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Abstract

We reassess the claimed detection of variability in the atmosphere of the hot Jupiter HAT-P-7 b, reported by
Armstrong et al. Although astronomers expect hot Jupiters to have changing atmospheres, variability is challenging
to detect. We looked for time variation in the phase curves of HAT-P-7 b in Kepler data using similar methods to
Armstrong et al., and identified apparently significant variations similar to what they found. Numerous tests show
the variations to be mostly robust to different analysis strategies. However, when we injected unchanging phase-
curve signals into the light curves of other stars and searched for variability, we often saw similar levels of
variations as in the HAT-P-7 light curve. Fourier analysis of the HAT-P-7 light curve revealed background red
noise from stellar supergranulation on timescales similar to the planet’s orbital period. Tests of simulated light
curves with the same level of noise as HAT-P-7’s supergranulation show that this effect alone can cause the
amplitude and phase-offset variability we detect for HAT-P-7 b. Therefore, the apparent variations in HAT-P-7 b’s
atmosphere could instead be caused by nonplanetary sources, most likely photometric variability due to
supergranulation on the host star.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Exoplanet atmospheric variability (2020);
Exoplanet astronomy (486)

1. Introduction

Due to significant exoplanet research efforts in recent
decades, there exists a wealth of observational data of transiting
exoplanets. Optical telescopes such as the Kepler Space
Telescope and the Transiting Exoplanet Survey Satellite
(TESS) and IR missions like the Spitzer Space Telescope have
regularly observed the light curves of stars with transiting
exoplanets, collecting years of photometric data (e.g., Esteves
et al. 2015b; Wong et al. 2016, 2020). In addition, the Hubble
Space Telescope has collected spectroscopic data in order to
learn more about the atmospheric composition of exoplanets
(e.g., Tinetti et al. 2007; Knutson et al. 2014; Kreidberg et al.
2014; Sing et al. 2016; Barstow et al. 2017; Sing et al. 2019;
Skaf et al. 2020; Rathcke et al. 2021; Foote et al. 2022; for an
overview, see Kreidberg 2018).

Phase curves can be a valuable tool for analyzing exoplanet
atmospheres. A phase curve is a light curve showing the flux
variations of a host star over the course of a planet’s orbit,
including the planet’s transit and secondary eclipse. The shape
of the phase curve depends on various properties of the planet,
including atmospheric characteristics (Esteves et al. 2015a). In
particular, thermal emission (heating of the planet’s atmos-
phere) and reflected light (light from the host star reflected off
the planet’s atmosphere) are atmospheric processes which

contribute to variations in the shape and amplitude of the phase
curve. The effects of reflected light are most evident in optical
observations such as those made by Kepler, while thermal
emission dominates longer wavelengths, including the IR
observations from Spitzer (see Shporer 2017 for a comprehen-
sive review of the topic).
Although time variability in exoplanet atmospheres has been

researched and theorized about for some time now (Rauscher
et al. 2007; Agol et al. 2009; Kawahara & Fujii 2011; Vidotto
et al. 2011), it remains a relatively new frontier. Just like we
experience changing weather patterns here on Earth, the
atmospheres of exoplanets should also undergo changes on
relatively short timescales. Detecting atmospheric variability of
exoplanets through analysis of phase curves is an exciting
prospect, but it comes with significant challenges. It is
challenging to even detect an exoplanet atmosphere in the first
place, so trying to measure small changes in such small signals
increases the difficulty even further. In general, successfully
detecting atmospheric variability requires very high signal-to-
noise observations, taken consistently over a long period of time
(Hidalgo et al. 2019).
Despite the challenges associated with detecting variability in

the atmospheres of exoplanets, there have been several possible
detections. Variability has been claimed in two exoplanets using
reflected-light observations from Kepler data: by Armstrong
et al. (2016), studying the planet HAT-P-7 b, and Jackson et al.
(2019), studying the planet Kepler-76 b. Both of these studies
found strong variations in the longitude of the brightest/most
reflective point in the planets’ atmospheres. Armstrong et al.
(2016) found that the brightest longitude of HAT-P-7 b varies by
as much as± 41°, while Jackson et al. (2019) found variations of
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up to± 49° for Kepler-76 b. Meanwhile, Bell et al. (2019)
reported changes in the longitude of the hottest point in the
atmosphere of WASP 12 b in IR observations from Spitzer.
Most detections of atmospheric variability come from studies
focusing on hot Jupiters (Armstrong et al. 2016; Bell et al. 2019;
Jackson et al. 2019; Wilson et al. 2021)—a class of massive
exoplanets with short orbital periods, making them ideal for this
type of analysis—but it is possible to search for variations in the
atmospheres of smaller planets, as well. In particular, Demory
et al. (2016) have detected variability in the phase curve of the
hot super-Earth 55 Cnc e, and Tamburo et al. (2018) later
identified variability in the secondary eclipse depth of that
planet.

Since the first claimed detections of atmospheric variability,
there has been theoretical work to try to understand and explain
these results. Komacek & Showman (2020) concluded that hot
Jupiters may have time variability large enough to observe:
their simulations predict that the hottest part of the atmspheres
of hot Jupiters should show variability of up to±3° from the
time-averaged phase offset. This ±3° variability is significantly
smaller than reported variability (Armstrong et al. 2016; Bell
et al. 2019; Jackson et al. 2019), implying that some other
processes may be at play. Rogers (2017) showed that strong
magnetic fields can drive even larger shifts in the position of
the hottest part of the planet’s atmosphere, up to tens of degrees
in orbital phase. Another possibility is that the large variations
in reflected-light phase curves from Kepler are due to the
movements of reflective clouds (Parmentier et al. 2016, 2020;
Roman et al. 2021), rather than movements of the hottest part
of the atmosphere on which Rogers (2017) and Komacek &
Showman (2020) focused. More studies of atmospheric
variability are needed to understand which, if any, of these
processes may be taking place in exoplanet atmospheres.

In this paper, we aim to reassess the evidence for the
Armstrong et al. (2016) detection of atmospheric variability
due to cloud movements on HAT-P-7 b. In particular,
Armstrong et al. (2016) claimed to detect statistically
significant changes in the longitude of the peak of the phase
curve of HAT-P-7 b over time. Using the same Kepler data and
similar modeling methods, we detect similar variations in phase
offset. These variations initially appear to be statistically
significant and robust to different analysis strategies. However,
injection/recovery tests yield variations of similar strength in
known nonvariable sources, calling into question the inter-
pretation of the Armstrong et al. (2016) result, and we identify
photometric variability due to supergranulation on the host star
as a plausible explanation for the apparent variations in HAT-
P-7 b’s phase curve. Our paper is organized as follows. In
Section 2 we discuss the collection of the Kepler light-curve
data. In Section 3, we describe our analysis techniques in detail,
as well as a series of tests to determine the robustness of our
results to different analysis choices. In Section 4, we describe
the results of our analysis and compare them to the results of
Armstrong et al. (2016). In Section 5, we discuss several tests
exploring possible causes of spurious variability signals. In
Section 6, we discuss the implications of our tests, and we
conclude in Section 7.

2. Kepler Data Collection

Kepler is an 0.95 m space telescope launched into an Earth-
trailing orbit with the primary goal of finding exoplanets using
the transit method. During its operational period, Kepler’s

mirror focused starlight onto its photometer, an array of CCDs
that repeatedly imaged a roughly 110 square degree field of
view and measured brightness variations in hundreds of
thousands of stars. Before the failure of two reaction wheels
ended its primary mission, Kepler observed a field near the
constellation Cygnus for over four years with a resolution of
4 arcsec pixel−1 (Borucki et al. 2010). The spacecraft rotated
by 90° every 90 days in order to keep the solar panels aimed at
the Sun; as a result, Kepler light curves are divided into 90 day
quarters. The rotation of the spacecraft resulted in slow
instrumental drifts in the data related to the cooling and
heating of different parts of the telescope. Due to bandwidth
limitations, data were partially analyzed on board, and only the
highest priority data were transmitted back to Earth. Because
the antenna was not remotely steerable, the spacecraft had to be
reoriented in order to transmit data back to Earth, which
involved interrupting a day of data collection for each
communication. The Kepler Science Operations Center at
NASA Ames Research Center received raw Kepler data,
calibrated the images, produced light curves, removed
systematic errors, and performed transit searches and candidate
validation to verify exoplanet detections. We downloaded the
Kepler light curve of HAT-P-7 b from the Mikulksi Archive for
Space Telescopes (MAST) using the publicly available Light-
kurve software package (Lightkurve Collaboration et al. 2018).

3. Kepler Data Analysis

3.1. Baseline Analysis

After downloading the Kepler light curve of HAT-P-7 b, we
performed analysis to detect and quantify variability in its
phase curve. Our analysis consisted of two main steps: light-
curve flattening/removal of long-timescale variability, and
Markov Chain Monte Carlo (MCMC) modeling to determine
the most probable phase-curve parameters. Figure 1 shows a
broad overview of our analysis.

