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Algorithms based on normalizing flows are emerging as promising machine learning approaches
to sampling complicated probability distributions in a way that can be made asymptotically exact.
In the context of lattice field theory, proof-of-principle studies have demonstrated the effectiveness of this
approach for scalar theories, gauge theories, and statistical systems. This work develops approaches that
enable flow-based sampling of theories with dynamical fermions, which is necessary for the technique to
be applied to lattice field theory studies of the Standard Model of particle physics and many condensed
matter systems. As a practical demonstration, these methods are applied to the sampling of field
configurations for a two-dimensional theory of massless staggered fermions coupled to a scalar field via a
Yukawa interaction.

DOI: 10.1103/PhysRevD.104.114507

I. INTRODUCTION

Lattice field theory is among the most successful
approaches for regularizing and computing path integral
expectation values in quantum field theory. In particular,
the path integral can be numerically evaluated by formulat-
ing a stochastic process weighted by the Euclidean lattice
action and applying Markov Chain Monte Carlo (MCMC)
sampling [1]. The Euclidean lattice results can then be
systematically related to the corresponding continuum
Minkowski theory. This procedure enables the investiga-
tion of equilibrium properties in the theory of interest and is
a powerful and well-established method to study strongly
coupled quantum field theories nonperturbatively. Key
areas of application include fundamental interactions, most

prominently quantum chromodynamics (QCD), as well as
problems in condensed matter theory; see Refs. [2–9] for
recent reviews.
The sequential nature of the Markov chain is a potential

drawback to the MCMC sampling approach for computing
path integrals in lattice field theory. In particular, known
Markov chain update schemes for many theories of interest
are local or diffusive, which can result in severe autocorre-
lations between successive elements of the chain. Naturally,
the larger the autocorrelation between samples, the more
samples must be drawn to achieve a result at fixed statistical
precision. Close to criticality, e.g., when approaching the
continuum limit of lattice field theories, autocorrelations also
diverge rapidly for such local or diffusive Markov chains.
This issue, referred to as critical slowing down, can render
computations prohibitively expensive [10–12].
These challenges have motivated extensive work to

replace local/diffusive MCMC algorithms, such as Hybrid
Monte Carlo (HMC) [13], with other sampling procedures.
Specialized Markov chain steps have been developed in a
number of specific contexts, including cluster updates
[14–22], worm algorithms [23–25], sampling in terms of
dual variables [26–28], and event-chain algorithms [29–33].
Though these methods have been shown to mitigate critical
slowing down in some settings, they cannot be applied to
many theories of interest, including lattice QCD. In this light,

*albergo@nyu.edu
†gurtej@mit.edu
‡sracaniere@google.com
§danilor@google.com∥urban@thphys.uni-heidelberg.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 114507 (2021)

2470-0010=2021=104(11)=114507(25) 114507-1 Published by the American Physical Society

https://orcid.org/0000-0001-9058-5943
https://orcid.org/0000-0002-4340-4983
https://orcid.org/0000-0003-3184-8509
https://orcid.org/0000-0003-1213-1967
https://orcid.org/0000-0001-6039-3801
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.114507&domain=pdf&date_stamp=2021-12-15
https://doi.org/10.1103/PhysRevD.104.114507
https://doi.org/10.1103/PhysRevD.104.114507
https://doi.org/10.1103/PhysRevD.104.114507
https://doi.org/10.1103/PhysRevD.104.114507
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


development of sampling algorithms for lattice field theory
based on machine learning techniques is underway, and
previous works have applied a variety of tools such as
adversarial learning and self-learning Monte Carlo methods
[34–47]. Progress has recently been made in substituting the
proposal mechanism in MCMC methods with a variational
ansatz based on a class of samplers known as normalizing
flows [48–50], which can be optimized to approximately
sample from the target Boltzmann distribution [51–53].
Within this approach, proposed samples are by construction
uncorrelated, and asymptotic exactness can be guaranteed by
implementing a Markov chain with a Metropolis accept/
reject step or through reweighting.
Though flow-based models have been extended to

exactly incorporate the gauge symmetries inherent in many
quantum field theories [54,55], existing applications are
so far restricted to purely bosonic theories. For theories
involving fermions, the anticommuting nature of the
associated operators must be treated by formulating the
theory in terms of integrals over Grassmann-valued field
variables. These integrals may be evaluated analytically,
resulting in a purely bosonic theory described by an
effective action which incorporates the dynamics of the
fermion fields via “fermion determinant” terms. While
flow-based methods may in principle be applied to learn
this effective action over bosonic fields, the cost of
computing such determinants scales unfavorably with the
number of fermionic degrees of freedom, and their exact
evaluation is typically intractable at the scale of state-of-
the-art calculations.
In this paper, a framework is presented for the applica-

tion of flow-based sampling algorithms to lattice quantum
field theories with dynamical fermions, such as lattice QCD
and theories describing many condensed matter systems.
We construct approaches based primarily on the pseudo-
fermion method [56] to avoid an explicit computation of
the fermion determinant while guaranteeing asymptotic
exactness of the sampling schemes. We investigate the
application of a number of flow-based samplers in the
context of a simple, two-dimensional Yukawa model with a
real scalar field coupled to staggered fermions. Our results
demonstrate that lattice field theories with dynamical
fermions are amenable to flow-based sampling and provide
a starting point for extensions to higher-dimensional
settings as well as theories involving gauge fields. The
architectures developed here are also applicable to flow-
based acceleration of traditional MCMC approaches
[57–61]. The primary contributions of this work are these:

(i) In Sec. III, identifying four distinct sampling
schemes based on generative models that capture
different decompositions/marginalizations of the
target distribution over boson and pseudofermion
field configurations.

(ii) In Sec. IV, constructing and optimizing efficient,
expressive flow model architectures that respect
the symmetries of the pseudofermion action, in

particular translational symmetry with antiperiodic
temporal boundary conditions.

(iii) In Sec. V, implementing and numerically bench-
marking these sampling approaches in the context
of a two-dimensional field theory with one pair of
mass-degenerate fermions.

The remainder of this paper is organized as follows.
In Sec. II, we review the description of fermions in lattice
field theory, the use of pseudofermions, and the boundary
conditions and translational symmetry of pseudofermion
actions. In Sec. III, we outline four exact generative
sampling schemes for fermionic theories and subsequently
develop suitable flow architectures as the generative models
for use in these sampling schemes in Sec. IV. Details and
numerical results of the application of our framework to a
Yukawa theory in two dimensions are presented in Sec. V.
In Sec. VI, we discuss the applicability of our develop-
ments to update-based approaches. We summarize our
findings and provide an outlook in Sec. VII.

II. FERMIONS ON THE LATTICE

The simulation of dynamical fermion degrees of freedom
in lattice field theory is a highly nontrivial task for many
theories of physical interest, both conceptually and com-
putationally. In this section, we briefly review the main
concepts behind formulations of lattice fermions and their
numerical implementation. For a comprehensive treatment
we refer the reader to one of the standard textbooks; see
e.g., Refs. [62–64].

A. Path integrals with fermions

We consider field theories of interacting fermionic and
bosonic degrees of freedom discretized on a d-dimensional
Euclidean hypercubic lattice with periodic boundary con-
ditions. The action of such a theory can be expressed as

Sðψ ; ψ̄ ;ϕÞ ¼ SBðϕÞ þ SFðψ ; ψ̄ ;ϕÞ; ð1Þ

where the subscripts B and F denote the bosonic and
fermionic contributions to the action, the discretized boson
field variables are collectively denoted by ϕ, and the
discretized fermion field variables are denoted by ψ ; ψ̄.
For the present work, we assume that the fermionic action
is bilinear in Nf flavors of Dirac fermions ψf, ψ̄f and is
given by

SFðψ ; ψ̄ ;ϕÞ ¼
XNf

f¼1

ψ̄fDfðϕÞψf; ð2Þ

where the Dirac operator DfðϕÞ includes the kinetic terms,
mass terms, and any coupling to bosonic fields for each
fermion flavor f. The precise form of DfðϕÞ is determined
by the theory of interest and the choice of discretization.
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Expectation values of observables O are computed via
path integrals of the form

hOi¼ 1

Z

Z
D½ϕ�D½ψ ;ψ̄ �e−SFðψ ;ψ̄ ;ϕÞe−SBðϕÞOðψ ;ψ̄ ;ϕÞ; ð3Þ

where

Z ¼
Z

D½ϕ�D½ψ ; ψ̄ �e−SFðψ ;ψ̄ ;ϕÞe−SBðϕÞ; ð4Þ

and the fermion fields ψ and ψ̄ are defined in terms of
anticommuting Grassmann numbers. For bilinear actions of
the form given in Eq. (2), integration over the Grassmann-
valued fermion fields can be performed explicitly, giving

Z
D½ψ ; ψ̄ �e−SFðψ ;ψ̄ ;ϕÞ ¼

YNf

f¼1

detDfðϕÞ: ð5Þ

By applying Wick’s theorem, the dependence of the
observable on the fermions can be integrated out. Path
integral expectation values can then be written in terms of
purely bosonic degrees of freedom as

hOi ¼ 1

Z

Z
D½ϕ�

�YNf

f¼1

detDfðϕÞ
�
e−SBðϕÞOðϕÞ: ð6Þ

This expectation value may be estimated via MCMC
sampling by computing an average over a statistical
ensemble of configurations ϕ,

hOi ≈ 1

N

X
ϕ∼p

OðϕÞ; ð7Þ

where
P

ϕ∼p denotes a sum over N configurations sampled
from the probability distribution

pðϕÞ ¼ 1

Z
e−SBðϕÞ

YNf

f¼1

detDfðϕÞ: ð8Þ

Direct sampling schemes for high-dimensional lattice
distributions are typically not known, even for theories
without fermions. Nevertheless, the distribution pðϕÞ can
be sampled via MCMCmethods with guaranteed asymptotic
exactness under certain ergodicity and balance constraints
[65]. Among these, the HMC algorithm [13] has been
established as the de facto standard method for producing
configurations in lattice field theory and is routinely
employed in state-of-the-art QCD studies and beyond.
This algorithm is based on the numerical treatment of
Hamiltonian equations of motion in a fictitious time dimen-
sion, where quantum fluctuations are encoded by the random
sampling of the associated canonical momenta. Given a
field configuration and a set of momenta, this evolution is
computed with a symplectic integrator such as the leapfrog
algorithm. A Metropolis-Hastings accept/reject step [66,67]

results in an algorithm satisfying detailed balance, despite
the accumulation of numerical errors along the discretized
integration trajectory. At scale, the fermion determinants are
treated stochastically via the pseudofermion method intro-
duced in the following section.

