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ABSTRACT

The binary neutron star (BNS) mass distribution measured with gravitational-wave observations has the potential to reveal
information about the dense matter equation of state, supernova physics, the expansion rate of the universe, and tests of General
Relativity. As most current gravitational-wave analyses measuring the BNS mass distribution do not simultaneously fit the
spin distribution, the implied population-level spin distribution is the same as the spin prior applied when analyzing individual
sources. In this work, we demonstrate that introducing a mismatch between the implied and true BNS spin distributions can lead
to biases in the inferred mass distribution. This is due to the strong correlations between the measurements of the mass ratio
and spin components aligned with the orbital angular momentum for individual sources. We find that applying a low-spin prior
which excludes the true spin magnitudes of some sources in the population leads to significantly overestimating the maximum
neutron star mass and underestimating the minimum neutron star mass at the population level with as few as six BNS detections.
The safest choice of spin prior that does not lead to biases in the inferred mass distribution is one which allows for high spin

magnitudes and tilts misaligned with the orbital angular momentum.
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1 INTRODUCTION

The growing catalog of compact binary mergers detected in gravi-
tational waves (Abbott et al. 2021b) has provided a novel means to
probe the properties of black holes and neutron stars (Abbott et al.
2021c; Wong et al. 2021; Zevin et al. 2021; Roulet et al. 2021; Bouf-
fanais etal. 2021). The neutron star mass distribution has the potential
to independently yield information on the dense matter equation of
state (EoS) via the maximum mass, Mgy, beyond which the internal
pressure of the neutron star can no longer support it against gravita-
tional collapse to a black hole (Miller et al. 2019; Landry et al. 2020;
Chatziioannou & Farr 2020; Legred et al. 2021). The value of the
maximum mass depends on the yet-unknown EoS and the neutron
star spin (Lasota et al. 1996), although astrophysical processes may
prevent the formation of neutron stars with mass up to Mgy in some
scenarios. The mass distribution can also be used to constrain the su-
pernova physics leading to neutron star formation (Pejcha et al. 2012;
Vigna-Gémez et al. 2018), the astrophysical stochastic gravitational-
wave background (Zhu et al. 2013; Abbott et al. 2018b), the rate of
expansion of the Universe (Chernoff & Finn 1993; Finn 1996; Taylor
et al. 2012; Taylor & Gair 2012) and alternative theories of gravity
beyond General Relativity (Finke et al. 2021).

Initial measurements of the mass distribution of Galactic neu-
tron stars detected electromagnetically suggested that their com-
ponent masses follow a narrow Gaussian distribution (Thorsett &
Chakrabarty 1999), particularly for those found in binary systems
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with another neutron star (Ozel et al. 2012; Kiziltan et al. 2013).
More recent measurements reveal that the overall distribution of
neutron star masses including those found in binary systems with
other types of companions is broader (Kiziltan et al. 2013; Ozel &
Freire 2016) and better described by a double Gaussian (Alsing et al.
2018; Antoniadis et al. 2016; Tauris et al. 2017; Shao et al. 2020).
Including the first binary neutron star system observed in gravita-
tional waves, GW 170817 (Abbott et al. 2017), Farrow et al. (2019)
also find weak evidence for bimodality in the mass distribution of
the double neutron star population alone.

Gravitational-wave observations of compact binary mergers in-
volving at least one neutron star offer a complementary means to
probe the neutron star mass distribution at extragalactic distances.
While only two binary neutron star (BNS) systems have been de-
tected in gravitational waves, these observations already suggest that
there may be a distinction between the Galactic population accessi-
ble as pulsars and the gravitational-wave population (Pankow 2018;
Galaudage et al. 2021; Safarzadeh et al. 2020; Abbott et al. 2021c).
GW190425 represents the most massive BNS system ever detected,
with a total mass five standard deviations away from the mean of
the Galactic population (Abbott et al. 2020b). When analyzing the
full population of neutron stars detected in gravitational waves—
including neutron star-black hole mergers (Abbott et al. 2021e)—
Landry & Read (2021) find that the masses are consistent with being
uniformly distributed, although with significantly more support for
high neutron star masses compared to the Galactic population. Thus,
accurate and precise measurements of the neutron star mass distri-
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bution from gravitational-wave observations have the potential to
elucidate the formation channels of these systems.

Such measurements utilize the framework of hierarchical Bayesian
inference (e.g. Mandel 2010; Thrane & Talbot 2019), where the prop-
erties of the population as a whole are determined while taking into
account the uncertainty on the parameters of individual sources and
the selection effect introduced by the varying sensitivity of the detec-
tor to sources with different properties (Loredo 2004; Mandel et al.
2019; Vitale et al. 2020). This requires both unbiased parameter es-
timates for individual sources and physically realistic models for the
population and detector sensitivity. One potential source of system-
atic error is the correlation between measurements of the intrinsic
parameters describing binary neutron star systems, including the
masses, spins, and tidal deformabilities of the components. Wysocki
etal. (2020) and Golomb & Talbot (2021) recently demonstrated that
unphysical assumptions about the equation of state (or tidal deforma-
bility) when measuring the mass distribution independently can lead
to biases with as few as 37 events, emphasizing the importance of
fitting these distributions simultaneously.

