtains activity data for a particular system and the transport
phenomenologist who experimentally obtains interdiffusivity data for the same system
arc both fundamentally perturbing the identical system (same sct of atoms and lattices)
in making their measurements. Further, since the diffusion process involves mixing of
two materials it stands to reason that the two experiments (mcasurement of activitics
and interdiffusivities) must be interrclated. This is more transparent when one considers
that the interdiffusion coefficient is determined in part by the thermodynamics of the

solution.

This thesis has been organized as four papers rcady for submission to a journal.
It is recommended that papers one through three be read scrially, Paper four is

independent of the others,
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Paper one describes the preliminary cfforts that analyzed the dynamic behavior
of a diffusion profile and confirmed that activity data was implicitly contained in a
diffusion couple. However the preliminary cfforts also indicated that it was more
fruitful toscek activity data by modelling the variation of the interdiffusion cocfficicnt

as a function of composition instead of analyzing a diffusion profile.

Paper two describes the linearly constrained non lincar least squares based model
that was devcloped to compute activity data given interdiffusivity data whereas paper
threc applies the model to ten isomorphous binary systems and compares the computed
activities for cach system with the experimentally mcasured activitics obtained from

the litcrature.

Paper four presents lcast squares spline interpolation as a reliable and reproducible
technique for estimation of the slope of a diffusion profile and for filtcring out the
noise in the profile data. Usc of splines is expected to reduce the numerical errors
associated with the calculation of interdiffusion cocfficients from raw diffusion profile

data using the Boltzmann Matano treatment.
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Thermodynamic Data from Diffusion Couples - I

2.1 ABSTRACT

A model aimed at computing activity-composition data by
analyzing two successive diffusion profiles for isomorphous binary
metals is presented. Simple numerical simulations were per formed
to check model validity on hypothetical alloy systems that possessed
aconstant diffusivity but variable chemical potential - composition
relationships. Results indicate that it is possible to compute activity
data if the mobility function is known @_priori. Extension of the
model., 1o real alloy systems, wherein the mobility and chemical
potential are coupled, is not possible since in a real system the
number of unknowns exceeds the available information. Hence in
real systems one must resort (o least squares techniques that do

not provide analytical solutions.

2.2 INTRODUCTION

The science of thermodynamics and an understanding of the diffusion process
together provide much of the basis for the current understanding of mctallurgy.
Hence, there is a large demand for basic data in these ficlds. Traditionally,
metallurgical thermodynamic data has been obtained using calorimetric techniques,
wet chemical methods, vapor pressure mecasurcments or electromotive force
measurementsh23 while solid state dif fusion data has been generated from diffusion

couples4s,

The Fickian laws of diffusion relate the flux and depletion rate of a diffusing
species to the slope and curvature of the diffusion profile. Einstein later clarificd
that diffusion was in fact driven by gradients in chemical potential. Thus the
Nerst-Einstein rclationship which relates mobility and diffusivity firmly established

the link between thermodynamics and diffusiond, This was cxpcrimentally
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demonstrated by Darken in his well known uphill diftfusion experiment8, Other
investigators have related the chemical potential to clements of the diffusion
matrix7-11, Excellent reviews covering the literature on solid state diffusion and the
associated phenomenological thecory of irreversibic processes arc available!!-2L,
However, despite the understanding that diffusion is driven by chemical potential
gradients, it is the Fickian description of diffusion (comprising of diffusivitics and
concentration gradients) that is morc popular. Onc reason for this is that
concentrations are relatively straightforward to mcasurc cxperimentally wherceas

chemical potentials are not.

Since diffusion is driven by chemical potential gradicents, it is reasonable to
expect that the diffusion profile contains information about chemical potentials.
This is the main premise of the current investigation, which is aimed at obtaining
the frec energics of mixing (chemical potentials) from diffusion cxperiments, For
the most part the investigation will focus on isomoiphous binary systems and later

attempt to extend the treatment to binary systems containing two phascs.

This is the first of four papers covering this investigation, This paper desaribes
the preliminary efforts which resulted in the development of a simple mathematical
modecl that was intended to permit one to back out chemical potentials by using the
composition-distance data from two diffusion profiles. Numecrical simulations
conducted on hypothetical alloy systems to check the validity of the modcl confirmed
the hypothesis that activity da:a could be obtained from consideration of the
diffusion profiles. However, it will be shown that although this model was consistent
with the thermodynamics of rcal alloy systems, it could not be uscd to calculate
activities in a real system since the total number of unknowns constituting the model
excceded the available equations. This motivated the development of a least squarcs
based algorithm that permits one to compute the activity-composition rclationship
forarealalloy given the variation of the interdiffusion cocfficicnt with composition.
The lcast squares based algorithm is described in the second paper. The third paper

presents the results of the least squares based algorithm as applied to ten isomorphous
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binary systems. The interdiffusion data for these ten systems was obtained from the
litcrature. The fourth paper discusses lcust squares spline interpolation techniques
and their application in computing the interdiffusion cocfficicnt by usc of the
Boltzmann-Matano trcatment. It will be shown that spline interpolation techniques
can lead to significant improvements in the accuracy of the diffusivitics computed

using the Boltzmann-Matano treatment.

Thus the overall thrust of this work is the c¢stablishment of new techniques
for obtaining thermodynamic data by manipulating diffusion data. The main
advantage of such techniques would be the ability to obtain thermodynamic data
for metallic systems where it is not feasible to conduct conventional thermodynamic
experiments. Examples would include rcactive and refractory metal systems. Apart
from providing ncw data, these techniques will also aid in checking the accuracy
and consistency of the data already available. Finally it is hoped that this study
will lead to a better appreciation of the link between thermodynamics and solid

state diffusion.

2.3 PROPOSED MODEL

The proposed model is based nn the following assumptions: (i) The system is
assumed to be isothermal; (ii) The density is assumed to be constant across the entire
range of composition, i.e. the volume change on mixing is negligible; (iii) Yacancics

are assumed to be in local thermal equilibrium,

The diffusional process is governed by two factors, the driving forces (chemical
potential gradients, concentration gradients) and the cocfficiecnts (mobility,
diffusivity). A complete range of compositions from 0% B to 100% B is found in an
infinite diffusion couple between two metals A and B, The current problem involves
obtaining the activity of B in A over this entirc range of compositions, Sincec onc
desires information on the forces (chemical potentials) that drive the diffusion
profile, one nceds to observe the dynamic behavior of this profile by perturbing it.

In other words one necds to allow the system to diffuse for a further time (dt) and
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then to consider both profiles, the onc at t and the one at t + dt, simultancously.
This is outlined in figure 1, which also depicts a typical volume clement V, which

is "dx" in extent,
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Figure 1. Diffusion couple depicting two successive diffusion profiles.

Applying Ficks sccond law to the volume ¢lement:

de 3J
(ﬁ)”-—(dx)“ (1]
Jc 2J,
(5).,"( ox )., 21

If the time interval 'dt’ is small then the average rate of accumulation (q), over

the time interval ty-t;, may be approximated by averaging the accumulation rates

at times t; and t, leading to the following equation:

-aeg((53),(5%),) (2

whereas the change in concentration may be expressed as:

Ac=c, -¢, (4]
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By using a finite diffcrence approximation to the local depletion rate one may
combine all of these cquations as follows:

sﬁ 5
Al

Ac aJ 3.
'2(37)'(3-).,*(5)., el

One may next express the instantancous deplction rate in terms of a mobility

q

function and a chemical potential gradient:

L

)
J=--M( .\‘) [7]
o0 __ 3y ) de
5:_:= ax(M(ac)(dx)) (8]
((32) +(B0) (28 (e ur ( S) () (al)(i_) -
(ax), (ac ),(ac),(dx),+M'(m), dx ,+M' ac /, Eixz ' (9]

In deriving these equations®, the unknown quantitics** M and ju have been

—

o

differentiated with respect to concentration rather than distance. Fundamentally
both these quantities depend only on composition, their dependence on distance
comes about only as a result of the dependence of the concentration on distance,
Hence, the desired quantities (M and ) are independent of any particular diffusion
profile. This is clarified in figure 2 which depicts a diffusion profilec onto which
the activity-composition diagram has been superposed. Each point (i.c. composition)
on the profile has a unique activity associated with it (plotted at right angles to the
plane of the profile). Together all the points and associated activitics map out a
curve in distance-composition-activity space. Each profile (at a certain time) has
associated with it one such curve, but the projection of all such curves onto the

activity-composition plane (at right angles to the composition-distance plane) is

* The compouition, ¢, Is a function of the spatial variable, x, and the temporal variable, t. Since equation (9] represents
;he ‘dﬂq:ilﬂ on rate at a fixed time the use of the total derlvative (dc/dx) instead of the partial derlvative (3c/dx)ls
ustified.

** The phenomenologlcal mobility function, M, used here possesses units of (gm-molm)cm"’m:'l and differs from the
conventlonal definition of mablility.
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identical and this projection represents the activity-composition diagram for the
particular alloy. It then follows (fig. 2) that if the activity were known for a particular
compusition on any profile, it would be known at that composition on any other

profile. This point will be re-emphasized later.

composition

TTTaEBRAviE y

Figure 2. Activity-Composition-Distance surface associated with a diffusion couple,

One can now combinc equations 6 and 9 to yield :

2Ac¢ MY (on dc)z 9% (azc)2 (g) (_1_2_9)
At (ac ),l(ac),l(dx ,|+M"(ac2 \dx ,.+M" de/, \dx?/,
IMY (ou dc)z % (dc)z (%) gjg)
(ac ),,(ac),z(dx +M"(ac2 G \dx Ml 3 p\dx?/, 2

t f
This equation constitutes the model for computing chemical potentials. It relates
measurements made at two different times in a diffusion couple to the chemical

potential, its derivatives and to the mobility (M) and its derivative.

It was decided to carry out some simple numerical simulations to test the

validity of equation [10] and perhaps gain an understanding into the sensitivity of
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any proposed calculation to the measurcd quartitics. To simplify the analysis, it was
decided to assume that the quantity M varied lincarly with composition. The
proportionality constant was taken to be the diffusion cocfficient, This is precisely
what one would expect for an ideal alloy or an alloy exhibiting Henrian behavior.22,23
Hence one may write the following equation:

M = Dc (1]

Equation 11 may be substituted into the model equation 10 to yicld:

e - (20) (2 oo 22) (8] (), (25
DAt oc ), \dx ), ""\ac?) \dx /], ""\oc) \dx?/,
I de \? 2% (clc )"' (au) d?c
(ac), (d.\') +c"(ac2 dx ), e\ 3¢ \ddx? (2]
2 i, ? !

1 0y

Thus for a system exhibiting an M-c relationship akin to that of an idcal alloy,
and possessing a constant diffusivity, a diffusion experiment such as that outlined
above (with two profiles) wonld yicld the slopes and curvatures of the curves at
both the times and also the left hand side term in the above equation. For such an
alloy the only remaining unknowns would be the slopes and curvatures of the
chemical potential at the two times, t; and t. The subscripts in cquation [12] refer
to the fact that these quantities were evaluated at the composition corresponding to

each specific location at cach time,

2.4 NUMERICAL SIMULATIONS

It was decided to numerically simulate a serics of hypothetical alloy systems
(with mobility M=Dc) and to use the resultant diffusion profiles as input to the
model (eqn. [12]). This would serve as a simple test of the model, Two additional
concerns needed to be addressed before any computations could be performed. Firstly,
the simplified equation [12] involved two sets of three terms one from cach profile.
Each set of three terms taken together represents a seccond order ordinary dif ferential
equation. This implies that if the terms corresponding to onc profile (cither time t;

or time ty) were known from a boundary condition or from prior calculation then
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one could solve for the chemical potential tcrms corresponding to the other profile.
Secondly, assuming that it is possible to obtain the three terms (corresponding to
one profile) there still remain two additional picces of information (boundary
conditions) which must be known to uniquecly solve the sccond order ordinary
differential equation. The sccond concern is addressed first, i.c. that of finding two

boundary conditions.

Appropriate boundary conditions may be found on examining thc solution
behavior of real inetallic alloys2 It is well known that above a certain limiting
concentration (99%, or 95% dcpending on the alloy system) all solutions bchave
ideally. This implies that one may write the following cquations to describe solution

bechavior above the limiting concentration (taken to be 99% for these simulations):

a=c p=u,*+RTInc
du | (RT)(da) . AT dh_ (T (1)
dc a /\dc c de? c?

Knowledge of these boundary conditions suggests the following algorithm,
Consider a volume element V| in the 'tail’ region of the diffusion couple where the
computation may be initiated (Figure 3). Figure 3 highlights a band of compositions
in excess of 99% where the boundary conditions determine the chemical potential,
If the volume element is infinitesimally small, then the slope, curvature and
composition at point C{* may be taken to represent the composition, slope and
curvature of profile 1 across the entire volume element V. Since all compositions
corresponding to profile 1, in the volume element Vy, lic in a composition range that
exceeds 99%, it follows that the three terms corresponding to time ty in cquation
(12] are completely known (eqn, 13), Further note that the composition of point 'Ay’
of profile 2 in figure 3, also exceeds 99%. Hence the same boundary conditions apply
to point 'A,’, where one knows the chemical potential, as well as its derivatives with

respect to composition. Then one may substitute into cquation [12] for the three
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terms corresponding to time t; and obtain the following sccond order ordinary

differential equation :

dp d?p
Q X(dc)+)’(dcz) where [14]
2Ac dc)? d?c dc)’
Q DAt X (dx),'+c'l(d_\-2)" Y c"(d; 6

Solution of the ordinary differential cquation (by usc of the boundary conditions
at A) provides one with knowlcdge of the chemical potential, its slope and sccond

derivative (with respect to composition) at the point 'C,’ in figure 3.
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The computation can be continued by defining a new volume clement that
extends from point 'C,’ to a lower composition. The process may be iterated several
times. Each such computation extends the range of compositions over which the
chemical potential and its derivatives are known. For the first few volume clements
the composition of all the points corresponding to profile 1 in volume clement V,

will remain in excess of ¢=0.99. However, beyond a certain point, when cfi* < 0.99,
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it will no longer be valid to assume that the solution behaves idcally. Therefore one
neceds an alternative method of obtaining the three terms corresponding to t; in
equation [12]. It will be next shown that it is possible to computc these three terms

using chemical potential data obtained during previous calculations,

Consider the volume element V,, in figure 3, for which ¢fi* is less than 0.99.

One notes that the composition ¢f}* in volume clement V, is actually the composition
cn* of some earlier volume ¢lement (V, in this case). This implies that in an carlicr
computation the chemical potential (and its derivatives) for this composition (cii*)
had been obtained. Since the chemical potential is a function only of the composition
(in an isothermal experiment) it is possible to utilize the information from an carlicr
computation in calculating the three terms corresponding to time ty in cquation [12].
This is equivalent to stating that thc projections of the various operating curves
(each corresponding to a unique diffusion profile) onto the activity-composition
plane are identical. All of this implics that the three terms corresponding to time
t;, in volume element V, are known and that the computation may be carried out

further.

The computation can procced in this manner up to the Matano interface, At
the Matano interface the two profiles crossover and hence the computation may be
continued further but with the roles of profiles 1 and 2 exchanged. In other words,
beyond the Matano interface, the three terms corresponding to profile two arc known
and one computes for the terms involving profile one since profile onc is at a lower

composition,

To test the validity of the arguments presented above and thereby test the
model, the one dimensional simulation scheme depicted in figure 4 was implemented.
An equidistant finite difference grid was used. The initial conditions of the diffusion
profile were specified along with the mobility function ( M = D¢ ). The chemical
potential function was assumed to obey a rcgular solution modcl and the rcgular

solution parameter was varied. Dif fusion profiles corresponding to various Isothermal
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INPUT
PRAOFILE

.

SOLVE DIFFUSION EQUATION

OBTAIN C(x,t1) AND Cix,t2)

OUTPUT
PROFILE

%0

USE MODEL TO COMPUTE ,

|

COMPARE p(C) WITH u(C)

Figure 4. Outline of Simulation Scheme.

annealing times were computed using a first order finite difference approximation
to the phenomenological description embodicd in cquation [7). Using the computed
diffusion profiles, and knowing the mobility function explicitly, an attempt was
made to compute chemical potentials in the manner outlined above (i.c. by using the
simplified equation 12), The computed chemical potentials were later compared with

the chemical potentials input in step 1. Several cases were tested, each corresponding
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to a different value of the regular solution paramcter. In this manner, the chemical
potential was varied while keeping the mobility function constant ( M = Dc, with

D constant).

It should be noted that in a real alloy system one¢ would not be able to vary
both the chemical potential and the mobility independently since they are
inter-related by the Nerst-Einstein cquation. In other words one may casily note (by
comparing fluxes in the Fickian and phcnomenological descriptions) that the

following equation must hold:

D = M((-i-u) [195]

dc

Nonetheless, the present computation scheme will test whether the model equations

are valid.

2.5 RESULTS AND DISCUSSION

Scveral simulations were conducted in the manncer outlined above. The regular
solution parameter, a was allowed to take on the following values: -1.5, 0, +0.5, 1.0
and 1.5, Profiles were computed by solving the diffusion equation 7, with insulating
boundary conditions (zcro flux at cither end of the couple; also termed Yon Necumman
boundary conditions) and using Eulers method in the time dimension, An artificially
high, constant diffusivity, D = 10-5¢cm2/s was used to compute the mobility function,
In stage 3 (figure 4) the model was used to compute chemical potential (activitics)
from the profiles generated. The mobility function (M=Dc) was known explicitly®.
A Runge-Kutta-Nystrom technique was used to solve the resultant sccond order
ordinary differential equation, Care must be taken to ensure that the step size in
the solution of the ordinary diffcrential cquation is small to avoid a numcrical

instability. Results for these simulations are depicted in Figure 5,

* Since the mobllity function was constant and the chemical potential was varied the simulations in effect decouple the
system's transport properties from the system's thermodynamics. Hence the present simulations are representative of
hypothetical alloys rather than real alloys.
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Figure 5. Simulation results for the proposed computational scheme,

In figure 5, the dots represent the values computed by the model whereas the
solid symbols indicate the input activity data, It is clecar from the figurc that for
the present simulation conditions (D=10-5cm?2/s, t;=4000scc, t;=4100scc)*’ there is an
excellent agreement between the computed activitics and the activitics used as input
in computing the diffusion profile. This excellent agrcement indicates that the
proposed model (eqn [12]) is capable of extracting activities if the mobility function

is known explicitly, as in the present simulations.

Although encouraging, the results from these preliminary calculations also

raised several critical questions regarding the feasibility of this approach for recal

systems, Some of these are discussed next.

1. For the simulation conditions used, the composition difference between the
two profiles was very small as scen from figure 6 (maximum composition

difference <0.25% ). In a numerical simulation, thec composition data is available

** The goneral conclusions from these simulations are not dependent on the numerical value of the diffusivity. A smaller
diffusivity would lead to longer annealing times to attain the same profile.
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to 8 digit (or 16 digit) precision but in a rcal experiment, which typically would
rely on an clectron microprobe, onc would not cxpcct the compositional
scnsitivity to be any better than 0.1%-0.2% (assuming scveral standard samples
were used). Thus the compositional difference, Ac, may be lost in the noise
associated with the measurement, Clearly a noise reduction technique, is nceded

before the proposed model can be used with a recal experiment,
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Figure 6. Compositional difference between two successive diffusion profiles.

2,

One solution to overcoming the problem discusscd above would be to increase

the time difference 'dt’ between the two profiles. But incrcasing 'dt’ would

mean that the approximations underlying the model (eqns. 3,6) would begin to

break down and cause larger errors €, where ¢ may be cxpressed as follows:
e=5-3{(3),+ (3).]

Clearly, there was a need to study the effect of increasing € on the error in

the computed activity data,
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3. Upto this point, in all simulations the mobility function had been known
cexplicitly and had been dccoupled from the chemical potential function, Since
these conditions are not valid for a rcal alloy system, the major concern at this
stage was whether a scheme could be developed that would simultaneously compute

botn the mobility and the chemical potential.

It will be shown next that conceins | and 2 do not posc a major problem but

that concern 3 above is a likely stumbling block.

To address concern 1, it was decided to simulate rcal data by rounding the
computed profile to 3 digits. The rounding operation did not significantly
contaminate the C-x data but the ()-xand ((‘-’&‘;)-x data, which were computed
using finite difference approximations to the C-x data, ¢xhibited the presence of
high wavenumber noise (figure 7). This a direct conscquence of the rounding
operation., This high wavenumber noise led to numecrical instabilitiecs in the
computations, To overcome this, the rounded compositional data were fitted with a
sixth order least squares spline (see accompanying paper on splines for details), This
filtered out the noise from the data while ensuring that four derivatives of the C-x
data were continuous. The least squares spline is obtained by minimizing the least
squares error between the polynomials comprising the splinc and the data points,
The final interpolant does not pass through the data points ¢xactly thercby avoiding
the high wavenumber noise, When the simulations were run with the spline fit data,
the resultant activity data agreed well with the initial data. Thus it is belicved that
by using splines it is possible to compute activity data with only 3 digit data as

input,

To address concern 2, a series of simulations were run wherein the time interval
between two successive diffusion profiles was increased and the error in the computed
activities was monitored as a function of the error in the assumptions (¢). It was
possible to compute esince the actual (:—f;)data were available from the initial program
(in stage I of figure 4) that computed the diffusion profiles Table I plots the error

in the computed activity data as a function of the error in the assumptions €,
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Table I Error In the compunted Actlivities as a function of the Error in Model

Approximations
€ Relative error in a-c max Ac between 2 profiles
data
2% <1% 0.8%
2.75% <1% 1.89%
6.58% <1% 3.45%
17.51% <1% 5.88% i
30.12% <1% 7.76%
108% 2.8% 13.54%
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It is clear from Table I that the crror in the a-c data is extremely insensitive
to the error in the model approximations, at lcast when MaDc and when M is known
during the computation, It is also clear that only small errors accruc in the computed
activities even when the maximum compositional difference between the two profiles
is large. In turn this implies that the time diffcrence between two successive profiles
can be increased (until the composition difference between the two profiles is
significant enough to be measured with an clectron microprobe) without affecting

the accuracy of the computed activity data.

