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Clouds of ultralight bosons—such as axions—can form around a rapidly spinning black hole, if the
black hole radius is comparable to the bosons’ wavelength. The cloud rapidly extracts angular momentum
from the black hole, and reduces it to a characteristic value that depends on the boson’s mass as well as on
the black hole mass and spin. Therefore, a measurement of a black hole mass and spin can be used to
reveal or exclude the existence of such bosons. Using the black holes released by LIGO and Virgo in their
GWTC-2, we perform a simultaneous measurement of the black hole spin distribution at formation and the
mass of the scalar boson. We find that the data strongly disfavor the existence of scalar bosons in the mass
range between 1.3 × 10−13 and 2.7 × 10−13 eV. Our mass constraint is valid for bosons with negligible
self-interaction, that is, with a decay constant fa ≳ 1014 GeV. The statistical evidence is mostly driven by
the two binary black holes systems GW190412 and GW190517, which host rapidly spinning black holes.
The region where bosons are excluded narrows down if these two systems merged shortly (∼105 yr) after
the black holes formed.

DOI: 10.1103/PhysRevLett.126.151102

Introduction.—Ultralight bosons are hypothetical
particles with masses smaller than ∼10−11 eV. Their
existence, if verified, would help in solving open problems
in particle physics and cosmology [1–11]. In fact, the name
ultralight boson is commonly used to refer to multiple
possible candidates, including fuzzy dark matter [11–13],
dilatons [14–16], and axions [1,2,6,17–19]. Searches for
ultralight bosons using tabletop experiments as well as
astrophysical observations have been ongoing for years,
covering decades of boson mass [20–66]. To date, multiple
constraints have been reported from nondetections [67],
together with a potential axion candidate from the
XENON1T experiment [51]. Gravitational-wave (GW)
measurements of black holes in binaries (BBHs) provide
a unique opportunity to detect or rule out the existence of
these ultralight bosons in a mass range which is commen-
surate to the black holes’ masses and not accessible by
lab-based experiment. If such bosons exist and if their
Compton wavelengths are comparable to the radius of a
rapidly spinning black hole, boson superradiance may take
place and generate a hydrogen-atom-like cloud around the
spinning black hole [8,9,68–75]. The cloud efficiently spins
down the black hole to a characteristic critical spin, which
depends on the boson mass, through a process called
superradiant instability [8,9,71–75]. Accessing tens or

hundreds of BBHs thus allows for statistical tests on the
existence of ultralight bosons, in a boson mass range that
depends on the mass range of the population of black holes
being probed [8,9,37–42,45–50,58,62,66,73,76–81]. For
example, the stellar mass (∼5 M⊙ to ∼100 M⊙) black
holes that have been discovered by the ground-based GW
detectors LIGO [82] and Virgo [83] can be used to probe
boson masses in the range 3 × 10−14 ≲ μs ≲ 10−11 eV
[37,39,76,77]. Supermassive black holes, such as M87,
can be used to probe much lighter bosons, with
μs ∼ 10−21 eV [52]. Roughly speaking, if a dearth of highly
spinning black holes is observed for some range of black
hole masses, that could be suggestive of the existence of
ultralight bosons which have spun down the black holes.
Conversely, the discovery of highly spinning black holes
could rule out the existence of a boson in an appropriate
mass range. This simple idea is made more complicated by
a few factors. First, one must take into account that some
black holes may be slowly spinning when they form. The
small spin measurements inferred from the BBH mergers
observed by LIGO and Virgo could be due to either the
superradiant growth of the boson cloud or an astrophysical
distribution favoring small spins at the formation.
Reference [84] presented a Bayesian analysis where both
the distribution of black hole spins at formation and the
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mass of the boson are considered, thus properly accounting
for their correlation. That null result was driven by the
limited black hole sample size and by their small spins. In
this Letter we repeat the analysis of Ref. [84] by including
the 35 new binary black holes reported by the LIGO-Virgo-
Kagra (LVK) Collaboration at high significance [we follow
Ref. [86] and only select the candidates with the false-alarm
rate (FAR) < 1 yr−1] in Ref [87]. We find that the
probability of a scalar boson with masses lying in the
range 1.3 × 10−13 ≤ μs ≤ 2.7 × 10−13 eV is smaller than
0.01%. The evidence against the existence of bosons with
this mass arises mainly from two highly spinning black
holes found in the new dataset, namely GW190412 [88]
and GW190517.
Constraints from GWTC-2.—We apply the Bayesian