B. Pseudofermions

The fermion determinants in Eq. (8) cannot be calculated
directly at scale because the Dirac matrices Df are high-
dimensional. For d-dimensional field configurations with L
sites per spatial dimension and Lt sites in the temporal
dimension, the total number of fermionic degrees of free-
dom scales as the total number of lattice sites, V ¼ LtLd−1.
Each Dirac matrix Df then has dimensions OðV × VÞ, and
an exact computation of the determinants becomes intrac-
table at the scales of many theories of interest.
Instead, Gaussian integrals over auxiliary bosonic fields

can be used to replace the direct evaluation of determinant
factors based on the identity

detM ¼ 1

ZN

Z
D½φR;φI�e−φ†M−1φ; ð9Þ

where the normalization constant ZN is defined as

ZN ¼
Z

D½φR;φI�e−φ†φ: ð10Þ

Here, φR, φI denote the real and imaginary components of
the auxiliary complex field φ, and the matrix M must be
positive definite. Since the Dirac matrices Df are typically
not positive definite, one cannot directly apply this identity
to each factor of detDf. However, for fermion flavors
f1 and f2 appearing as degenerate pairs, based on γ5
Hermiticity one can instead use the equality

detDf1 detDf2 ¼ detDf1D
†
f1
; ð11Þ

and then apply Eq. (9) to the positive-definite matrix
M ¼ Df1D

†
f1
. For fermion flavors f not included in any

degenerate pair, one can apply one-flavor algorithms
[68–70] to replace Df with a positive-definite matrix M
capturing identical dynamics.
Using the pseudofermion approach, a path integral as in

Eq. (6) can thus be rewritten in terms of an action involving
the auxiliary pseudofermion fields φ,

Sðϕ;φÞ ¼ SBðϕÞ þ SPFðϕ;φÞ with

SPFðϕ;φÞ ¼ φ†M−1ðϕÞφ≡XNpf

k¼1

φ†
kM

−1
k ðϕÞφk; ð12Þ

after replacing the fermion determinants in the given lattice
theory by the determinants of Npf positive-definite matrices
Mk as
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YNf

f¼1

detDfðϕÞ ¼
YNpf

k¼1

detMkðϕÞ: ð13Þ

Each term φ†
kM

−1
k φk in the pseudofermion action can be

efficiently computed using iterative solvers such as the
conjugate gradient method. Having formulated the theory
using pseudofermions in Eq. (12), evaluation of the path
integral via MCMC methods can then be performed in this
augmented space by sampling from the joint distribution

pðϕ;φÞ ¼ 1

Z
e−SBðϕÞ−SPFðϕ;φÞ: ð14Þ

The distribution pðϕÞ given in Eq. (8) is obtained from this
joint distribution by marginalizing over the auxiliary
pseudofermion fields φ.
While the pseudofermion method renders the treatment

of fermion determinants tractable in principle, the joint
action may strongly fluctuate in certain limits. This feature
can slow down MCMC sampling of the joint distribution
and can lead to an unfavorable volume scaling of the
associated computational effort, especially when many
components of the bosonic field are updated simultane-
ously. Accordingly, numerous modifications of the pseu-
dofermion formulation have been developed to improve
the structure of the action; see e.g., Refs. [71–76]. These
developments are complementary to the application of
generative models for sampling the pseudofermion distri-
bution and could be combined with any of the approaches
presented here. For example, in this work we improve the
efficiency of modeling and sampling the distributions under
study by applying even-odd preconditioning [77], as
discussed in Sec. VA and Appendix B.

C. Boundary conditions and translational symmetry

In lattice studies of purely bosonic theories, it is common
to choose periodic boundary conditions in all directions of
the lattice, allowing the incorporation of an exact discrete
translational symmetry in lattice actions for such theories.

For fermion fields, one needs to impose antiperiodic
boundary conditions in the time direction in order to obtain
a consistent definition of the trace for the Euclidean
partition function. Actions for theories involving fermionic
fields are then invariant under simultaneous spatiotemporal
translations of ϕ, ψ , and ψ̄ , with appropriate boundary
conditions applied for each field.
To be consistent with the boundary conditions for ψ and

ψ̄ , each Dirac matrix DfðϕÞ must include appropriate signs
for any terms coupling fields across the temporal boundary.
As a result, these boundary conditions affect the pseudo-
fermion formulation of the theory as well, and the pseu-
dofermion action SPFðϕ;φÞ is invariant under simultaneous
translations of ϕ and φ with antiperiodic temporal boun-
dary conditions applied to φ.
In general, the discretization chosen for the Dirac

operator determines which particular lattice translations
are included in the translational symmetry group. In the
staggered formulation [78], for example, the spinor com-
ponents of each flavor of fermion are distributed over the
components of hypercubes with 2d sites each, and the
translational symmetry group includes all translations by an
even number of sites. Translations by an odd number of
sites in particular directions correspond to more compli-
cated internal symmetry transformations that mix spinor
degrees of freedom, and must involve sign flips on specific
field components to leave the staggered action invariant
[79]. These translational symmetries of the staggered
formulation play a role in the application to the stag-
gered-fermion Yukawa model presented in Sec. V.

III. EXACT GENERATIVE SAMPLING SCHEMES
FOR FERMIONIC THEORIES

Generating importance-weighted field configurations
for a lattice field theory involving fermions can proceed
via the marginal distribution pðϕÞ defined in Eq. (8), the
joint distribution pðϕ;φÞ defined in Eq. (14), or through
other choices of marginalized distributions defined in
Table I. In this work, we develop exact sampling schemes
based on generative models that directly approximate these

TABLE I. List of possible distributions derived from the joint target density in Eq. (14). The normalizing constant
Z is given by Eq. (4) and ZN is defined in Eq. (10). Notes: (A) only the joint, φ-conditional, and ϕ-conditional
densities can be efficiently computed (up to normalization). (B) The φ conditional can be sampled exactly by the
method specified in Eq. (16). (C) A closed form for the φ-marginal density is not generally known (even
unnormalized).

Name Probability density Use case

JointA pðϕ;φÞ ¼ 1
Z expð−SBðϕÞ − φ†½MðϕÞ�−1φÞ Sec. III D

ϕ marginal pðϕÞ ¼ ZN
Z expð−SBðϕÞÞ detMðϕÞ Secs. III A and III C

φ conditionalA;B pðφjϕÞ ¼ 1
ZN detMðϕÞ expð−φ†½MðϕÞ�−1φÞ Secs. III A, III B, and III C

φ marginalC pðφÞ ¼ 1
Z

R
dϕ expð−SBðϕÞ − φ†½MðϕÞ�−1φÞ � � �

ϕ conditionalA pðϕjφÞ ¼ expð−SBðϕÞ−φ†½MðϕÞ�−1φÞR
dϕ expð−SBðϕÞ−φ†½MðϕÞ�−1φÞ

Sec. III B
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distributions. In defining these sampling schemes, we
assume that the model probability density may be com-
puted for each generative model (this property holds for
the flow-based models defined below). This section details
four asymptotically exact schemes for constructing Markov
chains to draw samples of ϕ, as illustrated in Fig. 1.

A. Modeling and sampling of pðϕÞ
Since we must ultimately sample only the field ϕ, one

could directly model the ϕ-marginal distribution (row 2 of
Table I) by constructing a generative sampler providing a
distribution qðϕÞ approximating pðϕÞ. Samples drawn
from the model distribution qðϕÞ can be used in asymp-
totically exact sampling schemes by either constructing
an independence Metropolis Markov chain or applying
reweighting/resampling based on reweighting factors
pðϕÞ=qðϕÞ. A direct application of either approach requires
computing pðϕÞ involving the aforementioned determinant
factors. The acceptance probability for such a Metropolis
Markov chain would be

AMðϕ → ϕ0Þ ¼ min

�
1;
e−SBðϕ0Þ detMðϕ0Þ
e−SBðϕÞ detMðϕÞ

qðϕÞ
qðϕ0Þ

�
: ð15Þ

This sampling scheme is illustrated in Fig. 1(a).
Instead of evaluating the ratio detMðϕ0Þ= detMðϕÞ

directly, which becomes prohibitive at scale, it is possible
to apply the pseudomarginal method [80] using stochastic
approximations of both the numerator and denominator of
Eq. (15) in a way that retains asymptotic exactness. In this

stochastic generalization of the Metropolis algorithm, one
computes an estimate of pðϕÞ using an unbiased stochastic
estimator when ϕ is initially proposed. This estimate of
pðϕÞ is then used in all subsequent accept/reject tests for
the next element in the Markov chain. Applied to a theory
with fermions, this amounts to computing a stochastic
estimate of the fermion determinant for each proposed
configuration.1

For example, we can use an unbiased estimator based
on pseudofermions. An (unnormalized) estimate for pðϕÞ
can be obtained by generating a pseudofermion φ from
the conditional pðφjϕÞ and measuring the quantity
e−φ

†ðM−1ðϕÞ−1Þφe−SBðϕÞ. The φ conditional can be directly
sampled according to

φ ¼ AðϕÞχ; where χ ∼
1

ZN
e−χ

†χ : ð16Þ

The matrix A is defined by the identity MðϕÞ≡
AðϕÞA†ðϕÞ and reduces to the Dirac matrix DðϕÞ in a
two-flavor example. This estimate can be extremely noisy
in practice and may give poor statistical performance.
However, it can be improved upon by using multiple
pseudofermion draws; see e.g., Refs. [74,76,82,83].
In principle, any unbiased stochastic estimator of the

fermion determinant can be applied (whether based on

FIG. 1. Diagrams illustrating the four types of sampling schemes described in Sec. III. Blue circles/ellipses depict the current state of
the Markov chain. Yellow boxes depict exactly sampleable densities either produced from generative models or by Equation (16). Green
boxes correspond to Metropolis accept/reject steps using the acceptance probabilities defined in the text. Dotted lines indicate the
Markov chain, whereas solid lines correspond to the internal operations of each Markov chain step.

1Note that the pseudomarginal algorithm is not equivalent
to the sampling scheme based on stochastic estimates of
ratios [62,81], for which asymptotic exactness has not been
demonstrated.
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pseudofermions or entirely distinct). The limit of taking
arbitrarily precise estimators recovers the exact acceptance
probability in Eq. (15). Acceptance rates obtained by using
the exact form can thus be interpreted as an upper bound on
sampling performance.

B. Gibbs sampling using pðϕjφÞ; pðφjϕÞ
An alternative to modeling pðϕÞ directly is to construct

samplers for both conditional distributions pðϕjφÞ and
pðφjϕÞ and build an asymptotically exact Gibbs sampler
that alternatingly samples from these distributions to update
ϕ and φ. For such a Gibbs sampler to satisfy detailed
balance, the update to ϕ must satisfy detailed balance for
pðϕjφÞ and the update to φ must satisfy detailed balance
for pðφjϕÞ. The φ conditional can be exactly and directly
sampled as described in Eq. (16), automatically fulfilling
this requirement. On the other hand, the ϕ conditional (row
5 of Table I) can be approximated by a generative model
distribution qðϕjφÞ ≈ pðϕjφÞ. This model can be incorpo-
rated into an exact Markov chain transition for the
ϕ-conditional distribution as follows. Start with a state
ϕ, sample φ0 from pðφjϕÞ using Eq. (16), conditionally
propose ϕ0 from qðϕjφ0Þ, and then apply a Metropolis-
Hastings accept/reject step with the acceptance probability
given by

AGðϕ → ϕ0jφ0Þ ¼ min

�
1;
pðϕ0jφ0Þ
pðϕjφ0Þ

qðϕjφ0Þ
qðϕ0jφ0Þ

�
;

¼ min

�
1;
pðϕ0;φ0Þ
pðϕ;φ0Þ

qðϕjφ0Þ
qðϕ0jφ0Þ

�
: ð17Þ

This step satisfies detailed balance for the ϕ-conditional
distribution pðϕjφÞ as required and guarantees asymptotic
exactness. Note that in contrast to the ϕ-marginal sampler
described in Sec. III A, computing the acceptance proba-
bility at scale for the sampling scheme described here and
in Secs. III C and III D does not rely on unbiased stochastic
determinant estimators.
In this approach, the field φ0 is independently resampled

conditioned on ϕ at each step of the Markov chain, and
therefore does not need to be stored. This Gibbs sampler
can thus be interpreted as an exact Markov chain over ϕ
alone, with the sampling of φ0 contained inside each
Markov chain step as depicted in Fig. 1(b). The approach
closely mirrors the typical sampling strategy employed in
HMC, in which pseudofermions φ0 are sampled according
to the exact conditional distributionpðφjϕÞ andHamiltonian
evolution is used to construct an update step that satisfies
detailed balance for the conditional distributionpðϕjφ0Þ. The
generative model proposal and Metropolis-Hastings step for
pðϕjφ0Þ can thus be considered an optimizable replacement
of the molecular dynamics trajectory utilized in HMC, with
the difference that the mechanism of generating a proposal
configurationϕ0 does not directly depend onϕ (as is the case

for a symplectic integrator), but only indirectly through φ0.
However, this alsomeans that in contrast to all other schemes
described here, the Gibbs sampler is not an independence
sampler. Drawing configurations from the model and con-
structing the Markov chain cannot be done asynchronously,
since the generation of a proposal explicitly depends on the
previous element of the chain.