Thus the preliminary simulations ware very encouraging. Howcver, as stated
earlier these simulations were conducted on hypothetical alloy systems since the
mobility and the chemical potential had been artificially decoupled. A computational
scheme was next proposed that would permit simultancous ¢cvaluation on the mobility
and chemical potential given diffusion profiles from a real experiment. Instead of
conducting a diffusion experiment, it was decided to compute diffusion profiles for
a recal system using measured D-¢ data taken from the litcrature. It was hoped that

this would serve as a quick check of the proposed scheme,

Computation of the diffusion profiles required knowledge of the variation of
the interdiffusion cocfficient as a function of composition, Accordingly, the
literature was scanned for data describing the variation of the chemical
interdiffusion cocfficient as a function of composition for isomorphous binary
alloys. A useful compilation of this data is found in the book by Borovskiil2 The
Au-Ni systenm, investigated by Cohen et. al,24.26:26, was choscn for the initial
simulations. The raw data were digitized at approximately 100 points and fitted
with a fourth order least squares spline (i.e. a cubic splinc). Details on spline fitting
procedures are found in the companion paper??, The spline representation was used
for all further computations. Using the interdiffusivity data, the diffusion cquations

(in the Fickian description) were solved on a onc dimcnsional cquidistant finite
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difference grid using Eulers mcthod in the time dimension and finite difference
approximations to the spatial derivatives?8, The resultant profiles were used as input

to the modcl in an attempt to compute the chemical potential,

The availability of spline fitting techniques made it possible to compute the
slope of the diffusivity data, (',—':) This suggested a simplification of the model from
a two profile model to a single profile model. If the diffusivity and its slope arc
known then in Fickian coordinates one may express the depletion rate as follows:

_od
Ix

N szu(‘z_’j)(w)? [16]

In the original model (cqns. 1-12), two profiles were considered in order to
obtain an approximation to the depletion rate by considering the cliange in
concentration between time t; and ty(eqns. 3, 5). This was nccessary since measurement
of a diffusion profile does not yield information on the instantancous deplction
rate. However with the aid of spline interpolation techniqucs, eqn, 16 can be used
to compute (:—:) The simplified model is then obtained by cquating the depletion
rates in the Fickian and phenomenological descriptions (ref. cquations 16 and 7).

This leads to :

Dv’c+(%?)(w)2 - "M)("")(VC)HM("z“)(w)hM(g%)(vzc) [17]

\oc J\oc ac?
The simplified model embodied in equation 17 is more transparent than the two
profile model of equations 10 and 12, The basis for the proposed model is now clcar:
invariance of the instantaneous dspletion rate with respect to the choice of variables
(Fickian or phenomenological). The coupling between the mobility, M, and the
chemical potential, i1 I3 also apparent. It is also clecar that additional information is
needed to solve equation 17. Hence onc cquates the fluxes in the two descriptions

to obtain :
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J fickian - J phenomenologicat [ 1 8]
-DVec - ~M%n (19]
M - ...’l. [20]

(3)

Thus the model now reduces to equations 17 and 20. Viewed in this manner
(single profile model), a major limitation of the proposed scheme becomes apparent.,
To solve equation 17 one nceds M and (%) This information must be computed
simultaneously with the chemical potential information. On¢ initial suggestion for
obtaining(%)involvcd differentiating eqn. 20 and then solving the resultant equation
(21) simultancously with equations 17 and 20. Diffecrentiation of cquation [20] leads

to the following expression :

"0
oM ()7 X
() - (27
c

Attempts to solve equations 17, 20 and 21 simultancously will not work since

[(21]

cquations 17, 20 and 21 are lincarly dependent. This can be scen by substituting
equations 20 and 21 into 17, Clearly, one has too many unknowns and not enough

equations.

The linear inter-dependence of equation 17, 20 and 21 implics that cquations
17 and 20 are equivalent (since equation 21 is obtained by differentiating 20). This
scemingly trivial observation has profound implications. Firstly, this mecans that one
may obviate the model equation [17] and concentrate instead on equation 20 to obtain
chemical potential information, This implics that information on chemical potentials
is implicitly contained in the variation of the interdiffusion coefficient with
composition. This in itself is no surprise since the theories proposed by Darken?,
Manning10, Kirkaldy!!, Howard and Lidiard®, all lcad to oxpressions that explicitly
relate the chemical interdiffusion coefficient to the system thermodynamics. What
is more interesiing to note is that knowledge of the slope of the diffusivity (',—f) ,

led to simplification of the model from 2 profiles to a single profile and now
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examination of the simpler model (eqns. 17, 20 and 21) leads one to conclude that
one nced not explicitly examine any profile. Instcad all one requires is the dependence
of D on composition. However, it should be noted that the variation of D with
composition is itself obtained by subjecting the diffusion profile to a
Boltzmann-Matano treatment. One only nceds the diffusion profile explicitly to
obtain the variation of the diffusivity with composition but not to compute chemical
potentials from a diffusion couple. Once the diffusivity is known (as a function of
composition), additional experiments (multiple diffusion profiles) do not yicld any

new information.

In other words, the diffusion profiles (C-x data) arc physical manifestations
of the D-c rclationship. Therefore one may think in terms of a D-c-x spacc along
with an M-c-x space, similar to the j-c-x space presented in figure 2. Since M, D,
and pare interrelated and all of these depend fundamentally on composition alone,
it is clear that the task of looking for p-c data in C-x data is more complex than
looking for p-c data in D-c data, The spatial variable, x, is an intermediate variable,
It is intuitively appealing, since it is a physical variable, but it is not rcally helpful
in obtaining chemical potential information. All of this implies that one must focus

on equation 20 to obtain chemical potential information from diffusivity data,

Examination of eqn. 20 indicatcs an additional problem; one knows only the
interdiffusivity D and one wishes to compute both pand M. Clearly, an analytical
solution yielding both chemical potential and mobility from the interdiffusivity is
not possible unless additional information on the concentration dependence of M is
made available from some other mcasurcment (preferably a non transport
measurement), This implies that additional assumptions must be made regarding the
functional form of wand M. These ideas and a non lincar lcast squarcs technique

for computation of M and pare the subject of the following paper.
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2.6 CONCLUSIONS

The main conclusions from this part of the investigation may be summarized
as :
(i) Chemical potential information isavailable from a diffusion couple. By simulating
a series of hypothetical alloys which possess a mobility akin to that of an idcal alloy
it has been shown that it is possible, in theory, to compute chemical potentials from

a diffusion profile if the mobility is known a_priori.

(ii) Observation of the dynamic behavior of a diffusion profile, or cxamination of
multiple profiles, does not provide any additional information, The requisite
information is available in the equation relating mobilities, chemical potentials and

diffusivity,

(iii) It is not possible to extract an analytical solution to the chemical potential
directly from the interdiffusion coefficient without knowledge of the mobility
function. Computation of both pand M demands additional assumptions rcgarding

the functional form of the variation of thesc quantities with composition,



34

2.7 SYMBOLS
c composition gm/cm?®
(i ts time sec
J Flux  gm/(cm?-sec)
X spatial cordinate cm
q average rate of accumulation gm/(cm“-scc)
aJ, ) . 3
oy instantaneous rate of deplotion gm/(cm” - sec)
Ac change in concentration gm/(cm®)
M phenomenological coefficient or mobility (gm—moles)/(cm’-sec)
m chemical potential  (gmem?sec *gm-mola™")
a activity dimensionless
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Thermodynamic Data From Diffusion Couples - 11

3.1 ABSTRACT

A non linear least squares based strategy is presented to compute
activity-composition data from measured interdiffusivity -
composition data for isomorphous binary metals. The
interdiffusion coefficient is modelled as a product of (wo
Junctions, one representing the contributions of the system
thermodynamics and the other representing the contributions of
the phenomenological coefficients. Since both functions are
unknown and only their product (the interdiffusion coefficient)
is known there exists an inherent non uniqueness to the problem,
Hence, the proposed solution scheme leads to multiple sets of
coefficients which on an activity-composition diagram correspond
to solutions exhibiting positive and negative deviations from
ideality. One additional piece of information, such as the
experimentally measured activity at a particular composition or
the slope of the Henry's law line at infinite dilution, is needed to
pick the correct set of coefficients. The scheme was applied to
the CoNi system for which the activity data computed from the
interdiffusivity data showed excellent agreement with the

experimentally measured activity data.

3.2 INTRODUCTION

This is the second of four papers covering an investigation aimed at obtaining
chemical potential information from diffusion couples. In the previous paper a
preliminary model had been proposed that analyzed the dynamic behavior of a
diffusion profile in an attempt to extract chemical potential information. However,
the preliminary model led to a larger number of unknowns than the number of

available equations. A careful analysis of the preliminary model had shown that
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instead of analyzing the dynamic behavior of a profile, it is more fruitful to focus
on obtaining chemical potential dircctly from the variation of the interdiffusion
coefficient with composition. Thus it was shown that the starting point for computing

chemical potentials is the following equation:

Ic

M -

<
=

-

[

(1]
)

(

This paper begins by examining various theories in the literature interrelating
the chemical interdiffusion coefficient to the system thermodynamics and to the

phenomenological (Onsager) coefficients.

3.3 LITERATURE REVIEW

3.3.1 Relationship between the diffusivity and the system thermodynamics

The phenomenological theory of irreversible processes cxpresses the flux
of a diffusing specics as a linear combination of all driving forces!-4. In the case
of solid state diffusion, the driving lorces are the gradicnts in chemical potential
of the diffusing species. The following equation expresses the phenomenological

relationship between fluxes and forces:

k=n
J, = ZLan (2]

k=1

whereas the entropy production rate is given by :
1
as - (L4 (3]

The earliest atomistic theory relating the interdiffusion coefficient to the
system thermodyrnamics is attributed to Darken®, There were two major
assumptions in Darken's analysis, Firstly, Darken assumed that the of f diagonal
Onsager coefficients were negligible and sccondly he assumed that vacancics
were in local equilibrium in the diffusion couple. Darkens analysis led to the

following expression:

D-(D‘,N2+D;N,)(1+c-ci%vv-) (4a)
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In Darken’s theory, the phenomenological cocflicients were related to the tracer
diffusivities by the following ¢xpression:
L, = ¢,D; (4b]
L, = c,D, [4c]
From these expressions it is clear that the phenomenological expressions are strong

functions of composition,

Subscquently, Howard and Lidiard®, Manning?, and Kirkaldy4 modificd
Darken's treatment to include the effect of non-zero off diagonal Onsager
coefficients. By considering a quaternary A-A'-B-B* system and assuming that

the vacancies were in local equilibrium, they arrived at the following expression:

_b__
(1+53)

In equations 4a and 5 the thermodynamic factor ¢(c)provides a complete

AT X, Xa
W(YA—:L.1A'+:\T;LM') [5]

(D'|°z+D;c|) +

description and embodies the thermodynamics of the system. Knowledge of the

function ¢(c)completely defines the solution behavior of the alloy system.

It has been estimated* that the additional term in equation [5] leads to an
error of around 5% over equation [4] in the computed interdiffusion cocfficient
for isomorphous binary alloys and an error of up to 28% in the measurement of
the marker velocity, Since measurements of interdiffusion coefficients often
contain as much as 25% errors, it is not possible to detect the contribution of the

additional term in equation [5] by measurement of the dif fusion coefficient alone.

Experimentally, the interdiffusion coefficient is obtained as a function of
composition by subjecting the mecasured diffusion profile data to the
Boltzmann-Matano trcatment489 This trcatment is embodied in the following

expression:

D.In.

D(c)-(;—f)((-l:—))fu(c) - xp(e))de (61
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Crank!9 and Balluffi!! have modified the Boltzmann-Matano treatment to
account for the volume change of mixing. The correction is small for isomorphous
binary alloys, which exhibit small changes in molar volume. Hence this effect

will be neglected in the present investigation.

It should be noted that Darken's theory (eqn. 4a) and the theory proposed
by Howard and Lidiard®, Manning? and Kirkaldy#4 (cqn. 5) differ only in the
number and functional form in which the phcnomenological cocfficients
contribute to the interdiffusion cocfficient. Darken's theory calls for two
independent phenomenological coefficicnts whercas the theory proposed by
Howard and Lidiard, Manning and Kirkaldy calls for five independent
phenomenological coefficients to completely describe binary diffusion under the
assumption that the vacancies are in local equilibrium. Despite these differences,
it is important to note that both theories predict an identical dependence of the
interdiffusion coefficient on the system thermodynamics (eqns. 4a and 5). Both

treatments express the diffusivity in the following general form:

p = f(c)(nﬂﬂ) (7)

dinc

where f(c) is a function of the phenomenological coefficients and the alloy

composition and hence depends on the theory being considered (eqns. 4a and 5).

It is clear from equation 7 that the interdiffusion coefficient is a very
strong function of the thermodynamics of the system, Borovskiil? has provided
several examples to illustrate this point effectively, For example, in the U-Zr
system (binary isomorphous) one would expect the interdiffusion coefficicnt to
increase with increasing contents of U (the lower melting point metal), However,
diffusivity measurements indicate that the diffusion coefficient first decreascs
(0-25% U), remains fairly constant (25-60%) and then begins to increase sharply.
This unexpected behavior is attributed to the influence of the thermodynamic

term on the interdiffusion coefficient,



41

Thus as far as the present investigation is concerned, the main point to be
noted is that the interdiffusion cocfficient is rclated to the system
thermodynamics by equation 7. The exact functional form of f(c) is of little

concern since one is interested in the system thermodynamics.
3.3.2 Least Squares Techniques

This section provides a brief introduction on the philosophy underlying
least squares tfchniqucs since such techniques are central to the proposed
computational scheme. Least squares techniques are often used to fit functions
to experimentally measured data. There are two main advantages in doing this,
Firstly onc is able to filter out the noise in the ecxperimental data and sccondly
the resultant function is a uscful way of representing the data since it can be
evaluated, differentiated and integrated with case. A review of the main stages

in least squares fitting is prescated ncxt.

Assume that one is attempting to measure some physical quantity as a
function of an independent variable for several systecms. Examples would include
densiiy asa function of composition for several alloy systems or thermal expansion
coefficient as a function of temperature. The experimental data would consist
of data pairs of the measured quantity and the independent variable. Further,
assume that there are theoretical reasons to believe that the variation of the
mecasured physical quantity with respect to the independent variable can be
expressed by a generic class of mathematical functions, For example it is generally
accepted that the diffusivity for any substitutional metallic solute in any metallic
solvent can be expressed by the following generic function; D = A[Exp(-Q/RT).
The right hand side of this expression is the mathematical modcl and the quantities
A and Q are two variables which differ from onc solute to the other, For each
solute one computes A and Q by subjecting the measured diffusivity data to a
least squares analysis. Thus the first stage in lcast squares analysis is defining

the mathematical function that will represent the physical quantity,
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In the second stage a least squarcs error function is defined which
geometrically corresponds to the sum of the squares of the distance between cach
data point and the mathematical function. The third stage involves minimizing
the lcast squares error function to obtain the variables that define the
mathematical function (A and Q in the present case). Geometrically this amounts
to minimizing the distance between the mathematical function and the measured

data.

3.4 PROPOSED ALGORITHM

The proposed scheme relies on the following assumptions: (i) The molar volume
is invariant with composition, (ii) The system is isothermal and (iii) Vacancies are

in local equilibrium everywhere in the diffusion couple.

The proposed scheme involves fitting a non lincar lcast squares function to
the isothermal interdiffusion data, that is, one attcmpts to model the isothermal
variation of the interdiffusion coefficient with alloy composition, It is known that
the interdiffusion coefficient is a product of two functions: f(c) and ¢(c)(equation
(7). To conduct a least squares fit to the interdiffusion coefficient one must begin
by choosing mathematical models to represent both quantities f(c) and ¢(c) The
product of the mathematical models chosen to represent f(c) and ¢(c)will yield the
function which can be used to model the interdiffusion coefficient. The mathematical
models for f(c) and ¢(c) will be defined in terms of unknown coefficients. One
would use the product of the two functions and the experimental interdiffusion
data to conduct the least squares fit. The least squarcs fitting process will provide
numerical values of the unknown coefficicnts that constitute the model functions
chosen for f(c) and ¢(c)for a certain alloy. Knowledge of the numerical values of
the variables that constitute the mathematical function representing ¢(c)will permit
one to compute ¢(c). Knowledge of ¢(c)is equivalent to knowing the thermodynamics
of the system since one can integrate #(c) to obtain the y-c relationship for the
alloy and from it the activity-composition data. With this general overview in mind,

one may next examine the details of the proposed computational scheme,
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It is clear from equation 7 that to obtain the chemical potential (or equivalently,
the function ¢(c)) from the interdiffusion coefficient, demands knowledge of the
function f(c), which is related to thc Onsager phenomenological coefficients. Since
f(c) is not known a_priori, an analytical solution of the ¢(c) function cannot be
obtained. Hence additional assumptions must be made regarding the nature of the
functions f(c) and ¢(c). Clearly an important first step is the selection of appropriate

functional forms for f(c) and ¢(c)

Assume that the functional forms of the two functions f(c) and ¢(c)are known

a priori,’ Further assume that f(c) is being modelled by a function of 'n’ variables,
CITRTIY ,t,) whercas ¢(c) is being modelled as a function of 'm' variables
(Taviroeenes ,Tm.a} This implies that the interdiffusion coefficient is being modelled

as a function of 'm+n’ variables;
D = f(Tl'TZ' """ ltn)¢(Tu0|' """ l'tmon) [81

‘The mathematical functions chosen to represent f(c) and ¢(c)are presumed to
possess sufficient degrees of freedom (free variables) to adequately model the
quantities they represent, In other words, given a real, metallic, isomorphous, binary
alloy system there exists at least one set of rcal values for the variables ©,,....... v Tmen
such that the resulting function ¢(c)adequately represents the solution behavior of

the alloy system,

Further, assume that the interdiffusion coefficient has been measured at several
discrete compositions over the entire range from 0-100% solute. This may be regarded
as the input data, comprising of several sets of points (C;,D,, i=1,k) say 'k’ sets where
'k’ is presumed to be a large number of the order of 100, The diffusivity data is
presumed to have been generated during a prior diffusion experiment. One proposes
to conduct a non linear least squares fit to the measured diffusivity data. The least

squares analysis will yiecld values of the parameters t,...., Tp,, Which minimizc the

* Later in the paper a discussion Is presented to help deduce such functional forms
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lcast square error between the measured data points and the product of the proposed
model functions for f(¢c) and ¢(c). The parameters t,.....T ., Will define the functions

¢(c)and f(c), and thereby provide an estimate of the thermodynamics of the system.

Implementation of a least squares solution demands the definition of a least
squares error function (sometimes referred to as the chi squared function), In the

present case this may be expressed as :

E* = Z(w.)zw. LT e T T T ) D (9]

The non linear least squares estimation process amounts to searching an 'n+m+1’
dimensional space for a minimum, At the minimum, the numerical value of the lcast
squares error function, £2is 'small’ but not necessarily zero. The numerical value
of EZat the minimum is termed the residual and is a measure of the goodness of
fit.

There are two major problems when least squares analysis is applied to a
function that is a product of two other functions (f(c) and ¢(c). Firstly, there is no
guarantee that the cpace spanned by E? and the m+n unknown variables (t,) contains
only a unique minimum, rather the possibility of multiple minima is very strong.

Secondly, there is the possibility that the two functions (¢(c)and f(c)) are correlated.

The term correlated refers to the possibility that the two functions may be
mathematically similar and hence indistinguishable. As an extreme example of two
completely correlated functions consider two polynomials, If a product of two
polynomials was taken, then it would be impossible to deduce the cocfficicnts of
the original polynomials given only the functional form of their product. In the
present case correlation effects arise due to the inherent non uniqueness of the
problem wherein one is attempting to compute two functions knowing only their

product.
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From the preceding arguments it is clear chat the choice of functions to modcl
the term f(c) and ¢(c)in equation [8] should consider the possibility of corrclation

and of multiple solutions.

3.5 CONSTRAINTS ON THE THERMODYNAMIC FUNCTION ¢(c¢)

It is appropriate to cxamine some properties of the function ¢(c). Onc may

begin with its definition :

#e) = (l . 9'—“’—’) [10]

dinc

Firstly, it should be noted that for equilibrium conditions, ¢(c) is always
positive®, otherwise D(c) would be negative. Alternately one may regard the
requircment for ¢(c) to be positive as arising from the intrinsic thermodynamic
stability criterion13:14,9u/9¢ > 0.0, which must hold true for all isomorphous binary
systems at equilibrium. For ideal alloys the function ¢(c)is identically unity at all
compositions; for alloys exhibiting positive deviation ¢(c) < 1.0, and for alloys

exhibiting negative deviations from ideality ¢(c)> 1.0. Hence one may summarizc:

0.0 < ¢(c¢) < 1.0 positive deviation
1.0 = ¢(c) ideal alloy [11]
1.0 < ¢(e) negative deviation

In addition to the above restrictions, ¢(c) tends to unity as the composition
tends to zero or to unity. In other words :
d(c)21 as ¢c—-0 oras c—1

This is more transparent when ¢(c)is expressed as follows:

ole) = (1 * s‘;—Z) [12)

* o(c) assumes a negative value only In non equilibrium situations. As an example consider a system that possesses a
spinodal in the phase diagram. If a solution is quenched from a temperature in excess of the critical point into the
lﬁlnodnl reglon then the solution is not stable and hence transforms by a spinodal transformation. ¢(c) s negative during
the spinodal transformation, and hance the interdiffusion coefficient is actually negative laading to the well known
phenomenon of uphlll diffusion,
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As ¢=0 s:—-z 2 O hence ¢(c)~1
whereas

Iy
as cH1 P < O hence ¢(c)-1

The restrictions embodied in equations [11] and [12] will be referred to later

in the paper.