The mass ratio and spin components aligned with the orbital angu-
lar momentum are particularly correlated for individual sources (Cut-
ler & Flanagan 1994; Hannam et al. 2013; Berry et al. 2015; Farr
et al. 2016; Ng et al. 2018). This is due to the fact that for a given
chirp mass, M = (mym)3/3 /(m; + my)'/3, binaries with larger
spins aligned with the orbital angular momentum will merge more
slowly (Campanelli et al. 2006), while binaries with more unequal
mass ratios will merge more quickly, introducing a degenerate effect
on the waveform. Gravitational-wave analyses of individual BNS
sources typically assume two different priors for the spin distribu-
tions, a “low-spin” prior and a “high-spin” prior (Abbott et al. 2017,
2020b). The “low-spin” prior restricts the maximum dimensionless
spin magnitude—defined as | y| = c|S|/(Gm?), where S is the spin
vector of the neutron star with mass m—to |y| < 0.05, informed
by the spins of Galactic double neutron stars that will merge within
a Hubble time (Lorimer 2008; Lo & Lin 2011; Zhu et al. 2018).
The “high-spin” prior extends to | y| < 0.89, as allowed by available
waveform models without making any assumptions about the con-
sistency of the system with the observed Galactic population. It is
worth noting that pulsars have been observed with spins as high as
| x| < 0.4, even in binary systems (Hessels et al. 2006).

In this work, we demonstrate that mismodeling the spin distribu-
tion of BNSs can lead to a bias in the recovered mass distribution.
We find that for a population of sources with moderate aligned spins
extending out to | xy| < 0.4, using individual-event mass estimates
obtained with the low-spin prior without simultaneously fitting the
spin distribution hierarchically leads to significant bias in both the
inferred mass ratio distribution and maximum mass. Conversely, in
the case of a low aligned-spin population with |y| < 0.05, the in-
ferred mass ratio distribution under the high-spin prior is also biased,
although this effect can be ameliorated by allowing for the spins to be
misaligned with the orbital angular momentum. In Section 2 we de-
scribe our methodology and simulated BNS populations. In Section 3
we present the results of our hierarchical inference and conclude with
a discussion of the implications of our findings in Section 4. We also
include a demonstration of the importance of obtaining unbiased
inferences for individual sources via the fallibility of the commonly-
used “probability-probability plot” as a test of sampler performance
in Appendix A.
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2 METHODS

In addition to the component masses, spins, and tidal deformabili-
ties, quasi-circular BNS mergers are characterized by seven extrinsic
parameters including the distance, sky location, time of coalescence,
and inclination angle between the orbital angular momentum and
observer line-of-sight. We simulate two populations of BNS sys-
tems with distinct spin distributions. Both have spins aligned with
the orbital angular momentum drawn from the implied distribution
on Y, assuming that the magnitudes are distributed uniformly on
[0, ¥max| and the directions are isotropic. The first population allows
for medium spins consistent with the maximum observed neutron star
spin (Hessels et al. 2006), ymax = 0.4, while the second population
restricts to ymax = 0.05, following the observed spins of Galactic
double neutron stars (Lorimer 2008; Lo & Lin 2011). The mass dis-
tribution is chosen based on Farrow et al. (2019); the mass ratio is
drawn from a narrow truncated Gaussian with mean y = 1, width
o = 0.1, and lower limit gpj, = 0.4. The total mass distribution is
a power-law with index a = —2.5 between My min = 2.3 Mo and
Miot, min = 4.3 Mo with low-mass smoothing (see Eq. 7-8 of Talbot
& Thrane 2018) over §Mio; = 0.4 M. We choose to parameterize
the mass distribution in terms of total mass and mass ratio since the
latter is particularly sensitive to correlations with the spin parame-
ters (Piirrer et al. 2016; Ng et al. 2018). For the extrinsic parameters,
we assume the sources are distributed uniformly in comoving volume
between luminosity distances of df = 10 Mpc and dyp = 300 Mpc
and isotropically on the sky. Standard distributions are chosen for the
remaining binary parameters (see e.g., Romero-Shaw et al. 2020).

For both of the populations described above, we generate 100
events that are detectable with a LIGO Hanford-Livingston detector
network (Aasi et al. 2015) operating at the sensitivity achieved during
the third observing run (Abbott et al. 2018a, 2020a). We consider
an event to be detectable if it is observed with a network optimal
signal-to-noise ratio (SNR) pggi > 9. For each event, we perform
Bayesian parameter estimation to obtain samples from the posterior
probability distributions for the binary parameters, 6, describing an
individual BNS system, i:

p(0;|d;) o< L(d;|6;)7pE(6;), (1)

where £(d;|0;) is the likelihood of observing data d; given the
binary parameters 6; (Veitch & Vecchio 2010; Romano & Cornish
2017):

2|dy — hy (6;)]?

L£(d;16;) < exp (- 75,

k

(@3]

Here h(6;) represents the gravitational waveform for the BNS signal
with parameters 6;, T is the duration of the analyzed data segment,
Sk is the noise power spectral density (PSD) characterizing the sen-
sitivity of the detector, and k indicates the frequency dependence
of the data, waveform, and PSD. The prior in Eq. 1 is denoted by
7pg (0;), with the “PE” subscript indicating that this is the prior as-
sumed during the initial parameter estimation step for each individual
event.