3.1.1. Removing Long-term Variability

Kepler light curves often show slow brightness variations on
timescales of days to months. These variations can either be
astrophysical (such as those caused by starspots coming in and
out of view as the star rotates, e.g., Basri et al. 2013) or
instrumental (due to effects like the shifting position of the star
on the detector due to differential velocity abberation, e.g., Van
Cleve et al. 2016). The long-term variations can be significantly
larger than the amplitude of the phase-curve signals we wish to
study, so we must remove them before proceeding.
We started with the Kepler light curves of HAT-P-7

processed by the Kepler team’s Pre-search Data Conditioning
(PDC) systematics correction software (Smith et al. 2012;
Stumpe et al. 2012, 2014). Kepler observed HAT-P-7 in both
its standard “long-cadence” mode, where coadded images with
exposure times of 29.4 minutes were downlinked from the
spacecraft, and also in “short-cadence” mode, were coadded
images with exposure times of 58 s were downloaded. Since
we are primarily interested in light-curve features on the
timescale of HAT-P-7 b’s orbital period (2.2 days), the time
resolution of the long-cadence light curve was sufficient for our
analysis, and we chose to use it instead of the short-cadence
light curve to speed up our computations.
We fit the light curve with a basis spline, which is a

piecewise series of cubic polynomials fit to sections of the light
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curve. The individual cubic polynomial fits are constrained so
that the final spline curve is continuous and differentiable. We
used a “knot spacing” of 2.205 days (matching the orbital
period of the planet) to prevent any attenuation of signals at the
planet’s orbital period by the spline. When performing the
spline fit, we masked points within 2.5 hr of the times of
transits and secondary eclipses. We prevented outlier data
points from improperly affecting the spline fit by iteratively
fitting the spline to the light curve, identifying the largest
outliers, masking these points, and refitting the spline until
convergence. This process is illustrated in Figure 3 of
Vanderburg & Johnson (2014). We divided the light curve
by the best-fit spline to remove the long-timescale variability.
This approach is similar to that taken by Armstrong et al.
(2016), who fit a cubic polynomial in windows across the light
curve.

3.1.2. Fitting the Phase Curve with Markov Chain Monte Carlo

After flattening the light curve, we fitted a model to the light
curve to measure the best-fit values and uncertainties of
parameters describing HAT-P-7 b’s phase curve. We split the
full four-year light curve into approximately 60 different
segments, each about 22 days in length (or 10 orbits of the
planet HAT-P-7 b). We chose this segment length following
Armstrong et al. (2016); fitting 10 planet orbits is a good
balance between high enough time resolution to probe

atmospheric variability, and fitting enough data to confidently
detect the phase curve in each segment and minimize the
influence of any remaining instrumental systematics which
might still be present. We removed points within 30 minutes
before and after the duration of transits and secondary eclipses
from the light curve to avoid calculating computationally
expensive transit and eclipse models at each step. We modeled
the phase curve in each time segment using Easy Differential
Evolution Markov Chain Monte Carlo (EDMCMC8), a
sampling routine which makes use of the differential evolution
MCMC algorithm of ter Braak (2006), which in our case
achieves better convergence than conventional MCMC. We
utilized the jump scheme described by ter Braak (2006) where
every 10 steps the MCMC attempts a larger jump than usual.
This provides better convergence when there are bimodalities
in the posterior distributions. We fit each light-curve segment
with a simple sinusoidal flux model, F, given by
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Figure 1. Overview of our analysis. Top: the full Kepler light curve of HAT-P-7, split into 60 consecutive bins of 10 orbits of HAT-P-7 b, each shown as a different
color/stripe. The transits of HAT-P-7 b are so frequent that they blend together in this panel. Middle: close-up view of about 70 days of Kepler data. In this panel, the
transits of HAT-P-7 b appear as a regular comb of dips (except for gaps in Kepler’s observations). Bottom: an example planetary phase curve, shown alongside a
schematic showing the relative position of the star and planet at several points in the orbit. We analyze each segment of 10 planet orbits (shown as different colors in
the top two panels) to model a phase curve similar to that shown here.

8 For more detail, see https://github.com/avanderburg/edmcmc.
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where a, k, and h are the amplitudes of sine functions at the
orbital period and its second and third harmonics, f, f2, and f3
are phase offsets of the three sinusoids, and t is the time of each
Kepler observation. The model fits for eight free parameters:
period P (the orbital period of HAT-P-7 b, constrained with
an informative Gaussian prior to be 2.204735417± 4.3×
10−8 days; Thompson et al. 2018), constant flux offset c, and
combinations of amplitudes and phases x, y, x2, y2, x3, and y3.
We define the combined amplitude and phase parameters as

fº ( )x a cos , 2

fº ( )y a sin , 3

fº ( )x k cos , 42 2

fº ( )y k sin , 52 2

fº ( )x h cos , 63 3

fº ( )y h sin . 73 3

This model is equivalent to that of Armstrong et al. (2016),
except that they also model the secondary eclipses, while we
exclude these regions from our fit.

We used a χ2 log-likelihood function, allowing the typical
uncertainty of the Kepler flux measurements to vary as a free
parameter. In particular, our log-likelihood function, log , is
given by
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where yi are the individual Kepler flux measurements, Fi are the
individual evaluations of our model (Equation (1)), and σK is a
free parameter representing the uncertainty of each Kepler flux
measurement. In total, we explored eight free parameters with
our MCMC with 100 walkers evolved for 5000 steps,
discarding the first 2000 as burn-in. We performed a similar
fit for each of the 10-orbit light-curve segments. The results for
a typical phase-curve fit are shown in Figure 2.

After fitting each light-curve segment with MCMC, we
extracted the most likely parameters and uncertainties for the
phase (f) and amplitude (a) of the sine at the planet’s orbital
period and collected them into time series. These are the model
parameters that Armstrong et al. (2016) found to show time
variability, although after some testing they concluded that the
variations in amplitude (a) were likely spurious and only the

variations in phase (f) were likely due to atmospheric
variability.
We tested the convergence of our sampler chains using the

Gelman–Rubin diagnostic described in Gelman & Rubin
(1992). We found that all of our chains for each time segment
had a Gelman–Rubin statistic less than 1.2, all but one were
less than 1.1, and all but two (99.6%) of the chains had a
Gelman–Rubin statistic less than 1.05. While a handful of these
chains did not achieve convergence according to some of the
stricter definitions (e.g. Vats & Knudson 2021), the uncon-
verged chains were the higher-order harmonic signals that we
treat as nuisance parameters (see Section 3.2.3). We inspected
these cases and found that the convergence of the parameters
describing the phase and amplitude at the planet’s orbital
period was not affected.

3.2. Testing the Robustness of our Analysis

In the previous subsection, we described the different steps
we took to analyze the Kepler data and measure phase-curve
parameters. Throughout our analysis, we made choices that
could in principle affect the results of our analysis. Here, we
describe the tests we performed to determine how robust our
analysis is to these different choices. In particular, we compare
measurements of the amplitude (a) and phase (f) of the sine at
the planet’s orbital period for each different analysis. Since
these are the parameters found by Armstrong et al. (2016) to
vary in their analysis, measuring similar values for these
parameters despite different analysis choices indicates that our
analysis is robust to these different analysis strategies.

3.2.1. Data Processing/Systematics Correction

The first analysis choice we made was whether to use the
Kepler data with a systematics correction or the raw
unprocessed light curve. The Kepler archive stores both the
raw light curves produced by Simple Aperture Photometry
(SAP) as well as the postprocessed Pre-search Data Condition-
ing Simple Aperture Photometry (PDCSAP) light curves. The
PDCSAP light curves have been processed by the PDC module
of the Kepler pipeline (Smith et al. 2012; Stumpe et al.
2012, 2014), which removes systematics and corrects for
contamination from nearby sources. Usually, PDCSAP light
curves are higher quality than SAP light curves; however, the
PDC processing is done in bulk to all targets observed by
Kepler and is not tuned to individual targets, leaving open the

Figure 2. An example phase-curve fit. The green points show about 10 phase-folded orbits of Kepler data (excluding the transit and secondary eclipses), while the blue
lines show the models corresponding to 100 draws from our MCMC posterior probability distributions of our sinusoidal model fit to the data. We perform a similar fit
every 10 orbits observed by Kepler to detect any variations in the phase curve over time.
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possibility that the algorithm could perform suboptimally on
any given target. Also, HAT-P-7 shows high signal-to-noise
photometric variability (i.e., the planetary transits), which in
principle could hurt the quality of the systematics correction.9

In fact, Armstrong et al. (2016) chose to use the SAP
light curve for their own analysis, likely to avoid such
complications.

We therefore tested to determine whether our choice to use
the PDCSAP light curve instead of the unprocessed SAP light
curve significantly affected the results of our MCMC fits. We
ran our MCMC analysis on all 60 light-curve segments in both
the SAP light curve and PDCSAP light curve, with all other
parameters and choices held identical, and compared each
measurement of the phase (f) and amplitude (a) of the sine at
the planet’s orbital period. The phase and amplitude measure-
ments for the PDCSAP and SAP light curves are compared in
Figure 3. We found that the two different data-processing
methods described yielded qualitatively similar amplitude and
phase measurements. We quantified this correspondence by
finding the best-fit linear relationship between the phases and
amplitudes measured from the PDC and SAP light curves. We
accounted for errors in both the SAP and PDC light-curve
measurements following the prescription in Equation (2) of
Press & Teukolsky (1992). Although we found some evidence
for slight systematic differences between the SAP and PDC
data sets (with SAP yielding smaller phase offsets and
amplitudes), largely the two data sets showed good correspon-
dence. For the the rest of our analysis, we use the PDCSAP
processed data.