3.6 SELECTION OF MODEL FUNCTIONS

This section explains how appropriate functions to model f(c) and ¢(c)were sciected.
3.6.1 Models for the thermodynamic term

Five isomorphous binary alloy systems were selected; one of these exhibjted
idcal solution behavior (Co-Ni), two systems exhibited positive deviations from
ideality (Au-Ni and Cu-Ni) and two systems exhibited negative deviations from
ideality (Ag-Au and CuAu), Isothermal, activity-composition data and activity
cocfficient-composition (v-c) data were obtained for each of these alloys from
the handbook by Hultgren et. al.12,

It should be noted that the function ¢(c)is usually not tabulated in most

handbooks, since it is not a popular means of describing the system
thermodynamics. Hence to evaluate the function ¢(c)it was necessary to obtain
not only the activity coefficient as a function of composition but also its slope
with respect to composition, Since the slope (dy/dc)is not available from the
handbooks, it was decided to fit the available activity coefficient - composition
(v~c) data with simple functions such as polynomials or exponentials and then

use the fitted functions (and their derivatives) to evaluate the function d(c)

Curve fitting routines from the RS/1 package!® were utilized in fitting
functions to the raw Y-c data, Polynomials of increasing order (upto fourth
order) and exponential functions were successively tried in order to obtain a

reasonable fit to the data. The data from Hultgren12 et, al. was available at ten
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3.6.2 Models for the function f(c)

Since Darken's theory and the theory proposed by Howard and Lidiard
result in less than a 5% difference in the interdiffusion coefficient, it was decided
to use Darken's equations to estimate the function f(c) for the five isomorphous
binary systems chosen earlier, It should be noted that Darkens theory does not
underlie the current algorithm but that it was used only to obtain an initial
estimate of the function f(c). This initial estimate of f(c) was helpful in choosing

an appropriate functional form for f(c).

Consideration of equation [4), indicates that an estimation of the function
f(c) = (D;"Ng + Dy'Ny), requires knowledge of the variation of the tracer
diffusivities as a function of the composition. Hence, the litcrature was scanned
to locate tracer diffusivities for each of the five isomorphous binary systems
sclected earlier. However, only the tracer diffusivity data for two systems,
AuNil8.17 and Ag-Aul819 could be obtained. The tracer diffusivity data for these
systems was available at a temperature different from the temperature at which
Hultgren et. al. report the activity data. Nonetheless it was felt that the general

functional behavior of the D*-c data could be studied.

Since exponential functions had been chosen to represent the function ¢(c)

, some other functions had to be chosen to represent the tracer diffusivities (i.e.
the functions f(c)) in order to avoid the possibility of correlation. Bascd on several
attempts at curve fitting the tracer dif fusivity data, it was concluded that sccond
order polynomials could adequately model the variation of tracer diffusivities
as a function of composition, From cqn. [4] this implied that the function f(c)

could be adequately modelled by a cubic polynomial.

It may be argued that the choice of a functional form for f(c) was based
on data from two alloy systems only and hence may not be representative of

tracer diffusivities in general, This is certainly true, and modifications to the
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functional form may be called for at a later stage. However, these are relatively
straightforward to incorporate. Hence for the present one may assume that f(c)

is well represented by a cubic polynomial.

3.6.3 Functional Model for the Interdiffusion Coefficient

Since f(c) was modelled by a cubic polynomial (Ps) and ¢(c)was modclled

by the function exp(Pg), it follows from equation 7 that the interdiffusion
coefficient may be represented by the function (Pg)(exp(Pg)). This function
possesses 10 degrees of freedom which implies searching a chi squared space that

is eleven dimensional, Clearly the possibility of multiple minima is a strong one.

3.7 ACQUISITION OF INTERDIFFUSION DATA

Data describing the variation of the interdiffusion coefficient with composition
for the five isomorphous binary systems (AuNi, CuAu, CoNi, CuNi and AgAu) were
obtained from the text by Borovskii® The curvesdrawn by the authors were magnificd
and digitized at approximately 100 points. The data were then fitted with a fourth
order spline (cubic spline) using a linear lcast squares approximation approach. Least
squares spline fitting splits the interval of interest (in this case [0,1]) into several
subintervals and fits a piecewise polynomial over each subinterval ensuring that
several derivatives of the interpolant stay continuous at the boundaries between two

intervals20, Details on splinc fitting are available in a separate publication2l,

After fitting the raw digitized data with a spline, the diffusivity was obtaincd
at 100 evenly spaced points on the interval (0,1], by evaluating the spline at cach
of the 100 points. This interpolated data were used as input for further calculations,
Appendix II presents the raw digitized data and the spline interpolated data for

reference purposes.

3.8 PRELIMINARY RESULTS

The interpolated diffusivity data were fit with the function (Pg)(exp(Pg)) using
the unconstrained non linear least squares (NLLS) routines from the RS/1 package.

An unconstrained method was used initially to determinc whether there was any
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need to expend the additional effort in incorporating the constraint functions
(#(c=0) = O ; ¢(c=1) = 0).Agoodfitwasobtained tothe D-c data. However
examination of the ¢(c)function revealed that it was continuously increasing with
concentration and that it violated the constraint that ¢(c=1) = 1, This is a clear
example of the non-uniqueness problem alluded to earlier. In the present case, a set
of functions fy(c) and ¢,(c) have been computed such that their product represents
the D-c data, but the function ¢,(c) violates the requirements for the ¢(c)function,
The problem occurred because the fitting routines did not incorporate the constraints

embodied in equations [11] and [12].

Thus it is clear that one must choose an algorithm that permits the specification
of constraints in the non linear least squares (NLLS) fitting process. The theoretical

framework for accomplishing such a task is presented next.

3.9 THEORETICAL BASIS FOR CONSTRAINED NON LINEAR
LEAST SQUARES

Since solution of the least squares problem (linear and non linear) demands
the minimization of the least squares error function (equation 9), it is appropriate
to examine the mathematical basis underlying the general problem of minimizing a
given function, There are several excellent treatises available on this topic22-26 | the

present discussion is based on the book by Gill et. al 32,

The non linear constrained problem (NCP) is defined as follows22 :
minimize F(x)
x€eR"

subject to: ¢, (x) = O i=-1,2,...m"

c(x) 2 O i=m’+1,.....m [13]
where F(x) is the function being minimized and c;are the various constraints (equality
and inequality constraints). For sake of brevity only the conditions that must be
satisficd at the minimum of the objective function are presented. Details of the

algorithms for locating a minimum are found in the standard references?3,
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The simplest example of a minimization problem is thc vnconstrained
minimization of a univariate function. From basic calculus it is known that if the
function possesses a minimum then at the minimum (x*) the following conditions
hold :

f'(x'y = 0

frxy 20 [14]
In the multivariate case these conditions are replaced by their multivariate
equivalents:

lgxHl = o

G(x') is positive definite [15]

There exist several popular algorithms to solve multivariate minimization
problems22, In the non linear case thesc are necessarily iterative in nature and may
be classified according to the amount of information used to locate the minimum
in the chi squared space. Some methods use only repeated function cvaluations to
arrive at the minimum while first order methods use the gradient, and sccond order
methods use the Hessian in addition to both the gradient and the function. In general

the higher the order of the method, the better its convergence rate,

The multivariate case is more complex than the univariate case, Firstly, in the
multivariate case, the algorithm must choose an appropriate search direction from
the current point and secondly it must choose a step length along the chosen direction.
In contrast, in the univariate casc there is no ambiguity in regard to the scarch

direction.

The situation is further complicated by the addition of constraints. Constrained
minimization problems are usually classificd based on the type of constraints imposed.
Thus one distinguishes between linear equality constraints, linear incquality
constraints and non linear constraints, In each case the conditions for a minimum

to cxist differ as do the solution schemes.



Linear equality constraints arc usually expressed as a set of equations:
minimize F(x) subject to Ax = b (16]
The matrix A contains the coefficients corresponding to each constraint, One next
defines a matrix Z, the columns of which form a basis for all vectors 'p’ satisfying
the condition that Ap=0. This condition defines all feasible search directions 'p’
from a given feasible point. At the minimum, the following conditions hold :
() Ax' = b
(it) ZTg(x')=0  or equivalently g(x'y = A™A'
(i)  ZTG(x")Z  is positive definite [16]
The quantities, A, are termed the Lagrange multiplicrs, Solution of a linear
equality constraint problem (LEP) with 't’ constraints in 'n’ unknowns is equivalent
to solving an unconstrained problem in n-t dimensions. In essence the equality
constraints reduce the dimensionality of the problem. All solution algorithms first
locate an initial feasible point (i.e. one that satisfies the constraints) and then search
for the minimum by moving away from the current feasible point along feasible

directions only (i.e along the vectors 'p’ defined earlier).

In the case of linear inequality constraints (Ax 2 b) there exists one restriction

in addition to the conditions expressed in equation 16, The additional restriction
demands that all the Lagrange multipliers be strictly positive. The popular solution
scheme utilized is termed the active set method wherein a subset of the inequality
constraints is determined, All the constraints in this subset are binding constraints,
i.e. the condition Ax=b is exactly satisfied for these constraints. Such a set of
constraints is termed as the active set or working set. Once an active set has been
determined the solution scheme is very similar to that for the non lincar equality

problem.



A recurring theme in algorithms for minimization is the modelling of the
objective function F(x) by a quadratic function :

Fox) = g"(x") + px'Tox’ [17]

Equation 17 can be derived by expanding F(x) as a Taylor serics about x=x*

and neglecting the terms higher in order than the second order term. Clearly such

an approximation is local, i.e. it holds only close to the minimum. In practice it is

found that iterative schemes usually do converge to the minimum even when the

initial point is far from the minimum,

3.10 CONSTRAINED FITTING OF DIFFUSIVITY DATA

Earlier in this paper it was decided that the function exp(Pg) would be used
to model the quantity ¢(c) In itself, the chosen function exp(Pg) only ensures that
¢(c)is positive but does not satisfy the constraints of equation 12, In order to satisfy
the constraint, ¢(c=0) = 0, the constant term in the polynomial Pg must be set
to zero. Hence the function used to represent ¢(c)must be modificd to read as follows:

o(c) = Exp(rge’ + 7Tet o+ t,ed o+ Tee? o+ Toe) (18]

where t, are the unknown parameters that constitute the model and ¢ is the

composition, i.e. ¢ ranges over the interval [0,1].

Thus the imposition of the constraint (c=0) = 1reduces the dimensionality

of the problem to 9 variables. Similarly the constraint ¢(c=1) = 1 lcads to the

following constraint on the parameters :

k=9
Yot = 1 [19]
k=8

Thus the diffusivity was modelled by the following function :

h(c) =~ (ﬁ(r,c.‘"))(Exp(*};mc.‘“"‘))) (20]
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and was subject to the constraint embodied in equation [19].

During the fitting process the data were weighed to reflect the fact that the absolute
uncertainty in each data point was identical. Hence the weights were selected as the
reciprocal of the absolute value of the ordinate of the data. Based on all of the

above, the least squares error function may be defined as follows :

(=100
E? = ) (D, - h)w)? [21]

i=1

where, his given by equation 20 and w, = 1.0/D,

The NAG 26 fortran library subroutine EO4UAF and E04VCF were used to
locate the minimum. EQ4UAF uses a sequential augmented Lagrangian method?2?2
coupled with the Quasi Newton method?2, Since the method does not utilize the
gradient or the Hessian of the objective function, its convergence rate is very slow.”
In contrast, the subroutine E0O4VCF uses a sequential quadratic programming
algorithm wherein the search direction is the solution of a quadratic programming
problem?2, Since this is a comprehensive routine that utilizes information about the
gradient of the objective function the convergence rate is very rapid*®. In addition

EQ4VCF makes it easier to monitor the progress of the minimization process.

3.11 RESULTS OF CONSTRAINED FITTING

The salient features and results from the attempts at constrained fitting will
be highlighted by discussing the Co-Ni system in detail, Diffusivity data for this
data were obtained at 1356°C. Results for the other systems will be presented in the
following paper. Throughout this discussion the term original diffusivity data will
refer to the data obtained by interpolating the spline approximation to the raw

digitized diffusivity data,

Figure 3 compares the fitted and original diffusivity data, The subroutine
EQ4UAF was used fov this fit and the only constraint imposed was that embodied

in equation 19. From figure 3 it is clear that a good fit was obtained to the original

* A typlcal run took 2-8 hours on a MicroVax II.
** A typlcal run required 7-10 minutes on a MicroVax II.



diffusivity data, Figure 4 depicts the ¢(c)function corresponding to the fit. Figure
4 suggests that the CoNi system exhibits a positive deviation from ideality, However
it is known, from Hultgren??, that the CoNi system is ideal. Therefore the chemical
potential results in figure 4 are spurious, despite the fact that the computation
yielded an excellent fit to the D-c data. This is clearly a manifestation of the
correlation effect which had been alluded to earlier. In the present case the product
of the computed functions f(c) and ¢(c)provides a good fit to the diffusivity data

but the computed function ¢(c)does not represent the system thermodynamics,

The correlation effect undermines the attempts to compute chemical potentials
by leading to multiple solutions. Correlation effects arise since the problem at hand
is intrinsically non unique. The origin of the correlation effect lies in the fact that
the diffusivity is being modelled as a product of two function which ar¢ both
unknown. Hence by making compensating errors in each function it is still possible
to get a good fit to the diffusivity (since it is the product of these functions). This
implies that given some diffusivity data several scts of functions [f},6,(c)] exist such
that the product of each set provides a good fit to the original diffusivity data,
Each such set of functions [f},6,(c) ] corresponds to a minimum in the ¢(c) - cspace.
Clearly only one of these sets represents the real alloy system while the others are
spurious minima arising from the fitting procedure. Therefore the problem at hand
transforms into firstly computing all the minima and then picking the correct
minimum from the set of computed minima, The problem of locating and computing
all possible minima is addressed first, Next a strategy is presented to pick the correct
minimum from the set of computed minima,

3.11.1 Obtaining a set of feasible minima

No general mathematical technique exists for simultancously locating all
the minima of the non linear least squares problem, Hence the following iterative
strategy was adopted. The algorithms were modified to incorporate additional
constraints the general form of which was as follows :

I S &) S u {=1,..10 [22]
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These constraints were imposed at ten compositional points evenly spaced on the
interval [0,1). The lower bounds at each compositional point were identical, i.c.
1(c=0.5) = 1(¢=0.7) = 1(c=0.9) as were the upper bounds. By varying the lower and
upper bounds, |; and u; respectively, it was possible to constrain the ¢(c)function
to different regions of the two dimensional ¢(c)-c space. For each set of
constraints a complete non linear least squares fit was carried out. After each
such run the goodness of the fit to the original diffusivity data were examined.
If a satisfactory fit was obtained then the corresponding ¢(c)-c function was
added to the set of possible minima, In this manner by varying the constraints,
l;and u;, a set of possible minima was obtained. In essence, the additional
constraints in equation [22] restrict the search to a subset of the ¢(c)~-c space.
By searching several subsets of the space one ends up with the set of possible
minima. It should be noted that the constraints, l;and u;, must be consistent with
the 'natural’ constraints on ¢(c) which are embodied in equation 11. In other
words the choice of 1;and u; must be such that the function ¢(c)tends to unity
at cither end of the interval [0,1]. Hence a choice of 1;=2.0 and u;=4.0 would be

incorrect.

Figure 5 depicts the results of several such runs on the CoNi system, The
figure plots ¢(c)as a function of ¢ for different scts of upper and lower bounds,
The legend in the figure corresponds to the upper and lower bounds for cach
computation. In each case an excellent fit to the original diffusivity data were
obtained; similar to the fit depicted in figure 3. The goodness of fit can be judged
from the table of residuals (refer Appendix I).

The ¢(c)c data in figure 5 was integrated to yield y-c data, Numerical

integration was carried out using a fourth order Runge-Kutta-Nystrom
technique?8, and the boundary condition that y =~ 1at c=1, The step size used
was 0.0001 and the data were plotted every 2%, Using this integration scheme
the activity composition curves depicted in figure 6 were generated. In this

manner all the minima were obtained.
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3.11.2 Selection of the Appropriate minima

From figure 6 it is clecar that if the truc activity were known at any onc
composition then one could easily pick out the correct activity composition curve
from the set of possible minima, This implies that a single experimental point in
conjunction with the D-c curves and the proposed computational scheme can
yield the entire y-c curve for the particular alloy. The set of minima may be
examined prior to the experiment to choose an appropriate composition range
within which an experiment could be performed. For example, for the CoNi
system (figure 6), one might choose to conduct an experiment in the composition
range [0.35,0.55]) since the various activity-composition curves exhibit the
maximum separation in this range of compositions. One might also accomplish
this if the slope of the activity composition curve was known at the dilute ¢nd.
It will be recalled13.14 that the slope of the activity composition curve corresponds

to the Henry law line for the solution,

In the present investigation, it was decided to use the Henry's law linc in
picking the correct solution. The slope of Henry's law line can be easily estimated
from data on heats of solution, Heats of solution for liquid binary mctal systems

have been theoretically estimated by Miedema?8 et, al, .

Miedema’s model is atomistic and arrives at the heat of formation by
modelling the contributions of the change and discontinuities in electron charge
density (that occurs on alloying) to the heat of formation. Based on this model,
Miedema?® et, al, have estimated the heats of formation at infinite dilution for
several liquid binary mectal systems. A good match was obtained between their

predictions and the mecasurements reported in the literature,

Although Miedema's model works well for liquids it is less applicable to
solids since it does not account for the strain encrgy. For solids, Russell?® has
proposcd a simple scheme that permits one to estimate the enthalpy of formation

in the solid state knowing the latent heat of fusion of the solute, its melting
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temperature and the binary phase diagram (Ref. Appendix III for dectails).

Russell’s2® scheme leads to the following expression:

T
! - q} + L:‘(l - ) + RTln(g-‘-) (23]

TS .
where Qf represents the partial molar enthalpy of formation in the solid state,

Q! represents the partial molar enthalpy in the liquid state.

It was decided to utilize Miedema's theoretical predictions in conjunction
with Russell's technique to estimate the slope of the Henry's law line in order
to select the correct minimum from the set of possible minima (figure 6). It was
hoped that at the very least a reasonable estimate of the Henry’s law line could
be obtained. It was further assumed that the entropy ot solution at infinite
dilution was ideal, The activity coefficient was computed using the following
equation :

Q) = -RTlny, [24]

By using this approach the Henry's law constant was estimated for the CoNi

system,

For the CoNi system Miedema's data predicts that the heat of formation at
infinite dilution is -1kJ/mole for Ni in liquid Co. Since Miedema et. al. did not
report the temperature to which their predictions correspond, it was assumed
that in each case the Qf data corresponded to the melting point of the solvent,
Based on this premise and using equations 23 and 24, the Henry's constant for
Ni in Co was computed to be 0.95 at 1356°C, This line has been plotted in figure
6 for comparison, Referring next to figure 6, it is secen that the solution closest
to the estimated Henry's law line is the one which was computed using the bound:
0.99 S ¢(c) S 1,10, Hence the other solutions (scts of coefficients) may be
discarded as spurious minima. From figure 6 it is clear that the chosen set of

coefficients predict that the CoNi system is nearly ideal which i3 in excellent
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agreement with the experimental data reported by Hultgren et. Al'2, This is
clearer from figure 7 which plots In(y) as a function of composition for the

selected solution,

3.12 DISCUSSION

Thus by considering the CoNi system as an example it has been demonstrated
that it is possible to compute activities given interdiffusivites. The only other piece
of information used was the theoretical predictions of the heats of formation. One
may also have used the experimentally measured activity at one particular composition.
This paper has presented the background, theoretical basis and the proposed
computational scheme for obtaining thermodynamic activities from interdiffusion
coefficients. The next paper discusses the results of similar computations conducted
on ten additional systems. For cach of the ten systems the computed activities will
be compared with the experimental data presented by Hultgren!2, These ten systems

will help establish the reliability of the proposed computational scheme,

3.13 CONCLUSIONS

A non linear least squares based strategy was successfully implemented to
compute activity composition data from interdiffusion data. The proﬁoscd scheme
requires the D-c data and one additional piece of information, such as the
experimentally determined activity at a particular composition or the slope of the
Henry's law line at infinite dilution, to compute the entire activity-composition
curve, Due to its inherent non uniqueness, the scheme leads to multiple solutions.
The correct solution can be picked from the possible set of solutions by using the
additional piece of information. In the present paper, by using theorctical predictions
of the heat of formation to estimate the slope of the Henry's law line, it was possible
to pick the correct solution, The scheme was successfully demonstrated on the CoNi
system which was shown to obey Raoult’s law, Excellent agreement was obtained

between the predicted values and the data reported in the literature.
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3.14 SYMBOLS
M phenomenological coefficient
D diffusion coefficient
1 chemical potuntial
c composition
J, flux of species |
L,y generalized phenomenological coefficient
Xy generalized force
AS entropy production rate
T Temperature in Kelvin
D, Tracer diffusivity of species |
N, mole fracion
Y activity coefficient
mole fraction
X, mole fraction of component 'i’
l time
Xm spatial cordinate of the matano interface
fee) function incorporating dependence of the
diffusivity on the phenomenological coefficient
$(c) thermodynamic function
T, unknown variable in the least squares analysis
w, weighing function in the least squares analysis



F(x)
R
f
Iz
g(x)
G(x)
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least squares error function
objective function being minimized
space of real numbers
slope of a univariate function f
curvarture of a univariate function f
gradient of multivariate function f
Hessian of a multivariate function f
norm of a vector or matrix
matrix containing coefficients of equality constraints
vector of equality constraints
Lagrange multiplier
function used to model the interdiffusivity
upper bound on ¢(c)
lower bound on ¢(c)

Partial molar enthalpy of solution in the liquid state

Partial molar enthalpy of solution in the solid state
melting point of solute B

enthalpy of fusion of solute B

compositon of the solid phase in equilibrium

with the liquid phase

compositon of the liquid phase in equilibrium

with the solid phase
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Figure 1. Activity coefficients for four isomorphous binary alloys. Solid lines

represent the fitted functions.
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Figure 2, Thermodynamic factor for five isomorphous binaries obtained by
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Figure 3, Fitted and original diffusivity data for the CoNi system at 1356°C, The
fitting function used was Pg[Exp(Pg)]. The only constraints imposed were
¢(c=0) = Oand ¢(c~1) = 1,
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Figure 4. Computed thermodynamic function for the CoNi system at 1356°C
corresponding to the fit depicted in figure 3, The only constraints imposed were
¢(c=0) = Oand ¢(c=1) = 1,