We use the reduced order quadrature (ROQ) implementa-
tion (Smith et al. 2016) of the IMRPhenomPv2 waveform
model (Hannam et al. 2014; Khan et al. 2016; Husa et al. 2016)
in the likelihood above in order to curtail the computational cost
of the individual-event parameter estimation. As such, we assume
that the neutron stars we simulate are point masses with no tidal
deformability. While previous works have demonstrated the impor-
tance of simultaneously inferring the mass and tidal deformability
distributions at the risk of introducing biases when they are fit inde-



Table 1. Summary of the different combinations of true spin distribution
and prior applied during the initial parameter estimation step for each of the
scenarios we explore in this work. The pgray column describes the distribution
assumed for the sensitivity injections used to incorporate selection effects as
detailed in Appendix B.

Tpop (X1, X2) 7pE (X1, X2) Pdraw (X1, X2)

Aligned, ymax = 0.4
Aligned, ymax = 0.4
Aligned, ymax = 0.4
Aligned, ymax = 0.05
Aligned, ymax = 0.05

Aligned, ymax = 0.8
Aligned, ymax = 0.4
Aligned, ymax = 0.05
Aligned, ymax = 0.8
Precessing, xmax = 0.8

Aligned, ¥max = 0.8
Aligned, ymax = 0.4
Aligned, ¥max = 0.05
Aligned, ymax = 0.8
Aligned, ¥max = 0.8

pendently (Wysocki et al. 2020; Golomb & Talbot 2021), we limit
the scope of this work to mass-spin correlations and leave a full
exploration of the potential correlations between the three intrinsic
parameters of each neutron star to future studies. However, we com-
ment on the effects of correlations with tides in Section 4. We use
the PyMuLtiNEsT (Feroz & Hobson 2008; Feroz et al. 2009, 2019;
Buchner et al. 2014) and pyNesTY (Speagle 2020) nested samplers
as implemented in the BiLBy (Ashton et al. 2019; Romero-Shaw
et al. 2020) parameter estimation package to obtain samples from the
posterior distributions for each event.

We choose priors 7pg(6;) that are uniform in chirp mass with a
width of 0.2 M centered on the true value of the chirp mass for
each event and uniform in mass ratio over [0.125, 1]. This choice
of prior and mass parameterization is more convenient for sampling.
The priors on the extrinsic parameters are the same as those from
which the populations were drawn. We adopt a number of different
choices for the spin priors, as described below and summarized in
Table 1.

Once we have obtained posterior samples for each of the individual
BNS events, we can combine them to measure the underlying mass
distribution of our simulated population. In this case, we are no
longer interested in the individual binary parameters, 6;, but rather in
a set of hyperparameters A that describe the population distribution,
7pop (B|A), which is also referred to as the hyper-prior. For our choice
of population distribution, A = {&, Mo, min> Mrot, max> 6 Mrot, 4, 0}
The likelihood of observing a set of individual events {d} given
the hyperparameters A is obtained by marginalizing over the binary
parameters for each event and multiplying the resultant marginal
likelihoods:

caym =[] / L£(di18)7p0p (831 A)d6;. 3)

This joint likelihood can be constructed from the individual-event
posterior samples obtained in the first parameter estimation step via
the “recycling” method (e.g. Thrane & Talbot 2019),

on (651 |A
LUdYA) ]‘[Z”p"( I )

”PE(gtg)

so that the joint likelihood is the ratio of the hyper-prior and the
original PE prior, where the subscript j denotes a sum over the
individual posterior samples for each event.

The likelihood above assumes that the individual events included
in the observed population are an unbiased sample of the true pop-
ulation found in nature. However, we know that this is not the case
for observed gravitational-wave events, since the detectors are more
sensitive to high-mass sources (Fishbach & Holz 2017). This se-
lection effect needs to be accounted for in the likelihood in order
to obtain unbiased estimates of the hyperparameters describing the

BNS mass distribution systematic error 3

Table 2. Hyperparameters describing the mass distribution and the maxi-
mum and minimum values allowed in the prior applied during hierarchical
inference. The priors on all parameters are uniform.

Symbol Parameter Minimum  Maximum
@ total mass power-law index 0 4

Miot, min minimum total mass 2 Mg 3 Mo
Miot, max maximum total mass 3.2 Mg 5 Mg

O Mo smoothing parameter 0 Mg 1 Mg

u mass ratio mean 0.4 1

o mass ratio standard deviation  0.01 0.5

astrophysical, rather than the observed, distribution (Loredo 2004;
Mandel et al. 2019; Thrane & Talbot 2019; Vitale et al. 2020),

l_[ /L(d |6; )ﬂpop(A|0i)d0i

L{d}IA) = 0 ,

(&)

(A) = / d0; e (8)7p0p (B3 A). ©)

The function pge(6;) gives the probability that an individual event
with parameters 6; will be detected. We evaluate a(A) using a Monte
Carlo integral over a set of simulated signals drawn from the distri-
bution pgraw (@) following the approach described in Farr (2019).
More details on the simulated population used for determining the
detection probability can be found in Appendix B. We evaluate the
corrected likelihood in Eq. 5 to obtain samples from the posterior dis-
tributions of the hyperparameters using the NESTLE sampler (Barbary
et al. 2021) and the GWPopruLATION package (Talbot et al. 2019).
The priors on the hyperparameters are all uniform over the ranges
given in Table 2.