hierarchical method presented in Ref. [84] to all of the black
holes reported by the LVK Collaboration in GWTC-1 and
GWTC-2 [85,87,89,90]. [We exclude the double
neutron stars (NS) binaries GW170817 and GW190425,
as well as the possible NSBH GW190426. GW190719 and
GW190909 are also excluded as their FARs are larger than
1 yr−1 [87].] A detailed description of the method can be
found in Ref. [84], and here we only summarize the main
points. The main outcome of this analysis is a joint posterior
for the distribution of the boson mass and the distribution of
the black hole spins at formation. It is important to take into
account the distribution of spins at formation, since the
superradiant extraction of the spin angular momentum
depends on the black hole properties and the boson mass.
Therefore, the fraction of black holes in the population that
can undergo superradiance depends on the spin distribution at
formation. Following Ref. [84], we use a beta distribution
pðχFjα; βÞ ∝ χαFð1 − χFÞβ as our phenomenological model
for the distribution of the formation spin χF. This distribution
can capture some common configurations, such as a uniform
ðα ¼ β ¼ 0Þ or a volumetric ðα ¼ 2; β ¼ 0Þ distribution for
the spin magnitude [91]. When α > β, the β distribution has
more support for χF > 0.5, implying that more black holes
are born with large spins and can be superradiantly spun
down, making the inference of μs easier. The opposite is true
for α < β. In our analysis, we treat α and β as additional free
parameters, that are sampled together with μs. Later, we
marginalize the three-dimensional posterior pðμs; α; βjdÞ
over ðα; βÞ to obtain the posterior for μs. These two
parameters share the same prior, uniform in log in the range
[0.1, 10]. We mention that the joint posterior of ðα; βÞ is also
interesting, as it carries information about the spin distribu-
tion at formation (see Fig. 4 of Ref. [84]). However, given the
limited number of sources in GWTC-2, the inferred spin
distribution at formation is not different from the spin
distribution at merger, as reported by Ref. [86], and we thus
do not report it here explicitly.
Another important factor to assess if black holes will be

spun down by boson clouds is the time interval between the
formation of the black hole and the merger: even if bosons

of the appropriate mass exist, the black holes might not
have the time to undergo superradiance when they merge
too quickly after their birth. As in Ref. [84], we assume an
inspiral timescale of 107 yr from the time the binary black
hole system is formed to the time the black holes merge.
This timescale is a conservative lower bound in light of
population-synthesis studies [92–103]. Since the inspiral
timescale is usually much larger than the time it takes for a
giant star to form a black hole, we assume that the two
black holes in the binary are born simultaneously, and thus
the inspiral timescale is a good probe for the lifetime of the
individual black holes in the binary.
For the priors on black hole masses, we fix the BBH

mass distribution to a power law for the mass of primary
(heavier) black holeM−2.35

1 within ½5; 75�M⊙ and a uniform
distribution for the mass ratio 0.125 ≤ M2=M1 ≤ 1,
consistent with the latest inferred population properties
reported by the LIGO-Virgo Collaboration [86].
Figure 1 shows the marginalized posterior distribution for

the boson mass inferred from the full BBH catalog (blue
solid line). A region with vanishing posterior support is
clearly visible between 1.3 × 10−13 and 2.7 × 10−13 eV: less
than 0.01% of the overall posterior is contained in this
region, suggesting that the GWTC data strongly disfavor the
existence of a boson within this narrow mass range. Since
large black hole spins at merger are at odds with the
formation of boson clouds, this exclusion region must
be caused by highly spinning black holes in the
catalog. Indeed, there are two primary black holes in
GWTC-2 which are consistent with having large spin values:
GW190412 and GW190517. To check if the drop of