3.2.2. Flattening/Removal of Long-term Variability

We tested several different methods for flattening the light
curve to remove long-term variability. First, we tested whether

different knot spacings for our basis spline could affect our
measurements of HAT-P-7 b’s phase-curve parameters. The
spacing of spline knots controls the aggression of the spline and
its ability to model fast variations. The closer in time the spline
knots are spaced, the more effectively the spline can model and
remove unwanted stellar or instrumental variability, but also
the greater risk that the spline will partially model and attenuate
HAT-P-7 b’s phase-curve signal. We therefore tested a range of
different spline-knot spacings. Figure 4 shows several
comparisons of our measurements of the phase (f) and
amplitude (a) of the sine at the planet’s orbital period with
different knot spacings. We found that spline-knot spacings
shorter than the planet’s orbital period significantly attenuated
the phase-curve amplitude (to the point of being undetectable,
which resulted in large scatter in the measured phases), while
spacings greater than or equal to the planet’s orbital period all
seemed to preserve the phase-curve signal and gave similar
results. We therefore opted to use a spacing equal to the
planet’s orbital period: the most flexible spline model possible
that did not appear to attenuate the amplitude of the phase
curve.
We also tested another method for removing long-term

trends from the light curve, very similar to that proposed by
Sanchis-Ojeda et al. (2013). In this method, all in-transit data
were masked (including points within a half-hour before and
after the transit duration), and a linear function of time was fit
to all out-of-transit data, one orbit at a time. The best-fit linear
function for each orbit was then divided from the light curve,
removing the long-term trends. When we tested this Sanchis-
Ojeda et al. (2013)-inspired method and compared it to our
spline results using the method described in Section 3.2.1, we
found similar variations in the phase-curve amplitude (a)
compared to the values we measured when using spline
detrending, but the phase variations (f) were substantially
reduced compared to the spline detrending (see Figure 5).
Evidently, the method used to model and remove low-
frequency variations can significantly affect measurements of

Figure 3. Comparison between phase-offset variations (left) and amplitude variations (right) resulting from the use of Kepler data processed via Simple Aperature
Photometry (SAP) vs. Pre-search Conditioning Simple Aperature Photometry (PDCSAP). The dashed gray diagonal lines in both panels show a one-to-one slope,
while the solid black line shows the slope from a fit accommodating the error bars in both axes. The fitted slope and uncertainty appears on the top left of each plot.
Our analysis shows some minor systematic differences between phases and amplitudes we measure from SAP and PDCSAP data, but qualitatively, the results are
similar. We chose to use PDCSAP data for our analysis, to ensure that our result did not depend on possible systematics present in the SAP data.

9 The Kepler pipeline does automatically ignore transits of known planetary
signals when performing the PDC correction, which should decrease the risk of
failure on stars like HAT-P-7 (J. Smith, private communication).
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phase-curve variability. It is not clear, however, whether the
Sanchis-Ojeda et al. (2013)-inspired detrending shows less
phase variability because it suppresses real phase-curve
variations, or because it better models long-term trends and
prevents the detection of spurious variability. To make sure we
do not inadvertently remove the variability signal we hoped to
detect, we opt for the less-aggressive basis-spline, low-
frequency-removal approach.

3.2.3. Model Harmonics

The last major analysis choice we made was which specific
phase-curve model to fit with MCMC. In particular, in our
baseline analysis, we fit HAT-P-7 b’s phase curve with three
sinusoids: one at the planet’s orbital period and each of the

second and third harmonics (half and one-third of the orbital
period). We tested to make sure that this particular choice of
model does not significantly affect the measurements of the
amplitude and phase of the sine at the planet’s orbital period.
We ran the MCMC fitting on sinusoidal models with two
sinusoids (at the planet’s orbital period and the second
harmonic at half the orbital period) and only one sinusoid at
the orbital period. Our measurements of the phase (f) and
amplitude (a) of the sine at the planet’s orbital period were not
dependent on the number of harmonics included in the model.
Figure 6 shows our measurements for these different MCMC
models using the linear-fitting comparison method described in
Section 3.2.1. In the end, we chose to use the model with three
sinusoids to maintain consistency with the analysis of
Armstrong et al. (2016).

Figure 4. Comparison between phase (top row) and amplitude variations (bottom row) in HAT-P-7 b’s phase curve when we detrend the data using a basis spline with
different knot spacings. The dashed gray diagonal lines in each plot show a one-to-one slope, while the solid black line shows the slope from a fit accommodating the
error bars in both axes. The fitted slope and uncertainty appears on the top left of each plot. For aggressive splines with knot spacings shorter than the duration of one
HAT-P-7 b orbit (left column), the phase-curve amplitude was significantly attenuated, and the resulting small signal resulted in highly uncertain measurements of the
phase of peak brightness. Knot spacings greater than or equal to one planet orbit (right column) generally were consistent. We chose to use a spacing of one knot per
orbit for our analysis to give our spline the most flexibility possible without attenuating the signal.
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3.3. Injection/Recovery Tests

In addition to performing tests to determine the robustness of
our analysis to different choices or methods, we performed an
end-to-end test of our analysis with injection/recovery tests.
Our strategy was to inject a nonvarying phase-curve signal
(based on the average phase curve of HAT-P-7 b) into a
number of other Kepler light curves and to measure the phase-
curve parameters using the same analysis procedure as for
HAT-P-7 b. These tests allowed us to determine whether our
analysis is susceptible to detecting spurious phase-curve
variations. If we detect statistically significant variations in
the phase curves of these injected signals, they must be
spurious because we know that the true (injected) signal’s
phase curve does not vary in time. A similar test was also
conducted by Armstrong et al. (2016), which led them to
conclude that the variation they detected in phase-curve
amplitude could be spurious.

We started by identifying a list of stars with similar
properties to HAT-P-7. We searched for stars observed for
the full Kepler mission (17 quarters) with two criteria: either (a)
stars within 0.05 mag of HAT-P-7 in Kepler-band brightness
and within 5% (or 0.1 Re) in size, or (b) stars within 0.2 mag of
HAT-P-7 in Kepler-band brightness, 10% (or 0.2 Re) in size,
and 3% (200 K) in effective temperature. A total of 28 stars
satisfied at least one of these two criteria. We somewhat
arbitrarily selected 10 of these stars to perform the injection/
recovery tests. We note that we did not solely choose stars with
similar photometric variability characteristics to HAT-P-7;
some of these other stars are quieter, and some are significantly
noisier than HAT-P-7.

We based the injected signal off of HAT-P-7 b’s average
phase curve over the full four-year Kepler mission. We fitted
analytic transit models (Mandel & Agol 2002) to the transits
and secondary eclipses, and modeled the average phase curve
with a 100-segment piecewise linear function. We then injected
the transit+eclipse+phase-curve model into each of the light

curves of these other stars, ensuring that the injected phase-
curve signal was perfectly nonvariable for the full four years of
data. We then processed, flattened, and modeled the injected
curve for each other star in the same way as the original HAT-
P-7 b light curve. We collected phase and amplitude time series
for the sine at the planet’s orbital period for each injected star.
The results of this test are described in Section 4.4.

4. Results

4.1. Measurements of Variability in HAT-P-7 b’s Phase Offset
and Amplitude

We show the measured phases (f) and amplitudes (a) of the
sine at the orbital period of HAT-P-7 b for our baseline analysis
(described in Section 3.1) in Figure 7 and Table 1. Our results
converge according to the Gelman–Rubin test described in
Section 3.1. We appear to detect statistically significant
changes in the phase and amplitude of HAT-P-7 b’s phase
curve. We find that the longitude of the peak of the phase curve
varies by up to± 30°, and the amplitude of the phase curve
appears to vary by ±32 ppm. We quantify the statistical
significance of any variations by calculating the χ2 statistic
assuming a nonvarying phase curve, which is defined as

⎡
⎣⎢

⎤
⎦⎥

åc
s

=
- ¯

( )d d
, 9

i

N
i

d i

2

,
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where N is the number of data points in the phase or amplitude
time series, di are the central values of the phase or amplitude
measurement at each time, d̄ are the predicted values of the
phase/amplitude from our model (in this case, the mean value
of these parameters since we assume the phase curve is not
varying), and σd,i are the uncertainties of each phase/amplitude
measurement from our MCMC fit. We calculate χ2 values of
316 and 281 for the phase and amplitude time series,
respectively. When we perform a χ2 test on these results, we

Figure 5. Phase (left) and amplitude (right) variations resulting from flattening the Kepler light curve using the Sanchis-Ojeda et al. (2013)-inspired filtering vs. the
basis-spline method. The dashed gray diagonal lines in each plot show a one-to-one slope, while the solid black line shows the slope from a fit accommodating the
error bars in both axes. The fitted slope and uncertainty appears on the top left of each plot. Both methods yield consistent measurements of the phase-curve amplitude,
but the Sanchis-Ojeda et al. (2013)-inspired filtering results in smaller variations in the planet’s orbital phase. It is unclear whether the smaller phase variations from
the Sanchis-Ojeda et al. (2013)-inspired method are due to better removal of systematic trends or attenuation of real phase variations, so to avoid removing potentially
real variability we chose to use a basis spline to detrend the Kepler data for our analysis.
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find that it is exceedingly unlikely (p≈ 0 for both) that we
would randomly measure such a large χ2 value, under the
assumptions that the phase and amplitude are really constant
and that our uncertainties are properly estimated.

We also calculate χ2/d. o. f. , the χ2 value per degree of
freedom, which is also called the reduced χ2 value. This metric
is easier to interpret and compare between different data sets
and time series, especially if they have different numbers of
data points. We calculate χ2/d. o. f. for our single-parameter
constant model with

/c
c

=
-

( )d o f
N M

. . , 102
2

where N is the number of data points in the phase or amplitude
time series and M is the number of parameters in our model (in
this case,M= 1, since we assume a constant model for the phase
and amplitude time series). In cases where the model
appropriately describes the data and the uncertainties are
estimated correctly, χ2/d. o. f. should be close to 1. We measure
a reduced χ2 value of 5.4 in the phase measurements and a
reduced χ2 value of 4.8 for the amplitude measurements. We
confirmed that these high χ2 values are not due to an
underestimation of the uncertainties on our individual Kepler
data points by calculating the χ2 for each of the 60 phase curve
MCMC fits that we used to measure the phase-offset and

Figure 6. Comparison between phase (top row) and amplitude (bottom row) variations for the sine at the planet’s orbital period for our baseline model with three
sinusoids compared with models including only one one (left column) or two (right column) sinusoids in the phase-curve model. We note that all of the measurements
plotted show the phase (f) and amplitude (a) of the sine at the planet’s orbital period—the only differences between the measurements are the number of additional
sinusoid terms in the model. The dashed gray diagonal lines in each plot show a one-to-one slope, while the solid black line shows the slope from a fit accommodating
the error bars in both axes. The fitted slope and uncertainty appears on the top left of each plot. The inclusion of more harmonics in our model did not cause significant
change in our results for the phase and amplitude of the sine at the planet’s orbital period. In order to maintain consistency with the methods of Armstrong et al.
(2016), we used a model including three sinusoids for our analysis.
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amplitude values. The χ2/d. o. f values for these phase curves
have a median of 1.12 and a standard deviation of 0.05.
Although this indicates slightly underestimated errors, it does not
account for the large χ2/d. o. f that we find for the variations of
phase offset and amplitude.