é8

2.5

2.0 4
1.5 3
a
.
1.0 = - - =
.
0.5 : 0999‘00,1 \G\H_ ©
7 caass 0,2,1 +++++ 0.93,1.10
- &aacars 04,1 weex 1,00,1.25
7 0099 0.6,1 ek 1,00,4,00
- *raain 09,1 49904 1,00,6.00
0.0 _IIllIllll]lllllllllllllllllll|lllllllll|llllllﬂl
0.0 0.2 0.6 0.8 1.0

0.4
Co COMPOSITION Ni

Figure 5. Complete set of feasible solutions for the CoNi binary at 1356°C on a
¢(c)-c diagram, Each solution corresponds to a minimum in the ¢(c) - cspace. Legend
in the figure refers to the upper and lower bounds imposed on $(c)to compute each
minimum, The solutions for the bounds 1,4; and (1,6] are coincident. The solution
computed on imFosing the bounds [0.9 ,1.10] was taken to represent the
thermodynamics of the CoNi system.
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Figure 6. Com:.lete set ‘of f. 1.0 solutions for the CoNi binary at 1356°C on an
activity composition diagram, This data were obtained by integrating the data in
figure 5. The solutions for the bcunds [1,4] and [1,6] are coincident. The solution
computed on imposing the bounds [0.99,1.10] was taken to represent the
thermodynamics of the CoNi system,
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Thermodynamic Data from Diffusion Couples - 111

4.1 ABSTRACT

A non linear least squares based algorithm which permits one (o
compute the activity composition rélalionship given only the
interdiffusion coefficient as a function of composition was applied
to the following ten isomorphous binary alloy systems: Cudu, PdCu,
CuNi, PdNi, AgAu, CoNi, PdFe, AuNi, PtNi and NbTi, Due to the
inherent non uniqueness of the problem, the algorithm leads to
multiple solutions. One additional piece of information such as
the activity at one particular composition or the Henry's law
constant at infinite dilution is :teqded to pick the correct solution,
For eight of the ten binary systems the algorithm computed a
possible solution that was close to the experimentally measured
activity-composition curves confirming that it is possible (o
compute activities from interdiffusivities. The model may also be

applied to systems exhibiting a miscibility gap.
4.2 INTRODUCTION

This is the third paper in a scries of four papers covering an investigation
aimed at obtaining chemical potential information from diffusion couples. In the
previous paper! a non linear least squares approach was proposed which modcls the
interdiffusion coefficient as a product of two functions, one arising from the
thermodynamic function and the other representing the contributions of the
phenomenological coefficients, In this paper the proposed computation scheme will
be applied to ten isomorphous binary alloy sysiems, For each system data describing
the variation of the interdiffusion coefficicnt as a function of composition was
obtained from the text by Borovskii? et. al. . The results of the calculation wcre
compared with the experimentally reported activity-composition data summarized

in the handbook by Hultgren3 et. al. .
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4.3 MODEL SUMMARY

The proposed scheme models the interdiffusion coef{icient as a product of two

functions :

D = f(e).4(c) (1]

9
D, = (i(r,c.‘"))(sxp( Z(nc.”'“))) [2]
Je=1 k=G

In addition the following constraints were imposed on the variables! :
$(c=0) = 1.0 and ¢(c=1) = 1.0 [3]

[, S o) S u, at ¢ = [0.1,0.2,...,0.9] [4]

Thus the diffusivity was modeclled as a product of two functions: Psfexp(Pg)]. It
should be noted that these functions were chosen based on preliminary analyses and
that these functions may be easily changed. During this investigation it became
necessary to alter the modelling function to P,Exp(Pg)]. For this modelling function

the diffusivity may be expressed as follows:
S 6 L 2-
o, + (Besss)(o o)

The least squares error function for these models may c¢xpressed as follows :

=100
E* - Z (D, = hpw)? (6]
i=
where, h is given by equation [2] or cquation [5] (depending on the modcl being
used) and w, = 1.0/D,

Using the Fortran routine EO4VCF from the NAG library4 the least squarcs
problem of equation 6 was solved subject to the constraints cmbodied in cquations
3 and 4. Solution of the least squares problem amounts to minimizing £2with respect
to the variables t, and subject to the imposed constraints (eqns. 3 and 4). Several
runs were performed, each with a different set of upper and lower bounds [lj,u]. A

minimum in E?-c space was located for each sct of bounds, For each such sct the
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fitto the interdiffusion coefficient was checked graphically and if found satisfactory
the particular minimum was accepted as a possible solution to the problem. In this

manner a set of solutions was determined.

Multiple solutions are inherent to this computational scheme since onc is
attempting to compute two unknown functions (f(c) and ¢(c)) given only their
product (D-c ). One expects that there will be several sets of functions [fi(c), ¢,(c)
] such that the product of each set will provide an adequate fit to the original
diffusivity data. The constraints of equation [4] restrict onc of the two [unctions,
&(c) to a certain region of the ¢(c)-cspace. For each set of bounds onec scarches a
scction of the ¢(c)-c space. Thus by searching different scctions of the space, the

entire set of fcasible solutions can be casily determined,

The ¢(c)~c data for each solution was then integrated to obtain y-cdata from
which a set of curves were generated on the activity-composition diagram. Integration
of the ¢(c)-cdata was carried out using a Runge-Kutta-Nystrom technique with a
step size of 0.0001. The data were plotted every 2%, Each curve corresponded to a
particular solution of the problem. The next task was that of selecting the appropriate

solution from the set of possible solutions,

The task of selecting the appropriate solution from the set of possible solutions
demands one additional piece of information. This could be in the form of
experimentally measured activity data at a single composition, If an expcriment
were to be performed, then observation of the set of computed solutions would
suggest an appropriate composition range within which an experiment ought to be
performed. The composition range sclected for the experiments should be one whercin

the computed solutions exhibit the maximum separation,

Alternately, one may utilize the slope of the Henry's law line at infinite dilution
to sclect the appropriate solution from the set of solutions. In this study, thecoretical
model predictions of the heats of mixing at infinite dilution (by Miedema® et, al))

were used to computo the Henry's law line for each of the systems under consideration,
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The procedural details have been presented in the earlicr paper! (sce also Appendix
III). Using the theorctically predicted Henry's law line it was hoped that the correct
solution from the set of feasible solutions could be picked. The selected solution was
compared with the experimentally available activity data reported by Hultgren? et,

al. to determine the reliability of the proposed computational model.

Since the objective function (E?) is non linear in the unknown parameters (t,)

the process of minimization is iterative and commences at an initial guess which
must be provided. For all the computations conducted in this investigation the initial
guess was taken to be the unit vector, i.e. t,= 1 for all i. This initial guess is clearly
not consistent with the constraints of equations [3] and [4]. However, the subroutine
E04VCF, is powerful enough to locate an initial feasible point* within the (irst
iteration. Subscquent iterations always move from one feasible point to another,
With each iteration the subroutine attempts to minimize the value of the least squares
error function (E2). When no improvement is possible and the gradient of the objective
function is 'small’, the minimum is said to have been attained and the program
terminates. At the minimum, the least squares error, E2, is usually non-zero and is
termed the residual, The numerical value of the residual is a measure of the goodness
of fit. This is particularly useful in cases where two solutions are close to another,
The solution with the smaller residual provides a better fit to the diffusivity data

and is therefore selected as the correct solution,

The proposed scheme may fail for any of the following rcasons. Firstly it is
possible that an inappropriatc functional form was chosen to model the
thermodynamic term or the function £(c). This should manifest itself as an inability
to obtain a good fit to the diffusivity data., Secondly from the proposed sct of
solutions one may pick the wrong solution due to inaccuracies in the estimated slope
of the Henry's law line. The first problem may be ecasily solved by modifying the

functional form of f(c) or ¢(c)and recomputing a new set of solutions, The second

* A feasible point is one where all the constraints are satlsfied.



76

problem is more scrious and may lead to an inability to select the correct solution
from the set of possible solutions (assuming that the sct of possible solutions does
contain a correct solution). In such a case the additional piece of information can
be obtained experimentally, These limitations should be kept in mind when reviewing

the results of the computations for each of the ten systems.

4.4 TREATMENT OF DIFFUSION DATA

All of the diffusivity data for this investigation was obtained from the text
by Borovskii? et, al. which exhaustively reviews the current literature on diffusion
in alloys. As part of the review, interdiffusion data from several investigations in
the literature is presented. Hence this book was used as a central source for all of
the diffusion data. In certain cases the data is not available at the ends, that is, the
data is reported only on the range 0.05 < ¢ < 0.9, For such systems the data were
extrapolated to the end points®, Similarly, for some systems, diffusivity data as a
function of composition is presented at several temperatures. In such cases the data
for the highest temperature was chosen to avoid any errors arising from grain

boundary diffusion which dominates at the lower temperatures.

The figures in Borovskii’s book were magnified and digitized at approximately
100 points. The digitizing process introduces high wavenumber noise in the data. To
smooth out this noise and to obtain a suitable interpolant to the data, the raw data
were fitted with a fourth order linear least squares spline. Spline fitting is a process
thatsubdivides the interval of interest into several sub intervals and fits a polynomial
to the data over each sub interval such that at the boundarics of two sub intervals

the derivatives remain continuous. For full details on spline fitting sec the

* Initially It was hoped that one would be able to use the tracer diffusivity of the solute in the solvent as an approximation
to the interdiffusion coefficient at infinite dilution, This is approximately valid at infinite dilution, since according to
Darkens relationship the following equation holds :
D = (Djc, + D;c.)(l + :—:%)

Although Kirkaldy, Mannlnﬁ, Howard and Lidiard have modifled the above expression, the difference between the
modified expression and Darkens expression ls of the order of 5% and the difference is less significant for dilute alloys.
Hence at infinite dilution (¢cj «> 0.0) the interdiffusion coefficient may be approximated by the tracer dlftullvltK of_,the
solute In the solvent, However when the data on tracer diffusivity was examined from the Handbook by Smithell?, It
was found to have a falrly large scatter and hence could not be used. Thus In some cases one resorted to extrapolation
to obtain the interdiffusion coefficlent at elther end.
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accompanying paper?. The splinc fit to the diffusivity data were cvaluated at 100
equally spaced points on the compositional interval [0,1]. This data served as input
to the model. Appendix II graphically presents the raw digitized data as well as the

spline fit diffusivity data,

The diffusivity data presented by Borovskii is depicted on a semi-log scale,
that is the diffusivity is plotted on a log scale whereas the composition is on a linear
scale. The data were digitized as log(D)-c data and the spline was also fit to the
log(D)-c data. After spline fitting the data were converted back to D-c¢ data. This
is important because diffusivity data often varies over several orders of magnitude
and hence if the spline fitting routines were provided with D-c data, rather than

log(D)-c data, a poor spline fit may result,

During the subsequent computations, aimed at obtaining the thermodynamics
of the system, the diffusivity data were scaled such that the smallest diffusivity in
the entire range was typically of the order of unity. Scaling of the data is important
to avoid loss of accuracy when performing computations on a machine with a finite
precision. For the systems investigated, the diffusivity was of the order of 10-11
cm?/s, In absolute terms this is a small number and is much closer to the finite
precision available on a digital computer than a number such as unity. Hence if
calculations were performed on unscaled data one would run the risk of an
appreciable loss of accuracy. To avoid this, the diffusivity data were scaled by a
constant factor (usually 10-1! or 10-10) and then input to the model (equation 6),

After the main calculations, the data were rescaled back to the original dimensions.

It has already been stressed that the proposed solution scheme leads to multiple
solutions on an activity-composition diagram. In practice one is not interested in
mapping out the entire ¢(c) - c space, rather one would prefer to explore the space
in a neighborhood of the solution, This can lead to significant savings in the time
expended in solving a particular system, Thus for instance, if it were known that
the solution exhibits a positive deviation from ideality there would be little point

in scarching the subset of the ¢(c)-cspace that corresponds to solutions depicting
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ncgative deviations from ideality even though therec may cxist several minima in
that subset of ¢(c)-c space. Micdema's predictions were very helpful in defining
the region of ¢(c)-cspace within which to concentrate the search. Thus in practice
Miedema’s data were first examined to decide whether the solution exhibited positive
or negative deviations, For positive deviations from ideality, only the region
corresponding to 0.0 S ¢§(c) S 1.0 was examined whereas for negative
deviations from ideality, the region corresponding to 1.0 < ¢(c) was searched.
Although the region of the ¢(c) - cspace is unbounded above for solutions exhibiting
negative deviations from ideality, in a practical sense one may choose an upper

bound of ¢(c) < 8.00r §(c) S 10.0,
4.5 COMPUTATION RESULTS

The simulation results are presented in two figures, one depicting
activity-composition curves and the other depicting the In(y) - ccurve for the sclected
solution, Appendix II contains the complete set of ¢(c)-c curves for each system.
Several activity-composition curves are presented for each alloy system, Each curve
corresponds to a different set of bounds on the function ¢(c). The legend for each
figure lists the bounds used for computing that curve. In addition Appendix I of
this document presents tables depicting the residual for each system as a function
of the bounds used in computing the particular fit, These tables are useful in
comparing the goodness of fit betwecen two computations each performed using
different bounds. Similarly Appendix III contains details of the computations

performed in estimating the Henry’s law line for each system,

The activity composition diagram for each system also depicts the theorctically
estimated Henry’s law line which was used to pick the correct solution, In addition,
the experimental data reported in Hultgren is also presented. In comparing the
computed activities to the data presented by Hultgren, it should be noted that
Hultgren's data represents a best fit to the experimental data (rom several

investigations and does not necessarily reflect the actual experimental points. Hence
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minor deviations from Hultgren’s data do not necessarily imply that the proposed
algorithm is incorrect since it is possible that Hultgren's data itself may contain

some errors.
4.5.1 CoNi system

Results for this system were presented in the earlier paperl. Theoretical
estimates of the Henry's law line based on Miedema’s prediction (Appendix III)
were in good agreement with the data in Hultgren's handbook, Both indicate that
the system is ideal in its solution behavior. Several solutions were computed by
applying the computational scheme outlined above to the diffusivity data from
the book by Borovskii. The correct solution was picked using the theoretically
estimated Henry's law line. Thus the proposed computational scheme is successful
at computing the activity composition relation for the CoNi system,

4,5.2 CuAu system

Diffusivity data for this system was reporied at 857°C whercas the data in
Hultgren represent measurements made at 527°C. An excellent fit was obtained
to the diffusivity data for all solutions (Appendix I). The solutions are depicted
in figure 1 along with the estimated Henry's law line (Appendix III) and the
experimental datapoints reported by Hultgren, Appendix II contains the ¢(c)-c
curves corresponding to the activity data of figure 1. The estimated Henry's law
line appears to match Hultgren's data, Examination of the activity composition
curves (figure 1) and the table of residuals (Appendix I) indicates that the
solutions computed using the bounds [0,6] and [1,6] are coincident and agrece well
with the estimated Henry's law line. In addition the computed activity data
closely follow the trend exhibited by the cxperimental data revicwed by
Hultgren’s. The computed data also lie closer to the ideal law line than Hultgren’s
data, This is consistent with the idea that all solutions tend to ideality at higher
temperatures. Since the diffusivity data were obtained at a higher temperature
than Hultgren’s data, it is natural that the predicted activities will be closer to

the ideal solution line than the data reported by Hultgren, Hence the curves
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corresponding to the bounds [0,6] and [1,6] are taken to represent the thermod ynamics
of the CuAu system. Figure 2 plots In(y) as a function of composition for the
selected solution computed using the bounds [0,6). Thus it is believed that the
proposed computation scheme Icads to good results on the CuAu system.

4,5.3 PdCu system

Diffusivity data for this system was reported at 1019°C whereas Hultgren
et. al. report activity data at 1077°C. Computational results for this system are
depicted in figure 3 which depicts several activity-composition diagrams
alongwith the estimated Henry's law line based on Miedema’s data (Appendix
I11). The corresponding ¢(c) - ccurves are contained in Appendix II. The predicted
Henry's law line was helpful in confining the search to a region of ¢(c) - cspace
that corresponds to negative deviations from ideality, For each of the curves
depicted in figure 3, an excellent fit to the original diffusivity data were obtained
(Appendix I). It is clear from figure 3 that the estimated Henry’s law line, although
close to Hultgren's data docs not match it exactly. Computations based on the
diffusivity data predict two possible solutions in the region of interest. These
correspond to computations performed with the bounds [1,6] and [1,3]. Based on
the cstimagcd Henry’s law line, one would pick the solution corresponding to the
bounds [I,ﬁ] since it is closest to Miedema’s prediction at infinite dilution, From
figure 3 it is a‘lso clear that this solution closely matches the experimental data
reported by ﬁultgren although there is a slight discrepancy in the lower
compositional range. The residual for the solution computed using the bounds
[1,3], is 0.0072 whclz'r,'cas the residual for the solution computed using the bounds
[1,6] is 0.041 (Appendix I), Thus examination of the residual also indicates that
the correct solution is'the one corresponding to the bounds [1,3]. Hence, the solution
computed using the bounds [1,3] is taken to represent the thermodynamics of the
PdCu system at 10190C. Figure 4 plots In(y) as a function of composition for the

selected solution. Since the temperatures of the interdiffusion data and Hultgren's
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data are close, the computed activities are expected to lie close to the
experimentally obtained data. Thus the proposed computational scheme yields
good results when applied to the PdCu system,

4.5.4 CuNIi system

Diffusivity data for the CuNi system at 1000°C was used for the
computations while Hultgren et. al, report activity data at 700°C. Results for the
computation (activity-composition data) are depicted in figure 5 alongwith the
estimated Henry's law line based on Miedema'’s prediction (Appendix III).
Hultgren’s experimental data is also presented in figure 5. Appendix II contains
the corresponding ¢(c)-c curves for the CulNi system, It is clear from figure 5
that the estimated Henry’s law line does not match Hultgren's experimental data,
Hence use of the estimated Henry’s law line will Icad to selection of a spurious
solution from the set of possible solutions, Nonetheless it is of interest to ascertain
whether the computational scheme leads to any solutions which may be plausible.
Miedema’s data does suggest that the search should be confined to the region of

¢(c) - cspace corresponding to systems exhibiting positive deviations fromideality,

For each of the curves depicted in figure 5 an excellent fit was obtained
to the original diffusivity data (Appendix I). Since the diffusivity was reported
at a higher temperature than the temperature corresponding to the experimentally
reported data, it is expected that the activity curve at 1000°C will lie between
the experimentally determined activity curve at 700°C and the idcal alloy line.
Hence the solution corresponding to the bounds [0.05,1], must be a spurious
solution. However it should be noted that this is precisely the solution onc would

have picked based on the estimated Henry’s law line,

Knowledge of solution thermochemistry suggests that the activity curve at
1000°C should lie between Hultgren’s data at 700°C and the ideal alloy line since
all solutions tend to idcality with an increase in temperature. Referring to figure
5, this implies that any one of the solutions that lic between the ideal alloy line

and Hultgren'’s data may represent the thermodynamics of the system. Based on
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the residual error at the minima (Appendix 1) one would pick the solution
corresponding to the bounds [0.2,1] since it exhibits the smallest residual at the
minimum among the set of feasible solutions. These observations strongly suggest
that the solution corresponding to the bounds [0.2,1] represents the thermodynamics
of the CuNi system at 10000C. Figure 6 plots In(y) as a function of composition
for this solution, Thus the proposed computational scheme does provide the correct
solution but in this case one had to rcly on Hultgren’s data at 700°C to guide
one in selecting a plausible solution since the estimated Henry's law line was
inconsistent with the experimental data,

4,5.5 PdNI system

Diffusivity data for this system at 1045°C was used for the computations
whereas Hultgren et. al. report the experimental activity data at 1000°C, Micdema’s
theoretical prediction suggests that this system exhibits ideal solution bechavior
(Appendix III). This suggests that one should focus on a region of the ¢(c)-¢
space that is relatively close to unity such as 0.5 < ¢(¢) < 2.Srather than
examining the entire space, 0.0 < ¢(c) < 8.0 A series of simulations were
conducted using the modelling function Pg[Exp(Pg)]. However a good fit to the
interdiffusion coefficient could not be obtained® in the region of interest (
0.5 S ¢(c) S 2.5) Hence results for these preliminary computations are
not presented. To obtain a better fit, the modelling function was altered and one
degree of freedom was added to both f(c) and ¢(c). Thus the modelling function
chosen was P [Exp(Pg)]. When the computations were rerun, a good fit was obtained
to the diffusivity data (Appendix I). Results for these computations are depicted
in figure 7 alongwith Hultgren's data at 1000°C and the estimated Henry's law
line. Appendix II contains the corresponding ¢(c)-c curves, From figure 7 it is
seen that the estimated Henry's law line differs slightly from the experimentally

measured data reported by Hultgren.