FIG. 1. Marginalized posteriors (solid lines) of the scalar boson
mass μs inferred from the dataset d consists of the full BBH
catalog (blue line), the dataset excluding GW190517 only (purple
line), as well as both GW190412 and GW190517 (orange line).
When the rapidly spinning BBHs GW190412 and GW190517
are included, there is only 0.01% posterior support between
1.3 × 10−13 ≤ μs ≤ 2.7 × 10−13 eV (gray region). The prior
(black dashed line) of μs is log uniform between 3 × 10−14 and
10−11 eV.
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posterior support evident in Fig. 1 is caused by these two
systems, we repeat the analysis by excluding GW190517
only (purple line), as well as both GW190517 and
GW190412 (orange line). Indeed, the posterior of the boson
mass using all sources but GW190412 and GW190517 does
not show the same feature, and is instead much closer to the
Bayesian prior we used (black dashed line).
To better understand how the spin measurements of

GW190412 and GW190517 help in excluding the
existence of bosons, we overlay the joint mass-spin
posteriors of the primary black hole in these two systems
on the exclusion region generated by a boson with
μs ¼ 2 × 10−13 eV; see Fig. 2. The black solid line
indicates the maximum postsuperradiance spin that a black
hole could have as a function of its mass if a boson of mass
μs ¼ 2 × 10−13 eV existed: spins above the line (i.e., in the
gray region) are forbidden.
We see that both of the primary black hole mass-

spin posteriors have large overlaps with the exclusion
region. In particular, the 95% credible contour of
GW190517 is entirely contained in the exclusion region
for μs ¼ 2 × 10−13 eV, meaning that the primary black
hole of GW190517 is inconsistent with having been
spun down by the boson of this mass, hence heavily
weighing down the existence of a boson with mass
μs ¼ 2 × 10−13 eV. Different boson masses result in differ-
ent exclusion regions: for example, in Fig. 2 we report the
exclusion regions for a boson with mass μs ¼ 10−12 eV
with a black dash-dotted line. In this case, there is a non-
negligible fraction of each posterior (∼50% and ∼5% for
GW190412 and GW190517, respectively) lying outside the
exclusion region of μs ¼ 10−12 eV. This is why Fig. 1
shows that the posterior for the boson mass is not vanishing
for this value of the boson mass.

One’s belief in a particular model (in this case, the
existence of a boson with mass in some range) can be
quantified using Bayesian model selections. We perform
the analysis described in Ref. [84] and calculate the Bayes
factor between the “boson model” and the “astrophysical
model” (that is, a model where there is no boson that sets
off the process of superradiance; in this model the
black hole spins are entirely determined by astrophysical
processes). Using a log-uniform prior on μs between
2.7 × 10−13 and 10−11 eV (that is, on the right-hand side
of the gray band visible in Fig. 1), we find a Bayes factor of
11.5þ2.2

−1.3 in favor of the boson model. While positive, this is
much smaller than the threshold usually invoked for a
strong statistical significance, i.e., ≥ 100 [104]. Hence, the
data are inconclusive about the existence of bosons with
mass μs > 2.7 × 10−13 eV. On the other hand, the Bayes
factor for boson masses within the gray band in Fig. 1, i.e.,
in the range ½1.3 × 10−13; 2.7 × 10−13� eV, is 5þ5

−5 × 10−3,
smaller than the threshold 0.01 and thus disfavoring the
existence of a boson within this mass range. In Table I we
also report the Bayes factor for bosons with masses in the
whole prior range, and with masses in the range
½3.16 × 10−14; 1.3 × 10−13� eV, finding that in both cases
the data are not informative.
The appearance of a posterior excess around 10−12 eV in