Under ideal circumstances, the high values we measure for
both χ2 and χ2/d. o. f. could be evidence for variations in the
atmosphere of HAT-P-7 b. However, given the challenging
nature of the measurement, some more scrutiny is necessary to
conclude that the variations are indeed due to atmospheric
variations. We describe additional tests to ascertain whether
these apparent phase and amplitude variations are really likely
to be astrophysical in Section 4.4.

4.2. Comparison with Armstrong et al.

We compared our apparently statistically significant detec-
tion of variability in the phase offset and amplitude of HAT-P-
7 b’s phase curve with the previous detection of Armstrong
et al. (2016). Figure 8 shows our phase and amplitude
measurements compared to those reported by Armstrong
et al. (2016). In this figure, we discarded outlier points from
our results which lie close to the Kepler quarter breaks, in
sections of data which were also discarded by Armstrong et al.
(2016). In general, we find that our measurements tend to
match those of Armstrong et al. (2016), although their
measurements yield a lower reduced χ2/d. o. f. value because
they used a different method to estimate their uncertainties and
report slightly larger values.

Despite the similar values of phase and amplitude measure-
ments, there is an immediately obvious difference between the
presentation of our results and those of Armstrong et al. (2016)
due to the way the phase-curve variations were sampled. While
both we and Armstrong et al. (2016) broke the light curve into
segments with a length of 10 planet orbits, we report results for
60 fully independent segments (each including about 10
distinct planet orbits) with only one phase and amplitude
measurement for each of those segments; that is, each Kepler
flux measurement was only used in one particular MCMC fit.
On the other hand, Armstrong et al. (2016) oversampled their
measured phase variations by a factor of 10 by fitting light-
curve segments with a length of 10 planet orbits, shifting by
only one planet orbit at a time; that is, Armstrong et al. (2016)
used each Kepler flux measurement in 10 different MCMC fits.

In order to compare our results to those of Armstrong et al.
(2016), we replicated their sampling by sliding a 10-orbit
window across the light curve and oversampling our phase-
curve measurements by a factor of 10. We then interpolated our
oversampled results to match the times from Armstrong et al.
(2016) and compare the results in Figure 9. While some of the
points differ, we were generally able to reproduce their phase
and amplitude measurements results. The differences between
our measurements are likely due to slight differences in our
analysis, like the details of the flattening procedure and the fact
that we excluded the planet’s secondary eclipses from our
modeling, while Armstrong et al. (2016) included them.

4.3. How Sliding Windows can give the Appearance of Real
Time Correlations

The main difference between the presentation of our
measurements of the phase and amplitude of HAT-P-7 b’s
phase curve and those made by Armstrong et al. (2016) is the
fact that they presented oversampled measurements from
partially overlapping light-curve segments. This sampling/data
visualization strategy can be helpful in identifying subtle
features in time-series observations, but it can also suggest the
presence of coherent variations when none are present. In this
section, we illustrate how this sampling strategy can give the
appearance of correlated variability even when the source data
set contains no such correlations.
We show an example of this phenomenon in Figure 10. This

figure shows a time series of purely Gaussian random numbers,
sampled at the times of measurements of HAT-P-7 b’s phase
curve by Armstrong et al. (2016). In the first panel, the
Gaussian random numbers are shown as if they were phase
measurements from individual orbits of HAT-P-7 b, while in
the second panel the random numbers have been smoothed by a
10-point boxcar filter, simulating the effect of averaging 10
orbits together while shifting the window by only one orbit at a
time. Clear time correlations are visible in the smoothed plot,
even though the underlying data is purely white noise. This
correlation structure is introduced because each averaged point
includes 90% of the same data as its neighboring points. This is
an expected result because smoothing with a boxcar window is
equivalent to supressing high frequencies in Fourier space,
leaving only slow variations with the appearance of coherent
changes.

Figure 7.Measurements of the phase (top) and amplitude (bottom) of HAT-P-7 b’s phase curve over time. The vertical dotted lines show where the Kepler light curve
is broken into quarters. The reduced χ2, or χ2 per degree of freedom, is shown in the upper left of each plot. Although there are no clear patterns in the time evolution
of the phase and amplitude of HAT-P-7 b’s phase curve, we find that there may be statistically significant variability based on a χ2 test.
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Finally, we show our measurements of the phase of HAT-P-
7 b’s phase curve in the bottom panel of Figure 10, when we
oversample the data by of a factor of 10, following Armstrong
et al. (2016). Although the uncertainties on the individual
points are smaller than the uncertainties on the smoothed
Gaussian random noise time series, the time correlations visible
in the oversampled time series are qualitatively similar to those
in the smoothed Gaussian random noise time series, indicating
that we cannot rely on the appearance of this time series to
confirm that the apparent variations in HAT-P-7 b’s phase
curve are astrophysical.

4.4. Assessing Evidence for Astrophysical Variability

We have measured the phase and amplitude of HAT-P-7 b’s
phase curve and found that our measured phases and
amplitudes are in good agreement with those of Armstrong
et al. (2016). However, it is not clear whether the apparently
statistically significant variations we measure are actually due
to astrophysical variability in HAT-P-7 b’s atmosphere or some
other effect. We therefore test whether it is possible that the
detected variations could be caused by factors other than true
variability in HAT-P-7 b’s atmosphere.
We do this using the results of our injection/recovery tests

described in Section 3.3. In these tests, we injected nonvarying
phase-curve signals into Kepler light curves of stars similar to
HAT-P-7. We then repeated our analysis methods (described in
Section 3.1) on these injected signals to see if we would find
incidental evidence of variability where there was no
astrophysical variability. We conducted the injection/recovery
tests using the 10× oversampling strategy used by Armstrong
et al. (2016) and discussed in Section 4.3.
Figures 11 and 13 show the recovered phases and amplitudes

of the injected nonvariable phase curves, as well as the
χ2/d. o. f. value (assuming a constant phase and amplitude in
time) for each injection result. The oversampled time series of
the recovered phase for these nonvarying phase curves are
qualitatively similar to the recovered phases for HAT-P-7 b,
and their χ2/d. o. f. values are similar, and in some cases
exceed, those of the apparent variability in HAT-P-7 b. In
general, we observe that injected stars with easily visible, high-
amplitude photometric variability yield the largest χ2/d. o. f. ,
but even apparently quiet stars show χ2/d. o. f. values compar-
able to HAT-P-7. Although the variations in HAT-P-7 b’s
atmosphere appear statistically significant at first, a comparison
to the injected results show that similarly strong apparent
variations can be caused by factors other than a varying
exoplanet atmosphere.
We note that Armstrong et al. (2016) also performed

injection tests (albeit on a smaller number of stars) and
concluded that the variations they measured in the amplitude of
HAT-P-7 b’s phase curve could be spurious, while they
considered the phase-offset variations robust. We agree with
their conclusion that the variations in HAT-P-7 b’s phase-curve
amplitude do not appear to be robust, but our analysis with a
larger set of stars suggests that the variations in the phase offset
may not be robust, either.
In order to ensure that our analysis methods do not attenuate

real variations, we repeated the injection/recovery tests, but
instead injected a varying phase signal. The average phase
curve over the entire Kepler data set of HAT-P-7 b was divided

Table 1
Measurements of Phase and Amplitude for HAT-P-7 bʼs Phase Curve

Time Phase (f) Uncertainty Amplitude(a) Uncertainty

(BJD-2454833) degrees degrees ppm ppm
131.3 9.0 3.8 42.1 3.8
156.7 7.7 5.9 28.6 3.9
182.6 −9.0 6.2 30.7 4.5
206.2 12.5 5.1 31.4 3.4
229.4 12.6 3.8 41.0 3.8
254.1 1.4 6.1 30.0 4.6
279.0 −3.7 4.4 54.1 5.5
302.4 34.4 11.0 20.5 4.3
325.8 8.1 4.3 47.2 4.8
350.8 13.5 5.6 31.5 3.7
375.2 21.4 4.9 39.9 4.0
400.1 16.1 4.2 42.5 4.0
424.8 16.8 4.0 43.8 3.8
447.8 −15.0 4.1 41.7 4.0
471.7 −3.4 4.5 43.4 4.8
495.1 24.8 6.3 31.7 4.2
517.9 11.7 4.1 42.0 4.0
541.2 8.2 11.5 23.7 6.0
564.6 31.7 6.4 35.8 4.8
587.9 10.3 7.3 26.7 4.6
610.8 22.6 6.6 31.5 4.5
633.7 −14.9 4.1 41.9 4.1
657.0 6.8 7.1 21.5 3.6
680.2 −3.6 5.6 29.8 3.8
703.4 −6.3 4.5 34.8 3.7
734.0 −1.4 6.5 25.4 4.1
765.7 12.7 5.1 31.6 3.6
789.7 15.6 5.0 34.4 4.0
815.2 8.7 3.9 39.8 3.6
841.1 1.1 7.4 23.6 4.1
864.2 −7.5 5.7 28.7 4.1
887.4 13.1 3.8 43.4 3.9
910.7 9.6 3.7 42.2 3.8
934.1 7.3 21.8 11.5 4.5
956.9 12.2 3.6 42.3 3.6
980.3 9.9 6.5 24.7 3.7
1003.2 18.6 4.6 34.8 3.7
1026.7 25.1 4.7 35.0 3.5
1049.8 10.3 4.0 38.0 3.5
1073.8 18.2 4.3 40.1 4.1
1098.7 15.0 7.0 27.8 4.3
1123.8 18.7 9.6 20.6 4.2
1150.9 −11.6 7.4 26.3 4.4
1176.5 35.1 6.9 34.0 4.4
1199.5 17.0 4.4 33.9 3.5
1222.5 −11.7 7.4 23.6 4.0
1245.8 0.9 4.2 36.2 3.7
1269.7 7.2 3.2 73.3 5.7
1297.1 34.2 6.1 39.8 4.7
1323.5 46.6 9.9 24.5 4.1
1346.4 −2.6 4.2 51.1 5.2
1370.3 4.9 8.7 21.8 4.4
1394.3 −2.6 3.2 46.6 3.6
1420.1 12.2 5.1 32.1 3.7
1445.8 0.9 4.5 35.5 3.6
1474.9 11.6 4.9 37.7 4.1
1503.4 −8.2 5.9 39.7 5.7
1526.6 3.0 5.5 44.6 5.9
1550.4 35.5 7.8 31.3 4.5
1576.1 −4.7 4.4 33.5 3.4