C. Autoregressive modeling and sampling of pðϕ;φÞ
The joint distribution pðϕ;φÞ can be autoregressively

decomposed as the product pðϕ;φÞ ¼ pðϕÞpðφjϕÞ in
terms of the ϕ marginal and φ conditional (rows 2 and 3
of Table I). A generative model for the joint distribution
could therefore be produced by approximating both com-
ponents independently, i.e., qðϕ;φÞ ¼ qðϕÞqðφjϕÞ. This
autoregressive decomposition allows the joint distribution
to be reproduced in terms of two potentially simpler
distributions. Note that although the exact sampling pro-
cedure described in Eq. (16) can be applied to draw samples
from pðφjϕÞ, computing the normalizing constant of this
φ-conditional distribution is not tractable. This is not an
obstacle when one is only interested in conditionally
sampling φ, as is the case for HMC or the approaches
of Secs. III A and III B, but motivates modeling the
distribution in the case where an approximation with a
tractable density is required.
Exactness can be straightforwardly enforced in this

approach by employing Markov chain steps in which joint
samples ðϕ0;φ0Þ are proposed independently from qðϕ;φÞ,
and a Metropolis-Hastings accept/reject step is applied for
the proposed transition ðϕ;φÞ → ðϕ0;φ0Þ according to the
acceptance probability

AAðϕ;φ → ϕ0;φ0Þ ¼ min

�
1;
pðϕ0;φ0Þ
pðϕ;φÞ

qðϕÞqðφjϕÞ
qðϕ0Þqðφ0jϕ0Þ

�
:

ð18Þ

This sampling scheme is illustrated in Fig. 1(c). Further-
more, unique reweighting factors can be tractably com-
puted for each configuration ϕ as pðϕ;φÞ=qðϕÞqðφjϕÞ,
thus reweighting approaches may also be used as alter-
natives to MCMC methods in order to guarantee exact-
ness here.

D. Fully joint modeling and sampling of pðϕ;φÞ
Rather than modeling the factors pðϕÞ and pðφjϕÞ, one

could instead apply generative models to jointly sample
the fields ϕ and φ according to a distribution qðϕ;φÞ that
directly approximates the joint distribution (row 1 of Table I).
This results in joint samples and density estimates analogous
to the autoregressive case above, but is a qualitatively distinct
approach to modeling this distribution. Exactness can be
enforced using a similar Metropolis-Hastings Markov chain
transition with acceptance probability
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AJðϕ;φ → ϕ0;φ0Þ ¼ min

�
1;
pðϕ0;φ0Þ
pðϕ;φÞ

qðϕ;φÞ
qðϕ0;φ0Þ

�
; ð19Þ

or by applying reweighting or direct resampling techniques.
This approach is illustrated in Fig. 1(d).

IV. FERMIONIC FLOWS VIA PSEUDOFERMIONS

The sampling approaches discussed above for theories
involving fermions can in principle use any generative
models that enable both efficient sampling and density esti-
mation for the relevant model distributions. Normalizing
flows are one such class of probabilistic models for which
these operations are made possible using a change-of-
variables formula [48,84,85]. Flow-based methods have
been successfully implemented to model the unnormalized
Boltzmann distributions of ϕ4 theory as well as Uð1Þ and
SUðNÞ gauge theories [51,52,54,55], opening up a wealth
of potential applications in high energy and nuclear physics
as well as condensed matter theory. For an in-depth
introduction to normalizing flows for lattice field theory
with further implementation details and explanations, we
refer the interested reader to Ref. [86]. For a general
introduction to machine learning for physicists, we rec-
ommend Ref. [87].
Below, we outline the key concepts behind flows

relevant for our approach to modeling the distributions
listed in Table I:
(1) A flow-based model consists of an invertible “flow”

f and a prior distribution with probability density
rð·Þ, which can together be used to produce
samples by first drawing z according to rðzÞ, then
returning x ¼ fðzÞ.2

(2) The Jacobian J ¼ ∂f
∂z, combined with the prior

density, allows the output probability density q to
be evaluated as

qðxÞ ¼ rðzÞ
���� det ∂f∂z

����
−1
: ð20Þ

(3) The flow f is parametrized by free model parameters
which may be optimized by minimizing a sui-
table “loss function” that quantifies the difference
between the model distribution qðxÞ and the target
distribution. A common choice also employed in
the present work is the Kullback-Leibler (KL)
divergence [88].

The remainder of this section describes how models for
each of the distributions required for sampling may be

constructed. First, a common training procedure for all
such models is described in Sec. IVA based on the idea
that each distribution aims to approximate some margin-
alization of the same joint distribution pðϕ;φÞ. This
common training procedure motivates some of the
architectural decisions for the construction of the models
described in Secs. IV B and IV C. In the following, we
label the model densities according to their corresponding
target densities in Table I as qðϕ;φÞ, qðϕÞ, qðφjϕÞ, and
qðϕjφÞ. In each sampling approach, using model distri-
butions that better approximate the associated target will
generally result in higher acceptance rates with poten-
tially lower autocorrelations.

A. Optimizing flow-based models

We first detail a procedure to optimize the model density
qðϕ;φÞ to directly approximate pðϕ;φÞ. The KL diver-
gence between these distributions is defined as

DKLðqðϕ;φÞkpðϕ;φÞÞ
¼ Eϕ;φ∼q½logðqðϕ;φÞ=pðϕ;φÞÞ�;
¼ Eϕ;φ∼q½log qðϕ;φÞ þ SBðϕÞ þ SPFðϕ;φÞ þ logZ�:

ð21Þ

It is minimized if and only if the target and model density
match, for which DKL ¼ 0. In practice, a loss function
based on this divergence is computed stochastically as

L ¼ 1

N

XN
k¼1

log qðϕk;φkÞ þ SBðϕkÞ þ SPFðϕk;φkÞ; ð22Þ

in terms of a minibatch of N samples fðϕk;φkÞgNk¼1 drawn
from qðϕ;φÞ. The unknown normalizing constant logZ has
been removed in the definition of Eq. (22), since it is just an
overall constant shift and does not affect the relevant
structure of the loss function.
If the model probability density qðϕ;φÞ can be directly

computed, we can evaluate the gradient of Eq. (22) with
respect to the model parameters defining this probability
density. Gradient-based optimization methods can then be
applied to minimize L. This training procedure is immedi-
ately applicable to the models required for the joint
sampling approaches derived in Secs. III C and III D. In
the former, the distribution qðϕ;φÞ is defined by
qðϕÞqðφjϕÞ, and this pair of model distributions is simul-
taneously optimized by minimizing the loss function in
Eq. (22). In the latter, a model for qðϕ;φÞ is directly
constructed and optimized.
The remaining distributions required in Secs. III A and

III B, namely qðϕÞ and qðϕjφÞ, do not naturally define a
joint model probability density. To optimize these distri-
butions using the loss function above, we extend the model
architectures by pairing qðϕjφÞ with a sampler qðφÞ and

2We use the generic notation z and x here to stand for
potentially high-dimensional variables acted on by the flow. In
our applications these may include boson and/or pseudofermion
field variables. Flows are described in field-theoretic notation
wherever we work with flows particular to lattice field theory
sampling.
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pairing qðϕÞ with a sampler qðφjϕÞ. The resulting joint
models can be optimized as above, and the auxiliary
components can be discarded after training. In this work,
these auxiliary models are constructed as follows.
We first consider extending the ϕ-conditional model

qðϕjφÞ to a joint model, which requires a marginal dis-
tribution qðφÞ. None of the sampling approaches presented
in Sec. III directly require this marginal distribution;
however, as we discuss further in Sec. IV C, we choose
to model qðϕjφÞ by a restricted form of a joint sampler
which simultaneously models a marginal distribution qðφÞ.
In this extended model, both qðϕjφÞ and qðφÞ are described
by parameters that are optimized.
A ϕ-marginal model qðϕÞ can be extended to a joint

sampler by pairing it with a conditional distribution qðφjϕÞ.
In principle such an auxiliary model could be constructed
solely for the purposes of training. However, in this case we
are free to instead use the exact conditional distribution
pðφjϕÞ, which can be exactly and efficiently sampled. The
result is a joint distribution defined by first sampling ϕ from
the ϕ-marginal model and then sampling the φ conditional
using Eq. (16), resulting in the joint density qðϕÞpðφjϕÞ.
Evaluating the joint KL divergence between this model
distribution and the target joint distribution pðϕ;φÞ
requires the evaluation of the normalized density pðφjϕÞ,
which unfortunately includes a normalizing factor of
detMðϕÞ. However, we only require an unbiased stochas-
tic estimator of the gradients of Eq. (22) for optimization.
Appendix C details a particular stochastic estimator for
these gradients which can be used to avoid the costly
determinant evaluation; this estimator is used for all
ϕ-marginal models trained in this work.

B. Building blocks

Flow-based models are generally constructed by com-
posing several simple, invertible transformation layers,
each described by a number of free parameters. This
composition produces an expressive overall transformation

that is nevertheless invertible and has a tractable Jacobian
determinant. Coupling layers [49] are one common choice
of simple transformation in which the degrees of freedom
of each sample are divided into two subsets and one subset
is updated conditioned on the other, “frozen” subset, as
shown in Fig. 2. A “masking pattern” describes the division
into subsets. Transformations of the updated subset are
parametrized by “context functions” accepting the frozen
subset as input, which are typically implemented using
neural networks. For example, a simple coupling layer for a
real scalar field ϕðxÞ ∈ R could be constructed based on a
checkerboard division into even/odd sites, where the field
at even sites is (invertibly) transformed by an element-wise
rescaling operation plus an additional offset. The scaling
factors and offsets are given by the output of an arbitrary
context function, which may be parametrized by a neural
network acting on the odd sites. The transformation is
applied alternatingly between even and odd sites; see
Ref. [86] for a concrete implementation of such coupling
layers. Symmetries may be incorporated in such models
using appropriate choices of masking patterns, context
functions, and transformations. Other choices of layers are
also possible (see Sec. IV B 5 below) and are similarly
encoded using generic neural networks.
The target densities defined in Table I are all invariant

under translations with appropriate boundary conditions, as
discussed in Sec. II C. Previous works have shown that
exactly incorporating known symmetries into machine
learning models can accelerate their training and improve
their final quality [89–94]. In the context of normalizing
flows, ensuring that the model density is invariant under a
symmetry group is achieved by choosing an invariant prior
distribution and building transformation layers that are
equivariant under the symmetry. Below, we introduce
several “building blocks” which are designed to handle
these symmetries. These building blocks are used in the
implementation of various layers and flow-based models
constructed in this work.