So far we have not mentioned the spins in the hierarchical infer-
ence step and have restricted the hyperparameters to include only
those governing the mass distribution. For any parameters that are
not explicitly included in the ratio in Eq. 4, it is implicitly assumed
that the PE prior and the hyper-prior are the same (see Section 5.4
of Vitale et al. 2020). Even if we are not interested in measuring
the hyperparameters of the spin distribution, if there is a mismatch
between the underlying population distribution and the prior applied
during the initial sampling, this can introduce biases in the hyperpa-
rameters that are being measured if there are significant correlations
between those binary parameters, as is the case for the mass ratio
and spins for binary neutron star systems, for example. To probe how
such mismatches between the assumed and true population distri-
butions for the spins can introduce biases in the mass distribution,
we deliberately apply spin priors during the PE step that differ from
those used to generate the population. This is consistent with what is
currently done in population analyses, as will be described in detail
in Section 4.

For the medium-spin population, we apply both high and low-spin
priors with ymax = 0.8,0.05, respectively, as limited by the range
of validity of the ROQ. We also perform parameter estimation and
hierarchical inference on the mass distribution with a PE prior that
matches the true population distribution with ymax = 0.4 as a sanity
check to ensure that the resultant biases we see are indeed due to a
spin prior mismatch. An example corner plot showing the posteriors
on the mass ratio and component spins obtained under each of these
priors for one individual event is shown in Fig. 1. While the true
values of all three parameters are included within the prior range for
all three choices of spin prior, the g posterior peaks at lower values
when analyzed with the low-spin prior compared to the other two
due to the correlation between mass ratio and spin. For the low-spin

MNRAS 000, 1-10 (2021)
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Xmax = 0.8
Xmax = 0.4
Xmax = 0.05

X1
0’/

X2
0/1

Figure 1. Corner plot showing the one-dimensional posteriors and 50 and
90% contours for the mass ratio and component spin magnitudes for one
event recovered with aligned-spin priors for three different choices of ymax-
The true values are indicated with the black lines and are ¢ = 0.96, y| =
—0.005, x» = —0.037, within the prior range for all three choices of prior.

population, we apply the high-spin prior first assuming aligned spins
and then relax this assumption to allow for precessing spins. The
combinations of true population and PE prior are summarized in
Table 1.

3 MASS-SPIN CORRELATIONS

The hyperparameter posteriors for Mtot,max, 14, and o~ obtained when
analyzing the medium-spin population with true ymax = 0.4 with
both the low and high-spin priors are shown in the corner plot in
Fig. 2. The blue contours show the results obtained with the high-
spin prior. The true hyperparameter values are all recovered within
the 90% credible region of the posterior, demonstrating that analyzing
a population with ymax = 0.4 with a prior out to ymax = 0.8 does
not lead to biases in the inferred mass distribution. This is consistent
with the fact that the analyses with the medium and high-spin priors
shown in Fig. 1 do not lead to significant differences in the mass ratio
posteriors for individual events.

Conversely, the low-spin results shown in red are significantly
biased in both o~ and Mot max. This can be explained by the cor-
relations shown in Fig. 1, which are exacerbated by the low-spin
prior and push the mass ratio posteriors for individual events towards
lower values. This leads to a preference for wider distributions in the
hierarchical inference step, since there is more support for extreme
mass ratios in the population. Underestimating the mass ratio results
in overestimating the total mass, since the chirp mass of the system,

q 3/5
- (i) o @

is still well-constrained, propagating into the overestimation of the
maximum total mass at the population level.
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Figure 2. Hyperparameter posteriors on the maximum total mass and mean
and width of the mass ratio distribution for two different choices of initial
sampling prior applied to the medium-spin population. While the sources
were drawn from an aligned-spin distribution with ymax = 0.4, the red and
blue contours show the hierarchical inference results when they are recovered
with priors with ymax = 0.05, 0.8, respectively. The black lines denote the
true values of the hyperparameters. The value for u = 1 lies at the edge of the
prior, and hence the black line is not visible for this parameter. The high-spin
prior results are conistent with the true population, while the low-spin prior
results favor a much wider mass ratio distribution and a higher maximum
total mass. The true values are excluded at > 3 o~ confidence.

The inferred mass ratio and total mass distributions under the low-
spin prior are shown in Fig. 3. These are represented by the posterior
population distribution (PPD), which is the astrophysical distribution
of the binary parameters 6 implied by the inferred hyperparameters
A (Abbott et al. 2021d):

p(61{d}) = / dAP(A{d)) mpop (B1A). ®

The recovery of a wider mass ratio distribution and higher maxi-
mum total mass results in overestimating the maximum mass of the
primary neutron star and underestimating the minimum mass of the
secondary, as can be seen in the bottom panel of Fig. 3. These biases
can have profound implications for both single and binary neutron
star formation mechanisms and their equation of state. Few equations
of state are able to support neutron stars with m > 2.5 M, where 7%
of the probability lies for the recovered PPD on m. Additionally, it
is difficult to form neutron stars with m < 1 Mo under current stellar
evolution models (Vigna-Gomez et al. 2018), a region of parameter
space which contains 10% of the probability for the inferred PPD on
my.