Note. Phase offsets (f) are measured with respect to the secondary eclipse.
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out of the light curve in order to remove the real effects of
HAT-P-7 b. A phase curve with a phase offset shifting from
+60° to −60° over the course of the Kepler observations was
injected back into the flattened HAT-P-7 light curve. We
attempted to recover the injected shifting phase using our
analysis methods at various spline spacings. These results are
shown in Figure 12. While spline spacings shorter than the
period of HAT-P-7 b do attenuate the recovered phase offsets,
analysis using spline spacings of the period of HAT-P-7 b or
longer preserve real phase-offset variations.

5. Possible Causes of Spurious Variability Signals

Since our injection/recovery tests showed that phase-offset
variations like those we observe in HAT-P-7 b’s phase curve
may be spurious, we investigated what other factors besides
true variations in planet atmospheres could cause the variations
we measure in our injected phase curves, and thus potentially in
HAT-P-7 b, as well. Based on our tests of the robustness of our
analysis, the choice that affected our measured phase-curve

parameters the most was the way we flattened the light curve to
remove low-frequency stellar/instrumental variability. Given
the sensitivity of our results to changes in how low-frequency
variability was removed, we hypothesized that residual
unfiltered low-frequency variability could be causing the
apparently spurious changes to the phase-curve parameters.

5.1. Low-frequency Variability in Injected Light Curves

As a first test of this theory, we quantified the low-frequency
variability in each of the injected light curves by calculating the
ratio of the overall scatter in the light curve to scatter on short
timescales. In particular, we calculated the standard deviation
of the light curve divided by the point-to-point scatter (e.g., the
P2P metric discussed in Section 4.2 of Aigrain et al. 2015).
When this ratio is near unity, the light curve is dominated by
variations on timescales of one Kepler long-cadence exposure
(30 minutes), but when this ratio is large, the light curve is
dominated by slow variability. Figure 14 shows the reduced
χ2/d. o. f. in the phase offset for each of the stars from our

Figure 8. Measurements of the phase (top) and amplitude (bottom) of HAT-P-7 b’s phase curve over time. Our measurements are shown in bold points, plotted with
the phase offsets and amplitudes from Armstrong et al. (2016) shown in open points. The vertical dotted lines show where the Kepler light curve is broken into
quarters. The χ2 per degree of freedom value is shown for each result. Though our result appears to show significant atmospheric variability, the identified variations
may be due to unrelated factors.

Figure 9. Comparison between our measurements of the phase (left) and amplitude (right) of HAT-P-7 b’s phase curve with those from Armstrong et al. (2016). The
dashed gray diagonal lines in each plot show a one-to-one slope, while the solid black line shows the slope from a fit accommodating the error bars in both axes. The
fitted slope and uncertainty appears on the top left of each plot. The phases and amplitudes we measure in each light-curve segment are fairly similar to those measured
by Armstrong et al. (2016).
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injection/recovery tests plotted against the ratio of slow-to-fast
variations (standard deviation/point-to-point scatter) in the
light curve. We find a tentative trend that appears to show that
χ2/d. o. f. values are highest for stars for which slow variations
dominate. This indicates that the recovered variations in our
injected phase curves could be due to residual slow variations
in the star’s light curve, and that this red noise could contribute
to the variations detected in HAT-P-7 b, as well.

5.2. Excess Noise

To explore further the possibility that unfiltered stellar
photometric variations contributed to the apparent variability
we observe in HAT-P-7 b’s phase-curve result, we investigated
how the goodness-of-fit of an individual phase-curve segment
correlates with the measured phase-curve offset. To do this, we
quantified the amount of excess photometric scatter within an
individual phase-curve segment. We defined an “excess noise”
term, σexcess, as follows:

s s s= - ( ), 11K lcexcess
2 2

where σK is the uncertainty recovered by our MCMC fitting and
σlc is the median uncertainty of the star’s Kepler light-curve flux
data. The excess noise term, σexcess, quantifies how much noisier a
given light-curve segment is compared to the expectation from the
Kepler instrumental uncertainties, assuming the noise sources are
independent and Gaussian. Because Kepler was an exceptionally
well-behaved instrument, we expect that the excess noise we
measure is dominated by variability from the stars themselves.

After calculating σexcess for each phase-curve segment for
HAT-P-7 and all of our injected light curves, we searched for a
relationship between the excess noise within each phase-curve
segment and the measured phase offset (see Figure 15). As we
would expect, segments with larger values of σexcess show

larger phase-offset variations for injected light curves. Inter-
estingly, the phase-offset variations and excess noise levels we
measured in HAT-P-7 b’s phase curve fit in well with the trend
from the injection/recovery tests. The bottom panel of
Figure 15 shows that several different stars from our
injection/recovery tests have both similar phase-curve varia-
tions and excess noise levels as HAT-P-7. The fact that HAT-
P-7 b’s apparent phase-curve variations are similar to those
found in stars from our injection/recovery tests shows that
excess noise (likely due to stellar variability) could contribute
to HAT-P-7 b’s apparent phase-offset variability.

5.3. Astrophysical Noise Sources in HAT-P-7’s Light Curve

Because our tests suggested that excess noise in HAT-P-7’s
light curve could be driving at least some of the variations we
see in HAT-P-7 b’s phase curve parameters, we investigated
the sources of noise in HAT-P-7’s light curve. We calculated a
Lomb–Scargle periodogram (for more information about the
Lomb–Scargle algorithm, see VanderPlas 2018) of the full
PDC-corrected short-cadence light curve of HAT-P-7. We first
removed the transits, secondary eclipses, and phase curve of
HAT-P-7 b, by dividing the light curve by the average model of
HAT-P-7 b’s signal that we calculated in Section 3.3 for our
injection/recovery tests. We also preprocessed the light curve
by fitting a basis spline with knots spaced every 6 days to the
light curve, and dividing the light curve by this spline curve.
This removed all variations on timescales longer than about 6
days. After calculating the Lomb–Scargle periodogram, we
converted from the default output in units of power spectral
density () to units of power (p) and amplitude (a), using the
method described in Appendix A of Kjeldsen & Bedding
(1995). We tested the calibration of this conversion by creating
an artificial signal, taking its transform, and confirming that the
periodogram amplitude units properly corresponded to that

Figure 10. An illustration of how oversampling can create the appearance of variability in time series. Top: a time series of Gaussian random noise, sampled at the
times of the measurements of HAT-P-7 b’s orbital phase by Armstrong et al. (2016). Middle: the same distribution of Gaussian random noise shown in the top panel
but smoothed by a box filter with an oversampling factor of 10. Bottom: our phase-offset variation result, sampled using a sliding window of 10 orbits. In all three
panels, the vertical dotted lines show where the Kepler light curve is broken into quarters. The sliding window makes the result appear smoother by oversampling the
data, but qualitatively similar to the smooth variations in the Gaussian random noise in the previous panel.
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artificial input signal. We found the conversion to be


= = ( )a p

N

4
, 12

where N is the number of measurements in the time series.

We show HAT-P-7’s power spectrum in Figure 16. The
power spectrum shows evidence of several different astro-
physical processes:

1. Solar-like p-mode oscillations which appear at high
frequencies (≈ 1100 μHz or 15 minute periods). P-mode

Figure 11. Measurements of the phase offset of the peak of the injected phase curves for each of the different stars in our injection/recovery tests. The Kepler Input
Catalog (KIC) identifier of the injected star is shown in each panel, along with the reduced χ2/d. o. f. value for each time series. The vertical dotted lines show where
the Kepler light curves are broken into quarters. Even though we know the true signal injected into these planets was stationary and did not vary in time, we measure
strong variations in these time series. Qualitatively, these variations are similar to those found in the actual light curve of HAT-P-7 b, and quantitatively their apparent
statistical significance can exceed that of the variations in HAT-P-7 b’s phase curve. Our oversampled phase-offset variation result for HAT-P-7 b is shown at the
bottom for comparison. It is possible that the variations measured in HAT-P-7 b’s phase curve could be caused by the same effects as in our injection/recovery tests.
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oscillations manifest as a forest of peaks in the power
spectrum with a roughly Gaussian envelope on timescales
of 5 minutes for Sun-like dwarf stars and provide a
wealth of information about the detailed properties of the
star, including highly precise mass, radius, age, and
inclination estimates (for a thorough review of the
subject, see Chaplin & Miglio 2013). The p-mode
oscillation spectrum of HAT-P-7, which has been studied
extensively by previous authors (Christensen-Dalsgaard
et al. 2010; Benomar et al. 2014; Lund et al. 2014;
Campante et al. 2016), peaks at lower frequencies than
the Sun because HAT-P-7 is a slightly evolved subgiant.
Nevertheless, the timescale of these variations is so short
that it should not affect our measurement of HAT-P-7 b’s
phase curve on timescales two orders of magnitude
longer.