* See Appendix I for table of residuals



From figure 7 it is clear the solutions corresponding to the bounds [0.9,1.5]
and [0.7,1.75] are both close to the estimated Henry's law line although ncither
solution matches it exactly at infinite dilution. The residual at the minima is
0.019 for the solution corresponding to the bounds [0.7,1.75] whereas for the
solution corresponding to [0.9,1.5] the residual is 0.043. This suggests that the
solution corresponding to the bounds [0.7,1.75] represents the system thermod ynamics
as computed from diffusion data. Comparison between the computed solutions and
Hultgren's data indicates a fairly good match over most of the composition range
except the low concentration range (¢ < 0.3). Figurc 8 depicts In(y) as a function
of composition for the sclected solution, Thus for this system there is a slight
discrepancy at the low composition end but the overall match between the activity
data computed from the interdiffusion coefficient and Hultgren’s data is fairly

good.
4,5.6 AgAu system

Diffusivity data for this system was obtained at 900°C whereas Hultgren
et. al. report the activity data at 527°C. The Henry law line computed from
Miedema’s prediction (Appendix 11I) matches Hultgrens's data very well (figure
9), Miedema’s data suggests that one should concentrate in the section of ¢(c)-¢
space corresponding to negative deviations from ideality (1 < ¢(c)). Initial
computations on this system used the modelling function Pg[Exp(Pg)]. A good it
was obtained to the diffusivity data when using this modelling function
(Appendix I) but the none of the computed solutions in the region of interest
were close to Miedema’s prediction. Hence it was decided to rerun the computations
using the more complex modelling function, PJExp(Pg)]. Results for these
computations are presented in figure 9, which depicts the activity composition
curves alongwith the estimated Henry's law line and Hultgren's data, The ¢(c)-c¢
curves are contained in Appendix II. A good fit was obtained to the diffusivity
data in each case (Appendix I). From figure 9, it is clear that the solution

corresponding to the bounds [1,6] closely matches the estimated Henry’s law line,
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Further it exhibits the same general trend as Hultgren's data and in fact is
coincident with Hultgren's data at both the dilutc end and the high concentration
end. At intermediate compositions (0.2 < ¢ < 0.8), the computed activities are
closer to the ideal alloy line than Hultgren's data, This is precisely what one
would expect, since the diffusivity data were measurcd at a much higher
temperature (900°C) than Hultgren'’s data (527°C), On the basis of these results,
it is believed that the solution corresponding to the bounds [1,6] in figure 9 represents
the activity-composition data for the Ag-Au binary. Figure 10 depicts In(y) as a
function of composition for this solution., Thus the proposed algorithm leads to
good results when applied to the AgAu system,

4.5.7 PdFe system

Diffusivity data for this system was obtained at 1050°C whercas Hultgren
et. al. report the activity at 1000°C. The D-c data for this system had to be
extrapolated at the ends since the data reported by Borovskii covered the
composition range [0.05,0.95]. This system is peculiar in that it exhibits positive
deviation for compositions in excess of 0,55 whereas for compositions below 0.55
it exhibits negative deviations from ideality. Consequently, one expects that the
#(c) - ccurves will cross the line ¢(c) = lover the compositional interval [0,1].
Thus using unity as an upper or lower bound will be counter productive, It should
be noted that for this system the estimated Henry's law line (Appendix III) does
not match Hultgren's experimental data very well, Hence, one ¢xpects that the
estimated Henry's law line would in this case mislead one in to picking the wrong

solution from the set of possible solutions,

Initial computations were performed using the function Pg[Exp(Ps)] to model
the interdiffusion coefficient. However the fit to the diffusivity data were not
satisfactory. With some bounds, a reasonable fit was obtained but with others a
good fit could not be achieved. Hence it was decided to change the modelling
function to PJExp(Pg)]. With this function a good fit was achieved to the original

interdiffusivity data, Results for these computations are depicted in figure 11
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which also presents the experimental data reported by Hultgren as well as the
estimated Henry's law line at infinite dilution, Appendix II contains the
corresponding ¢(c) - cdata, From figure 11, it is clear that the estimated Henry's
law line does not match Hultgren’s data. It is also clear from figure 11 that the
computational scheme does predict one solution which depicts a general trend
similar to that exhibited by Hultgren's data although therc is a some difference
between the computed data and Hultgren’s data over the intermediate range of
compositions (0.3 < ¢ < 0.75). Despite this difference, it is encouraging to note
that the computed solution does in fact correctly predict that the system exhibits
a positive deviation in the higher compositional range and a negative deviation
in the lower compositional range. In fact there is excellent agreement between
the experimental and computed data at the dilute end (¢ < 0.3) and at the
concentrated end (c > 0.8). Figure 12 depicts In(y) as a function of composition
for the selected solution. Thus, while the computational scheme yields activities
that differ from the data by Hultgren over the intermediate range of compositions

the scheme does predict the general trend in the data,
4,5.8 AuNi system

Diffusivity data for this system was obtained at 900°C whereas Hultgren's
data represents the system thermodynamics at 875°C. The estimated Henry's law
line based on Miedema’s theoretical prediction (Appendix III) does not match
Hultgren’s data but is helpful in focussing the search to a region of ¢(c) - cspace
corresponding to positive deviations from ideality. Preliminary attempts at fitting
the diffusivity data with the model function Pg[Exp(Pg)] did not lcad to a
satisfactory fit. Hence the model was changed to P,Exp(Pg)]. This resulted in an
adequate fit to the data, Results of the computations arc depicted in figure 13
which plots the computed activities as a function of composition, The
corresponding ¢(c) - ccurves are contained in Appendix II, The solutions computed
on imposing the bounds [0.001,1] and [0.01,1] are coincident. From figure 13, it

is clear that the solution close to Miedema'’s prediction (i.e. the solution
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corresponding to the bounds [0.02,1]) does not compare well with Hultgren's
experimental data. However, the solution corresponding to the bounds [0.01,1]
leads to a good match at low concentrations (¢ < 0.15). Thereafter it exhibits the
same general behavior as Hultgren's' data but differs from it. Hence, the solution
computed on imposing the constraints [0.001,1] represents the thermodynamics of
the AuNi system as computed from the diffusivity data. Thus in this systcm also
one notes that Miedema’s prediction may misguide one into picking the wrong
solution. However, the fitting process is capable of locating a solution that is
similar to the actual data.

4.5.9 NiPt system

Diffusivity data were obtained at 1296°C whereas Hultgren ct. al, report
experimental data at 1352°C, The cstimated Henry's law line based on Micdema's
prediction (Appendix III) provides a good match to Hultgren's data, Micdema's
prediction also indicates that the search should be confined to the region of
é(c)-c space representing negative deviations from ideality. Prcliminary
computations were performed on this system using the model function Pg[Exp(Pg)).
Results for these are shown in figures 15 and 16 which depict the
activity-composition curves and ¢(c)~c curves respectively, A large number of
runs were conducted and in cach case a good fit was achicved to the diffusivity
data. However none of the computed solutions were close to the estimated Henry's
law line or to Hultgren's data. From figure 15 one¢ notes that the computed
solutions can be classified into two distinct familics. The family corresponding
to the bounds [1,6), [1,3], [1,6.25] and [1,6.32] is degenerate in that all the solutions
are identical. These solutions are closer to the ideal alloy line than the estimated
Henry's law line. The second family of solutions shows a far greater deviation
from ideality than that predicted by Miedema, The computed solutions are also
a strong function of the bounds chosen. This is best illustrated by comparing the

solutions corresponding to the bounds [1,6.32) and [1,6.4].
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It was decided to use the more complex modclling function, PJExp(Pg)], in
the hope of locating solutiuns closer to Micdema’s prediction and to Hultgren's
data. Results for these computations arc depicted in figure 17. The general trend
is similar to the trend seen in figure 15, Once again two familics of solutions
emerge but none of the computed solutions are close to Miedema’s prediction or

to Hultgren’s experimental data,

The lack of existence of any solutions close to Hultgren's data could be
caused by any of the following reasons. Firstly, it is possible that the diffusion
data itself contains systematic crrors. It has been estimated that diffusion data
may contain up to 25% error.” Sccondly it is possible that the functional forms
chosen for ¢(c)and f(c) (see equation [1]) are inappropriate for this particular
system. This implies that onc is unable to satisfactorily model the va-iation of

the two functions although their product does model the diffusivity satisfactorily,

It is also possible that the activitics in the Ni-Pt system are very strong
functions of temperature and that one¢ of the computed solutions does represent
the thermodynamics of the Ni-Pt syatem. This solution may differ from Hultgren's
data due to the strong temperaturc dependence of the activities on the temperature,
However this is unlikely considering that the tempcrature difference is only
50°C. Lacking any additional data one is unable to comment further on which
one of these reasons leads to a failure in computing the activities for the Ni-I't
system,

4.5.10 NbTi system

Diffusivity data for this system was reported at 1000°C. Only one
investigation, that by Kuz'min et. al, has experimentally examined the
thermodynamics of the Nb-Tisystem8, Their data suggests that the system posaesses
a strong negative deviation from ideality. Hultgren et. al. do not tabulate activity
data for this system since they consider Kuz'min's data to be unreliable. Thus
for this system there is no thermodynamic data available, In sharp contrast to

Kuz'min's data the theoretical predictions of Miedema ct. al, indicate that the
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system exhibits a positive deviation from ideality. A value of +9kJ/mole is
predicted for the enthalpy of formation at infinite dilution which corresponds

to a Henry's constant of y=~2.5(Appendix II).

Initial computations were performed using the model function Pg[Exp(Pg)].
Subsequently, the model function was altered to PExp(Pg)]. Since both model
functions yielded similar results, only the results for the model P,Exp(Pg)] arc
presented, These are depicted in figure 18 alongwith the cstimated Henry's law
line. For both modelling functions considerable difficulty was encountered in
obtaining a good fit to the diffusivity data. For both modelling functions only on¢
solution (the one corresponding to the bounds [0.05,1] in figure 18) led to a good
fit (Appendix I) to the diffusivity data, The fit to the diffusivity data for this
solution is depicted in figure 20 whereas figure 21 depicts the fit corresponding
to the bounds [0.4,1]. The latter figure is representative of the difficulty in
obtaining a good fit to the diffusivity data, Table I summarizes the results of

the computations for the NbTi system,

Table I Results of least squares fitting for the NbTI system,

Bounds Final Activity Curve Residual at Minima
[0.05,1}) Strong Positive Deviation 0.82
[0.2,1.] Positive Deviation 4,269
[0.4,1.] Positive Deviation 12.8
[0.7,1.] Positive Deviation 21,0
[0.7,6.] Negative Deviation 5.06
(1.,8.0) Negative Deviation 5.60
(1.,4.0] Negative Deviation 8.47
(1.0,12] Negative Deviation 5.365




Examination of table I and figures 20 and 21 would strongly suggest that
the solution corresponding to the bounds [0.05,1]) represents the thermodynamics
of the NbTi system at 1000°C. This is the only solution for which a good it has

been achieved and it possesses the smallest residual at the minima.

Two arguments may be presented challenging the validity of this solution.
Firstly the selected solution clearly contradicts Kuz'min's data. Sccondly, the
selected solution docs not match the estimated Henry’s law linc based on Miedema's
prediction. However, as mentioned carlier Kuz'min's data is not considered
reliable by Hultgren et. al. As far as Miedema's prediction is concerncd, the
solution does agree with Miedema’s prediction that the system exhibits a positive
deviation from ideality. It has alrcady been observed that the estimatcd Henry's
law line can also contain errors (examples include the AuNi and CuNi systems
discussed earlier). It should be recalled that Miedema’s predictions were made
for liquid alloys. Although some compensation has becen made for the latent heat
of fusion in estimating the partial molar enthalpy in the solid state (see Appendix
I1I) one is still unable to account for the strain encrgy. Further the assumption
of regular solution bechavior which is implicit in the cstimation of the Henry's
law line (Appendix I1I) may not be correct. This and the fact that in the present
case the homologous temperature of the diffusion experiment is approximately
0.5, together imply that it is quite possible that the estimated Henry's law linc
contains large errors, If the system does exhibit a positive deviation from ideality
then one would expect this tendency to be more evident at lower temperatures,

which is consistent with the observed behavior.

The discrepancy between Miedema’s prediction and the computed solution
can be resolved if a single bold assumption is made, If one assumes that the
system contains a miscibility gap at temperatures lower than 1000°C then one
would expect the system to exhibit the strong positive deviations that the
calculations reveal, However, the binary phase diagram® for the Nb-Ti system

does not reveal a miscibility gap. That in itself does not rule out the possibility
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of a low temperature miscibility gap since it is quite possible that a miscibility
gap does exist but has not been discovered carlier. The situation would be similar
to the Fe-Ni binary, wherein recent studics101112 have revealed a low temperature
miscibility gap formerly unknown, At the temperature of interest the diffusion
coefficient is fairly small (10-14cm?/scc for the NbTi system at the Nb rich end).
Such small diffusion coefficients can serve as kinetic barriers hindering the

transformation to the low temperature phases,

Finally, one must also consider the possibility that the diffusivity data for
the NbTi system contains errors, Such errors may originate from two sources in
the present case. Firstly, mcasurement of small diffusion coefficicnts is a process
intrinsically susceptible to large errors, Secondly, the temperature of the diffusion
experiment (1000°C) corresponds to a homologous temperature of 0.46 at the Nb
rich end and 0.64 at the Ti rich end. It is well known that for homologous
temperatures less than 0.5 grain boundary diffusion can contaminate the results
of a bulk diffusion experiment, If sich errors were present in the diffusivity

data then they would lead to errors in the computed activitics,

To summarize, the thermodynamics of the Nb-Ti system remain clusive, The
computations suggest that the system exhibits a strong positive deviation from
ideality and that the system possesscs a miscibility gap below 1000°C, Additional

experimentation is nccessary to fully evaluate this system,

4.6 DISCUSSION

The computations on the ten isomorphous binaries may be summarized as
follows. For eight systems the computational scheme resulted in solutions that either
matched very well with the experimental data, were close to the experimental data
or exhibited a trend similar to the experimental data, Among these, in four systems
the estimated Henry's law line was helpful in selecting the correct solution, for the
other four a plausible solution was computed but if the estimated Henry's law line

were used then an incorrect solution would have been picked. For these four systems



the experimental data of Hultgren was relied on to help pick the correct solution,
For one system (PtNi) the solution scheme did not compute any solution close to the
experimental data. Finally in the case of the NbTi system, since no rcliable
cxperimental data exists, a comparison is not possible. The computed solution does
agree with Miedema's prediction in that the system should exhibit positive deviation
from ideality. These results suggest that the proposed algorithm is able to compute a

set of solutions which does contain the correct activity composition curve.

It is also clear from the computations that the modelling function Pg[Exp(Ps)]
cannot be universally applied and that the function P[Exp(Pg)] may provide a better
model, It is recommended that initial computations be performed using the simpler

function and if necessary the more complex function be used.

Thus the computations have successfully demonstrated that activity data can
be computed from diffusivity data and that measurements of the interdiffusion
coefficient can serve as a source of activity-composition data for isomorphous
binaries. The main drawback to this computational scheme is the multiplicity of
solutions. This necessitates that some additional information be made available that
would help in selecting the correct solution, It was hoped that the estimated Henry's
law line would provide that additional picce of information, However, it is clear
that the estimated Henry's law line cannot be relied on to pick the correct solution from
the set of possible solutions. Instead it is advisable to conduct a single cxperiment
which will yield the activity at a particular composition and use the experimental

data to pick the correct solution,

Despite this drawback it is believed that the computational scheme will be
useful in two distinct applications. Firstly, it should be noted that the experimental
activity data reported by Hultgren is usually representative of the system
thermodynamics at lower homologous temperatures than the temperatures at which
diffusivity data is measured. This implies that the experimental data reported in
Hultgren could be used to pick the correct solution from sets of solutions representing

the system thermodynamics at other temperatures. One could thereby generate
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activity data for higher temperatures, Secondly the technique will serve as an aid
in checking the consistency of existing thermodynamic and diffusion data. Finally
it is hoped that this study will enhance the appreciation of the link between

thermodynamic data and diffusion data,
4.7 FUTURE EFFORTS

There remain additional isomorphous binary systems for which diffusivity
data is available. In the near future the computations will be extended to cover
those systems also. In addition, there are two major dircctions that will be pursued
in the future.

4.7.1 Temperature variation of Activity data

Since the diffusivity data in the literature is available at sevcral
temperatures, it is of interest to conduct these computations on data from diffcrent
temperatures. This will provide information on the temperature variation of the
solution behavior for these systems,
47,2 Extensions to non isomorphous binaries

The proposed algorithm may be extended to systems other than isomorphous
binaries. In the case of systems exhibiting a miscibility gap this should be [airly
straightforward since one knows that such systems ¢xhibit a positive deviation
from ideality. Over the composition range corresponding to the miscibility gap,
the function ¢(c)is negative, indicating that solutions of that composition arc
intrinsically unstable from a thermodynamic standpoint. Since the function ¢(c)
is known to be positive outside the miscibility gap, this implies that at the terminal
compositions of the miscibility gap, the function ¢(c) must be zero. As a result,
one could split the computation into two halves, In the first half one would use
the proposed scheme to compute the activity from the pure solvent to the
composition corresponding to the miscibility gap. At either end of this
compositional band the numerical value of the function ¢(c)is known a prioci
to be zero. It is also known that the activities of the two compositions in

equilibrium across the miscibility gap are identical. The valuc of the function
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¢(c) is also known at c=0. Using all of this information, it should be
straightforward to compute the activity-composition relationship for systems
exhibiting positive deviations from ideality. For systems exhibiting negative

deviations from ideality the situation is less clear,

4.8 CONCLUSIONS

The following conclusions may be drawn from this study:

(i) Given the D-c relationship and one additional blece of information the entire
activity-composition curve can be computed. An algorithm has been developed that
permits one to compute the system thermodynamics (which is implicitly contained
in the v . iation of the chemical interdiffusion coefficient) by using a constrained
non linear least squares approach that models the diffusivity as a product of two

functions,

(ii) The proposed scheme leads to multiple solutions, In order to select the correct
solution it becomes necessary to use one additional piece of information, The
additional piece of information may consist of the measured activity at a particular

composition or the slope of the Henry's law line at infinite dilution.

(iii) The proposed computational scheme was applied to ten isomorphous binary
Systems. For eight of these systems the scheme was able to locate a solution close to
the experimentally measured data confirming the proposition that one can compute
activities from diffusivities, For four of these systems the correct solution was picked
by using the theoretical predictions of the enthalpies of formation at infinite dilution,
For one system there is no reliable experimental data available for comparison, For
another system the scheme led to results that were not consistent with the experimental
data,

(iv) The algorithm can be casily extended to binary Systems exhibiting a miscibility
gap.
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4.9 SYMBOLS

b : interdiffusion coefficient
f(c) ! contribution of phenomenoloical coefficients to interdiffusion coefficient
¢(c) H Thermodynamic function representing the solution behavior

T, ' unknown variable constituting the model used for

least squares analysls

c, ! composition

{, t lower bound imposed on the thermodynamic function

u, ! upper bound Imposed on the thermodynamic function

E? : Loast squares error function

w, H weighing function used in the least squares analysis

h, ! modelling function In least squares analysls

D; ! tracer diffusivity of element i

P, ! space of all nth order polynomials
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Figure 1. Computed activities for the CuAu system at 857°C using the model function
Ps[Exp(Ps)}. The Henry's law line computed from Miedema’s theoretical predictions
is also depicted, The activities computed by imposing the constraints [0,6] and [1,6]
are conincident and are taken to represent the thermodynamics of the CuAu system
at 857°(i3. Experimentally determined activities from Hultgren are also presented for
comparison,
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Fifurc 2. Computed Ln(y)as a function of composition for the CuAu system at 857°C
using the model function Pg[Exp(Pg)). The selected solution was computed by imposing
the constraints [0,6] on ¢(c)Corresponding activities are depicted in figure 1.
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Figure 3. Computed activities for the PACu system at 1019°C using the model function
PS[Exp(Pg)]. The Henry's law line computcdyfrom Miedema's theoretical predictions
Is also depicted. The activities computed on imposing *he bounds [1,3] on ¢(c)are
taken to represent the thermodynamics of the PdCu system, Experimental data
reported by Hultgren at 1077°C is also presented,
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Figure 4. Computed In(y)as a function of composition for the PdCu system at 1019°C
using the model function P3[Exp(Pg)). The selected solution was computed by imposing
the constraints [1,3]) on ¢(c)Corresponding activities are depicted in figure 3.
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Figure 5. Computed activities for the CuNi system at 1000°C using the model function
P3[Exp(Pg)). The Henry's law line computed from Miedema’s theorctical predictions
is also depicted. Based on the residual at minimum the activity curve computed on
imposing the constraints [0.2,1] on ¢(c) is taken to represent the system
thermodynamics. Hultgren’s data at 700°C is also depicted.
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Figure 6. Computed In(y)as a function of composition for the CuNi system at 1000°C
using the modcl function Pg[Exp(Pg)]. The selected solution was computed by imposing
the bounds [0.2,1] on ¢(c)Corresponding activities are depicted in figure 5.
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Figure 7. Computed activities for the PANi system at 1045°C using the model function
P(Exp(Pg)l. The Henry's law line computed from Miedema’s theoretical prediction
isalsodepicted. Bascd on the residual at minimum the activities computed on imposing
the bounds [0.7,1.75] are taken to rcgrcsent the system thermodynamics at 1045°C.
Experimental data by Hultgren at 1000°C is also depicted.
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Figure 8. Computed In(y)as a function of composition for the PdNi system at 1045°C
using the model function P,(Exp(Pg)]. The sclected solution was computed on imposing
the constraints [0.7,1.75) on ¢(c) Corresponding activities are depicted in figure 7.
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Figure 9. Computed activities for the AgAu system at 900°C using the model function
P{Exp(Pg)). The Henry's law line computed from Miedema’s theoretical predictions
is also depicted. The activities computed on imposing the bounds [1,6] are taken to
represent the thermodynamics of the system. Hultgren's experimental data at 527°C
is also depicted.
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Figure 10. Computed In(y) as a function of composition for the AgAu system using
the model function PJExp(Pg)]. The selected solution was computed by imposing the
bounds [1,6] on ¢(c) Corresponding activities are depicted in figure 9,
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Figure 11. Computed activities for the PdFe system at 1050°C using the model

function h[‘ﬁxp(l’@J. The Henry's law line computed from Miedema’'s theoretical

predictions is also depicted. The activities computed on imposing the constraints
0.1,6] are taken to represent the system thermodynamics. Experimental data by
ultgren at 1050°C is als depicted.
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Figure 12. Computed In(y) as a function of composition for the PdFe system at
1050°C using the model function PExp(Pg)). The selected solution was computed
?p imptlar;ing the constraints [0.1,6]) on ¢(c) Corresponding activitics are depicted in
igure 11,
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Figure 13. Computed activities for the AuNi system at 900°C using the model function
h[ExpéPe)]. The Henry’s law line computed from Miedema's theoretical predictions
is also depicted. The activities computed on imposing the bounds [0.01,1]) and [0.00I.II
are coincident and are taken to represent the system thermodynamics. Experimenta
data by Hultgren at 873°C is also depicted.
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Figure 14. Computed In(y) as a function of composition for the AuNi system at
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Figure 15. Computed activities for the NiPt system at 1296°C using the model function
Ps{Exp(Pg)]. The Henry's law line computed from Miedema's theoretical predictions
is also depicted. None of the computed solutions match either the predicted Henry’s
law line or the experimental data by Hultgren at 1352°C,
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Figure 16. Computed thermodynamic term for the NiPt system at 1296°C using the
model function Pg[Exp(Pg)]. Corresponding activitics are depicted in figure 15,
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Figure 17. Computed activities for the PtNisystem at 1296°C using the model function
PJExp(Pg)). The Henry's law linc computed from Miedema's theoretical prediction
is also depicted. None of the computed solutions match either the predicted Henry's
law line or the experimental data by Hultgren at 1352°C.
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Figure 18, Computed activities for the NbTi system at 1000°C using the model
function PExp(Pg)]. The Henry’s law line computed from Miedema's theoretical
prediction 1s also depicted. The solution computed in imposing the constraints [0.05,1)
on ¢(c)was taken to represent the thermodynamics of the system at 1000°C,
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Improving the Calculation of Interdiffusion Coefficients

S.1 ABSTRACT

Least squares spline interpolation techniques are reviewed and
presented as a mathematical tool for noise reduction and
interpolation of diffusion profiles. Numerically simulated
diffusion profiles were interpolated using a sixth order splire.
The spline fit data were success fully used in conjunction with the
Boltzmann Matano treatment to compute the interdiffusion
coefficient, demonstrating its use fulness as a numerical tool for
such calculations. Simulations conducted on noisy data indicate
that the technique can extract the correct diffusivity data given
compositional data that contains only 3 digits of information and
is contaminated with a noise level of 0.001. Splines offer a
reproduciblc and reliable alternative to graphical evaluation of
the slope of a diffusion profile used in the Boltzmann Matano
treatment, Hence, use of splines will reduce the numerical errors
associated with calculation of interdiffusion coefficients from

raw diffusion profile data.