The evolution of the bias in the hyperparameters as a function of the
number of individual events included in the analysis is shown in blue
in Fig. 4. With six events, denoted by the first vertical grey line, the
true value of o is already excluded from the 3o~ credible region. The
same occurs with 13 events for the maximum total mass parameter.
We also show the evolution of the bias in the maximum and minimum
components masses, which are represented by the 99th percentile of
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Figure 3. Inferred mass posterior population distributions (solid black lines) when a spin prior mismatch is introduced for a population where the true spin
follows the aligned-spin distribution out to ymax = 0.4, but the assumed population only allows ymax = 0.05. The dashed black lines show the true distributions,
while the light blue lines show individual draws from the hyperparameter posterior. Top: Total mass (left) and mass ratio (right) distributions. Bottom: Primary

(left) and secondary (right) mass distributions.

the primary mass distribution and the first percentile of the secondary
mass distribution, respectively, since we do not directly parameterize
the population in terms of the component masses. We find similar
constraints on mmax and mpyj, to those presented in Chatziioannou &
Farr (2020), but these parameters become significantly biased with
a similar number of events to the o~ and Mo, max hyperparameters.
The bias in Miot,max is driven by four events in particular, which
correspond to the distinguishable upward jumps in the top panel
of Fig. 4. These events all have true values of | x1| > 0.05, which
is outside the range allowed by the low-spin prior. This leads to a
significant bias in the mass ratio posterior towards low values, driving
the total mass upwards to keep the chirp mass constant. We emphasize
that the posteriors for these individual events do not exhibit railing
against the prior edges in either the spin or mass parameters and are
well-converged. As such, they would not immediately be identified
as problematic if they corresponded to real events. These results
demonstrate that choosing a population model for the spins (even
implicitly) that does not include all the sources in the population
can significantly bias the BNS mass distribution. The width of the
90% credible interval (CI) for the same parameters in the case of no
spin-prior mismatch is shown in the black dotted lines in Fig. 4 for
comparison. The true values of all the hyperparameters lie within the
90% credible interval, demonstrating that there is no bias when the
implied and true spin distributions match.

While we have found that analyzing the population of sources with
Xmax = 0.4 with a prior going up to ymax = 0.8 does not introduce a
bias on the mass distribution, we now seek to investigate if the same
conclusion holds for the low-spin population with ymax = 0.05.
The hyperparameter posteriors for the low-spin population analyzed

with high-spin priors assuming both aligned and precessing spins
are shown in the corner plot in Fig. 5. The true values of the hyper-
parameters are not always contained within the 90% credible region
for the high aligned-spin prior shown in red, indicating a hint of a
bias when 100 individual events are included in the population. The
much larger difference in the prior volume between the low- and
high-spin priors in this case leads to a bias even when all the ob-
served events have spins within the allowed prior region. Allowing
for the tilts to be misaligned to the orbital angular momentum intro-
duces additional degrees of freedom that break the strong degeneracy
between ¢ and y;, alleviating this bias. The results obtained under
the high precessing-spin prior shown in blue in Fig. 5 include the
true hyperparameter values within the 90% credible region. Thus,
we conclude that using the high, precessing-spin prior is the safest
choice for BNS systems if the mass and spin distributions are not
modeled simultaneously during hierarchical inference.

4 CONCLUSIONS

In this work, we have demonstrated that introducing a mismatch
between the true, underlying spin distribution for BNS systems ob-
served in gravitational waves and that assumed when characterizing
individual systems can lead to a bias in the inferred mass distribu-
tion at the population level. If the mass and spin distributions are
not fit simultaneously, the implied population model for the spin dis-
tribution is the same as the prior used when conducting parameter
estimation for individual sources. To investigate the effects of such
a mismatch, we simulated two distinct populations of BNS sources,

MNRAS 000, 1-10 (2021)
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Xmax = 0.05, median

35 = Truth
A Xmax = 0.4, 90% CI
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00l T
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ma, 19 [Mo)]
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Number of events

Figure 4. The top two panels show the evolution of the hyperparameters
Mo, max and o as a function of the number of events included in the hierar-
chical analysis. The bottom two panels show the evolution of the maximum
and minimum inferred component masses, represented by the 99th percentile
of the m distribution and the first percentile of the m, distribution, respec-
tively. The solid black line shows the true value for each hyperparameter,
while the solid blue line shows the median obtained when applying the low-
spin prior to the medium-spin population. The blue shading gives the 50%
and 90% credible intervals. The dotted black lines denote the 90% credible
region when there is no spin prior mismatch applied to the medium-spin pop-
ulation. The vertical grey lines show the sixth and thirteenth events, where
the true values of o~ and Mo max are excluded at > 30, respectively.
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True Xmax = 0.05

aligned Xmax = 0.8
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Figure 5. Hyperparameter posteriors on the maximum total mass and mean
and width of the mass ratio distribution for two different choices of initial
sampling prior applied to the low-spin population. The sources were drawn
from an aligned-spin distribution with ymax = 0.05, but both priors assume
xmax = 0.8. However, the red contours show the hierarchical inference results
when an aligned-spin prior is applied, while the blue allows for spin preces-
sion. While the high aligned-spin results are only marginally consistent with
the true hyperparameter values, allowing for precession breaks the strong
degeneracy between g and y, and ameliorates the bias.

one with medium aligned spins out to ymax = 0.4 and the other with
low aligned spins out to ymax = 0.05.