2. Granulation, which manifests as a flat noise source at low
frequencies, up to a break around 200 μHz or 1.4 hr, after
which it falls off as a power law. Photometric granulation
signals are due to changes in brightness as warm
convective bubbles arrive at the surface of the star-
forming bright spots, while cooler (and less bright) gas
falls downwards below the photosphere. This process
introduces stochastic changes in brightness that have
been observed in the Sun (Domingo et al. 1996; Aigrain
et al. 2004) and numerous other stars (Kallinger et al.
2014). However, the timescales where granulation
dominates are much shorter than HAT-P-7 b’s orbital
period, and will not affect our measurement of it.

3. A similar process called supergranulation manifests in
HAT-P-7’s power spectrum as another power law in
frequency space that dominates at frequencies lower than
about 20 μHz or timescales longer than about 14 hr.
Supergranulation is a fluid-dynamical phenomenon
similar to granulation, but which takes places on longer

timescales, primarily involves horizontal flows, and is
less well understood than its shorter-timescale cousin
(Rieutord & Rincon 2010). Supergranulation has been
detected in the power spectrum of the Sun (Harvey 1985)
and other stars (e.g., Bazot et al. 2012), but has not been
as well studied as granulation. Because the supergranula-
tion signal exhibits larger photometric amplitudes on
longer timescales than granulation, and indeed overlaps
the orbital period of HAT-P-7 b, it could plausibly affect
our measurement of the planetary phase-curve
parameters.

4. A well-localized peak at about 1.7 days, which we cannot
positively identify, could be related to the stellar rotation
period. Periodic (or quasi-periodic) signals at the stellar
rotation period are commonly found in Kepler light
curves due to surface inhomogeneities (like starspots)
rotating in and out of view and manifest with similar
properties to the 1.7 day signal we see in HAT-P-7’s light
curve. If the 1.7 day periodicity we see is indeed caused
by stellar rotation, it would require the star’s rotational
axis to be nearly pole-on to yield low projected rotation
velocity (Lund et al. 2014). While an analysis of
photometric anomalies due to gravity darkening in
HAT-P-7 b’s transit light curve are consistent with a
1.7 day rotation period (Masuda 2015), it seems to be
inconsistent with asteroseismic measurements of the
stellar inclination (Lund et al. 2014). While we cannot
conclusively determine the source of this signal, we note
that since its timescale is close to that of the planetary
orbital period and its amplitude is greater than any other
astrophysical signal in the light curve, it could plausibly
affect our measurement of HAT-P-7 b’s phase-curve
parameters.

For illustrative purposes, we modeled HAT-P-7’s power
spectrum as a sum of variability from these four processes. Our
model was the sum of two Gaussian functions (one to model
the envelope of p-mode oscillations around 1100 μHz, and one
to model the possible rotation signal at 1.7 days), and two
“Harvey-like” functions to model the broad granulation and
supergranulation functions (Harvey 1985). In particular, the
“Harvey-like” functions, , are given by


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=
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where ν is the frequency at which the function is evaluated, and
α, β, and τ are free parameters. We fixed γ to 2 for the
supergranulation power spectrum and 16 for the granulation
power spectrum. Our best-fit model and the individual
“Harvey-like” functions are shown in Figure 16.
We also tested for the presence of excess correlated noise by

generating a light curve with perfectly white noise and
comparing its periodogram to that of the actual HAT-P-7 light
curve. We created an array of normally distributed random
noise the same length as the short-cadence Kepler light curve of
HAT-P-7 b, with a standard deviation equal to that of the short-
cadence light curve with the planetary signal removed. We then
calculated a Lomb–Scargle periodogram of this white noise
light curve (using the same time stamps as the Kepler short-
cadence light curve) and normalized it as described above. We
then plot this white noise periodogram in Figure 16.
We found by comparing the periodogram of HAT-P-7’s light

curve with that of perfectly white noise that HAT-P-7’s light

Figure 12. Measurements of the phase offset recovered from the process
described in Section 4.4. The average phase curve of HAT-P-7 b was divided
out of the Kepler light curve and, instead, a phase curve shift varying from
±60 deg was injected. The plot shows several recovered phase offsets from the
same injected light curve but processed with different spline spacings. The
dotted line shows the true value of the injected phase offset. As expected from
our previous tests and shown in Figure 4, spline spacings shorter than the
period of HAT-P-7 b do attenuate real variations; however, with a basis spline
spaced at the period of HAT-P-7 b or longer, our analysis does not flatten away
real phase variations.
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curve exhibits a significant amount of excess noise on
timescales comparable to HAT-P-7 b’s orbital period. Because
our analysis to measure HAT-P-7 b’s phase-curve amplitudes
and phase offsets did not account for excess noise on these

timescales, the presence of such noise could explain the
apparently significant variations in the planet’s phase-curve
offset. In Section 5.5, we probe the potential effect of the
excess noise due on our phase-curve fits.

Figure 13. Measurements of the amplitude of the injected phase curves for each of the different stars in our injection/recovery tests. Like Figure 11, the Kepler Input
Catalog (KIC) identifier of the injected star is shown in each panel, along with the reduced χ2/d. o. f. value for each time series. The vertical dotted lines show where
the Kepler light curves are broken into quarters. The amplitude time series also show apparent variations, even though the injected signal had no time variations. There
are apparently effects other than true atmospheric variability that can introduce variations as large as we see in HAT-P-7 b’s phase curve. Our oversampled amplitude
variation result for HAT-P-7 b is shown at the bottom for comparison. We note that while the stars with the highest χ2/d. o. f. values show high-amplitude
photometric variability, even apparently quiet stars yield χ2/d. o. f. values similar to HAT-P-7.
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5.4. Power Spectrum of Short Light-curve Segments

We also calculated a Lomb–Scargle periodogram of the light
curve in shorter segments. By inspecting the Lomb–Scargle
periodograms of the individual segments, we can be more
sensitive to short-timescale variability in the phase curve that
would average out over the full light curve. We created the
periodogram using the Kepler short-cadence light-curve data,
with the planetary signal removed by fitting and dividing out
transits as well as the median phase curve over the data set (as
discussed in Section 4.4). We divided the light curve into 60
segments (as we did for our previous phase-curve modeling
analysis), and plotted the periodogram for each segment
separately. If the phase-offset variability signal we detected
was in fact due to variations on the planet as opposed to the
star, we would expect to see residual phase variations within
each shorter segment.

Because the planet’s rotation period is tidally locked to its
orbital period and we observe different longitudes of HAT-P-
7 b as it rotates every 2.2 days, changes in HAT-P-7 b’s
atmosphere would show up in a periodogram at its synodic
period. For slow changes to the atmosphere, as suggested by
Armstrong et al. (2016), the synodic period will be close to the
planet’s orbital period. So, any residual atmospheric variability
in the light curve would result in power spikes near HAT-P-
7 b’s orbital period.

We quantified how close to the planet’s orbital period such
residual spikes must be in order to suggest an atmospheric

variability signal by estimating the range of synodic periods for
plausible atmospheric variability signals. We did this by
identifying the fastest phase change from our results in
Figure 7. The largest change in phase offset from one point
to the next corresponded to a variability of about 5° per day.
The range of plausible synodic periods, Psyn, for atmospheric
variability around HAT-P-7 b’s orbital period, P, is therefore
given by
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We plot the Lomb–Scargle periodograms from the individual
light curve segments in Figure 17, and highlight the range of
plausible periods at which residual atmospheric variability
should leave spikes. We see no clear evidence for any excess
noise or peaks in the power spectra near the planet’s orbital
period, which would have suggested that the phase-offset
variations were likely due to changes in the planet’s atmo-
spheres. Instead, the only features in the power spectra we can
see are peaks near 1.7 days that we identify as possible rotation
signals, and the broad supergranulation signal that slowly rises
toward longer periods. This suggests that the apparent
variations we see in HAT-P-7 b’s phase curve are likely due
to these other astrophysical noise sources.

5.5. Possible Contributions to the Phase-offset Variability from
the Periodogram

We investigate the extent to which the excess noise in HAT-
P-7’s light curve can affect our measurement of amplitudes and
phase offsets in HAT-P-7 b’s phase curve. In Section 5.3, we
identified the possible rotation signal at 1.7 days and the broad
supergranulation signal in HAT-P-7’s light curve as signals
which could plausibly affect our measurement of HAT-P-7 b’s
phase curve, so we test each of these signals to determine
whether they could cause the apparent phase-curve variability
we see.
We devised a test to determine if the excess background

noise has an influence on our measurement of any given phase
offset. We created a fake data set, f, to mimic the HAT-P-7
light curve, based on a model of a combination of two
sinusoids:
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where a and P are the amplitude and period of a simulated
planetary phase-curve signal, an, Pn, and fn are the amplitude,
period, and phase of a simulated astrophysical noise signal, t is
the observation time, and  m s( ),w w is a white noise term
drawn from a normal distribution with mean μw and standard
deviation σw. For our tests, we simulated a planetary phase
curve with a= 35 ppm (the mean amplitude measured across
HAT-P-7 b’s phase curves) and P= 2.204735417 days, and
evaluated the model over a timespan of 22 days of observations
spaced like Kepler long-cadence data, mimicking the 10-orbit
light-curve segments we used when measuring the phase curves
of HAT-P-7 b. For the white noise term, we set μw= 0 and
σw= 25.5714 ppm, which is equal to the median flux
uncertainty in the Kepler light curve.