5.2 INTRODUCTION

The interdiffusion coefficient is a quantity that is useful to both rescarchers
and to professional enginecrs. Improvements in the ability to mcasure diffusion
cocfficients or modifications in the numerical tcchniques used to obtain
interdiffusion coefficients from raw diffusion data are expected to improve the
accuracy of the data in the interdiffusion database, Such improvements arc ¢xpected

to influence basic research and practical applications in metallurgy.

Literature on diffusion currently lists two major theories that rclate the

interdiffusion coefficicnt to the system thermodynamics and to the phenomenological
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coclficients. The older thcory by Darken! s simpler since it assumes that the off
diagonal phenomenological coefficients are zero and that vacancies are in local

equilibrium in a diffusion couple. Darken's theory leads to the following expression

b = (D:c,»«u;c.)(l v 91"—‘-’) (1

Similarly the theories of Howard and Lidiard?, Manning$, and Kirkaldy4 lcad to

the following expression:

D ' . kT X, X,
[}, 2y -(D'cz+ch')+W(T:LAA'+Y—.I'aa') (2]
(1+5m) Ay »

From cquations [1] and [2], it is clear that the theories differ only in the
additional term that is appended in equation [2]. The contribution of this term to
the interdiffusion coefficient has been estimated to be of the order of 5% for
isomorphous binary alloys4. Since the uncertainty in typical diffusion data ranges
from 20%-100%, it is not possible to compute the contribution of this term for real
systems. Thus, despite the availability of a more sophisticated atomistic thcory, one
is unable to verify it from diffusivity measurements® duc to the large errors in the
diffusivity data, Hence, efforts directed towards improving the overall accuracy of

diffusion data are imporiant from a theoretical standpoint,

There have been very few changes in the method of obtaining interdiffusion
coefficients over the past four to five decades. The Boltzmann-Matano analysis of
a diffusion profile which yields the interdiffusion coefficient as a function of
composition has been extensively used45. The diffusivity is computed using the

following expression :

v - ()

)f:(xm - xp)de (3]

* Typleally Kickendall velocity measurements are used to discrimliiate between equation {2] and [1] since one nay expaoct
a8 much as a 28% difference ir, the velocit.as computed from Darken's theory and those computed from the theory by
Manning, Howard and Lidierd and Kirkaldy,
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Thus, the method relics on the slope of the diffusion profile as well as the area
between the diffusion profile and the Matano interface. Both of these quantitics
must be estimated from discrete measurements of the diffusion profile (pairs of C-x
data points). The slope is usually computed graphically® At the ends of a diffusion
couple the slopes are shallow and consequently more dif ficult to estimate graphically.
In addition, the integral in equation [3] is also harder to estimate at the ends. As a
result, the diffusivity data representing the terminal compositions is known to contain

large errors.

In sharp contrast, considcrable advances have been made in the ficld of
numerical analysis over the past four decades. New, improved techniques have
emerged for reducing noise from physical mcasurements; concepts of numerical
accuracy and stability have emerged and have led to better algorithms for simple
tasks such as estimation of areas under a curve defined by a discrete sct of points.

Simultaneously, powerful computing tools are now rcadily available,

Significant advances have also been made in the accuracy of non destructive
techniques for compositional measurement. Instruments such as the clectron
microprobe and more recently the scanning transmission electron microscope (STEM)
have improved not only the accuracy of the compositional measurcment but also
improved the spatial resolution of compositional measurecments. Recent STEM studics
on diffusion in the FeNi system78 have attained spatial resolution that varied
between 50nm and 400nm whereas the compositional mcasurements were accurate
to within 0.5% or better, Since electron optical techniques are non destructive, it is
possible to rescan the same area and obtain several diffusion profiles. This further

improves the uncertainty in the raw data,

In light of the improvements in the quality of the raw diffusion data
(compositions and spatial resolutions), it is now important that more sophisticated
numerical techniques be employed for computing the diffusion coefficient from
equation [3). Estimation of slopes graphically is subject to human error and must

now be superseded by other techniques which offer better reproducibility. It would
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be unfortunate indeed if thc progress made in compositional mcasurements was
offset by poor computational techniques. Instead efforts must be dirccted to
improving the computational techniques so that eventually one may reduce the
overall variation in the diffusivity data, to levels that allow one to experimentally
detect the differences between cquation [1] and [2). The prescnt paper is a small step

along that general direction.

The main purpose of this paper is to review an interpolation technique known
as linear least squares spline fitting and to demonstrate its uscfulness in treatment
of diffusion data. Numerical experiments were conducted to test the uscfulness of
this technique. Results from these experiments indicate that spline intcrpolation
techniques can be successfully used to compute the interdiffusion cocfficient even

in the presence of noise.

5.3 LITERATURE REVIEW

The idea of using polynomial interpolation for computing the interdiffusion
coefficient has been studied earlier by Baroody® and later by Borovskiil® et. al.. In
both cases the raw diffusion data (C-x) was subjected to a non lincar transformation
involving the error function, Subsequently a single, high order polynomial was fitted
to the data over the entire composition range, The final expressions directly yielded
the interdiffusion coefficient as a sum of a series of polynomials. These polyromials

bear a recurrence relationship among themselves.

The apprcach taken earlier suffers from two drawbacks. Firstly a single interval
was chosen for interpolating the diffusion profile. Secondly, high order polynomials
were used (upto order 9 or 11) which tend to oscillate between two successive
datapoints. Splines, on the other hand split the interval of interpolation in to several
subintervals and fit low order polynomials over each sub interval such that the
dcrivatives of the interpolant remain continuous at the sub interval boundaries. The

resultant interpolant provides a good fit to the data and does not exhibit oscillation.
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The earlier investigators could not have used splines since splines were an
active area of research by mathematicians when Baroody and Borovskii examined
interpolation as a mathematical tool for computing diffusivitics. However, today
splines are well understood and the computing facilities as well the necessary software

are easily accessible.

5.4 LINEAR LEAST SQUARES APPROXIMATION USING SPLINES

This section begins with a discussion on polynomial interpolation techniques
thereby developing the motivation for spline fitting, Next, details on spline fitting
are presented. The final topic will cover least squares approximation techniques
with emphasis on lcast squares spline fitting. An example of the latter is presented
to highlight the technique. The discussion is terse for sake of brevity. Intcrested
rcaders are directed to the book by Carl de Boor.!!

5.4.1 Polynomial Interpolation

Polynomials are attractive and popular as mathecmatical models for
approximation because they can be evaluated, differentiated and integrated casily
using basic arithmetic opecrations. However the use of polynomials for
interpolation is not without drawbacks. For example, uniform spacing of data
points (common in real experiments) can lecad to large oscillations between two

successive data points as the order of the polynomial increases.

Approximation theory provides precise statements about the ability of
polynomials to model other functions, It can be shown that when using polynomials
to model a general function g(x), which has r continuous derivatives, the crror
is bounded by the following upper bound:

For gec)[a,b]) and n>(r+1)

dist . (g.P,) < (conslanl)(u)’w(g")'—(—b—:—g)——) (4]

n- '2(n-1-r)

where,
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g : measured quantity or function being

modelled by a polynomial

P, : the space of all polynomials of order n
[a,b] : domain of the independent variable
n : order of the polynomial
w(r) : modulus of continuity
g € ¢ implies that g has r continuous derivatives on [a,b]

The important point to note her: is that the error is bounded by (H)'

Thus there are two ways to reduce the error: (i) Reduce the interval length,
(b-a) and (ii) Increase the order of the polynomial, n. Increasing n certainly
reduces the error between the approximating polynomial and the function 8. But
as n increases the polynomial tends to oscillate between two successive data points,
Such oscillations are often undesirable since physical quantities are not known
to show numerous oscillations. Hence, to improve the approximation proccss one
must choose a smaller interval, In other words, the main interval [a,b], should be
split into several subintervals and the function should be approximated over cach
subinterval with a unique polynomial (usually of low order). A simple ¢cxample
of such an approximation scheme would be a piecewise lincar approximation to
a given function,

5.4.2 Spline Interpolation

Spline interpolation is subsct of piecewise polynomial interpolation. The
main objection to a piecewise approximation is the lack of continuity of the
derivatives of the function at the boundaries between two subintervals. Often,
there are physical reasons to demand that the approximation toa physical quantity
possess several continuous derivatives. For example, the slope and curvature of
a diffusion profile (C-x data) are related to the flux and to the instantancous

depletion rate. Therefore discontinuities in the derivatives of the
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composition-distance data arc undesirable. To avoid such discontinuitics, onc
sccks an approximation process that will ensure continuity of the derivatives
across subintcrval boundaries. Such an approximation process is called

spline-fitting, and a subset of spline fitting is lcast squares spline fitting,.

In spline fitting terminology, the subintervals are known as 'spans’ and the
endpoints of each span are termed 'knots’ or breakpoints. A kth order splinc fit
to a given data set ensures the following: (i) the resultant polynomial of order k
(degree k-1 ) interpolates (passes through) all the given data points on that span,
and (ii) (k-2) derivatives of the interpolant are continuous at the breakpoints. In

other words the interpolant is diffcrentiable (k-3) times.

To construct a spline fit, one nceds not only the given data sct but also
some additional input. Consider a data set comprising of N data points , i.e. N
(x,y) pairs. In the simplest case one desires to it a kth order spline on N spans,
that is onc considers the distance between two successive datapoints to constitute
a subinterval®, The total number of unknowns in fitting a kth order polynomial
on each subinterval arc kN, The constraints from the interpolation conditions
are: 2(N-2) + 2 = 2(N-1). Additionally continuity of (k-2) derivatives imposes
(N-2)(k-2) constraints. Thus the total number of unknowns are (k-2). In other
words, to uniquely specify the kth order spline one nceds to provide (k-2)
constraints in addition to the data set. Usually these are supplied as the values
of the function or one of its derivatives at either end. Often the derivatives at
either end can be set to zero based on physical considerations. An ¢xample would
be the fitting of a diffusion profile from an infinite diffusion couple. In this
case, it is known that the slope and curvature of the diffusion profile are zero

at points far from the diffusion zone.

* The result to be presented Is true even when the number of spans does not colicide with the data points.
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It should be noted that in the gencral case the breakpoints or knots are
fewer in number than the total number of data points. Further the knots nced
not coincide with the data points. This is particularly true for least squarcs
approximation using splines.

5.4.3 Least Squares Approximation Techniques

Measurements of physical quantities arc usually contaminated by the
inherent noise associated with the measuring technique. Thus the mcasured
quantity is a sum of the nois¢ (which is presumed to be random) and the true
value of the physical property. Least-squares approximation techniques attempt
to scparate the noise from the true values of the physical quantity, All least
squares techniques assume a certain functional form that describes the physical
quantity. The mathematical model sclected reflects a compromise between the
accuracy of the fit and the ability to separate noise from the data. Idcally, the
function chosen should possess just cnough degrees of freedom to model the
underlying variation of the physical quantity. Excessive degrees of frcedom will
certainly improve the accuracy of the fit but the function will also include some

contamination from the noise,

The first step in least squares approximation involves choosing a certain
mathematical model (trigonometric, polynomial, exponential etc.) to describe the
variation of the physical quantity under consideration. The second step consists
of defining a least-squares error function by using the mathematical model. The
third step consists of backing out the necessary coefficients which constitute the
mathematical model by minimization of the least-squares error with respect to
the unknown coefficients, Typically the number of observations or measurements
far exceeds the number of unknowns that constitute the mathematical model.
This results in an overdetermined system of cquations (in the linear case) from
which the unknown parameters are estimated. In the non linear case the rcsultant

error function must be minimized using an iterative procedure,
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Specifically, consider a data set comprising of N data points (x;,y;) to which
one desires to fit a mndel function . Assume that 'k’ parameters (a,.....a;)are
nceded to describe the function f. The lcast squares error is then given by the

following equation:

E? - Z([y. - flapea,, x)lw)? (5]

where w,, the weighing function reflects the certainty (inverse of spread)

in the ith data point (x;y)).
By differentiating with respect to each a,and setting the result to zero onc

ends up with the normal equations that must be solved for each a, This is
accomplished by standard procedures of lincar algebra (Gaussian climination,

LU factorization 13),

In the case of least squares spline fitting, one must specify a _priori, the
spline order, the knot sequence and the (k-2) additional unknowns, The spline
function is defined in terms of the unknown coefficients, a,, which comprise
the interpolating polynomials. Thus during the minimization process one secks

the numerical values of the unknown coefficients,

It should be noted that varying the number and location of the knots (i.c.
changing the number and length of the subintervals) can significantly affect the
accuracy of the fit. Hence fitting schemes must incorporate an algorithm that
optimizes the number and location of the knots. The spline routines used in this
work accomplish this by a two step process. In the first stage the number of
polynomial pieces is increased and the residual (or least square error) is monitored
as a function of the number of polynomial picces. It will be shown in the example
to follow that a plot of residual as a function of number of polynomial pieces,

depicts a fairly flat minimum or a plateau. The number of polynomial pieces are



chosen to correspond to the plateau on the graph. For a given number of polynomial
picces, the knot locations are selected based on examination of the kth root of
the kth derivative of the dataset.!!

5.4.4 Example of Spline fit

Figure 1 depicts the chemical interdiffusion coefficient in the Ni-Pt system,
The data were obtained by digitizing one of the figures in reference 10. Clearly
the input data is contaminated by high wavenumber noise arising from the
digitizing process. It was decided to fit a spline of order 4 (cubic spline) to this
data. The input to the programs included the data set depicted in figure 1 and

the two breakpoints at either end of the interval (i.e. a single span).

The programs increased the number of polynomial pieces continuously and
monitorcd the least square error. A plot of the least square error is depicted in
figure 2 as a function of the number of polynomial pieces. The ‘error plateau’
is clearly seen, A value of 17 was selected for the number of polynomial pieces
and the B-Spline coefficients constituting the fit were computed. Figure 3 depicts
the fitted function along with the raw digitized data for comparison, The fit
appears to be satisfactory. Also depicted in figure 3 are the locations of all the
breakpoints. A more stringent evaluation of the fit involves examination of the
residual at each data point. In other words one examines the difference between
the fitted value and the measured (digitized) value of the function. If the fit is
a good one, then the residual should represent the noise which is presumed to be
random. This difference is plotted as a function of the composition in figure 47
It is clear that the residual experiences several changes in sign. This suggests that
the residual is indeed random and hence may be presumed to represent noise.
Hence the fit is belizved to be a good one.

5.4.5 Software for Spline Fitting

Software for the implementation of splines is readily available for spline
orders up to k=4, i.e. cubic splines. Popular Fortran libraries such as the NAG13

library offer routines for cubic splines, During this research project it became
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necessary to use splines which possessed a minimum order of five and somctimes
even six. The book by de Boorl! contains several programs for this purpose. The
routines by deBoor allow one to increase the number of breakpoints and determine
the optimum knot placement given a certain number of knots. These routines are
available in the public domain and may be easily obtained by using the NetLib

facility over InterNetl4,

5.5 NUMERICAL EXPERIMENTS

A numerical experiment was conducted to test the ability of spline interpolation
in extracting the correct interdiffusion coefficients from noisy diffusion profile

data, The experiment consisted of the following stages:

(i) Diffusivity data for an isomorphous binary system (AuNi) was obtaincd from

the literature and fitted with a fourth order spline.

(ii) An equidistant finite difference grid was used to numerically simulate a dif fusion
couple between pure Au and pure Ni. Diffusion profiles were computed for various

annealing times.

(iil) Random noise was added to the computed profiles using a random number

generator, The amplitude of the noise was varied.

(iv) A least squares spline, of order 6, was fit to the composition-distance data,

(v) The Boltzmann Matano treatment was used to compute the interdiffusion
coefficient, The computed coefficient was compared with the diffusivity data used

to simulate the profile.
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A minor modification was made to the Boltzmann Matano cxpression. The
variable of intcgration was altered from the compositional variable to the spatial

variable resulting in the following expression :

- 1 x(c
D(c) = (é%)((sé))'f;()(x(c) - xm)(%dx (6]

The modification is advantageous since the diffusivity is now expressed as a function

of the slope alone and hence all errors will arise from a single source only; that is
from the slope of the diffusivity data. The slope of the diffusion profile can be
easily computed from the spline fit by differentiating the pieccewise polynomial
comprising the spline. To compute the integral in equation [6] the integrand was
computed at discrete points and a third order finite difference scheme was used to
cvaluate the integral, Subroutine DOIGAF from the NAG!3 Fortran library was used

for this purpose,.

5.6 RESULTS

Figure 5 depicts the diffusion profile computed using the diffusivity data for
the AuNi system, The finite difference grid used contained 800 equidistant points
for a diffusion couple 2 cms in extent. Euler's method!® was used to solve the
diffusion equation with insulating boundary conditions at either end. The original
interface between the two pure metals (plane of join) was chosen to correspond to
a location 0.5 cms from the Ni end of the diffusion couple.® The diffusion times
corresponding to the profile are astronomically large (4.32 X 108 secs). However such
large times were necessary to ensure that the slope and the curvature of the diffusion
profile do not attain very large numerical values. In a practical experiment one
would split the entire compositional interval and prepare a series of diffusion couplcs

each covering a narrow composition range**. In such a case one would obtain shallow

* Preliminary runs were conducted with a coarse grid which suggested that x=0.8 cms would be a good cholce for the

plane of Jjoin. The lack of symmetry In the diffusion couple is & result of the large variation of the diffusivity in the

Qu'l“ﬂ lgﬂom. At the Au rich end the diffusivity is about two orders of magnitude larger than the diffusivity at the Ni
ch end.

** A narrow compositional range in a diffusion couple ls necessary to ensure the valldity of the phenomenological
expressions (derived from Irreversible thermodynamics).
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profiles in a realistic time span. Thus in a real cxperiment each diffusion couple
would provide diffusivity information over a narrow range of compositions. By
using a single diffusion couple in the present simulations the computational effort
has been greatly reduced. However, the use of a single diffusion couple covering
the entire range of composition from 0%B to 100%B not recommended for a real

experiment.

The compositional profile was computed to 10 digit accuracy which is clcarly
unrealistic. To simulate a real diffusion couple, the data were rounded to a lower
accuracy and random noise was added to the profiles. Equation [6) was then uscd

to compute the interdiffusion coefficient,

Figure 6 depicts the diffusion coefficient computed using 10 digit diffusion
profile data. Also depicted in figure 6 is the original diffusivity data for the AuNi
system, The close match between the computed and the original data confirms that

the modified computational scheme of equation [6] was correctly implemented.

The diffusion profile was rounded to 2 digits (in other words the compositional
data varied from 0.990 to 0.010). Noise was also added to the profile by using a
random number generator. The noise possessed a maximum amplitude of 0,01. Figure
7 depicts the computed and original diffusivity data for the noisy profile data. The
computed diffusivity differs slightly from the original diffusivity although the
general trend is preserved. In particular, the maxima and minima around Xpy=0.8

are lost due to the rounding of the profile and the addition of noise.

Similarly, figure 8 compares the computed and original diffusivities for the
case when the profiles were rounded to 3 digits (in other words the compositional
data varied from 0.999 to 0.001) and the maximum amplitude of the noise was 0.001.
In this case an excellent match was obtained between the computed and the original
diffusivities, Comparison of figures 6 and 8 indicates that the least squares spline
technique is able to filter out all noise with a maximum amplitude less than 0.001

when given 3 digit profile data,
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5.7 DISCUSSION

The simulation results clearly indicate that spline interpolation can be
successfully used in computing interdiffusion coefficients, It is also clear that three
digit data with a maximum noisc amplitude of 0.001 is good enough to obtain highly
accurate diffusivity data. With two digit data and 0,01 level noise some loss of

reproducibility is clcarly seen.

In a real experiment, the accuracy of compositional measurement will vary
with the composition. At very small compositions the absolute error will be smaller
but the relative error will be largerd, The simulations presented here are a stricter
test of the method since the ncise added was invariant with composition., Thus for
compositions less than 0.01, the 0.01 level noise will compictely swamp out the
compositional data. On the other hand a real experiment introduces several other
errors in the data such as errors in measuring the spatial variable, porositv in the

diffusion couple etc.

It is important to note that currently, a real experiment on an electron
microprobe is capable of achieving much better spatial resolution than the simulation
data. With proper calibration the STEM can offer compositional data good to at lcast
two digits and possibly three digits with noise levels approximately 0.01, An example
is the work of Goldstein7.8 et, al.. Hence the experimental conditions available
presently lie between the two cases investigated in this paper. Clearly, in the present
situation graphical evaluation of slopes must be superscded by other more reliable

techniques.