FIG. 2. Schematic overview of a coupling-layer-based flow model architecture. Masks mi and their complements m̄i ¼ 1 −mi split
the degrees of freedom into a subset to be updated and a subset that is frozen and used as input to the context function (red box), which
provide the parameters for the invertible transformation fi applied within each coupling layer gi. Here, neural networks (NN) are used to
implement the context functions. The generic variables z, xi, and xmay generally be high-dimensional field configurations in a lattice field
theory setting. Particular implementations of translationally equivariant convolutional networks are defined in Secs. IV B 1 and IV B 2.
Constructions of coupling layers with affine transformations based on these convolutional networks are defined in Sec. IV B 3.
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1. Translation-equivariant convolutions
via P fields and AP fields

The joint distribution pðϕ;φÞ given in Eq. (14) is
invariant under simultaneous field translations given by

ϕðx⃗; tÞ → ϕ0ðx⃗; tÞ ¼ ϕðx⃗ − δx⃗; t − δtÞ ð23Þ

and

φðx⃗; tÞ → φ0ðx⃗; tÞ

¼
�
φðx⃗ − δx⃗; t − δtÞ ðt − δtÞmod 2Lt < Lt

−φðx⃗ − δx⃗; t − δtÞ Lt ≤ ðt − δtÞmod 2Lt
ð24Þ

for any translations ðδx⃗; δtÞ in the translational symmetry
group of the discretized theory. In this work, we label fields
transforming as Eq. (23) as P fields, and we label fields
transforming as Eq. (24) as AP fields.3

In previous applications of flow models to sampling
configurations in lattice field theory, translational sym-
metry has been implemented for bosonic fields by applying
convolutional neural networks [95] with circular padding
(periodic boundary conditions) to generate parameters for
transformations implemented in each flow layer [51,52,59].
All input, intermediate, and output fields in these applica-
tions were P fields. As a building block for translation-
equivariant coupling layers acting on both bosonic and
pseudofermionic fields, we extend this approach to define
translation-equivariant convolutions that act on a generic
set of input P fields and AP fields, producing output fields
with a desired set of transformation properties, i.e., a
specification of whether each channel of the output should
be a P field or AP field. To implement such convolutional
neural networks, we exploit the fact that P fields and AP
fields form an algebra under pointwise addition and
multiplication and restrict the operations appropriately to
satisfy the desired output transformation properties; see
Appendix D 1 for explicit implementation details.

2. Translation-equivariant convolutions
via group averages

As an alternative to defining equivariant convolutional
neural networks, one can symmetrize a nonequivariant
architecture by explicitly averaging over the whole sym-
metry group [89]. Convolutional layers with periodic
padding in all dimensions are already equivariant under
translations of P fields and under all spatial translations of
AP fields, thus only the subgroup of temporal translations
needs to be averaged over to ensure equivariance for
AP fields. The result is a generic method to produce
convolutional neural networks with prescribed P-field
and AP-field transformation properties of each output

channel. Compared with standard convolutions or the
restricted equivariant architecture given in Sec. IV B 1,
this method requires a greater computational effort by a
factor proportional to the temporal extent of the lattice, Lt.
However, it allows us the use of unrestricted convolutional
architectures, including arbitrary activation functions and
learned biases; see Appendix D 2 for further details.

3. Affine coupling layers

Translation-equivariant networks constructed by either
of the methods discussed in Secs. IV B 1 and IV B 2 can
immediately be applied in the construction of translation-
equivariant affine coupling layers suitable for transforming
real-valued scalar fields. An affine coupling layer trans-
forms a field x to axþ b (multiplication and addition are
applied pointwise), where a and b are fields produced by
context functions acting on the frozen components of the
field x. Coupling layers, context functions, and masking
patterns are illustrated in Fig. 2; see also Ref. [86]. Using
translation-equivariant convolutional neural networks to
produce a and b, either a bosonic field or pseudofermionic
field can be updated in a translation-equivariant manner as
long as

(i) The parameters a and b are both P fields if x is a
bosonic field; or

(ii) The parameter a is a P field and b is an AP field if x
is a pseudofermionic field.

Such coupling layers can be composed to produce trans-
lation-equivariant flows.

4. Equivariant linear operators

The conditional distribution pðφjϕÞ is exactly Gaussian,
suggesting that it may be efficiently modeled by flows
based on architectures other than coupling layers. For
example, one may define a linear operator W ¼ WðϕÞ
to transform the pseudofermion fields. The model distri-
bution qðφjϕÞmay then be defined by computing φ ¼ Wχ,
where χ is drawn from the Gaussian distribution 1

ZN
e−χ

†χ ,
such that

qðφjϕÞ ¼ 1

ZN
e−φ

†ðWW†Þ−1φðdetWW†Þ−1;

¼ 1

ZN
e−χ

†χðdetWW†Þ−1: ð25Þ

To effectively use this flow model, detðWW†Þ must be
tractable to compute. In the case of a degenerate pair of
fermion flavors, the target distribution is defined by

pðφjϕÞ ¼ 1

ZN detDD† e
−φ†½DðϕÞD†ðϕÞ�−1φ: ð26Þ

While it is clearly sufficient forW to approximate D in this
case, it is in fact only necessary that WW† approximates
DD†, allowing some freedom in the learned matrix W.

3The fields ϕ and φ in Eqs. (23) and (24), and P fields and AP
fields in general, may have multiple components per site.
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We build the operator W as a composition of simple
linear operators W ¼ Wn∘…∘W1, where each Wk has
only local interactions along a fixed dimension, in a fixed
direction (that is, with only positive or negative offsets, but
not both), allowing the determinant of each matrix to be
efficiently computed. We choose to parametrize the com-
ponents of each operator Wk by two P fields, produced
from learned translation-equivariant functions of ϕ. More
specifically, we consider 2d types of operators, where each
type is defined by a sign s ¼ �1 and a choice of one of the
d lattice directions. For the two-dimensional application
described below, there are thus four distinct operator types.
The different types of operators are applied alternatingly in
the composition, but the specific order can be chosen
arbitrarily. The operator type with couplings in the spatial
direction and sign s thus updates a field χ by

ðWχÞij ¼ aijχij þ bijχiþs;j ð27Þ

with periodic boundary conditions along the space dimen-
sion: χLþ1;j ¼ χ1;j and χ0;j ¼ χL;j. An operator with
temporal couplings updates a field χ by

ðWχÞij ¼ aijχij þ bijχi;jþs ð28Þ

with antiperiodic boundary conditions along the time
dimension: χi;Lþ1 ¼ −χi;1 and χi;0 ¼ −χi;L. This construc-
tion may be understood as a convolutional layer with
appropriate boundary conditions and an additional con-
straint on the kernel to have nonzero entries only in the
center and at one of the 2d adjacent sites.
With these definitions, each operator Wk is block

diagonal (for a suitable choice of basis). Each block is
of the form

2
666664

a1 �b1
b2 a2 0

… …

0

bL aL

3
777775
; ð29Þ

where we have dropped a (spatial or time) index to simplify
the notation. The determinant of each block is simply
Πhah � Πhbh, indicating that the Jacobian determinant
associated with the full composition can be tractably
computed.

5. Convex potential flows

Because of the nonlocal nature of the effective action, we
consider an alternative flow architecture to produce a model
distribution qðϕÞ approximating pðϕÞ. Convex potential
flows (CPFs) are normalizing flows defined via the
gradients of a potential that is strongly convex and twice
differentiable almost everywhere [96,97]. Strong convexity

of the potential on a convex support X guarantees the flow
to be invertible on X , and this family of normalizing flows
can be shown to be a universal density approximator [97].
We can parametrize strongly convex functions by neural
networks with mild constraints on their architecture and
weights [98].
More specifically, given a convex potential function

u∶X → R, we define the map

½fðzÞ�i ¼
∂
∂zi uðzÞ; ð30Þ

where the index i specifies how each degree of freedom of z
is mapped. Starting from a base density rðzÞ, the resulting
probability density produced by mapping through f follows
from Eq. (20) as

qðxÞ ¼ rðzÞ detHuðzÞ−1; ð31Þ

where x ¼ fðzÞ and HuðzÞ ¼ ∂2
∂zi∂zj uðzÞ is the Hessian

matrix of uðzÞ. Training by minimizing the KL divergence
DKLðqkpÞ between the model q and a target density p only
requires the gradients ∇θ log detHuðxÞ with respect to the
model’s parameters θ. Since the Hessian is symmetric and
positive definite for strongly convex potentials, we can
directly employ a stochastic trace estimator [97,99],

∇ log detHuðxÞ ¼ ∇Tr logHuðxÞ;
¼ Tr½HuðxÞ−1∇HuðxÞ�;
¼ E

χ∼e−χ†χ ½ðH−1
u ðxÞχÞ†∇HuðxÞχ�: ð32Þ

The sample mean over noise vectors χ can be used to
estimate this quantity in practice, and the inverse Hessian
applied in HuðxÞ−1χ can be efficiently computed by the
application of the conjugate-gradient method. Note that this
estimator only requires the computation of Hessian-vector
products Hχ, which is particularly convenient when the
Hessian is sparse.
CPFs can be straightforwardly applied to construct flows

that sample bosonic fields ϕ. They can also be constrained
to be translation equivariant by using appropriate convo-
lutions. In contrast to coupling layers, the CPF potential is a
scalar function based on global information, which may
result in transformations of the field ϕ that can in general be
quite nonlocal. Evaluating the model probability density for
use in asymptotically exact Markov chains requires a
precise approximation of the log-det Hessian to avoid
systematic errors. An exact calculation of the determinant
is feasible only for small lattice volumes. For larger field
configurations, one could apply a more scalable estimator,
such as the estimator based on Lanczos tridiagonalization
and the quadrature method described in Ref. [100].
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C. Flow models

We next define particular architectures for modeling
each of the distributions required for the four sampling
approaches introduced in Sec. III. While the space of
possible architectures that may be defined from the build-
ing blocks of Sec. IV B is large and the present discussion is
not exhaustive, the use of each sampling method and each
building block is demonstrated at least once. The archi-
tectures for each approach detailed in this section are
summarized in Fig. 3.

1. Modeling pðϕÞ for ϕ-marginal sampling

The ϕ-marginal sampler defined in Sec. III A requires a
flow whose model distribution qðϕÞ approximates pðϕÞ.

Such a flow only needs to manipulate P fields. We build this
ϕ-marginal model using a composition of CPF layers,
where the output of each layer is defined by computing the
gradient of a potential uið·Þ (see Sec. IV B 5). These layers
act on samples ζ drawn from some base distribution rpðζÞ.
Figure 3(a) depicts this type of ϕ-marginal architecture
defined by a composition of CPFs acting on ζ. Each ui
contributes a determinant factor detH−1

ui to qðϕÞ in terms of

the Hessian Hab
ui ¼ ∂2uiðzÞ∂za∂zb , such that

qðϕÞ ¼ rpðζÞ
Y
i

detH−1
ui : ð33Þ

As discussed in Sec. IVA, this marginal model is extended
to the joint density qðϕ;φÞ ¼ qðϕÞpðφjϕÞ for training.