Figure 14. A possible relationship between the level of apparent variations in
the phase-curve parameters and the amount of low-frequency variability in
injected light curves. The x-axis shows the ratio between the standard deviation
of the Kepler light curve (excluding transits and eclipses) and the point-to-point
scatter of the same. A larger ratio indicates dominance of longer-scale
variations, such as those from stellar rotation signals. The y-axis shows the χ2/
d. o. f. value of measurements of the phase (f) of the sine at the planet’s orbital
period over time. Injected curves are shown in green, while HAT-P-7 is shown
in dark blue. The possible relationship between this metric designed to quantify
red noise in the light curve and the apparent statistical significance (using χ2/
d. o. f. as a proxy) of variations implies that the variations seen in HAT-P-7 b’s
phase curve may be due to these low-frequency variations. KIC10801359 is the
outlier visible in the lower-right-hand corner of the plot. It
shows ∼ 50–500 ppm amplitude photometric variability on short (∼1 day)
timescales, but is qualitatively similar to other noisy light curves that show
higher reduced χ2/d. o. f. values.
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We tested the impact of two different stellar variability
signals: the possible 1.7 day rotation signal and the super-
granulation signal. We used the following parameters to
generate simulated light curves for each test:

1. The possible rotation signal at 1.7 days. For this test, we
set the noise period Pnm = 1.7 days, drew random phases,
fn, from a uniform distribution between 0 and 2π, and
drew random amplitudes, an, from a log-normal distribu-
tion matching the distribution of amplitudes we measured
from the periodograms for each light-curve segment in
Section 5.4 between periods of 1.6 and 1.9 days. In detail,
the amplitudes (in ppm) were drawn from a distribution
described by ( )10 1.12,0.26 and truncated to avoid includ-
ing amplitudes greater than 40 ppm.

2. The supergranulation signal overlapping HAT-P-7 b’s
orbital period. For this test, we set the noise period Pn =

2.204735417 days (matching the planet’s orbital period),
drew phases, fn, from a uniform random distribution
between 0 and 2π, and drew random amplitudes, an, from
a log-normal distribution matching the distribution of
amplitudes we measured from the periodograms for each
light-curve segment in Section 5.4 with periods in the
intervals [2.1, 2.15] and [2.25, 2.3]. These period ranges
bracket HAT-P-7 b’s orbital period but avoid the synodic
period at which we would observe any real variability in
HAT-P-7 b’s atmosphere (see Section 5.4). The ampli-
tudes (in ppm) were drawn from a distribution described
by ( )10 0.93,0.26 and truncated to avoid including ampli-
tudes greater than 25 ppm. Using a single sine component
to represent supergranulation, a signal with power over a
broad range of frequencies, is a simplification but
captures most of the behavior of the supergranulation
signal because the other frequency components are

Figure 15. Excess noise vs. recovered phase offset in HAT-P-7 b and the injected light curves. Excess noise is defined in Equation (11), where a high excess noise
indicates a poor fit quality. The high excess noise of some of the injected light curves (KIC10801359, KIC10794838) makes them poor comparisons against the HAT-
P-7 b result. However, some of the injections which show comparable excess noise to the HAT-P-7 b result also show a similar phase-offset range (the injections in the
same range as HAT-P-7 b are shown in color in the second plot). This suggests that stellar variability can cause similar phase-offset variability results as those we
recovered for HAT-P-7 b.
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orthogonal and do not affect the planet’s phase curve as
strongly.

For each test, we generated 10,000 of these simulated light
curves and tested how unmodeled stellar variability affects the
measured phases and amplitudes by fitting each light curve
with an imperfect model, m, defined as
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where d and e are free parameters, and, again, t is the
observation time and P is HAT-P-7 b’s orbital period
(2.204735417 days). This model ignores the contribution to
the simulated light curve from stellar variability (matching
the behavior of our MCMC fits in Section 3.1.2). After fitting
the simulated light curves with this imperfect model using a
linear least-squares fitting algorithm (Heiles 2010), we
recovered the best-fit phase, f, and amplitude, a, of the

Figure 17. Lomb–Scargle periodogram of the Kepler short-cadence light curve of HAT-P-7, with the planetary signal removed. Each line represents one of 60
segments of the light curve. The period of HAT-P-7 b is denoted by the vertical black line. The vertical black dotted lines represent the largest range in which we could
reasonably expect periodogram features to correspond to variability from the planet itself, based on the fastest phase-offset variability we identified in our HAT-P-7 b
results. There is fairly consistent noise over all periods, but there is not a significant spike near the period of the planet. The implications of this are further discussed in
Section 5.4.

Figure 16. The power spectrum of HAT-P-7’s light curve, after removal of HAT-P-7 b’s signal. The light and dark gray curves show HAT-P-7’s power spectrum
smoothed by convolution with a Gaussian envelope with standard deviations of 0.3 μHz and 2.4 μHz, respectively. The red curve shows the best-fit model to the
power spectrum, and dashed lines show individual components of the fit. HAT-P-7’s power spectrum shows evidence for several different signals, at least two of
which (namely the broad supergranulation signal and the possible rotation signal at 1.7 days or 6.7 μHz) have timescales similar to HAT-P-7 b’s orbital period. The
blue curve is the power spectrum of an array of Gaussian random white noise with the same time axis and standard deviation as HAT-P-7’s light curve (with the
planetary signal removed). Compared to the power spectrum of purely white noise, HAT-P-7’s light curve shows excess noise on timescales close to the planetary
orbital period that is unaccounted for in our phase curve analysis. The excess correlated astrophysical noise in HAT-P-7’s light curve could contribute to the apparent
variations in HAT-P-7 b’s phase curve.
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We found that the presence of unmodeled variability at the
1.7 days possible rotation period has a relatively small impact
on the recovered phase offset and amplitude of HAT-P-7 b’s
phase curve. The distribution of recovered amplitudes was well
described by a normal distribution centered at the input value of
35 ppm, with a standard deviation of only 1.1 ppm. Likewise,
the standard deviation of recovered phase offsets was only
about 1°.9, much smaller than the apparent variations we
observe in HAT-P-7 b’s phase curve. In hindsight, it is not
surprising that the 1.7 day signal does not strongly affect HAT-
P-7 b’s phase-curve parameters, since sinusoids at different
frequencies are orthogonal in long time series.

However, we found that unmodeled variability at the
planet’s orbital period from the stellar supergranulation signal
had a major impact on the measured parameters from HAT-P-
7 b’s phase curve. The standard deviation of the recovered
amplitudes and phase offsets from our simulation was 8.1 ppm
and 14°.1, respectively—both significantly larger than the
scatter we found in our test of the 1.7 day signal, and much
closer to the apparent variations we see in HAT-P-7 b’s phase
curve (which were 9.9 ppm and 13°.3). Figure 18 shows a
comparison between the distribution of recovered phase offsets
and amplitudes from our supergranulation simulations and
from our actual measurements of HAT-P-7 b’s phase curve.
The simulated and actual distributions are close matches,
indicating that the unmodeled supergranulation signal in HAT-
P-7’s light curve could quite plausibly cause the apparent
variations we found in HAT-P-7 b’s phase curve. Super-
granulation therefore could provide a unified explanation for
the phase-offset variations and apparently spurious amplitude
variations in HAT-P-7 b’s phase curve seen by Armstrong et al.
(2016).

6. Discussion

In this paper, we have shown that the previously claimed
variability in the atmosphere of HAT-P-7 b may be spurious.
We do confirm the presence of apparent variations in the phase
and amplitude of HAT-P-7 b’s phase curve that at first appear
statistically significant. However, on further investigation, we
find that other processes can also cause apparent variations in
the phase and amplitude of nonvarying phase curves. We
summarize the evidence that the apparent variations in HAT-P-
7 b’s phase curve are spurious and caused by processes other
than atmospheric variability here:

1. Injection/recovery tests (Section 3.3) showed that
unchanging phase-curve signals injected into similar stars
observed by Kepler often show phase-curve variations
like those we see in HAT-P-7 b. Evidently, it is possible
to recover phase-curve variations like we see in HAT-P-7
even when the underlying signal is perfectly stationary.

2. When we remove the average planetary phase-curve
signal from HAT-P-7’s light curve, we do not see residual
peaks near HAT-P-7 b’s orbital period in the power
spectrum (Section 5.4). Any real variability in HAT-P-
7 b’s atmosphere would leave residual signals when the
average phase curve is removed, and these residual
signals should be found in the power spectrum very close
to the planet’s orbital period. We see no evidence for such
residual signals in HAT-P-7’s light-curve power
spectrum.

3. Excess noise in HAT-P-7’s light curve from super-
granulation can explain the observed phase-curve varia-
tions. In Section 5.3, we showed that HAT-P-7’s
photometric variability introduces excess noise into its
light curve, and in Section 5.5 we showed that the excess
noise from HAT-P-7’s supergranulation naturally
explains both the phase-offset and amplitude variations
in HAT-P-7’s phase curve.

Figure 18. Comparison of measured distributions and simulated distributions. The red histograms in each panel show the distribution of our phase-offset and
amplitude variability detected in HAT-P-7 b resulting from our original analysis (shown as a time series in Figure 7). The blue histograms show the results of the test
described in Section 5.5, wherein a simulated light curve imitating the background noise from the Kepler light curve of HAT-P-7 b near the period of the planet was
created, and phase-offset and amplitude variations were extracted using a linear-fitting scheme imitating our initial analysis. The histogram on the left compares our
real results to our simulated results for phase-offset variations, and the histogram on the right does the same for amplitude variations. These histograms show that the
variability we detected from our original analysis can be explained by nonplanetary sources of background noise present in the Kepler light curve of HAT-P-7 b, and
thus cannot be definitively said to indicate atmospheric variability of the atmosphere of HAT-P-7 b.
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We therefore suspect that the previously reported changes in
HAT-P-7 b’s phase curve are not due to atmospheric
variability, and instead are the result of excess correlated
photometric noise from HAT-P-7’s supergranulation.