The mass distribution inferred for the medium-spin population
was significantly biased when the individual sources were analyzed
with a low aligned-spin prior but unbiased when analyzed with a
high aligned-spin prior. The bias is due to the degeneracy between
the mass ratio and aligned spin components for BNS systems, which
pushes the mass ratio posteriors for individual sources out towards
more extreme values and also drives the total mass towards higher
values. This translates into an overestimation of the maximum neu-
tron star mass and and underestimation of the minimum mass, with
adverse implications for both the inference of the nuclear equation
of state and supernova mechanisms. The most massive neutron stars
with posterior support in Fig. 3 are only supported by the stiffest
equations of state. The illusion of these high-mass neutron stars in
the population would falsely populate the putative lower mass gap be-
tween the heaviest neutron stars and lightest black holes. Additionally,
the false presence of a significant subpopulation of sub-solar mass
compact objects would affect the inferred contribution of primordial
sub-solar mass black holes to the dark matter density (Abbott et al.
2018c, 2019c¢; Nitz & Wang 2021; Abbott et al. 2021a), as neutron
stars with such low masses are not expected to form theoretically,
and ground-based gravitational-wave detectors are not sensitive to
the gravitational radiation from less massive compact objects such
as white dwarfs. While in principle tidal effects could be used to
distinguish sub-solar mass black holes from neutron stars, in practice
gravitational-wave constraints on the tidal deformability are often
weak (e.g. Abbott et al. 2020b, 2021e).



The mass distribution inferred for the low-spin population demon-
strated a hint of bias with the high aligned-spin prior, but this was
alleviated when the individual sources were analyzed with a prior
allowing for misaligned spin tilts. The extra degrees of freedom in-
troduced by the precessing-spin model break the strong degeneracy
between g and y ;. These biases demonstrate the importance of fitting
the mass and spin distributions simultaneously, to avoid implicitly
mismodeling the spin distribution. However, if the mass distribu-
tion must be analyzed independently, we conclude that using a high,
precessing-spin prior for the individual sources is the safest choice.

We note that the unbiased results we obtain in this demonstra-
tion are only robust if the choice of parameterized mass model used
during the hierarchical inference step is physically realistic. If the as-
sumed shape of the mass distribution does not match the underlying
population, further biases can be introduced. However, this sort of
mismatch is unlikely to affect the inferred maximum and minimum
neutron star masses as significantly as the spin prior mismatch, so
long as the parameterized population model covers the full range of
allowed neutron star masses. This potential problem can be further
ameliorated by fitting the mass distribution with several different hi-
erarchical models, including for example the bimodal models favored
by current observations and simulations (e.g. Antoniadis et al. 2016;
Alsing et al. 2018; Tauris et al. 2017; Vigna-Gémez et al. 2018;
Farrow et al. 2019), and comparing the statistical evidence obtained
between them to determine which provides the best fit. Alternatively,
amore flexible model that does not impose a specific functional form
on the mass distribution could be used (e.g. Mandel et al. 2019; Wong
et al. 2020; Tiwari 2021; Li et al. 2021b; Sadiq et al. 2021; Rinaldi
& Del Pozzo 2021).

Correlations between the tidal parameters—which we have set to
zero in our analysis—and the masses and spins can also introduce
systematic errors in the inferred mass distribution if not accounted
for. For the posteriors of individual events, more extreme values of
mass ratio allow for smaller values of the tidal parameter which enters
the gravitational waveform at leading order, A (Wade et al. 2014;
Abbottetal. 2019a). Since the high-spin prior typically provides more
support for more unequal mass ratios, changing the spin prior can
also affect the inferred tidal parameters. Comparing our results with
those of Golomb & Talbot (2021), which demonstrates the effect of
mismodeling the tidal parameters on the inferred mass distribution,
we conclude that enforcing a low-spin prior when there are larger
spins in the population introduces a much more significant bias in
the inferred mass distribution. However, both types of mismatches
lead to increased support for higher neutron star masses.

In addition to the mismatches between the true and implied popu-
lation models for the spins, masses, and tides discussed above, inad-
equate sampler performance when conducting parameter estimation
for individual events can also manifest as a bias in the inferred popula-
tion properties when multiple events are combined, as demonstrated
in Appendix A. However, this sort of bias can be diagnosed and
addressed by performing hierarchical inference on a simulated pop-
ulation. Another potential source of systematic error is the accuracy
limitations of the waveform models used to infer the properties of
individual events. For the SNRs expected with the current generation
of detectors, this effect should be small compared to the bias intro-
duced by mismodeling the spin distribution (Abbott et al. 2019b;
Dudi et al. 2018; Dietrich et al. 2019; Messina et al. 2019; Abbott
et al. 2020b).