Fig. 1 can be explained as follows. If a boson of this mass
existed, one would thus expect clustering of black hole
spins along the critical spin curve (e.g., the solid and dot-
dashed lines in Fig. 2), as well as a dearth of spins above the
line. The exact distribution depends on the boson mass
which draws the critical spin curve and the spin distribution
at formation which determines the amount of black holes
that can undergo superradiant spin down. Therefore, as
mentioned above, the posteriors on the spin distribution at
formation and the boson mass are correlated (cf. Ref. [84]).
The peak at 10−12 eV can thus be explained because, for
that value of the boson mass, one would obtain black hole
spins at merger which are similar (within a rather large
uncertainty) to what is measured in the BBH dataset
without invoking the existence of a boson. With the current
dataset, the algorithm cannot distinguish between a sit-
uation where black hole spins at formation are mostly small

FIG. 2. Exclusion regions (gray shaded region) enclosed by the
critical spin curves of μs ¼ 2 × 10−13 eV (black solid line) and
μs ¼ 10−12 eV (black dash-dotted line) in the black hole mass-
spin ðM1; χ1Þ plane. The joint posteriors of the primary black
holes of GW190412 (green contours) and GW190517 (red
contours) are shown at 68% and 95% credible contours using
the GWTC-2 default prior [87].

TABLE I. Bayes factors between the boson model and the
astrophysical model for different ranges of μs. Larger values favor
the boson model.

Range of μs (eV) Bayes factor a

½3.16 × 10−14; 1.3 × 10−13� 0.5þ0.1
−0.2

½1.3 × 10−13; 2.7 × 10−13� 5þ5
−5 × 10−3

½2.7 × 10−13; 10−11� 11.5þ2.2
−1.3

½3.16 × 10−14; 10−11� 7.3þ1.4
−1.1

aFor each value, we report the median and the 68% credible
interval estimated from 50 nested-sampling chains.
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and bosonic clouds do not form, and the one where a large
amount of black holes have high spins at formation such
that a boson with mass 10−12 eV exists and spins the black
holes down.
Owing to the lack of extensive numerical simulations on

boson self-interaction, we do not allow for that possibility
in our boson model. Self-interaction would introduce a
nonlinear effect such as level mixing and “bosenova”
[9,105–107], and, if sufficiently large, it would stop the
cloud growth before the saturation of superradiance (i.e.,
before the black hole spin has reached the critical spin). As
a result, the postsuperradiance spin might not decrease to
the critical spin and be consistent with a large spin
measurement. The extent of the self-interaction is inversely
proportional to the decay constant of the boson fa, and
nonlinear effects become significant when the boson field
reaches a maximum amplitude which depends on the
black hole mass, the boson mass, and the decay constant
[105–107]. Thus, we may use the mass measurement of the
black holes that yield the μs constraint to estimate the value
of fa above which the self-interaction is negligible
[9,106,107]. Taking, for example, GW190517 (GW190412
has a similar primary mass and would thus yield a similar
bound), i.e., M1 ∼ 35 M⊙, and using the nonlinear con-
dition in Eq. (7) of Ref. [106] with a typical energy for the
boson cloud (∼10% of the host black hole mass), we obtain
that our analysis is certainly valid for fa ≳ 1014 GeV,
which roughly includes the grand unification theory’s
energy scale for the constrained boson mass μs ≈
2 × 10−13 eV [9].
Discussion.—In this Letter, we have shown that the