The phenomenon of photometric variability impacting
measurements of planetary phase curves has been investigated
previously by Hidalgo et al. (2019). These authors found
empirically that stars with effective temperatures between 5500
and 6000 K provide the best phase-curve recovery to avoid
interference from stellar variability, while hotter stars have less-
stable variability patterns. HAT-P-7 b’s host star has an
effective temperature of 6440 K, making it a more challenging
target to reliably measure phase-curve variability.

While Hidalgo et al. (2019) studied the recovery of phase-
curve parameters as a function of host star temperature, our
results suggest that surface gravity may also be an important
parameter for predicting how amenable a given target will be
for characterizing atmospheric variability from phase curves.
The variability that we measure in HAT-P-7 b’s phase curves is
likely in large part due to host star supergranulation. The
amplitude of photometric variations due to granulation (and
likely supergranulation, as well) is related to the stellar surface
gravity (Bastien et al. 2013; Bugnet et al. 2018); the lower the
surface gravity is in a host star, the higher-amplitude
granulation and supergranulation signals the star will exhibit.
HAT-P-7 is a slightly evolved subgiant with lower surface
gravity, and therefore higher-amplitude photometric variability,
than most transiting planet hosts. Future work looking for
atmospheric variability from photometric phase curves would
target hot Jupiters around stars with higher surface gravity,
such as main-sequence Sun-like stars or lower-mass hosts like
K and M dwarfs.

Perhaps it is not surprising that we could not confirm the
presence of physical variability in the atmosphere of HAT-P-
7 b. The result from Armstrong et al. (2016) appeared to show
very large variations in the phase curve on relatively short
timescales, while it is challenging for theoretical models to
reproduce such large variability. Komacek & Showman (2020)
presented hot Jupiter simulations showing that although phase
offset in the hottest part of the planet’s atmosphere may be
observable, those variations are only expected to be as large as
6°. Rogers (2017) showed that strong magnetic fields can drive
winds capable of producing the claimed variability in HAT-P-
7 b’s atmosphere, but required a magnetic field strength of 6
Gauss, which may be difficult to achieve in a slowly rotating
hot Jupiter (although see Yadav & Thorngren 2017 and Cauley
et al. 2019).

A detection of atmospheric variability has also been claimed
for the planet Kepler-76 b (Jackson et al. 2019), who performed
an analysis similar to that of Armstrong et al. (2016). Jackson
et al. (2019) identified variations which were qualitatively
similar to those identified in HAT-P-7 b. We have not
performed our own analysis of this planet’s light curve, but
given the similarities between their analysis and results and
those on HAT-P-7 b it is possible that the claimed variability in
Kepler-76 b’s atmosphere may also be due to factors other than
physical atmospheric variations. Similar to HAT-P-7 b, the host
star of Kepler-76 b has an effective temperature of 6309 K,
which is above the ideal range suggested by Hidalgo et al.
(2019) to avoid interference from stellar variability. Kepler-76
also appears to be a slightly evolved subgiant with lower
surface gravity than dwarf stars of the same mass (Berger et al.

2018; Stassun et al. 2019), and therefore may have a large
enough supergranulation signal to cause spurious phase-curve
variations. Similar analyses to those we performed on HAT-P-7
could shed light on the significance of this result.
Going forward, we recommend using a similar suite of

analyses as performed here, including injection/recovery tests,
Fourier analysis, and simulated data sets to test the significance
of any future detection of variability in the atmosphere of an
exoplanet. These tests are fairly straightforward to do for wide-
field optical surveys like Kepler or TESS, where many other
stars are simultaneously observed and could be used for
injection/recovery tests, and where observations span many
orbits and allow for comprehensive characterization of the
stellar variability. In other light curves from Kepler or TESS, it
should be possible to identify similar stars, inject stationary
phase curves, and ensure that the statistical significance of the
claimed variability is stronger than the strongest spurious signal
detected in the injection/recovery tests. Likewise, with
observations over many orbital periods, it should be possible
to separate and characterize the host star’s variability in Fourier
space. The frequency resolution of a light-curve power
spectrum increases with the total length of observations; long
observational windows like those in Kepler, and to a lesser
extent in K2 and TESS, make it possible to identify and
separate other photometric signals from real changes to the
planet’s atmosphere. Even though TESS observes for shorter
time periods than Kepler, it also observes in a redder bandpass,
where exoplanet phase curves have higher amplitude and stellar
variability signals are weaker (e.g., Albregtsen & Hansen 1977;
Reiners et al. 2010).
It may be more difficult to perform similar tests to assess the

significance of variability detected by targeted telescopes like
the Hubble Space Telescope, Spitzer Space Telescope, or the
James Webb Space Telescope (JWST). In these cases, there
will be much fewer data sets suitable for injection/recovery
tests, and these telescopes generally do not perform long-term
continuous host star monitoring, so Fourier analysis will be
limited by the short-time baselines of observations. On the
other hand, these observatories will primarily be studying
phase curves at redder wavelengths than Kepler and TESS, and
therefore enjoy even lower amplitude stellar variability. Also,
even though Spitzer and JWST may only observe for a short
period of time, by now TESS has observed most of the sky. It
may be beneficial to use TESS to investigate the stellar
variability properties of Spitzer and JWST single-visit targets,
to avoid underreporting uncertainties of phase-curve
parameters.
Finally, it may be possible to circumvent the problem of

spurious phase-curve variations due to unmodeled stellar
variability signals with more sophisticated data-analysis
methods. In particular, we recommend investigations into
modeling-correlated variability from supergranulation using
Gaussian process regression. Gaussian process regression has
been successfully applied to a number of astrophysical
problems, including modeling stellar variability in Kepler light
curves (Grunblatt et al. 2017) and radial velocity observations
(Haywood et al. 2014). Properly accounting for correlated
noise in the light curve using a Gaussian process in our MCMC
likelihood function, as opposed to the simple white noise
model we used in our analysis, would likely improve our
results. Because stellar red noise is present in the in the Kepler
light curve of HAT-P-7 at the period of the planet, it will be
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difficult for a Gaussian process to disentangle this correlated
noise from the phase-curve signal and increase the accuracy of
measurements, but the Gaussian process would likely margin-
alize over different possible stellar variability signals and avoid
underestimating the uncertainty on each data point.

7. Conclusions

Previously, Armstrong et al. (2016) reported the detection of
variations in the phase curve of the exoplanet HAT-P-7 b. We
attempted to identify and verify atmospheric variability for
HAT-P-7 b by analyzing the Kepler light curve of the host star.
We removed low-frequency variability from the light curve
using a basis spline, and used MCMC to fit a phase curve to
consecutive time segments of the light curve. We generally
confirmed the variability detected by Armstrong et al. (2016),
indicating the possible presence of atmospheric variations and
cloud movements. We find that under assumptions of pure
Gaussian noise, the significance of the detection is extremely
high (p≈ 0), with reduced χ2 values of 5.4 and 4.8 for phase-
offset and amplitude time series, respectively.

We then tested the robustness of this result. First, we tested
whether we measured similar parameters for HAT-P-7 b’s
phase curve when we changed parts of our methodology. We
compared the results using different detrending/low-fre-
quency-removal methods, different Kepler data-processing
methods, and different models for our MCMC fits. Our results
remained generally the same across these different analysis
methods, although we did find that our results were fairly
sensitive to the particular detrending/low-frequency-removal
method we used.

We also tested whether other factors besides true atmo-
spheric variability could produce the variability we detected in
HAT-P-7 b’s phase curve using signal injection/recovery tests.
These tests consisted of repeating our phase-curve analysis on
other stars observed by Kepler into which a nonvarying signal
similar to HAT-P-7 b’s orbital phase curve had been injected.
We found that we recovered similarly significant levels of
phase-offset and amplitude variation from these nonvarying
sources. This indicated that the variations in the parameters of
HAT-P-7 b’s phase curve could be caused by processes other
than real atmospheric variations, and the result required closer
analysis.

We then investigated what other factors besides true
atmospheric variations could cause the variations we measure.
We removed the planetary signal from the Kepler light curve
and calculated periodograms of the full light curve and shorter
light-curve segments. We found high levels photometric
variability (in excess of random noise) due to supergranulation
on timescales close to the orbital period of HAT-P-7 b, as well
as a possible stellar rotation period at 1.7 days. We used
simulated 10-orbit light curves with the same level of noise as
the Kepler data, including proxies for these variability signals,
and tried to recover phase-curve parameters using a model
ignoring the variability. These tests showed that the possible
rotation signal at 1.7 days did not have a significant effect on
our phase-curve measurements, but the supergranulation noise
near the period of HAT-P-7 b did introduce apparent phase-
offset and amplitude variability on the scale of what we
measured for HAT-P-7 b. This indicates that unmodeled stellar
noise from supergranulation could be entirely responsible for
the variability we measure in the phase offset and amplitude of
HAT-P-7 b.

This result underscores the extreme difficulty of robustly
measuring variability in the atmospheres of exoplanets. With
four years of extremely precise photometry (60 ppm per 30
minutes exposure), the Kepler data set on HAT-P-7 is one of
the highest-quality photometric time series in existence. This
work suggests that future observers will need to consider the
host star’s variability before characterizing the variability of the
planet’s atmosphere.
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