(a)

(b)

(c)

(d)

FIG. 3. Architectures for the flow-basedmodels defined in Sec. IV C for each sampling approach. Note that each coupling layer gpk or g
ap
k

employs masking of the updated field as shown in Fig. 2, such that the frozen components of the field are included as input to context
functions. Superscripts on coupling layers indicate the translational equivariance structure of coupling layer inputs and outputs (either
consistently transforming as P fields or AP fields). Many other choices of architectures are possible to model each distribution; the figure
reflects the choices utilized in the numerical study undertaken in Sec. VA. (a) ϕ−Marginal architecture based on convex potential flows
(Sec. IV C 1), (b) Fully joint architecture for qðϕ;φÞ based on coupling layers (Sec. IV C 4), (c) ϕ−Conditional model qðϕ;φÞ dened via a
restricted joint architecture (Sec. IV C 2), and (d)AutoregressivemodelqðϕÞqðφjϕÞ defined via coupling layers and linear flows (Sec. IV C 3).
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The density cannot be computed efficiently due to the
determinants involved in the definition of qðϕÞ as well as
in the normalizing constant of pðφjϕÞ, but the flow is
nevertheless trainable using stochastic estimates of the
gradients. For sampling, the joint density itself may also
be estimated using stochastic approximations of the deter-
minant factors.
The architecture of the convex potential network uðϕÞ is

based on Ref. [97] and is modified appropriately to account
for the periodic boundary conditions. It consists of K layers
of convolutions of the form

h1 ¼ L1ðϕÞ;
hkþ1 ¼ Lþ

k ðSoftPlusðActNormðhkÞÞÞ þ LkðϕÞ;

uðϕÞ ¼ w1SumðhKÞ þ w2

kϕk2
2

; ð34Þ

where Lj is a convolution layer with periodic boundary
conditions and unconstrained weights; Lþ

j is a convolution
layer with periodic boundary conditions and positive-only
weights; SoftPlusðxÞ ¼ logð1þ expðxÞÞ; ActNormðxÞ ¼
ðx − μÞ=σ is a layer that normalizes its inputs using a
learnable offset μ and scale σ, where μ and σ are initialized
as the mean and standard deviation of the inputs of an
initialization batch [101]; w1, w2 are learnable weights used
to control closeness of the flow to the identity map at
initialization. The use of periodic boundary conditions for
Lj and L

þ
j and the final Sum operation ensures that uðϕÞ is

invariant to translations.

2. Modeling pðϕjφÞ for Gibbs sampling

Section III B describes a Gibbs sampling scheme that
utilizes the exact conditional pðφjϕÞ and a modeled
conditional density qðϕjφÞ. A φ-marginal model qðφÞ is
required to extend qðϕjφÞ to the joint distribution
qðϕjφÞqðφÞ for training. We achieve this simultaneous
modeling of qðϕjφÞ and qðφÞ by using a fully joint
architecture with restricted information flow, as shown in
Fig. 3(c). The model consists of a prior distribution over the
base configurations ζ, χ denoted by rpðζÞ and rapðχÞ,
followed by the application of two types of affine coupling
layers. First, the layers gpk ð·; χkÞ update the P-field con-
figuration conditioned on the AP field, along with the
frozen components of ζk, to produce qðϕjφÞ as

qðϕjφÞ ¼ rpðζÞ
Y
k

det J−1gpk
; ð35Þ

where Jgpk is the Jacobian for coupling gpk . Second, the

couplings gapk ð·Þ transform the AP field χ conditioned solely
on its frozen components to obtain qðφÞ:

qðφÞ ¼ rapðχÞ
Y
k

det J−1gapk
: ð36Þ

To conditionally resample ϕ from qðϕjφÞ while leaving
φ unchanged, the bosonic prior variable is resampled and
the output of the flow is reevaluated while holding the
pseudofermionic prior variable χ fixed. When φ is
resampled from pðφjϕÞ in the alternate step of the
Gibbs sampler, it is important to update the value of χ
by passing φ through the inverse of the bottom branch of
the flow depicted in the figure. This allows future resam-
pling of ϕ as well as the calculation of the conditional
probability density defined by the model.

3. Autoregressive modeling of pðϕ;φÞ= pðϕÞpðφjϕÞ
Section III C defines an independence sampler based

on an autoregressive joint model with the probability
density given by qðϕ;φÞ ¼ qðϕÞqðφjϕÞ. We implement
qðϕÞ using masked affine coupling layers, as was done in
Refs. [51,54,55]. The parameters of the affine coupling
layers are given by convolutional networks satisfying
translational equivariance through standard periodic boun-
daries. We implement qðφjϕÞ using a deep linear flow
consisting of learned linear operators WkðϕÞ as detailed in
Sec. IV B 4. The parameters of these linear operators are all
P fields obtained by similar periodic convolutional net-
works. The full joint model is given by the autoregressive
combination of these two models, i.e., drawing ϕ from the
affine model with distribution qðϕÞ, then drawing φ from
the conditional deep linear flow with distribution qðφjϕÞ,
as shown in Fig. 3(d). The marginal model is defined by
sampling ζ from the prior distribution rpðζÞ, then applying
the sequence of coupling layers gpk ð·Þ such that the marginal
model probability density qðϕÞ is given by

qðϕÞ ¼ rpðζÞ
Y
k

det J−1gpk
: ð37Þ

The conditional linear flow is defined by sampling χ from
the prior distribution rapðχÞ and applying the linear oper-
ators WkðϕÞ to obtain the model density

qðφjϕÞ ¼ rapðχÞ
Y
k

1

detWkW
†
k

: ð38Þ

We define rapðχÞ ¼ 1
ZN

e−χ
†χ to match the choice for the

linear operator flow in Eq. (25).
Note that the learned components in this approach may

also be combined in novel ways. For example, it is possible
to discard the conditional flow with distribution qðφjϕÞ
after training and simply use qðϕÞ for ϕ-marginal sampling
as described in Secs. III A and IV C 1. This may be
advantageous in situations where gradients from an exactly
sampleable distribution are not available and training must
be fully variational. On the other hand, the conditional deep
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linear flow may be used by itself as a determinant estimator
for given configurations ϕ.

4. Fully joint modeling of pðϕ;φÞ
Finally, we construct a model that simultaneously

samples ϕ and φ in a fully joint approach which can be
employed in the exact sampler defined in Sec. III D. The
joint model implemented in this work is constructed from
affine coupling layers that alternatingly transform the
bosonic fields conditioned on the pseudofermionic fields,
and vice versa, as shown in Fig. 3(b). The model is defined
to sample ζ and χ from the prior distributions rpðζÞ, rapðχÞ
and subsequently apply alternating layers. Coupling layers
gpk ð·; χkÞ transform the P-field base configuration ζ con-
ditioned on its frozen components and the AP-field con-
figuration χk, while couplings g

ap
k ð·; ζkÞ update the AP-field

base configuration χk conditioned on its frozen components
and ζk. This gives rise to the joint density

qðϕ;φÞ ¼ rpðζÞrapðχÞ
Y
k

det J−1gpk
det J−1gapk

: ð39Þ

V. APPLICATION TO A SCALAR YUKAWA
THEORY IN TWO DIMENSIONS

As a demonstration, we implement the sampling algo-
rithms defined above for a two-dimensional model of a
scalar field coupled to fermions via a Yukawa interaction.
This model provides a testbed which features fermionic
fields, but without the additional complications brought on
by gauge symmetry. Apart from providing a suitable test
case for the development of flows capable of modeling
fermions, studying Yukawa interactions is also interesting
in its own right, e.g., for Higgs physics [102] or the quark-
meson model [103].

A. Yukawa theory on the lattice

We consider a real, scalar field ϕ coupled to one mass-
degenerate pair of Kogut-Susskind staggered fermions
[78]. We emphasize that our method can in principle be
straightforwardly applied to other discretization schemes,
such as Wilson fermions, without additional conceptual
difficulties.
The action for this theory is defined as Sðψ ; ψ̄ ;ϕÞ ¼

SBðϕÞ þ SFðψ ; ψ̄ ;ϕÞ [see Eq. (1)]. For the scalar field we
choose the usual discretized Klein-Gordon action with
quartic self-interaction, defined by

SBðϕÞ ¼
X
x∈Λ

�
−2

Xd
μ¼1

ϕðxÞϕðxþ μ̂Þ

þ ðm2 þ 2dÞϕðxÞ2 þ λϕðxÞ4
�
; ð40Þ

where Λ denotes the set of lattice sites, m the bare scalar
mass parameter, λ the coupling, and d the dimension. The
fermionic action SF is defined by the bilinear form in
Eq. (2) with Nf ¼ 2 and both fermion flavors are defined
by the discretized Dirac operator

Dxy ¼
Xd
μ¼1

ημðxÞ
δðx − yþ μ̂Þ − δðx − y − μ̂Þ

2

þ δðx − yÞðmf þ gϕðxÞÞ; ð41Þ

wheremf is the bare mass of the fermion and g the Yukawa
coupling. The staggered factor ημ is obtained from the
Dirac γ matrices after the staggered transformation and is
defined as

η1ðxÞ ¼ 1 and ηlðxÞ ¼ ð−1Þx1 � � � ð−1Þxl−1 : ð42Þ

The Kronecker δ is defined to have antiperiodic boundary
conditions in the time direction (conventionally taken to be
μ ¼ d) and periodic boundary conditions in the spatial
directions, i.e.,

δðxÞ ¼
Yd
μ¼1

δμðxμÞ ð43Þ

where

δμ≠dðxμÞ ¼
�
1 if xμ ¼ 0;�L

0 otherwise

and δdðxdÞ ¼
8<
:

1 if xd ¼ 0

−1 if xd ¼ �Lt

0 otherwise

: ð44Þ

We employ an even-odd preconditioning scheme for the
Dirac operator for all models except for the autoregressive
model using linear operators. In contrast to the default
lexicographic ordering, sorting lattice sites into even and
odd allows to bring the matrix into a form that is amenable
to an explicit block factorization of the determinant, which
leads to improvements in the conditioning and solver
performance. This reduces the variance and cost of com-
puting the pseudofermion action required for optimizing
models and sampling. Most previous work on improved
orderings has focused on techniques for Wilson fermions in
the context of gauge theory [71,73,104], but the same
insights can be applied to the staggered fermion formu-
lation used in this work, as detailed in Appendix B.
All results reported in this work are computed on a

16 × 16 lattice geometry using the two choices of action
parameters in the symmetric phase given in Table II. For
this theory and lattice discretization, there is no additive
renormalization to the bare fermion mass mf. Accordingly,
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we directly probe the case of vanishing mass by setting
mf ¼ 0. The first set of parameters, for which the Yukawa
coupling is chosen to be g ¼ 0.1, already provides a
realistic test scenario in the sense that the average ratio
of fermionic to scalar force magnitudes is around 3%,
which is similar to the ratio of fermionic to gauge forces
reported in the literature for some lattice QCD computa-
tions; see e.g., Refs. [105,106]. The second choice with
g ¼ 0.3 features a much larger force ratio amounting to
about 39%, which thus provides a testbed for theories with
more prominent fermionic effects. For simplicity, we will
refer to these two parameter choices by the associated value
of the Yukawa coupling g.
To evaluate the performance of the sampling approaches

presented here, we consider the following quantities and
observables. The magnetization of a scalar field configu-
ration is defined as

M ¼ 1

V

X
x∈Λ

ϕðxÞ: ð45Þ

We measure the average absolute value hjMji, which
provides a nonzero order parameter that is large in the
broken symmetry phase and exponentially suppressed in
the symmetric phase. The connected two-point correlation
function of ϕ is defined as

Cϕðx; yÞ ¼ hϕðxÞϕðyÞi − hϕðxÞihϕðyÞi; ð46Þ

where we fix hϕðxÞi ¼ hMi ¼ 0 analytically. We evaluate
the source-averaged correlator projected to zero momentum
defined by

CϕðtÞ ¼
1

V

X
x

X
y⃗

Cðx; xþ ðy⃗; tÞÞ: ð47Þ

Fermionic observables can be computed from the matrix
elements of the inverse Dirac operator. The chiral con-
densate of the fermion field is defined by

hψ̄ψi ¼
�
1

V
TrD−1

	
; ð48Þ

and we measure hjψ̄ψ ji as for the magnetization. Using the
off-diagonal matrix elements, we also evaluate the average
fermionic two-point correlator in the time direction,

CψðtÞ ¼ hψðyÞψ̄ð0Þi ¼ hD−1
y;0i; ð49Þ

where y ¼ ð0⃗; tÞ with t odd. The particular choices of
offsets y select staggered spinor components at the sink
ψðyÞ that result in a nonzero average correlation function
originating from the source ψ̄ð0Þ.