The upcoming fourth observing run of the LIGO and Virgo detec-
tors is expected to add tens of new binary neutron star sources to the
catalog of compact binaries detected in gravitational waves (Abbott
et al. 2018a). Based on our results, a bias in the mass distribution
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could be imposed on the observed population with as few as four
additional BNS detections if a low-spin prior is applied to a popula-
tion with higher spins. We note that while current population studies
do not model the BNS mass distribution independently due to the
paucity of detections, a variety of models consider BNS sources as
part of the compact object population as a whole (Mandel et al. 2017;
Fishbach et al. 2020; Farah et al. 2021; Abbott et al. 2021c) or as part
of the population of neutron star-containing systems (Landry & Read
2021; Abbott et al. 2021c¢; Li et al. 2021a). Most of these models and
analyses assume the BNS spin distribution is uniform in magnitude
on the interval [0, 1) with isotropic tilts, corresponding to the safe
choice identified in Section 3. Both the MuLtt SOURCE model pre-
sented in Abbott et al. (2021c) and the analysis of Li et al. (2021a)
fit the mass and spin distributions of the BNS subpopulation simul-
taneously. The MuLtt SourRcE model assumes the spin magnitudes
follow a Beta distribution with ymax = 0.05 and the tilts are isotrop-
ically distributed. The analysis of Li et al. (2021a) takes a similar
approach, assuming the neutron star spin magnitudes follow a trun-
cated Gaussian out to ymax = 0.05 and fitting the tilts as a mixture
model between aligned and isotropic distributions. While assuming
small spins will not lead to a bias for the two BNS events currently
detected, this assumption should be relaxed to avoid introducing a
bias in the mass distribution with the first few events detected during
the next observing run.
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APPENDIX A: THE INSUFFICIENCY OF P-P PLOTS AS A
DIAGNOSTIC TEST

In order to obtain unbiased posteriors for the hyperparameters de-
scribing a population of events using the likelihood in Eq. 5, the
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individual-event posteriors must also be unbiased. A common diag-
nostic tool for evaluating the performance of a stochastic sampler
is a “probability-probability plot®, or a P-P plot (Cook et al. 2006;
Talts et al. 2018). This provides a graphical way to verify that the
true parameter values are recovered within a certain credible interval
for the expected fraction of events in a population. If the likelihood
correctly describes the distribution of data, the true parameter val-
ues should be recovered within the 5% credible interval 5% of the
time, the 95% credible interval 95% of the time, etc. For the Whittle
likelihood in Eq. 2 used when performing parameter estimation on
individual gravitational-wave sources, this is satisfied if the data are
Gaussian about the assumed noise power spectral density. In the case
of unbiased individual-event posterior samples for a particular pa-
rameter, the P-P plot should be approximately diagonal, as it shows
the fraction of events for which the true value of a given parameter
falls within the given credible interval as a function of that credible
interval.

An example P-P plot obtained using the PYMULTINEST sampler
for a population of 100 simulated BNS sources is shown in Fig. Al.
The extrinsic parameters are drawn from the same prior distributions
described in the main text, and the spins follow the low aligned-spin
prior. The mass ratio is also drawn from the same population prior
explored in the main text, namely a narrow truncated Gaussian with
# =1, o = 0.1. The chirp masses are drawn from a uniform prior
between 1.52 and 1.70 M. For the P-P plot to be unbiased, the
distributions from which the events are drawn must match the priors
applied during sampling, meaning that there is no prior mismatch
and no cut based on the SNR of the individual events, as has been
the case in the rest of this work. The legend shows the probability for
the fraction of events within each credible interval to be drawn from
a uniform distribution for individual parameters, as expected from
Gaussianity. For the mass ratio, this value is p = 0.742, passing the
P-P test (where the threshold is p > 1/11 = 0.09). The probability
that the individual-parameter probabilities are drawn from a uniform
distribution is 0.254, consistent with random chance for 11 param-
eters and indicative of unbiased sampling across the 11 parameters
drawn from and recovered with this particular set of priors.

However, when the same 100 individual events are analyzed hier-
archically to recover the true values of u and o, the results are biased
at the 30 level, as shown in Fig. A2. This demonstrates a case where
the sampling algorithm passes the P-P test for a particular population
but still yields biased hierarchical inference results, highlighting the
insufficiency of P-P plots as a diagnostic tool for individual-event pa-
rameter estimation. In this case, the recovered hyperparameters favor
a narrowly distributed population peaking away from y = 1, indicat-
ing that the sampler is unable to thoroughly explore the edge of the
prior space where most of the probability lies for the nearly equal-
mass events included in the population. This is due to the adapted
simultaneous ellipsoidal nested sampling method used by PyMutrti-
NEest (Mukherjee et al. 2006; Shaw et al. 2007; Feroz & Hobson
2008; Feroz et al. 2009), which bounds the iso-likelihood contours
around clusters of live points with N-dimensional ellipsoids. Because
the probability for mass ratio rails against the edge of the prior and
the algorithm is inefficient at sampling near edges, the peak of the
distribution at equal mass is undersampled.