It is hoped that in the future established numerical techniques will replace
graphical evaluations of the quantities used to determine diffusivities and lead to

improvements in the accuracy of basic diffusion data.

5.8 CONCLUSIONS

Least squares spline fitting techniques were reviewed and presented as a

technique to filter out the noise in the measured composition data. These techniques
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can be successfully applied to a diffusion profile to estimate the slope of a diffusion
profile which is needed to compute the interdiffusion coefficient as a function of
composition. Simulation results indicate that the technique can extract the correct
diffusivity data given compositional data containing only 3 digits of information
and contaminated with noise levels of 0.001. Some loss of accuracy was seen on L “ing
compositional data containing only 2 digits of information and contaminated by a

nolse level of 0.01.

5.9 SYMBOLS
D : Chemical interdiffusion coefficient
D, : Tracer diffusivity for element i
c, : Chemical interdiffusion coefficient
Y : Activity Coefficient
c : Chemical composition
L il : Phenomenological coefficient
XXX X,y : Mole fraction
k : Boltzmann's constant
N : Avogadro Number
T : Absolute temperature
dc
o : Slope of the diffusion Profile
t : time

x ! spatial variable
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Conclusions

The main conclusions from this investigation may be summarized as follows:

Given the interdiffusion coefficient as a function of composition (D -c data), and one

additional piece of information such as the measured activity at ONE particular
composition, it is possible to compute the entire activity - composition curve for

isomorphous binary metallic systems.

Due to the inherent non uniqueness of the problem the proposed algorithm yiclds
multiple solutions on an activity composition diagram. Hence one¢ additional picce
of information such as the measured activity at ONE composition or the Henry's
law constant at infinite dilution is nceded to pick the correct solution from the

set of solutions,

The proposed scheme was applied to ten isomorphous binary alloy systems. For
cight systems the algorithm computed solutions that were cither close to the
experimentally measured activities reported iau the literature or followed the same
general trend as that exhibited by the experimentally measured activitics. For onc
system experimental data is not available and hence a comparison cannot be made.
For another system the algorithm failed to locate a solution close to the

experimentally measured activity data.
The algorithm can be easily extended to systems containing a miscibility gap.

Observation of the dynamic behavior of a diffusion profile, or cxamination of
multiple profiles, is not helpful when seeking activity data from a diffusion
couple. The requisite information is available in the equation relating the
interdiffusion coefficient to the system thermodynamics and to the

phenomenological coefficients.

Least squares spline interpolation offers a reproducible and reliable alternative
to graphical evaluation of the slope of a diffusion profile, Using splines it is

possible to filter out the noise in the compositional profile and accurately compute
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the diffusion coefficient given compositional data containing only 3 significant
digits of information and contaminated with a noise level of 0.001, Some loss of
accuracy is seen in the computed interdiffusion coefficient when compositional
data containing only 2 digits of information and contaminated by a noise level

of 0.01 is used.
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Future Efforts

There are four major areas that need further exploration,

7.1 Examination of other isomorphous binary systems

The present investigation has applied the algorithm to ten systems, There remain
several additional isomorphous binary systems for which diffusivity data is available.
The computations should be extended to cover these systems also. The results from

the additional computations will further test the reliability of the proposed algorithm,

7.2 Alternate modelling functions for f(c) and ¢(c)

In this study the modelling functions PgExp(Ps) and PExp(Pg) were used to
represent ¢(c) There is nothing sacrosanct about the particular choice of modelling
functions; these were merely the first generic class of functions that appeared to
meet the requirements imposed. Hence, it is very important to seek alternate modelling
functions not only for ¢(c)but also for f(c). An alternate set of modelling functions
[f(c), d(c)] may be less correlated than the present set and may also provide a better

fit to the quantities being modelled.

7.3 Temperature Variation of Activity Data

For the systems investigated, diffusivity data is availablc at scveral
temperatures, It is of interest to conduct the computations at different tempceratures
and obtain thereby the activity-composition rclationships as a function of

temperature.

7.4 Extension to systems containing several phases

Diffusivity data is already available in the literature for multiphase binary
systems. The proposed computational scheme should be extended to cover these cases
also. Paper III explored the extension of the scheme to systems exhibiting a strong
positive deviation from ideality and it was shown that extending the proposed

algorithm to binary systems exhibiting a miscibility gap should be fairly
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straightforward. There is a need to similarly extend the treatment to systems
exhibiting compound formation, Subsequently computations should be conducted on

systems exhibiting compound formation and systems exhibiting a miscibility gap.
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Appendices

8.1 Appendix I Computed Residuals at Minimum

This appendix will present tables that list the residual at minimum for each
alloy system as a function of the bounds used in the computation. These tables are

helpful in evaluating the goodness of fit to the diffusivity data.

Table I Results of least squares fltting for the CuAu system using the modelling
function Pg{Exp(Pg).

Bounds Final Activity Curve Residual at Minima
(0.0,6.00] Negative Deviation 0.6077 X 10-2
[0.0,1.00] Positive Deviation 0.4901 X 10-2
{1.0,6.00] Negative Deviation 0.6077 X 10-2

Table II Results of least squares fitting for the PdCu system using the modelling

function Pg[Exp(Pg)l.

Bounds Final Activity Curve Residual at Minima
(1.0,6.00] Negative Deviation 0.4158 X 10!
(1.0,3.00] Negative Deviation 0.7238 X 10-2
[1.0,2.50] Negative Deviation 0.1501
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Table III Results of least squares fitting for the CuNIl system using the modelling
function Pg(Exp(Pg)l.

Bounds Final Activity Curve Residual at Minima
[0.05,1.0] Positive Deviation 0.4015 X 10-2
{0.20,1.0] Positive Deviation 0.4577 X 10-2
[0.50,1.0] Positive Deviation 0.4593 X 10-2
[0.60,1.0) Positive Deviation 0.6772 X 10-2
[0.70,1.0] Positive Deviation 0.1055 X 10-?
{0.80,1.0] Positive Deviation 0.2245 X 10-1
(0.90,1.0] Positive Deviation 0.1948

Table IV Results of least squares fitting for the PANI system using the modelling
function Pg[Exp(Pg)l.

Bounds Final Activity Curve Residual at Minima
[0.9,2.50] Negative Deviation 0.6244
[0.9,2.25]) Negative Deviation 1.0460
[0.9,1.50] Negative Deviation 40290
[0.50,1.50] Negative Deviation 0.9624 X 10-1

and Positive Deviation
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Table V Results of least squares fitting for the PANI system using the modelling
function P Exp(Pg)l. '

Bounds Final Activity Curve Residual at Minima
[0.9,2.50] Negative Deviation 0.1584 X 10-}
[0.9,2.00] Negative Deviation 0.1832 X 10-1!
[0.9,1.50] Negative Deviation 0.4378 X 10-1

and Positive Deviation

[0.70,2.00] Negative Deviation 0.1832 X 10-1

and Positive Deviation

[0.70,1.75) Negative Deviation 0.1956 X 10-1

Table VI Results of least squares fitting for the AgAu system using the modelling
function Pg(Exp(Pg)).

Bounds Final Activity Curve Residual at Minima
[1.0,3.00) Negative Deviation 0.3086 X 10-2
(1.0,2.50] Negative Deviation 0.3086 X 10-2
[1.0,2.25]) Negative Deviation 0.3185 X 10-?
(1.0,2.00] Negative Deviation 0.3580 X 10-2
[1.0,4.00) Negative Deviation 0.3086 X 10-2
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Table VII Results of least squares fitting for the AgAu system using the modelling

function P |Exp(Pg)l.

Bounds

Final Activity Curve

Residual at Minima

(1.0,6.00]

Negative Deviation

0.3086 X 10-3

Table VIII Results of least squares fitting for the PdFe system using the modelling

function P Exp(Pg)l.

Bounds Final Activity Curve Residual at Minima

[0.1,6.00] Negative and Positive 0.8380
Deviation

[0.2,6.00] Negative Deviation 0.6974 X 10-1
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Table IX Results of least squares fitting for the CoNl system using the modelling

function Pg[Exp(P)l.

Bounds Final Activity Curve Residual at Minima
(0.00,1.00] Positive Deviation 0.5961 X 10-3
[0.20,1.00] Positive Deviation 0.7657 X 10-3
[0.40,1.00] Positive Deviation 0.6332 X 10-3
[0.60,1.00] Positive Deviation 0.6866 X 10-3
[0.80,1.00] Positive Deviation Non Convergence
[0.90,1.00) Positive Deviation 0.7753 X 10-3
[0.99,1.10] Nearly Ideal 0.7804 X 10-3
[1.00,1.25) Nearly Ideal 0.7844 X 10-3
[1.00,4.00] Negative Deviation 0.6192 X 10-3
[1.00,6.00] Negative Deviation 0.6192 X 10-3
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Bounds Final Activity Curve Residual at Minima
[0.05,1] Strong Positive Deviation 0.82
[0.2,1.] Positive Deviation 4,269
[0.4,1.] Positive Deviation 12.8
(0.7,1.] Positive Deviation 21.0
[0.7,6.) Negative Deviation 5.06
(1.,8.0] Negative Deviation 5.60
[1.,4.0] Negative Deviation 8.47
[1.0,12] Negative Deviation 5.365
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Table X Results of least squares fitting for the NiPt system using the modelling

function P Exp(Pg)l.

Bounds Final Activity Curve Residual at Minima
[1.00,6.00] Negative Deviation 0.7824 X 10-2
[1.00,6.50] Negative Deviation 0.8846 X 10-2
(1.00,7.00] Negative Deviation 0.8396 X 10-2
(1.00,7.00] Negative Deviation 0.7843 X 10-2
[1.00,10.0] Negative Deviation 0.1360 X 10-!
[1.00,9.00] Negative Deviation 0.1595 X 10-1
[1.20,6.00] Negative Deviation 0.2215 X 10-1
[1.00,3.00] Negative Deviation 0.9034 X 10-2
[1.20,4.00] Negative Deviation 0.9909 X 10-2
(1.20,5.00] Negative Deviation 0.9081 X 10-2
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8.2 Appendix II Interdiffusivity Data

This appendix contains interdiffusivity data for each of the ten isomorphous
binary systems investigated. The diffusivity data was digitized from the book by
Borovskii et. al.l and some of the references cited therein. The digitized data was
fitted with a fourth order least squares spline. Both the digitized data and the spline
fitted data are depicted graphically for comparison. The spline representation of
the data is also tabulated. The tabulated data was used as input to the non linear
least squares (NLLS) algorithm described in papers II and III, In addition, the
appendix also contains plots of $(c)as a function of composition. These plots were
generated by applying the NLLS algorithm to the tabulated diffusivity data. The
¢(c)—-cdata was integrated to obtain the y~c data and the activity-composition data

which were presented in papers II and III.
References

l. I. B. Borovskii, K. P, Gurov, I, D, Marchukova and Y, E. Ugaste, Interdiffusion
in Alloys, Nauka Publishers, NTIS Document PB86-245495, (1986).
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NbLTi System

Table I Interdiffusion data for the NbTi system at 1000°C as a function of the
mole fraction of Ti. The data was digitized from figure 6.23b in the book by Borovskii
and fitted with a fourth order least squares spline. The splinc representation was
evaluated at 100 points to yield the data in the table.
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Figure 1. Raw digitized diffusivity data for the NbTi system at 1000°C, Also depicted
is the spline interpolated diffusivity data after fitting the digitized data with a
fourth order least squares spline. The closeness of the spline interpolated data and
the digitized data is indicative of a good fit to the raw diffusivity data,
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Figure 2, Computed thermodynamic term ¢(c)for the NbTi system using the model
function P(ExpPg) at 1000°C and the spline interpolated data which is tabulated
in table I and graphically depicted in figure 1. Corresponding activity composition
curves and the selected In(y)~ccurve are presented in paper III,
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NiPt System

Table IT Interdiffusion data for the NiPt system at 1296°C as a function of the
mole fraction of Pt. The data was digitized from figure 6.19a in the book by Borovskii
and fitted with a fourth order least squares spline. The spline representation was
evaluated at 100 points to yield the data in the table.
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Figure 3. Raw digitized diffusivity data for the NiPt system at 1296°C. Also depicted
is the spline interpolated diffusivity data after fitting the digitized data with a
fourth order least squares spline. The closeness of the spline interpolated data and
the digitized data is indicative of a good fit to the raw diffusivity data.
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Figure 4. Computed thermodynamic term ¢(c) for the NiPt system using the model
function Pg(ExpP;s) at 1296°C and the spline interpolated data which is tabulated in
table I1 and’ gmphfcally depicted in figure 3. Corresponding activity composition curves
and the selected In(y)-ccurve are presented in paper III,
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Table III Diffusivity for the AuNi system at 900°C as a function of the molc
fraction of Ni. The data was digitized from figure 6.6b in the book by Borovskii
and fitted with a fourth order least squares spline. The spline representation was

cvaluated at 100 points to yield the data in the table.
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Figure 5. Raw digitized diffusivity data for the AuNi system at 900°C, Also depicted
is the spline interpolated diff usivity data after fitting the digitized data with a
fourth order least squares spline. The closeness of the spline interpolated data and
the digitized data is indicative of a good fit to the raw diffusivity data.
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Figure 6. Computed thermodynamic term ¢(c)for the AuNi system using the model
function P(ExpPg) at 900°C and the spline interpolated data which is tabulated in
table III and graphically depicted in tigure 5. Corresponding activity composition
curves and the selected In(y)-ccurve are presented in paper III.
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Table IV Diffusivity for the PdFe system at 1050°C as a function of the mole
fraction of Fe. The data was digitized from figure 6.18a in the book by Borovskii
and fitted with a fourth order least squares spline. The spline rcpresentation was
evaluated at 100 points to yield the data in the table.
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Figure 7. Raw digitized diffusivity data for the PdFe system at 1050°C. Also depicted
is the spline interpolated diffusivity data after fitting the digitized data with a
fourth order least squares spline. The closeness of the spline interpolated data and
the digitized data is indicative of a good fit to the raw diffusivity data,
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Figure 8. Computed thermodynamic term ¢(c) for the PdFe system using the model
function P,(ExpPg) at 1050°C and the spline interpolated data which is tabulated
in table IV and graphically depicted in figure 7. Corresponding activity composition
curves and the selected In(y)-ccurve are presented in paper III.
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Table V Diffusivity for the AgAu system at 900°C as a function of the mole fraction
of Au. The data was digitized from the figure 6.9a in the book Borovskii and fitted
with a fourth order least squares spline. The spline representation was ecvaluated at
100 points to yicld the data in the table.
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Figure 9. Raw digitized diffusivity datc for the AgAu system at 900°C. Also depicted
is the spline interpolated diffusivity data after fitting the digitized data with a
fourth order least squares spline, The closenass of the spline interpolated data and
the digitized data is indicative of a good fit to the raw diffusivity data.



160

2.4

2.0

1,6

1.6

1.2

0.8

JJI||Illlll|lllllII||I||11Jl||lllilllulllllll]ll

0.4' lllllllll[lllIllllllllllllIlT]Illlllllllllllrllll

0.0 0.2 0.4 0.6 0.8 1.0

Ag COMPOSITION Au

Figure 10, Computed thermodynamic term ¢(c)for the AgAu system using the model
function P,(ExpPg) at 900°C and the spline interpolated data which is tabulated in
table V and grapﬂically depicted in figure 9. Corresponding activity composition
curves and the selected In(y)-ccurve are presented in paper III.
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Table VI Diffusivity for the PdNi system at 1045°C as a function of the mole
fraction of Ni. The data was digitized from figure 6.16b in the book by Borovskii
and fitted with a fourth order least squares spline, The spline representation was
cvaluated at 100 points to yield the data in the table.

[ e — A S ——
cm*cm/sec cm*cm/sec cm*cm/sec cm¥*cm/sec

0,01 | 0.1623¢-10 || 0.26 | 0.6373c-10 || 0.51 | 0.18516-09 || 0.76 | 0.6912¢-10
0.02 | 0.1675¢-10 || 0.27 | 0.6743¢-10 || 0.52 | 0.1861¢-09 || 0.77 | 0.6474¢-10
0.03 | 0.1782¢-10 [[ 0.28 | 0.7137¢-10 [ 0.53 | 0.1870e-09 [ 0.78 | 0.6061¢-10
0.04 | 0.1919¢-10 | 0.29 | 0.7554¢-10 [ 0.54 | 0.1877¢-09 || 0.79 | 0.5672¢-10
0.05 | 0.2043¢-10 [ 0.30 | 0.7992¢-10 [ 0.55 | 0.1881¢-09 || 0.80 | 0.5305¢-10

0.06 | 0.2154-10 || 0.31 | 0.8449¢-10 || 0.56 | 0.1878¢-09 || 0.81 | 0.4961¢-10

0.07 | 0.2259¢-i0 | 0.32 | 0.8923¢-10 || 0.57 | 0.1864¢-09 || 0.82 | 0.4638¢-10

0.08 | 0.2365¢-10 [ 0.33 [ 0.9416¢-10 [[ 0.58 [ 0.1837¢-09 || 0.83 | 0.4335¢-10

0.09 | 0.2477¢-10 [ 0.34 | 0.9934¢-10 || 0.59 | 0.1794¢-09 || 0.84 | 0.4052¢-10

0.10 | 0.2600¢-10 [ 0.35 | 0.1048¢-09 || 0.60 [ 0.1736¢-09 | 0.85 | 0.3787¢-10

0.11 | 0.2736¢-10 [| 0.36 | 0.1107¢-69 || 0.61 | 0.1662¢-09 || 0.86 [ 0.3539¢-10

0.12 | 0.2885¢-10 [| 0.37 | 0.1169¢-09 || 0.62 | 0.1578¢-09 | 0.87 | 0.3307¢-10

0.13 | 0.3049¢-10 [ 0.38 | 0.1236¢-09 [ 0.63 | 0.1494¢-09 |[ 0.88 | 0.3091¢-10

0.14 | 0.3228¢-10 [ 0.39 | 0.1305¢-09 || 0.64 | 0.1416¢-09 {| 0.89 | 0.2890e-10

0.15 | 0.3423¢-10 [ 0.40 | 0.1376¢-09 || 0.65 | 0.1342¢-09 || 0.90 | 0.2703¢-10

0.16 | 0.3632¢-10 || 0.41 | 0.1447¢-09 || 0.66 | 0.1273¢-09 [ 0.91 [ 0.2529¢-10

0.17 | 0.3855¢-10 § 0.42 | 0.1517¢-09 | 0.67 | 0.1204¢-09 [l 0.92 | 0.2366¢-10

0.18 | 0.4090¢-10 § 0.43 | 0.1584¢-09 [| 0.68 | 0.1138¢-09 | 0.93 | 0.2216¢-10

0.19 | 0.4335¢-10 || 0.44 | 0.1644¢-09 [ 0.69 | 0.1073¢-09 [ 0.94 | 0.2076¢-10 |

0.20 | 0.4588¢-10 [ 0.45 | 0.1696¢-09 | 0.70 | 0.1010¢-09 || 0.95 | 0.1946e-10 |

0.21 | 0.4850¢-10 [ 0.46 | 0.1739¢-09 [[ 0.71 | 0.9502¢-10 | 0.96 | 0.1825¢-10

0.22 [ 0.5122¢-10 [[ 0.47 | 0.1774¢-09 [| 0.72 | 0.8929¢-10 [ 0.97 | 0.1714e-10

0.23 | 0.5407¢-10 [ 0.48 | 0.1801¢-09 [ 0.73 | 0.8384¢-10 || 0.98 | 0.1610¢-10

0.24 | 0.5709¢-10 [ 0.49 | 0.1823¢-09 || 0.74 | 0.7866¢-10 [ 0.99 | 0.1514e-10

0.25 | 0.6029¢-10 | 0.50 | 0.1839¢-09 (| 0.75 | 0.7376e-10 || 1.00 | 0.1425¢-10
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Figure 11, Raw digitized diffusivity data for the PdNi system at 1045°C, Also
depicted is the spline interpolated diffusivity data after fitting the digitized data
with a fourth order least squares spline, The closeness of the spline interpolated
data and the digitized data is indicative of a good fit to the raw diffusivity data.
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Figure 12, Computed thermodynamic term ¢(c)for the PdNI system using the model
function P(ExpPg) at 1045°C and the splinc interpolated data which is tabulated
in table VI and graphically depicted in figure 11, Corresponding activity composition
curves and the selected In(y)-ccurve are presented in paper II
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Table VII Diffusivity for the CuNi system at 1000°C as a function of the¢ mole
fraction of Ni. The data was digitized from figurc 6.3b in the book by Borovskii
and fitted with a fourth order least squares spline, The splinc representation was
cvaluated at 100 points to yield the data in the table.