B. Model architectures

For each of the four sampling approaches outlined in
Sec. III and corresponding model architectures detailed in
Sec. IV C, we create specific models for both choices of
target action parameters given in Table II:

(i) For the sampling scheme described in Sec. III A, we
construct a CPF model defining a ϕ-marginal dis-
tribution qðϕÞ approximating the corresponding
pðϕÞ. The model architecture and training follow
the generic procedure outlined in Sec. IV C 1.

(ii) To build a conditional model qðϕjφÞ for the Gibbs
sampler described in Sec. III B, we implement a
restricted affine coupling layer flow as described in
Sec. IV C 2. To achieve translational equivariance,
we employ the method of group averages described
in Sec. IV B 2 for each convolutional network.

(iii) To produce an autoregressive joint model density
qðϕ;φÞ ¼ qðϕÞqðφjϕÞ for the sampling scheme
described in Sec. III C, we use a model consisting
of affine coupling layers followed by learned
equivariant linear transformations as described in
Sec. IV C 3.

(iv) For the fully joint sampling scheme described in
Sec. III D, we implement a model with unrestricted
affine coupling layers acting on both ϕ and φ, using
translation-equivariant convolutions as described
in Sec. IV B 1. This results in a fully joint model
distribution qðϕ;φÞ as detailed in Sec. IV C 4.

The models are optimized for each approach based on the
joint KL divergence discussed in Sec. IVA. Prior distri-
butions for the initial P-field ζ and AP-field χ, where they
are used according to Fig. 3, are Gaussians of the form

rpðζÞ ¼
1

Zζ
e−ζ

†ζ=ðσζÞ2 ;

and rapðχÞ ¼
1

Zχ
e−χ

†χ=ðσχÞ2 ; ð50Þ

with specific values of σζ and σχ for each model chosen to
enhance the training stability.
Details of the model hyperparameters and training

procedure for each of the models can be found in

TABLE II. The two parameter choices for our reported numeri-
cal studies and the associated average absolute magnetization and
chiral condensate computed with HMC. All uncertainties re-
ported in this work are obtained using data blocking to account
for autocorrelations and applying the statistical jackknife method.
Force ratios are determined by dividing the average L2 norms of
fermionic and bosonic force vectors.

V m2 λ g mf hjMji hjψ̄ψ ji Force ratio

162 −4.00 6.0 0.1 0 0.0733(1) 0.0159(1) 3%
162 −1.55 2.4 0.3 0 0.0791(1) 0.0490(1) 39%
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Appendix A. An exhaustive search over the available
parameter space is beyond the scope of the present work,
and as such it can be expected that tuning the various model
hyperparameters may further improve the reported perfor-
mance metrics.

C. Discussion and comparison of sampling schemes

After optimization, we use each of the models to
construct asymptotically exact samplers for their respective
target distributions according to the four schemes given in
Sec. III. For each case, we produce 100 distinct Markov
chains consisting of 10k steps each, of which the first 1k
steps are discarded for thermalization. These Markov
chains are used for observable measurements and to
investigate and compare metrics of the efficiency of
sampling via each of these methods.
First, we confirm that each of the observables described

above are measured to be consistent across sampling
schemes and with HMC baseline results. Calculations of
hjMji and hjψ̄ψ ji using each of the generated ensembles are
detailed in Table III and are all consistent with the results
obtained through HMC. The scalar and fermionic two-
point correlators produced by the four exact Monte Carlo
sampling schemes models are also consistent with the
HMC baseline, as shown in Figs. 4 and 5.
For the various sampling approaches, Table III compares

the autocorrelations of the magnetization and chiral con-
densate, as well as the Markov chain acceptance rates.
Given a chain of N measurements for some real-valued
observable X, its autocorrelation function is defined as

ΓXðτÞ ¼
1

N − τ

XN−τ

i¼1

XiXiþτ − hXi2; ð51Þ

where τ denotes the number of Markov chain steps
separating the pair of measurements considered. The
integrated autocorrelation time for observable X is given as

τintX ¼ 1

2
þ lim

τmax→∞

Xτmax

τ¼1

ΓXðτÞ
ΓXð0Þ

: ð52Þ

The sum can be truncated at a sufficiently large τmax due to
the exponential suppression of ΓXðτÞ; 1 ≪ τmax ≪ N
should be satisfied to ensure that the values of ΓXðτÞ are
reliable. For the τint values reported in this work, we use the
Madras-Sokal windowing procedure [108] to choose a
suitable τmax by identifying the earliest point where
cτint ≤ τmax, with c ¼ 10. The integrated autocorrelation
times τintM and τintψ̄ψ are given in Table III together with the
mean acceptance rates for all four sampling procedures.
To understand the relative performance of the four

sampling approaches detailed in Table III, we note that
the dependence of the acceptance rate and autocorrelations
on model quality is quite distinct in several of these
approaches. For one, the ϕ-marginal sampler involves an
exact determinant measurement in the sampling step used
for the numerical study above, which is not expected to
scale efficiently. If replaced with the pseudomarginal
estimator discussed in Sec. III A, the variance of the noisy
estimates of each determinant would degrade the statistical
performance achieved by even an optimally trained model
and improved estimators, in particular when encountering
large condition numbers. This is an obstacle to working
with light fermion masses or field configuration geometries
with many lattice sites (e.g., near the thermodynamic limit)
independent of the challenge of training accurate model
approximations to the target distribution. Thus, the rela-
tively higher acceptance rates and lower autocorrelation
times achieved by the ϕ-marginal sampler constructed from
CPFs in this study must be contrasted against the poten-
tially difficult scaling challenges or requirements for more
precise stochastic estimators in this approach. By compari-
son, there is no nontrivial upper bound on the acceptance
rate of the other three sampling approaches, and they will

TABLE III. Sampling performance metrics and observables for all approaches, computed from 100 Markov chains with 10k proposals
each, where the first 1k are discarded for thermalization. For each model, the first row shows results obtained for g ¼ 0.1 and the second
row for g ¼ 0.3, respectively. For comparison, the values obtained with HMC listed in Table II are consistent with the measurements
from our models. Autocorrelation times τint are computed for each of the 100 chains and then averaged, and errors are obtained with
statistical jackknife. The results are discussed in more detail in Sec. V C. All models except the autoregressive make use of even-odd
preconditioning of the action.

MCMC approach Modeled targets Flow model Acceptance rate hjMji hjψ̄ψ ji τintM τintψ̄ψ

ϕ-marginal (III A) pðϕÞ IV C 1 92% 0.0734(1) 0.0159(1) 0.72(1) 0.71(1)
92% 0.0792(1) 0.0491(1) 0.67(1) 0.67(1)

Gibbs (III B) pðϕjφÞ IV C 2 60% 0.0735(1) 0.0160(1) 2.02(4) 2.02(3)
44% 0.0792(1) 0.0490(1) 2.74(4) 2.73(4)

Autoregressive (III C) pðϕÞ; pðφjϕÞ IV C 3 53% 0.0731(1) 0.0159(1) 2.16(3) 2.16(3)
43% 0.0790(1) 0.0489(1) 3.62(7) 3.60(7)

Fully joint (III D) pðϕ;φÞ IV C 4 37% 0.0733(1) 0.0159(1) 4.98(11) 4.98(11)
31% 0.0791(1) 0.0490(1) 8.73(30) 8.67(30)
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FIG. 5. Average fermionic two-point correlation in the time direction for each model and choice of action parameters using the same
configurations and data blocking as for Fig. 4. Left: g ¼ 0.1, right: g ¼ 0.3. The choice of odd t selects staggered spinor components at
the sinks that give a nonzero average correlation with the source at x ¼ 0. Shaded regions in the bottom panel again depict the 1σ and 2σ
uncertainties of the HMC baseline results.

FIG. 4. Connected two-point correlation functions of the scalar field (projected to zero spatial momentum in each time slice t) for each
model and choice of action parameters, computed from 100 Markov chains with 9k configurations each. Error estimates are obtained
using data blocking with a bin size of 100 and applying statistical jackknife. Left: g ¼ 0.1, right: g ¼ 0.3. Bottom panels show the ratio
of each data point to the HMC baseline, where the shaded regions correspond to the 1σ and 2σ uncertainty bands of the HMC results. For
both the scalar correlators here and the fermionic ones in Fig. 5, Hotelling’s t-squared statistic [107] comparing each flow model result to
the HMC baseline finds results to be consistent with correlated statistical fluctuations.
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achieve an acceptance rate of 100% when perfect model
distributions are constructed.
Among these three approaches, the Gibbs sampler must

also be further contrasted against the autoregressive and
fully joint samplers. In particular, the remaining conditional
structure of updates to ϕ and φ in the Gibbs sampler results
in autocorrelations even if the acceptance rate is 100%. The
magnitude of these residual autocorrelations may be small,
but nevertheless puts a bound on the performance that is
theoretically achievable by a Gibbs sampler, even in the
asymptotic limit of perfect models of the involved distri-
butions. Thus only joint models (either autoregressive or
fully joint) can completely eliminate autocorrelations in the
ideal limit of perfect models. In practice, however, the
distinctions between joint models and Gibbs sampling may
be minor. For example, the results presented in Table III
demonstrate that at the similar acceptance rates of roughly
40%–50% for the Gibbs and autoregressive samplers, the
integrated autocorrelation times for the magnetization and
condensate are similar, despite the additional autocorrela-
tions introduced by the particular conditional structure of
the Gibbs sampling scheme. The fully joint sampler shows
a lower acceptance rate and greater autocorrelations,
indicating that the differences are largely based on the
model approximation qualities.
The particular flow-based models implemented to

approximate the various distributions used for the four
sampling approaches also have distinct scaling prospects. It
has been found in previous work [55] that flows based on
coupling layers using convolutional networks may be
easily transferred between different lattice volumes and
thereby trained efficiently. This generalizability applies to
the affine coupling layer implementations used for the
Gibbs, autoregressive, and fully joint samplers described in
this work. The CPF implementation for ϕ-marginal sam-
pling is also based on convolutional networks for the
construction of the convex potentials, thus enabling effi-
cient measurements of these potentials at all lattice vol-
umes. However, in this case computing the Jacobian of the
transformation to calculate qðϕÞ is potentially expensive,
because it requires the evaluation of the Hessian of each ui.
Stochastic estimation of these Hessian factors may intro-
duce additional noise in exact sampling schemes based on
these particular flow architectures.
These results numerically demonstrate the effectiveness

of our proposed flow models and sampling schemes. The
observed performance differences cannot immediately be
attributed to inherent advantages of the chosen building
blocks, but may also depend strongly on the model
implementation details and theory-specific characteristics.
The situation may also be quite different for larger volumes
and dimensions as well as other types of fields and
interactions, and disentangling the effects of implementa-
tion details from asymptotic scaling properties will be the
subject of future research. Furthermore, there is a large

space of possible combinations of the building blocks
introduced here that could be explored in future work to
determine models that may have more efficient training,
sampling, and scaling prospects. While an exhaustive
search over this space is beyond the scope of this
exploratory work, the present results serve as a guide for
the design of custom flows for lattice simulations with
dynamical fermions in other applications.