BBHs observed by LIGO and Virgo strongly disfavor
the existence of scalar ultralight bosons with masses in the
range 1.3 × 10−13 ≤ μs ≤ 2.7 × 10−13 eV. The statistical
evidence is entirely contributed by the two highly spinning
primaries in the systems GW190412 and GW190517.
Our method consistently accounts for the uncertainty of

the black hole spin distribution at formation, which is
marginalized over to obtain a posterior on the boson mass;
see Fig. 1.
However, caution is required in interpreting the results,

since there are astrophysical scenarios that may explain the
observed data without ruling out the existence of a boson in
that mass range. The first caveat is related to the timescale
between the formation of the black hole(s) and the merger
of the binary, which has to be larger than superradiant
timescale for a boson cloud to form and spin down the
black hole in the first place. As mentioned above, we
assumed that the black hole’s lifetime is the same as the
inspiral timescale, and took that to be∼107 yr, as suggested
by simulation studies [92–103]. This choice may not
be valid if either of the GW190412 or GW190517
binaries was formed with an extremely high eccentricity
1 − e≲ 0.01 shortly after the birth of the component black
holes, such that their inspiral timescales are reduced by few

orders of magnitude [108,109]. In this scenario, there
would not be time for black holes to lose their spin to
superradiance, and they may retain large spins even if a
boson exists, reducing the significance of our constraints.
Production of extremely eccentric BBHs is possible in
dense stellar clusters or active galactic nuclei (AGN), but
these BBHs with extreme eccentricity are expected to have
very low merger rates [110–113]. The AGN environment
may also enhance the production of hierarchical binaries,
i.e., binaries made of previous merger remnants, that merge
in a very short timescale ∼105 yr [114,115]. Assuming this
shorter timescale as the black hole lifetime, we find
that the exclusion range of boson masses narrows to
2.2 × 10−13 ≤ μs ≤ 2.7 × 10−13 eV.
The second caveat is related to the possible gas accretion

onto the black holes, which we have ignored in this work.
The black hole spin gradually increases when the materials
of the rotating accretion disk keep falling into the black
hole. The evolution of the black hole spin thus depends on
how significant the accretion can be. If the spin-up rate due
to accretion is much faster than the spin-down rate due to
superradiance, then the black holes may end up having a
large spin, inside the exclusion region, even if bosons exist.
In the opposite case, superradiant spin down dominates and
the black hole should still end its life with a spin around the
critical spin curve. For the stellar mass black holes relevant
for ground-based GW detectors, even an accretion rate at
the Eddington limit is expected to be much smaller than the
typical superradiant rate [39,54,73]. Therefore, our results
are still robust unless there is a thin-disk accretion whose
rate is drastically and continuously super-Eddington
throughout the black hole lifetime [116,117]. This is
unlikely to be the case for binary black holes even in
gas rich astrophysical environments, but not strictly impos-
sible [115,118,119].
The gravitational potential of the companion in a BBH

may alter the superradiant growth due to tidal interaction.
However, the tidal disruption may excite the in-falling
modes with opposite angular momentum and is likely to
enhance the spin down of the host black hole [45,48,49],
and may further broaden the exclusion regions [120]. We
also note that the mass loss due to superradiance is ignored,
which contributes to a few percent overestimation of the
boson mass constraints [40,84,120].
The constraints presented in this Letter will improve in

the future, if the spins of heavier black holes are found to be
above their critical spin curve. Second-generation black
hole mergers, whose primary black holes have a spin
at formation χ ∼ 0.7 and large masses, M ≳ 50 M⊙
[121–123], might be the ideal candidates to test for the
existence of a lighter boson, μs ≲ 10−13 eV, with ground-
based GW detectors. On the other hand, if a boson existed
with mass μs ≈ 10−12 eV, for which we have found weak
evidence, its existence could be shown with a few hundred
more black hole spin measurements, needed to verify the
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clustering of black hole spins along the corresponding
critical spin curve (dot-dashed line in Fig. 2 [84]). We end
by remarking that constraints on ultralight bosons with
GWs can also be obtained by targeting the nearly mono-
chromatic GWs emitted by the cloud of bosons
[42,46,54,58,59,66]. The two approaches target black holes
at different stages of their life. In particular, the method
based on continuous waves requires the cloud to be present
at the time of the measurement, while the approach
described in this Letter focuses on the black holes after
they have been spun down. These two approaches also use
entirely different statistical methods, therefore yielding
complementary constraints.
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