PyMurtiNEsT internally works with a uniform prior for samples
from the unit hyper-cube which must then be scaled to the physical
parameter space such that the scaled samples are drawn from the de-
sired physical prior distribution. In order to improve the convergence
near equal masses, we propose to use a two-stage mapping that shifts
the peak of the probability at ¢ = 1 away from the edge of the prior
in the frame of the sampler. Typically samples from the unit cube are
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Figure A1. P-P plot showing the fraction of events for which the true value
is recovered within a certain credible interval as a function of that credible
interval for a population of 100 simulated BNS sources, sampled with the
PyMuLTINEsT package. The lines for individual parameters stay within the
30 credible region, shaded in light gray, and the probability values quoted
in the legend are consistent with passing the P-P test. The other grey shaded
areas show the 1 and 2o credible regions.
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Figure A2. Corner plot for the inferred mass ratio hyperparameters using the
100 events used to generate the P-P plot in Fig. Al.

rescaled onto the appropriate prior distribution for a given parameter
via the inverse of the prior’s cumulative distribution function, such
that for a sample from the unit cube, x, g(x) = CDF~! (x) (although
other methods have been proposed, e.g., Alsing & Handley 2021).
Here, we propose to add an intermediate step,

u =2min(x, 1 —x), (A1)
g = CDF ! (u), (A2)
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Figure A3. Inferred mass ratio PPDs when applying the original inverse CDF
rescaling method (red) and the modified rescaling method described in Eq. A2
(blue) to the medium-spin population described in the main text analyzed with
no spin prior mismatch. The dotted line shows the true distribution, and the
shading shows the 90% credible region. Without the modified rescaling, the
mass ratio distribution is biased towards lower g values and more narrowly
peaked.

where u still takes on values within the unit interval, but instead of
q(x =1) =1, q(x =0.5) = 1. This transformation maps equal mass—
where the peak of the probability lies—to the center of the sampled
space rather than the edge, which is more difficult to sample. In
Fig. A3, we show the mass ratio PPDs for the medium-spin population
described in the main text with no spin prior mismatch obtained with
and without this modified rescaling method. Similarly to the corner
plot in Fig. A2, without the modified rescaling, the PPD shown in
red peaks at lower mass ratios and is more narrowly distributed. The
true hyperparameters are excluded from the recovered posteriors at
> 30 credibility. Once the modified rescaling is implemented for
the individual-event parameter estimation, the hierarchical inference
becomes unbiased as shown in blue. This stealth bias introduced
by the stochastic sampling algorithm that is not caught with a P-P
test demonstrates the importance of verifying hierarchical inference
analyses with synthetic populations where the true hyperparameter
values are known and controllable before conducting the analysis on
real data.

APPENDIX B: SELECTION EFFECTS

In order to evaluate the selection function in Eq. 6, we calculate the
detection probability, pge(6;), using an injection campaign. a(A)
gives the fraction of signals that will be detected drawn from a
population model with hyperparameters A. We generate 194953 total
simulated signals, calculating the network optimal SNR, pggtt for
each. Of these, 40000 of are above the threshold for detection, pg; >
9. The distribution from which the injections are drawn, pgraw (),
is uniform in total mass over the range [2, 5] Mo, and uses the same
prior distributions described in the main text for all the extrinsic
parameters. The mass ratio distribution is

1 N ,O
Paraw(q) = 0.5 1.67 + — (9. 7)

o q)(‘Imag__H) _ (I)(Qmi(l;_ﬂ) ’

B1)

dmin < ¢ < gmax
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which is the normalized superposition of a uniform distribution and
truncated Gaussian distribution with u = 1, 0 = 0.1 between guin =
0.4 and gmax = 1. The truncated Gaussian is added to enhance the
number of injections with nearly equal mass ratios, since this is the
part of the parameter space that should have the most support given
the true distribution we used for the simulated populations described
in Sec. 2. The spins are drawn following the aligned-spin prior with
Xxmax = 0.99. The injections are reweighted so that ymax matches
the corresponding value used during the first parameter estimation
step for each of the spin-prior mismatches we consider above. The
different combinations of true population distribution, PE prior, and
injection distribution are summarized in Table 1.
We can then estimate the detection probability as follows:

a(A) = / 40 p e (6)tpop (BIA), (B2)
NOUH
Qdraw = / depdet(e)l)draw(e) ~ # (B3)
draw
raw 0 Cl 0
Piouna(8) = Paw(O)Pae(0) (B4)
Adraw
ount (0)
a(A) = Agraw / da%npop(om), (B5)
oo (03 1A
a(A) ~ 1 Ttpop (01A) (B6)

Nfound 7 pdraw(aj).

We account for the uncertainty in the Monte Carlo integral in Eq. B6
following the method in Farr (2019) and reject parts of the hyperpa-
rameter space during sampling that do not have enough injections to
meet the accuracy requirements therein. We note that our population
model, mpop(8;]A), in Eq. B6 includes only the total mass distribu-
tion, and not the mass ratio distribution, as the latter has a negligible
effect on the detectability of the source and would require a much
higher number of injections to meet the accuracy requirements for
our choice of narrow truncated Gaussian population distribution.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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