VI. APPLICABILITY TO UPDATE-BASED
APPROACHES

While the sampling schemes presented in this paper are
based on the independent proposal of new field configu-
rations (except for the Gibbs sampler; see Sec. V for further
discussion), the flow-based models defined here may also
be used in methods that instead propose configuration
updates, rather than independent samples. A simple way to
achieve this with our architectures would be to formulate
stochastic processes in the flow prior that guarantee
asymptotic exactness under the target distribution, such
as partial heatbath resampling, HMC, or Langevin-type
algorithms, rather than independently drawing a completely
new prior sample in every update step; such partial updates
have previously been studied in the context of other gen-
erative models [96,109,110] as well as trivializing map
approaches [111,112]. In contrast to these update-based
methods, direct sampling approaches have the advantage
that autocorrelations in the flow-based Markov chain are in
principle eliminated for an ideal model. Imperfect models,
however, can still result in residual correlations caused by
rejections in the Metropolis step. Whether these residual
correlations from an imperfect model can outweigh the
autocorrelations in corresponding update-based methods is
an open question, the answer to which may also depend
strongly on the model details and the specific problem
under consideration.
Apart from devising modified sampling schemes for the

types of flows presented in this work, one may also con-
sider defining flows that directly transform configurations
in order to produce proposals for Markov chain updates.
Related work on learning improved HMC-like updates
includes A-NICE-MC [57], its recent application to the
lattice simulation of scalar ϕ4 theory [59], L2HMC [58],
and DLHMC [60], which was demonstrated to successfully
mitigate topological freezing in the context of Uð1Þ lattice
gauge theory in two dimensions. These approaches require
the implementation of flows suitable for transforming
the primary fields and conjugate momenta conditioned
on each other. The flows over pseudofermion variables
developed in this work can therefore be used to extend such
methods to the setting of lattice field theory involving
dynamical fermion fields. These insights may also inform
the design of novel building blocks for the self-learning
Monte Carlo method mentioned in the introduction, which
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was recently applied to non-Abelian gauge theory with
dynamical fermions [47].

VII. SUMMARY AND OUTLOOK

In this paper, we introduce four approaches to applying
flow-based sampling to fermionic lattice field theories
based on different decompositions of the joint action over
bosonic and pseudofermionic fields. All approaches satisfy
detailed balance and thus provide asymptotically exact
sampling schemes. We further introduce several techniques
to model the distributions required in these sampling
approaches, including the construction of flow-based mod-
els satisfying the more complex translational symmetry
group arising from the pseudofermion boundary conditions
(which must be antiperiodic in time). All four sampling
methods are demonstrated to successfully produce asymp-
totically exact samplers in a proof-of-principle application
to a two-dimensional Yukawa theory.
The flow-based model architectures presented here

represent a selection from a large class of possible ways
to model the distributions required for the four sampling
methods detailed in this work. The observed relative
performance of the methods in the application to the
Yukawa theory provides a starting point for understanding
the distinctions between these sampling approaches and
architectures, but should not be considered a definitive
indicator of the performance of these approaches or
architectures in the context of other theories or at larger
scales. Applying these methods to QCD will require future
work to understand the scaling of the method with lattice
volume, spacetime dimension, and with the involvement of
gauge fields.
Importantly, investigating the continuum limit of flow-

based samplers is relevant to determine their potential to
mitigate critical slowing down. This question arises with or
without fermions, and empirical studies are required to
understand the scaling of these methods both for fermionic
and purely bosonic theories. Nonetheless, the “building
blocks” of flows suitable for fields including pseudofer-
mions, and the sampling strategies outlined in this work,
provide the basis for developing efficient flow-based
samplers for fermionic theories.
Continued work into improved stochastic approxima-

tions of determinants [83,113–118] complements the
flow-based sampling approach presented here. Such devel-
opments may be combined with our proposed flow-based
sampling framework. For example, most flow-based sam-
plers constructed in this work were designed to target the
action after the application of even-odd preconditioning, a
standard improvement technique for the fermionic deter-
minant. Other preconditioners for the action may also be
applied to increase the performance of flow-based samplers
for these theories. Furthermore, improvements to unbiased
stochastic estimates of fermionic determinants may
increase the efficiency of the ϕ-marginal sampler at scale.

In summary, this work sets the stage for flow-based
sampling of lattice field theories with fermions and paves
the way towards an application of generative neural
samplers to lattice QCD with dynamical quarks and similar
problems in condensed matter theory. The next steps in this
endeavor are the transfer of insights gained from the
Yukawa model studied in this work to interactions between
fermions and gauge fields, and the study of the scalability
of the method. If they can be achieved, high quality flow-
based models at the scale of state-of-the-art calculations
may be able to circumvent the limitations of traditional
sampling algorithms, thereby expanding the frontiers of
lattice QCD and other lattice field theories.
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APPENDIX A: MODEL AND TRAINING DETAILS

This section lists all necessary details to reproduce the
flow architectures discussed in Sec. V B for the application
to the two-dimensional Yukawa theory studied in this work.
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In particular, all relevant model and training hyperpara-
meters are given in Table IV. Additional peculiarities of the
linear operator and fully joint model implementations not
listed in the table are discussed below. Furthermore, we
provide references for the elementary machine learning
components used in the implementation and optimization.
All models are trained using the well-known Adam

optimizer [121] with default settings. In some cases,
clipping of the gradient value and norm was employed
to stabilize training [122]. The deep neural networks
providing the context functions and convex potentials in
the flow architectures are implemented exclusively in terms
of convolutional networks with several hidden layers and
channels [95]. The nonlinear activation functions employed
in these networks are the rectified linear unit (ReLU) [123],
in particular the LeakyReLU variant [124], as well as the
SoftPlus function in the case of the CPF layers, as detailed
in Sec. IV C 1. In some cases, an additional Tanh activation
is applied to the output of each network, as specified in
Table IV.
For all experiments in this work using the CPF archi-

tecture, we set w1 ¼ 5 × 10−3 and w2 ¼ 1 at initialization
[cf. Equation (34)] and all convolutional layers use a stride
of 1.
As detailed in Sec. VA, even-odd preconditioning of the

Dirac matrix is not applied for the autoregressive archi-
tecture with linear operators, as we observe that the model
gives a better approximation to the nonpreconditioned
action with standard lexicographic ordering. The space
of possible model adjustments to make the even-odd
decomposition compatible with linear operators is large,
and modifications could be explored to improve the results.
The conditional density qðφjϕÞ is implemented using the
composition of 128 equivariant linear operators fWkg128k¼1.
The 128 linear operators are jointly defined by the stacking

of a single squeezing layer breaking invariance under odd
translations as explained in Appendix D 1, followed by a
convolutional network with periodic boundary conditions.
This network features 10 hidden layers with 64 channels
each and uses intermediate LeakyReLU activations. In
total, the network has 256 output channels, with each pair
of output channels providing the values of a and b in the
definition of one of the 128 linear operators. The a output is
additionally transformed using a normalized SoftPlus
function. We also find it useful to add an L2 regularization
loss for both outputs, with a weight of 10−5.
For the fully joint model, active components of the scalar

field are transformed using its frozen components as well as
the pseudofermion field. The updated scalar field together
with the frozen pseudofermion components are then used to
update the active pseudofermion sites.

APPENDIX B: EVEN-ODD PRECONDITIONING

Ordering lattice sites into even and odd subsets allows
writing the Dirac matrix D as a 2 × 2 block matrix of the
form

D ¼
�
mf þ gϕo Doe

Deo mf þ gϕe

�
≡

�
A B

C D

�
; ðB1Þ

where we denote the blocks as A, B, C, D for simplicity.
The constant blocks B ¼ Doe and C ¼ Deo couple odd to
even sites and vice versa, and ϕo and ϕe indicate the
components of ϕ, respectively, associated with odd and
even sites of the lattice. This form allows a more efficient
stochastic approximation of the determinant by decompos-
ing it into the determinant of either diagonal block and the
associated Schur complement as

TABLE IV. Model and training hyperparameters for all architectures discussed in Sec. V B. Further details and references are provided
in Appendix A, in particular the specifics of the linear operators for the joint autoregressive model that are not listed here.

Model parameters ϕ marginal Gibbs Autoregressive Fully joint

Flow layers 3 16 12 12
Convolutions per layer 4 3 10 6
Number conv channels 16 32 64 64
σζ 0.34 0.1 0.34 0.34
σχ � � � 0.1 0.15 0.15
Kernel size 3 3 3 3
Activations (inner / final) SoftPlus/� � � LeakyReLU/Tanh LeakyReLU/� � � LeakyReLU/Tanh

Training parameters
Gradient steps 500k 30k 200k 50k
Batch size 3072 2000 3072 3072
Learning rate schedule 10−3, 10−4

after 80k
10−3, 10−5

after 20k
10−4, 2 × 10−5

after 60k, 10−5

after 120k

3 × 10−4, 6 × 10−5

after 30k

Gradient clipping
(value / norm)

10=32 � � �/� � � 10=32 10=1000
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detD ¼ detðAÞ detðD − CA−1BÞ;
¼ detðAC−1D − BÞ detðCÞ; ðB2Þ

or, equivalently,

detD ¼ detðDÞ detðA − BD−1CÞ;
¼ detðDB−1A − CÞ detðBÞ: ðB3Þ

Rewriting from the first to the second form in Eqs. (B2)
and (B3) ensures that the resulting expression does not
involve terms that mix A and D with their respective
inverses. This may lead to numerical instabilities ifmf ¼ 0,
which can result in ill-conditioned A and D. Since B and C
are constant, the terms detðBÞ, detðCÞ drop out of the path
integral and thus do not affect Metropolis-Hastings accep-
tance rates or gradients for optimization of flow-based
models. Hence, they can be ignored for the purpose of
training and sampling flow models.4

The reduced V=2 × V=2 form of the Dirac operator
makes determinant estimation significantly cheaper while
keeping the additional computational overhead minimal.
Half of the pseudofermion degrees of freedom completely
decouple from the scalar field and can be discarded. The
reduced operator partially retains the original periodic and
antiperiodic boundary conditions when applied to the even
or odd sublattices, respectively, reducing to a translation
symmetry for even shifts. When utilizing affine coupling
layers with a checkerboard mask, it is exactly this subset of
the translational symmetry group that is preserved, and the
translationally equivariant architecture is directly appli-
cable to learning a distribution over the reduced subset of
pseudofermions.
The improvement can be pushed to higher order by

noting that the diagonal matrix elements of the precondi-
tioned Dirac operator are close to unity, which makes it
possible to employ an ILU preconditioning scheme [71,73].
It relies on the fact that the preconditioning matrices for the
even-odd ordering step described above can be computed
explicitly, which is not generally true for other ordering
schemes. Though originally designed for the Wilson Dirac
operator, the same procedure can be applied to the
staggered fermions studied in this work. Since ILU
preconditioning breaks the translation symmetry of the
pseudofermion action completely, it is not directly com-
patible with any of our equivariant flow constructions that
target the distribution of φ. However, in an experiment
modeling the even-odd preconditioned ϕ-marginal distri-
bution using an affine coupling layer model, additional
ILU preconditioning for the same architecture led to a
moderately improved acceptance rate.