le D le D Xm b XN‘ D

cm*cm/sec cm*cm/sec cm*cm/sec cm*cm/scc
0.01 | 0.5316¢-09 || 0.26 | 0.1500e-09 [ 0.51 | 0.5675¢-10 [l 0.76 | 0.2614¢-10
0.02 | 0.5034¢-09 || 0.27 | 0.1433¢-09 || 0.52 | 0.5491e-10 || 0.77 | 0.2556¢-10
0.03 | 0.4768¢-09 || 0.28 | 0.1370e-09 [l 0.53 | 0.5312¢-10 {| 0.78 | 0.2503¢-10
0.04 | 0.4517e-09 || 0.29 | 0.1311¢-09 | 0.54 | 0.5138e-10 || 0.79 | 0.2454¢-10
0.05 | 0.4281¢-09 || 0.30 | 0.1254¢-09 [l 0.55 | 0.4970¢-10 || 0.80 | 0.2407¢-10
0.06 | 0.4058¢-09 |1 0.31 | 0.1201e-09 [ 0.56 | 0.4808e-10 [l 0.81 | 0.2359¢-10
0.07 | 0.3848¢-09 (| 0.32 | 0.1150¢-09 || 0.57 | 0.4652¢-10 [ 0.82 | 0.2307¢-10
0.08 | 0.3650¢-09 || 0.33 | 0.1102¢-09 || 0.58 | 0.4503¢-10 (| 0.83 | 0.2249¢-10
0.09 | 0.3463¢-09 [| 0.34 | 0.1057¢-09 || 0.59 | 0.4362¢-10 |{ 0.84 | 0.2185¢-10
0.10 | 0.3287¢-09 || 0.35 | 0.1014¢-09 [} 0.60 | 0.4227¢-10 || 0.85 | 0.2118¢-10
0.11 ] 0.3121¢-09 || 0.36 | 0.9731e-10 |f 0.61 | 0.4099¢-10 || 0.86 | 0.2056¢-10
0.12 | 0.2964¢-09 || 0.37 | 0.9346¢-10 [| 0.62 | 0.3977¢-10 [| 0.87 | 0.2003¢-10
0.13 | 0.2816¢-09 | 0.38 | 0.8982¢-10 [| 0.63 | 0.3859¢-10 [| 0.88 | 0.1962¢-10
0.14 | 0.2676¢-09 || 0.39 | 0.8637¢-10 [| 0.64 | 0.3746¢-10 || 0.89 | 0.1935¢-10
0.15 | 0.2545¢-09 || 0.40 | 0.8311c-10 [| 0.65 | 0.3636¢-10 || 0.90 | 0.1903¢-10
0.16 | 0.2420¢-09 || 0.41 | 0.8003e-10 [| 0.66 | 0.3530¢e-10 || 0.91 | 0.1841¢c-10
0.17 | 0.2303¢-09 § 0.42 | 0.7711e-10 || 0.67 | 0.3426¢-10 || 0.92 | 0.1802¢-10
0.18 | 0.2192¢-09 || 0.43 | 0.7436¢-10 [} 0.68 | 0.3325¢-10 §j 0.93 | 0.1834c-10
0.19 | 0.2087¢-09 {| 0.44 | 0.7176e-10 [| 0.69 | 0.3225¢-10 || 0.94 | 0.1779¢-10
0.20 | 0.1989¢-09 || 0.45 | 0.6931e-10 || 0.70 | 0.3126¢-10 [| 0.95 | 0.1715¢-10
0.21 | 0.1895¢-09 || 0.46 | 0.6698e-10 [ 0.71 | 0.3029¢-10 || 0.96 | 0.1674c-10
0.22 | 0.1807¢-09 {f 0.47 | 0.6476¢-10 [ 0.72 | 0.2933¢-10 || 0.97 | 0.1645¢-10
0.23 | 0.1724¢-09 [ 0.48 | 0.6264e-10 (| 0.73 | 0.2842¢-10 || 0.98 | 0.1633¢-10
0.24 | 0.1645¢-09 || 0.49 | 0.6061e-10 || 0.74 | 0.2757e-10 || 0.99 | 0.1631e-10

0.25 | 0.1570e-09 {| 0.50 | 0.5865¢e-10 || 0.75 | 0.2681e-10 {| 1.00 | 0.1630e-10
—— e
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Figure 13, Raw digitized diffusivity data for the CuNi system at 1000°C. Also
depicted is the spline interpolated diffusivity data after fitting the digitized data
with a fourth order least sciuares spline. The closeness of the spline interpolated
data and the digitized data is indicative of a good fit to the raw diffusivity data,
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Figure 14, Computed thermodynamic term ¢(c)for the CuNi system using the model
function Pg(ExpPg) at 1000°C and the spline interpolated data which is tabulated
intable YII'and graphically depicted in figure 13. Corresponding activity composition
curves and the selected In(y)-ccurve are presented in paper III,
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Table VIII Diffusivity for the PdCu system at 1019°C as a function of thc mole
fraction of Cu. The data was digitized from figure 6.15b in the book by Borovskii
and fitted with a fourth order least squares spline, The spline representation was
evaluated at 100 points to yield the data in the table.

# - ———ﬁmﬂ
xcu D xcu D xcu D xcu D
cm*cm/sec cm*cm/sec cm*cm/sec cm*cm/sec

0.01 | 0.2550¢-10 |f 0.26 | 0.1598e-09 || 0.51 | 0.9104¢-09 [ 0.76 | 0.3799¢-08
0.02 | 0.2750e-10 |[ 0.27 | 0.1723¢-09 || 0.52 | 0.1015¢-08 || 0.77 | 0.3852¢-08
0.03 | 0.2964¢-10 || 0.28 | 0.1856¢-09 || 0.53 | 0.1108¢-08 || 0.78 | 0.3894c¢-08
0.04 | 0.3192¢-10 |f 0.29 | 0.1998e-09 || 0.54 | 0.1184¢-08 || 0.79 | 0.3926¢-08
0.05 | 0.3435e-10 { 0.30 { 0.2148¢e-09 || 0.55 | 0.1275¢-08 || 0.80 | 0.3946¢-08
0.06 | 0.3695¢-10 {| 0.31 | 0.2307e-09 || 0.56 | 0.1385¢-08 || 0.81 | 0.3953¢-08
0.07 | 0.3974e-10 || 0.32 | 0.2474¢-09 || 0.57 | 0.1491¢-08 (| 0.82 | 0.3947¢-08
0.08 | 0.4272¢-10 [| 0.33 | 0.2650¢-09 || 0.58 | 0.1592¢-08 || 0.83 | 0.3928¢-08
0.09 | 0.4591e-10 || 0.34 | 0.2836¢-09 [| 0.59 | 0.1710¢-08 || 0.84 | 0.3895¢-08
0.10 | 0.4934¢-10 | 0.35 | 0.3033e-09 || 0.60 | 0.1853¢-08 |l 0.85 | 0.3849¢-08
0.11 | 0.5301e-10 || 0.36 | 0.3243¢-09 || 0.61 | 0.1981¢-08 [l 0.86 | 0.3790¢-08
0.12 | 0.5697¢-10 [l 0.37 | 0.3468e-09 || 0.62 | 0.2055¢-08 (| 0.87 | 0.3720e-08
0.13 | 0.6122¢-10 || 0.38 | 0.3712¢-09 (| 0.63 | 0.2113¢-08 | 0.88 | 0.3640c-08
0.14 | 0.6581e-10 | 0.39 | 0.3975¢-09 || 0.64 | 0.2211¢-08 || 0.89 | 0.3551¢-08
0.15 | 0.7075¢-10 || 0.40 | 0.4263¢-09 || 0.65 | 0.2396¢-08 || 0.90 | 0.3456¢-08
0.16 | 0.7609¢-10 | 0.41 | 0.4578¢-09 || 0.66 | 0.2621¢-08 [| 0.91 | 0.3354¢-08
0.17 | 0.8186e-10 || 0.42 | 0.492.5¢-09 || 0.67 | 0.2836¢-08 || 0.92 | 0.3247¢-08
0.18 | 0.8808¢-10 [l 0.43 | 0.5309¢-09 || 0.68 | 0.3024¢-08 }| 0.93 | 0.3137¢-08
0.19 | 0.9480¢-10 || 0.44 | 0.5727¢-09 || 0.69 | 0.3179¢-08 || 0.94 | 0.3027¢-08
0.20 | 0.1021e-09 § 0.45 | 0.6157¢-09 || 0.70 | 0.3304¢-08 [| 0.95 | 0.2918¢-08
0.21 | 0.1099¢-09 § 0.46 | 0.6569¢-09 f| 0.71 | 0.3408¢-08 (| 0.96 | 0.2813¢-08
0.22 | 0.1184¢-09 § 0.47 | 0.6937¢-09 [ 0.72 | 0.3502¢-08 || 0.97 | 0.271 3c-(-)-8_
0.23 | 0.1276¢-09 || 0.48 | 0.7283¢-09 {| 0.73 | 0.3588¢-08 || 0.98 | 0.2619¢-08
0.24 | 0.1375¢-09 || 0.49 | 0.7654¢-09 || 0.74 | 0.3667¢-08 || 0.99 | 0.2533¢-08

0.25 | 0.1483e-09 [ 0.50 | 0.8214¢-09 || 0.75 | 0.3738¢-08 || 1.00 | 0.2456¢-08
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Figure 15. Raw digitized diffusivity data for the PdCu system at 1019°C, Also
depicted is the spline interpolated diffusivity data after fitting the diFitizc:d data

with a fourth

order least s(iuarcs spline. The closeness of the spline interpolated

data and the digitized data is indicative of a good fit to the raw diffusivity data.
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Figure 16. Computed thermodynamic term ¢(c)for the PdCu system using the model
function P SExpPs) at 1019°C and the spline interpolated data which is tabulated
in table \’ II and graphically depicted in figure 15. Corresponding activity
composition curves and the selected In(y)-ccurve are presented in paper 1II,
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Table IX Diffusivity for the CuAu system at 857°C as a function of the mole
fraction of Au. The data was digitized from figure 6.5b in the book by Borovskii
and fitted with a fourth order least squares spline. The spline representation was
cvaluated at 100 points to yield the data in the table.

[re— 3 mg—'
xAu D xAu b xAu D X Au b

cm*cm/sec cm*cm/sec cm*cm/sec cm*cm/sec
0.01 | 0.2393¢-09 || 0.26 | 0.1810e-08 || 0.51 | 0.3502¢-08 f| 0.76 | 0.2701e-08
0.02 | 0.2585e-09 | 0.27 | 0.1901¢-08 || 0.52 | 0.3514¢-08 || 0.77 | 0.2647¢-08
0.03 | 0.2804¢-09 || 0.28 | 0.1992¢-08 || 0.53 | 0.3521¢-08 {f 0.78 | 0.2593¢-08
0.04 | 0.3052¢-09 || 0.29 | 0.2084¢-08 || 0.54 | 0.3523¢-08 | 0.79 | 0.2539¢-08
0.05 | 0.3332¢-09 |f 0.30 | 0.2175¢-08 | 0.55 | 0.3519¢-08 || 0.80 | 0.2484¢-08
0.06 | 0.3644¢-09 || 0.31 | 0.2266¢-08 || 0.56 | 0.3511¢-08 || 0.81 | 0.2429¢-08
0.07 | 0.3990e-09 || 0.32 | 0.2358¢-08 {| 0.57 | 0.3498¢-08 || 0.82 | 0.2373¢-08
0.08 | 0.4370e-09 || 0.33 | 0.2451¢-08 || 0.58 | 0.3481¢-08 || 0.83 | 0.2318¢-08
0.09 | 0.4787¢-09 || 0.34 | 0.2542¢-08 || 0.59 | 0.3459¢-08 || 0.84 | 0.2263¢-08
0.10 | 0.5243¢-09 ]| 0.35 | 0.2632¢-08 }§ 0.60 | 0.3433¢-08 || 0.85 | 0.2209¢-08
0.11 | 0.5741¢-09 | 0.36 | 0.2720¢-08 || 0.61 | 0.3403e-08 [ 0.86 | 0.2155¢-08
0.12 | 0.6285¢-09 || 0.37 | 0.2805¢-08 || 0.62 | 0.3370¢-08 }f 0.87 | 0.2103¢-08
0.13 | 0.6878¢-09 || 0.38 | 0.2886¢-08 || 0.63 | 0.3333¢-08 || 0.88 | 0.2052¢-08
0.14 | 0.7525¢-09 | 0.39 | 0.2962¢-08 || 0.64 | 0.3294¢-08 (| 0.89 | 0.2001¢-08
0.15 | 0.8230e-09 || 0.40 | 0.3034¢-08 || 0.65 | 0.3252¢-08 [| 0.90 | 0.1949¢-08
0.16 | 0.8997¢-09 § 0.41 | 0.3101¢-08 § 0.66 | 0.3208¢-08 || 0.91 | 0.1894¢-08
0.17 | 0.9821¢-09 § 0.42 | 0.3164¢-08 § 0.67 | 0.3162¢-08 § 0.92 | 0.1834¢-08 l
0.18 | 0.1070¢-08 § 0.43 | 0.3221¢-08 || 0.68 | 0.3114¢-08 || 0.93 | 0.1771¢-08
0.19 | 0.1161¢-08 || 0.44 | 0.3273¢-08 || 0.69 | 0.3065¢-08 || 0.94 | 0.1709¢-08
0.20 | 0.1255¢-08 || 0.45 | 0.3321e-08 || 0.70 | 0.3015¢-08 || 0.95 | 0.1653¢-08
0.21 | 0.1349¢-08 { 0.46 | 0.3364¢-08 || 0.71 | 0.2964¢-08 | 0.96 | 0.1606¢-08
0.22 | 0.1443¢-08 || 0.47 | 0.3402¢-08 || 0.72 | 0.2912¢-08 || 0.97 | 0.1570e-08
0.23 | 0.1536¢-08 § 0.48 | 0.3435¢-08 || 0.73 | 0.2860e-08 [| 0.98 | 0.1542¢-08
0.24 | 0.1628¢-08 || 0.49 | 0.3462¢-08 |} 0.74 | 0.2808¢-08 || 0.99 | 0.1518¢-08
0.25 ] 0.1719¢-08 § 0.50 | 0.3485¢-08 || 0.75 | 0.2755¢-08 f| 1.00 0.1496¢-08
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Figure 17. Raw digitized diffusivity data for the CuAu systemat 857°C, Also depicted
is the spline interpolated diffusivity data after fitting the digitized data with a
fourth order least squares spline. The closeness of the spline interpolated data and
the digitized data is indicative of a good fit to the raw diffusivity data,
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Table X Diffusivity for the CoNi system at 1356°C as a function of the mole
fraction of Ni. The data was digitized from figure 6.2 in the book by Borovskii and
fitted with a fourth order least squares spline. The spline representation was evaluated

at 100 points to yield the data in the table,

D
cm*cm/sec

cm*cm/sec

b X

Ni

D
cm*cm/sec

XnNi

D
cm*cm/sec

0.3363¢-09

0.5561¢-09

0.8198¢-09

0.76

0.1113¢-08

0.3442¢-09

0.5653¢-09

0.8324¢-09

0.77

0.1125¢-08

0.3521¢-09

0.5748¢-09

0.8445¢-09

0.78

0.1137¢-08

0.3603¢-09
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Figure 19, Raw digitized diffusivity data for the CoNi system at 1356°C. Also
depicted is the spline interpolated diffusivity data after fitting the digitized data
with a fourth order least squares spline. The closeness of the spline interpolated
data and the digitized data is indicative of a good fit to the raw diffusivity data,
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Figure 20. Computed thermodynamic term ¢(c)for the CoNi system using the model
function Py(ExpPg) at 1019°C and the spline interpolated data which is tabulated
in table X and graphically depicted in figure 19. Corresponding activity composition
curves and the selected In(y)-ccurve are presented in paper III



8.3 Appendix III Estimation of the enthalpy of solution for solid state

binaries

This appendix reviews a strategy proposed by Russell! to cstimate the partial
molar enthalpy of formation in the solid state given the partial molar enthalpy of
formation in the liquid state for binary metallic systems. The heats of solution for
the liquid state can be obtained experimentally or may be obtained from thcoretical

estimates such as those by Miedema3,

Consider the case of a solid solution o, in equilibrium with a liquid metal, at

a temperature T as shown in figure 1. Assume that the system obeys the regular
solution model in both the liquid and the solid states and that the regular solution
parameter is known a priori in the liquid state. Taking pure solid A and pure solid

B as the standard states one may write the following equations:

Hy = Q1-X))* + RTIn(X,) + Apu} (1]
Hy = 0. (1-X,)* + RTIn(X,) [2]
where Apy = L,(l —'ITT.,',.) (L, > 0) [3]

Equating p; and pJ one ends up with:

X
n, = O, + Apg + RTzn(X—‘) [4]

In the present investigation this scheme was used to estimate the slope of the
Henry's law line for the various isomorphous binary systems at the temperaturc at
which the diffusivity data was measured. As an illustrative example consider the
NbTIi system with Nb as the solvent and Ti as the solute. The regular solution
parameter was estimated at 2000°C (2273K) by using the phase diagram depicted in
figure 2. From the phase diagram3 it is seen that X= 0.5 whereas X,= 0.4 . The latent
heat of fusion for Ti, obtained from the handbook by Smithells4, was taken as
18.8kJ/mole whereas the melting temperature for Ti is known to be 1670°C. Miedema

predicts a value of +9kj/mole for the partial molar enthalpy of formation in the
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liquid state at infinite dilution, Using these values, Qlt was computed to be
10.02kJ/mole. Since it has been assumed that the solution exhibits regular solution
behavior, it follows that Q7'is independent of temperature. Hence one may compute
the activity coefficient for this solution at the temperature for which the diffusivity

data was reported (1000°C) by using the following equation:
0;' = RTin(y) [S]
Using this approach the activity coefficient was estimated to be 2.5 at 1000°C,

In a similar manner, the activity coefficients for the othér alloy systems were
computed. Table I lists the pertinent data used in these computations as well as the

results of the computations,

References;
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Lahoratory, Wright Research and Development Center, Air Force Systems
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8.4 Appendix IV Behavior of (d ¢ /dc) at terminal compositions

The proposed algorithm imposes constraints on ¢(c) The purpose of this

appendix is to examine the behavior of the first derivative of ¢(c)at the terminal
compositions (c=0 and c=1) and thereby determine if any higher order constraints
need to be imposed on ¢(c) In particular, it is of interest to examine if the slope of
$(c) that is (d$/dc) possesses some 'natural’ constraints which hold true for all
systems and can be derived from basic principles of solution behavior, For example,
one may wish to determine if (d¢/dc) -> 0 as ¢->0 or as ¢c->1.0 . If (d¢/dc) does
indeed tend to zero at the ends or to some other finite constant that is universal for

all solutions then the algorithm must impose a constraint to that effect on (d¢/dc)

To explore the behavior of (d¢/dc)one may begin with the definition of ¢(c)

cdy
é(c) (l + vac) (1]
One may differentiate to obtain :

% . Loy e fav’ e 2%y

ac 0.0+ yoc Yz(ac) ¥ Y acz) (2]

From equation [2), it Is clear that investiagtion of (d¢/dc) demands an

understanding of the variation of the activity coefficient with composition (y-c
relationship). Since there is no universal y-c relationship, one must rely on proposed
models of solution behavior to investigate the behavior of (d$/dc) Specifically, one
may examine two popular models of solution behavior; the regular solution model

and the Henrian model,



187

8.4.1 Regular Solution Model

A regular solution is defined by the following equation :

In(y) = a(l-c)? 3l
y = Expla(l-c)’] (4]
g% = (~2a(1-c¢)}Expla(l -¢)?] (5]
:;_3 = (-2a(1-¢))*Expla(l-¢)?’] + 2aExpla(l-c)?] (6]

Hence for a regular solution one may plug equations 4,5,6 in to cquation 2 and
obtain (d¢/dc)

LX) | ‘
i o e iz -armea-om

- [(Exp[a(‘;_c)2])2:|[(-2a(l_c))z(Exp[a(l"'c)z])zl [7]

[Exp[a(cl _c)z]]([-Za(l -¢))’Expla(l -¢)?] + 2aExp[a(l-c)?])

On cancelling terms onc¢ ends up with the following;

fT: = (-2a(l-c)) - (c[4a’(1-c)’]} + ({c[4a’(1-c)* + 2a]) [B)

Instead of expanding out the polynomials in 'c’ and then taking the limit as ¢->0
one¢ may keep each of the three terms separate in order to observe the behavior

of each term in the limit,.

Comparing terms between equations (8] and [2]:

%%% - -2a(1-c) (9]
- 2

;-’(%%}’) = cl4a¥(1-¢c)? + 2a] [11]



Limiting case of c¢->0
Yy - Exp(a)

oy
Jdc

32
2

On plugging these values in one obtains :

-+ -2aExp(a)

T: 4 (4a? + 2a)Exp(a)

108

(12]

(13]

[14]

1oy
-f-("—”)z 5 0.0 [16)
yz Jdc )
cd?y
-— = 0.0 17
Y22 (17]
On adding equations 15,16 and 17 one obtains;
For ¢ -> 0.0 %g = -2a (18]
Limiting case of c->1
y = 1.0 [19]
dy .
3% 0.0 [20]
%y
a? -+ 2a [21]
On plugging these values in one obtains :
10y
yc -+ 0,0 pl[22)]
-i(‘ll)z 4 0.0 (23]
y3\ dc )
coly
-1 2 24
Y20t a [24]

On adding equations 22,23 and 24 one obtains:
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Forc -> 1.0 — = +2a [25]

Equations [18] and [25] clearly show that the slope of the ¢(c)~-ccurves is

not zero at either ¢c=0 or ¢=1 for a regular solution. Further, the absolute value

of the slope is equal at cither end for the special case of a regular solution,

To demonstrate the same graphically, some of the relevant quantitics have
been plotted as a function of composition for two values of the regular solution
parameter, a +1.5and a -1.5. Figures | through 3 plot the y-c, (dy/dc)-c
and (d?y/dc?)-crelationships and for the two regular solutions; a +1.5 and
a - 1.5 Similarly figure 4 plots the corresponding (1/y)(dy/dc)-crelationship;
figure 5 plots the corresponding (-c/y?)(dy/dec)?-c relationship and figure 6
plots the corresponding (c/y)(d?y/dc?)-c relationship. Thus figures 4, 5, and 6
represent the three terms in equation [2]. The sum of these thrce terms yiclds
(dé/dc) which is plotted in figure 7 for « +1.5 and a -1.5 These figures
clearly depict that (d¢/dc)is non zero but finite at either end of the composition
range.

8.4.2 Henrlan Solution Model

A Henrian solution exhibits a linear actlvity composition relaticnship which

may be expressed as follows:

a = Kc [26]
Yy = K [27]
oy
2 =0 [28]
42
b
ot 0 [29]
On substituting these into equation (2] one obtains:
¢ - 0 [29]
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Thus for the special case of a solution obeying Henry's law (d¢/dc) is
identically zero.
8.4.3 Conclusion

The lack of a non zero (d¢/dc)for regular solutions at ¢=0 and c¢=1 implies
that it would be incorrect to assume a priori that all solutions must satisfy the
condition that (dé/dc) = Oatc=1and at c=0. Hence no additional constraints

should be incorporated into the algorithm,
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Figure 1. y-c curves for regular solutions as a function of composition for two
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Figure 2. (dy/dc)~c curves for regular solutions as a function of composition
for two values of the regular sulution parameter:a +1.5and a -1.5,
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