APPENDIX C: STOCHASTIC ESTIMATOR FOR
GRADIENTS OF log detM

The calculation of loss gradients required for the
optimization of some of the models introduced in this
work requires the evaluation of gradients

∇ϕ log detMðϕÞ ðC1Þ

taken with respect to the field ϕ. In general, MðϕÞ is a
positive definite matrix either arising from Dirac matrices
of a pair of mass degenerate fermions as M ¼ DD†, or
from one-flavor methods (see Sec. II B). The calculation of
the exact determinant detMðϕÞmay be intractable because
of the scaling with the number of lattice degrees of
freedom, thus a stochastic estimator is instead defined in
this section to tractably evaluate Eq. (C1).
By assumption,M is a positive-definite matrix and thus

the following stochastic trace estimator is applicable:

∇ log detMðϕÞ ¼ ∇Tr logMðϕÞ;
¼ Tr½MðϕÞ−1∇MðϕÞ�;
¼ E

χ∼e−χ†χ ½ðM−1ðϕÞχÞ†∇MðϕÞχ�: ðC2Þ

Here, the noise vector χ is assumed to be drawn from the
unit-variance isotropic distribution with an appropriate
number of degrees of freedom to match the dimensions
of M.
In the case of two degenerate fermionic flavors, an

interesting connection can also be made to the gradient
of the negative pseudofermion action [where the sign is
chosen to match the positive sign of log detMðϕÞ]. This
gradient can be evaluated to be

∇ð−φ†ðDD†Þ−1φÞ ¼ φ†ðDD†Þ−1ð∇DD†ÞðDD†Þ−1φ;
¼ η†ð∇DD†Þη; ðC3Þ

where η≡ ðDD†Þ−1φ ¼ ðD†Þ−1χ, in terms of the noise
vector χ ∼ e−χ

†χ used to generate the pseudofermion field.
A short derivation shows that this is equivalent to the
stochastic estimator of the two-flavor determinant,

Tr½ðDD†Þ−1ð∇DD†Þ�
¼ Tr½D−1ð∇DD†ÞðD†Þ−1�;
¼ E

χ∼e−χ†χ ½ððD†Þ−1χÞ†ð∇DD†ÞðD†Þ−1χ�;
¼ E

χ∼e−χ†χ ½η†ð∇DD†Þη�: ðC4Þ

This relation allows the gradient estimator to be computed
using the same tools utilized for the evaluation of HMC
forces with respect to the pseudofermion action.

4If one is interested in overall estimates of logZ, the constant
contributions from these terms must then be included.
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APPENDIX D: TRANSLATION-EQUIVARIANT
NETWORKS

1. Convolutional networks with P fields
and AP fields

In Sec. IV B 1, we introduced P fields and AP fields; that
they form an algebra can be seen as follows. The set of P
fields is stable under linear combinations and pointwise
multiplications. On the other hand, the set of AP fields is
only stable under linear combinations as the product of two
AP fields is a P field, while the product of a P field with an
AP field is an AP field. In other words, the set of P fields
and AP fields forms a superalgebra [125] under pointwise
addition and multiplication. Pointwise application of a
function to a P field results in a new P field. For AP
fields, more care is required as not all functions can be
applied pointwise. Application of an odd function to an AP
field results in another AP field, while pointwise applica-
tion of an even function results in a P field. In this appendix,
we explain in more detail how properties of those fields
allow us to build expressive neural networks which are
equivariant under translations. This means that if T ∈ Zd

is an arbitrary spacetime translation and fðϕ;φÞ ¼ ϕ0;φ0
is one of our neural networks, then fðT · ϕ; T · φÞ ¼
T · ϕ0; T · φ0. This discussion is not specific to two-
dimensional spacetime, and applies for any dimension d.
First, convolutions can be built for both types of fields.

For P fields, this is achieved by first padding the field using
periodic padding, then applying a normal convolution. For
a convolution with kernel shape 2kþ 1, all fields must be
padded by k sites in each direction. As a concrete example,
assume a one-dimensional lattice of size 5, a P field with
values [1,2,3,4,5] and a convolution kernel [1,1,1]. The
padded P field would be [5,1,2,3,4,5,1]. Applying the
convolution would result in a new P field with values
[8,6,9,12,10]. For AP fields, the only necessary change is to
use antiperiodic padding along the time dimension, and
periodic along the space dimension. Consider the two-
dimensional example

0
B@

1 2 3

4 5 6

7 8 9

1
CA ðD1Þ

and a 3 × 3 kernel with all weights equal to 1. The AP field
should be padded by 1 site in each direction with signs
applied to the temporal padding, giving

0
BBBBBB@

−9 7 8 9 −7
−3 1 2 3 −1
−6 4 5 6 −4
−9 7 8 9 −7
−3 1 2 3 −1

1
CCCCCCA
: ðD2Þ

Applying the convolution gives the transformed AP field0
B@

9 45 21

9 45 21

9 45 21

1
CA: ðD3Þ

The above construction of P and AP convolutions was
illustrated with only one channel, but the extension to
multiple channels is straightforward.
Any nonlinearity can be applied between convolutions

for a P field without spoiling translational equivariance. As
mentioned above, the LeakyReLU activation function is
used throughout this work. For convolutions applied to an
AP field, nonlinearities used as activation functions must be
restricted to odd functions, for which we choose

signðφÞ logð1þ jφjÞ: ðD4Þ

With a P convolution, a bias can be applied along with a
convolution at each step, since a bias is constant across
all sites and thus transforms as a P field. However, a
traditional bias cannot be applied to the convolution of an
AP field without spoiling translational equivariance. For an
AP field φ, a biaslike operation φ → φþ bsignðφÞ in terms
of a constant b can be applied instead. To avoid potential
issues with the nondifferentiability of the sign function,
we used a differentiable approximation given by apply-
ing φ → φþ b tanhðφ=4Þ.
All of the above constructions (P and AP convolutions,

nonlinearities and biases) are equivariant with respect to
translations on the lattice. By stacking them, we create
expressive translation-equivariant neural networks. Our
neural networks can also jointly transform pairs of P and
AP fields. For example, we found the following trans-
formation to work well:

Input: P-field P and AP-field A
P’ = conv(P)
A’ = conv(A)
P’’ = concatenate(P’, |A’|)
A’’ = concatenate(A’, P’A’)
Output: P-field P’’ and AP-field A’’
The group of translational symmetries of a staggered

action described in Sec. II C only includes translations by
even numbers of lattice sites. Implementing symmetries in
a network that are not symmetries of the target function
restricts the expressivity and may make it difficult or
impossible to represent an effective approximation of the
target function by the network. For the models targeting the
staggered fermion action in the study described in the main
text, we avoided encoding translational symmetry by an
odd number of sites by explicitly breaking equivariance
with respect to odd translations. For example, to break the
symmetry by odd translations along the first dimension of a
field x, we fold its even and odd indices along the channel
dimension; this doubles its number of channels while
halving the number of points along the first dimension.
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We then apply a convolution with stride 1 and kernel size 1,
which mixes all the channels. Finally, we split the channels
in two and fold them back along the first dimension to get a
new field with the same lattice size as x. This approach
mirrors the “squeezing” operation applied in Real NVP
flows [49].

2. Explicit symmetrization by group averages

Equivariance of neural networks under discrete sym-
metry groups can also be achieved by explicitly averaging
over the group. For discrete translations with antiperiodic
boundary conditions in particular, this approach avoids the
restriction to odd activation functions and vanishing biases,
but requires an increase of the computational effort propor-
tional to the timelike extension of the lattice.
Let T a

x⃗;t ∈ Zd denote a translation by ðx⃗; tÞ where
antiperiodic boundary conditions are applied in time and
periodic boundary conditions are applied in space, and let
T p

x⃗;t denote a translation by ðx⃗; tÞ with periodic boundary
conditions for all directions. The action of T a and T p is
the same along all spatial dimensions, and we define
T x⃗ ¼ T p

x⃗;0 ¼ T a
x⃗;0. For simplicity we now restrict to

working with a two-dimensional L × L lattice with
coordinates ðx⃗; tÞ, but the following construction immedi-
ately generalizes to higher dimensions and nonsymmetric
lattices. Both P fields and AP fields are maps from
ZL × ZL to Rc, where c is a number of channels. Under
lattice translations, P fields are acted upon by T p, while
AP fields are acted upon by T a.
Consider a function f that maps the pair ðϕ;φÞ of a P

field and an AP field to another field fðϕ;φÞ. Assume that
the output fðϕ;φÞ transforms with periodic boundary
conditions along the space dimension, that is:

fðT x⃗ϕ; T x⃗φÞ ¼ T x⃗fðϕ;φÞ: ðD5Þ

Using averaging, we will now construct two maps u and v
with the transformation properties:

uðT p
x⃗;tϕ;T

a
x⃗;tφÞ ¼ T p

x⃗;tuðϕ;φÞ; ðD6Þ

vðT p
x⃗;tϕ;T

a
x⃗;tφÞ ¼ T a

x⃗;tvðϕ;φÞ: ðD7Þ

We define5

uðϕ;φÞ ¼ 1

2L

X2L−1
n¼0

T p
0;−nfðT p

0;nϕ; T
a
0;nφÞ ðD8Þ

and

vðϕ;φÞ ¼ 1

2L

X2L−1
n¼0

T a
0;−nfðT p

0;nϕ; T
a
0;nφÞ: ðD9Þ

We now wish to prove that the transformation properties
in Eqs. (D6) and (D7) apply to these definitions. The proof
is roughly the same for both cases,6 so we will only write it
for Eq. (D6):

uðT p
x⃗;tϕ; T

a
x⃗;tφÞ ¼

1

2L

X2L−1
n¼0

T p
0;−nfðT p

0;nT
p
x⃗;tϕ; T

a
0;nT

a
x⃗;tφÞ;

¼ 1

2L

X2L−1
n¼0

T p
0;−nfðT x⃗T

p
0;nþtϕ; T x⃗T a

0;nþtφÞ;

¼ 1

2L

X2L−1
n¼0

T p
0;−nþtT x⃗fðT p

0;nϕ; T
a
0;nφÞ;

¼ T p
x⃗;tuðϕ;φÞ: ðD10Þ

Equation (D10) was obtained using the change of variables
n → n − t and the equivariance property given in Eq. (D5).
The functions u and v may be used to define equivariant

affine coupling layers for the construction of equivariant
flows. To achieve equivariance, the underlying function f
needs to be evaluated 2L times instead of once, hence the
aforementioned increase in computational cost. Since the
masked affine couplings employed in this work already
restrict the translational equivariance to multiples of two,
one may also consistently use only every second term in
the sums defining u and v without breaking the sym-
metry further, implying a factor L increase of the cost
instead of 2L. Still, the additional computational require-
ments are significant compared to the approach detailed in
Appendix D 1, and for large-scale implementations one
may have to partially trade equivariance against efficiency
by excluding more terms from the sums.

5Note that if f is odd, then u below will be forced to be
independent of φ. This can be avoided by either using non-odd
nonlinearities, or by having nonzero biases.

6The proof is actually a particular instance of a more general
property: if π1 and π2 are representations of a finite group G on
vector spaces V and W, and if f∶V → W is any map between
these spaces, then 1

jGj
P

g∈G π2ðgÞ−1fðπ1ðgÞÞ is an equivariant
map from V to W.
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